当前位置:文档之家› 连续箱梁桥的发展

连续箱梁桥的发展

连续箱梁桥的发展
连续箱梁桥的发展

连续箱梁桥的发展

————————————————————————————————作者: ————————————————————————————————日期:

?

连续箱梁桥的发展

预应力混凝土连续梁桥是预应力桥梁的一种,它具有整体性能好、结构刚度大、变形小、抗震性能好的优点,又加上预应力连续梁桥桥型的设计施工均较成

熟,施工质量和施工工期能得到控制,成桥后养护工作量小,使得这种桥型在公

路和铁路桥梁工程中得到广泛采用。我国自上世纪50年代中期开始修建预应力混

凝土梁桥,至今已有50多年的历史,比欧洲起步晚,但近年来发展迅速,在预应

力混凝土桥梁的设计、结构分析、试验研究、预应力材料及工艺设备、施工工艺

等方面日新月异,预应力混凝土梁桥的设计技术与施工技术都已达到相当高的水平。

箱形截面能适应多种使用条件,特别适合于预应力混凝土连续梁桥、变宽度桥。箱梁有较大的抗扭刚度,应力值较低,徐变变形较小,箱梁截面有单箱单室、

单箱双室或多室,早期为矩形箱,逐渐发展成斜腰板的梯形箱。连续箱梁具有桥

面接缝少、刚度大、整体性强,外形美观,便于养护等优点。

我国上世纪70年代公路上开始修建连续箱梁桥,到目前为止已建成了多座绝

续箱梁桥。进入二十一世纪,中国高速铁路实现了跨越式的发展,根据国家中书

期路网规划,到2020年,全国铁路营业里程将达到12万公里以上,客运专线1.。万公里以上。在客运专线上,桥梁占了较大的比例,比如京沪高铁全线桥梁占8溅

京津城际桥梁比例更是达到8践。其中,连续箱梁得到了大量的应用。

连续箱梁桥的施工方法多种多样,只能因时因地,根据安全经济、保证质量.

降低造价、缩短工期等因素综合考虑选择.一般常用的方法有:立支架就地现浇.

预制拼装、悬臂浇筑、顶推、用移动模架逐跨现浇施工等团,

1.2问题的提出及意义

1.2.1选题的背景

桥梁的寿命周期分为施工阶段和使用阶段,结构工程师通常比较重视桥梁的使用年限期间的安全问题,容易忽视桥梁在施工阶段所面临的结构安全、强度和

稳定等方面的问题.

20世纪60年代以前,传统的搭材为方木、圆木、万能杆等重型钢木材料。用这些材料不做计算和设计一般也可以满足稳定性等要求,但是会用掉大量木材和

钢材,耗资和工作量都很大。上世纪60年代以后,随着各种新型钢管脚手架的出现,支架现浇施工中逐渐采用了钢管支架,如碗扣式脚手架已经在各种桥梁现浇

施工中得到了广泛的应用。钥管支架具有弹性变形和非弹性变形量小,刚度和强

度大的优点,因而能保证现浇混凝土梁的质量。但对于大型超高的工程建设,钢

管脚手架由于属于细长结构,由于竖向偏心距和结构初始缺陷等因素的存在,很

可能使支架发生失稳破坏。

近些年来,工程施工中出现了用组合支架施工方法来代替单一的满堂支架施工,传统的满堂支架地基处理一次性投入处理费用高,当添加施工荷载时地基可

能出现不均匀沉降,从而造成混凝土质量不同程度的损伤。同时满堂支架也无法

满足桥跨以下交通需要。所谓的组合支架,是指在施工中使用碗扣式脚手架,贝

雷梁,大直径钢管柱等构件来搭建施工的支撑体系。组合支架改善了支架现浇施

工的稳定性,也使得施工更加地便捷[ll.碗扣支架、大直径钢管柱配合贝雷架搭设

的组合支架较其它方法施工简单、速度较快,其结构受力也较合理.由于组合支

架的优越性,组合支架在工程施工尤其在跨越交通线路的桥梁施工中得到了越来

越广泛的应用。

支架的节点和杆件成千上万,计算复杂,至今没有准确的设计和计算支架支

撑系统的计算模型,计算方法和计算程序,在桥梁施工中,施工技术人员和监理

工程师也只能凭经验和局部验算支撑强度来搭设支架,因而在施工过程中存在较

大的施工安全隐患。同时,支架现浇连续箱梁施工中,在张拉前后,梁体受力有

很大的变化,张拉导致梁体上拱,部分梁体段与支架脱离,梁体重量由其余支架

承担,使得部分支架受力突然增大,而支架设计与验算是按照梁体线密度计算梁

体重量,未考虑张拉导致的支架内力重分布。随着我国大跨度桥梁的高速发展,

大型、超高的支架在工程建设中的应用也日益广泛,支架的稳定问题更显得尤其

重要。支架在桥梁结构的施工过程中要承受模板以及上部结构传递下来的荷载,

由于竖向偏心距和结构初始缺陷等因素的存在,很可能使支架发生失稳破坏,经

常发生支架倒塌事故。因此,对支架现浇施工中大直径钢管柱和碗扣式脚手架钢

管进行稳定性分析就显得十分必要和有意义.

1i2t支架倒塌施工工程实例

由于支架设计和施工中存在的种种问题,支架施工事故也层出不穷,给国家

和人民生命财产造成很大损失

1996年12月,广东韶关坪乳公路白桥坑特大型桥施工过程中,由于贝雷梁组

成的组合支架发生大弯曲变形,失稳倒塌,造成32人死亡,59人受伤的重大事故。

1998年9月,青海省桥头电厂某冷却塔施工中,模板支撑失稳,全部倒塌,

造成4人死亡,10人重伤,38人轻伤的重大事故。

2000年11月27日,深圳盐坝高速公路起点高架桥模板支架倒塌,造成19人

受伤,5人重伤。

2002年6月8号,即将竣工的湖南株洲石峰大桥施工现场主桥和河东引桥连

接处庞大的支模钢管轰然倒塌,正在上方施工的工人随着几百吨重的现浇箱梁,

自18米的高空坠下,造成1人死亡,至少10人受伤。

2003年6月24日,山东青岛市某桥梁施工工地正在绑扎的墩柱钢筋笼及脚手

架突然倾倒,造成4人死亡、4人重伤。

2004年1月15日,南京双桥门高架雨花铁路站附近一跨模板支架倒塌,造成4人重伤,20人轻伤。

2004年12月13日,广清高速公路连接线主线工程正在施工的一段高架桥支架发生坍塌事故,造成1人死亡,1人失踪,7人受伤。

2007年6月13日,在建珠江黄埔大桥支架倒塌,被埋4人,2死2伤,数名施工工人被埋在水泥浆和钢管中.

2010年l月3日,昆明在建新机场配套引桥工程立交桥在浇筑过程中发生支模架垮塌事故,该起事故导致41人死伤,其中7人死亡,8人重伤,26人轻伤,

现场一片狼藉,如图1一1。

2010年1月12日,芜湖市华强文化科技产业园配送中心工地在混凝土浇筑过程中发生脚手架倒塌事故,造成15名工人被埋,共造成8人死亡。

2010年l月12日,贵州福泉市利森水泥厂一处工地脚手架发生倒塌,事故造

成8人死亡,2人受伤。

2010年l月21日,沪杭高铁嘉兴大桥段工地发生脚手架倒塌事故造成现场工

作的3名施工人员被压,如图l一2。

国外也同样发生了许多支架倒塌事故,造成了较大的人员财产损失,例如:

1990’年4月25日,美国明尼苏达州、密西西比河上一顶大拱桥在浇捣桥面的混凝土工程时,桥跨中间部分脚手架倒塌,造成一人当场死亡。

1990年7月13日,在威斯康辛州安提格斯普林布鲁克地区,正在修建的美国45号桥倒塌。

1990年10月10日,在加利福尼亚州圣莱安德罗州,为1a$vlsRasB立交桥的弓!桥上部构造所搭设的支架发生坍塌事故,造成三人受伤.

2009年12月16日,印度西部拉贾斯坦邦在建桥梁在施工中突然倒塌,造成

至少45人死亡.

1.2r支架倒塌事故原因分析

通过以上案例,可以看出,支架倒塌事故发生的不仅比较频繁,事故造成的

人员财产损失也是相当严重的。分析以上事故,原因主要有以下几点。

第一,安全意识不强。支架由于是临时结构,重要性经常被施工单位忽略。

有些施工单位对设计方案、规范标准的要求执行观念不强,安全意识松懈,往往

不认真研究工程的实际情况,仅根据自己的经验,或者以前某个工程的方案简单

照搬,有些制定了支架搭设方案的也是流于表面,没有落实到实际施工中lsl。

第二,设计计算不严谨。支架搭设常根据经验布置,缺少在各种施工荷载工

况下的受力检算。设计中,对荷载考虑得也不太全面,设计时取的荷载值偏小,

没有把实际施工过程中可能出现的所有荷载情况考虑进去,并且没有考虑到施工

中荷载的变化和重分布,就可能造成支架的整体承载力不够。此外,由于荷载偏

心、构件初始缺陷等问题,使得支架的计算更加复杂t6l。

第三,材料质量有问题。支架可以反复使用,在反复搭设、使用、拆除、运

输和存取过程中,会使其杆、配件产生一定程度的损伤,如锈蚀、弯曲、变形、

管壁压扁、连接件裂纹、螺栓滑扣等,因此其抗弯、抗压能力下降,但实际使用

过程中,对这些因素的考虑不足,并未对构件进行抽检,使得支架体系中存在大

量不合格构件‘”。

第四,管理不够完善.在支架搭设中,如果施工人员认识不足,要求不严,

操作人员根据主观经验改变构造参数,未严格按设计要求操作,搭设时缺少剪刀

撑或杆件缺失,使得局部的步距、跨距要大于设计值,这就造成了局部长细比增

大,增加了局部失稳的可能性.同时,如果节点扣件的紧固程度不够,节点连接

的力学性能将得不到保证,整个支架的实际承载能力将比理想状态下的承载能力

有所降低.此外,支架搭设的地面应平整,保证有良好的地基承载力.支架支撑

的倒塌常发生在混凝土的浇筑过程中,即随着机构自重的增加,支撑承受的竖向

荷载也越来越大,混凝土的流动及振捣荷载,混凝土的浇筑方式,浇筑方式都会

使支架支撑系统发生失稳倒塌,所以在施工中要加强管理,严格按施工方案执行网。

7结论与展望

7.i结论

本文介绍了预应力连续箱梁用组合支架进行现浇施工的相关工艺和方法,并

结合京沪高铁滩河特大桥跨104国道(4)56+40)m连续梁的施工实例,详细分析

了连续箱梁在施工过程中的梁体内力,并研究了贝雷梁,大直径钢管柱,碗扣支

架组成的组合支架的受力大小和稳定性能。论文研究结论如下:

(l)预应力连续箱梁的梁体受力在施工过程中有较大的变化,浇筑初期箱梁

顶部受较小的压应力,底板受拉应力.随着预应力钢束的张拉,梁体受力不断增

加,全截面受压应力。

(2)通过理论和监测分析,连续箱梁张拉完成后,中墩位置底板的压应力大

于顶板的压应力,其中各跨跨中发生上拱,顶板压应力大于底板的压应力。

(3)通过理论分析和监测数据可以看出,梁体在浇筑初期,重力基本由梁下

的组合支架均匀承担,预应力张拉后,梁下除了近墩处支架还承担箱梁传递下来

的力,并比浇筑初期有所增加,梁中部支架由于上拱,大部分支架己经不承担箱

梁重力,箱梁的支座承担的力也有增加较大。

(4)论文采用MmA}C}il对预应力混凝土连续梁桥进行施工仿真模拟。箱

梁应力计算值和监测值基本吻合。碗扣支架受力的计算结果和监测结果在某些时

刻有些出入,但规律基本一致。

(5)在箱梁横向,箱梁的重力分布也不是均匀的,本文通过理论分析,可以

看出箱梁腹板下的支架受力最大,底板下的支架受力居中,翼缘板下的支架受力

最小。

(6)在监测中,碗扣支架有受拉现象,说明碗扣支架在施工过程中有偏心和

弯曲的的情形出现。

(7)论文用MIDAS}i}il建立了贝雷梁模型,并分析了各阶段贝雷梁的受力

情况,可以看出,在浇筑阶段,贝雷梁受力较大,由于箱梁受力重分布,除了近

墩处传递荷载,其余位置传递的力较小,贝雷梁受力不断减小和重新分布。

(8)通过用IroASiCi对大直径钢管柱进行屈曲分析,分析了钢管柱布置

间距,高度和支撑对大直径钢管柱的稳定性和受力的影响.可以发现,钢管柱高

度显著影响大直径钢管柱的稳定性,随钢管柱高度的增加,大直径钢管柱的屈曲

荷载显著减小,如sm高的大直径钢管柱的屈曲荷载是1高的大直径钢管柱的3,4

倍。布置间距越大,屈曲荷载也会变小,如1高的大直径钢管柱,S} m的布置比5x3m大9.器。钢管柱增加支撑也可以有效提高大直径钢管柱的稳定性,大直

径钢管柱高腼时,5x2。布置下,有支撑比没有支撑的大直径钢管柱屈曲荷载大

13.骤,大直径钢管柱高1腼时,sxZm布置下,有支撑比没有支撑的大直径钢管

柱屈曲荷载大}1.}6}

(9)论文用M}1AS}ii}建立了不同类型的碗扣支架的模型,实际情况中碗

扣式支架节点在荷载作用下都会传递一些弯矩而同时又会产生一定的变形,节点

性能介于刚性连接和铰接连接两个极限状态之间,属于半刚性的连接。

cloy通过理论分析,可以看出,步距,纵横距和剪刀撑都会影响碗扣支架

的稳定性,步距为1.。时屈曲荷载为73. } 1,当步距增大至1 tsr}}屈曲荷载

只有39,82曰,减少了}i。随着剪刀撑的较少,碗扣支架的屈曲荷载不断减少,可以看出完全在有剪刀撑的情况下,支架的屈曲荷载从57f增加到}*

kN,增加了26f。随着纵横距的增大,碗扣支架的理论屈曲承载力也不断减小。

7.2展望

由于本人学识和能力有限,论文还有待进一步深入。在今后的工作中应该在一下方面做进一步的研究。

(1)预应力连续箱梁在施工过程中温度和收缩徐变等因素在箱梁内力变化中影响大小还需要进一步的分析和研究,总结出各种因素的在箱梁内力变化中的作用大小。

(2)在对支架进行稳定性分析时,需进一步找出各种导致支架倒塌的不确定

性因素。应分析支架的初始缺陷,荷载的初偏心等因素对支架承载力的影响。

(3)支架的计算不同于一般的钢结构,如何才能更真实、准确地对支架进行

受力分析是巫待解决的问题。由于相关试验较少,有必要进行贝雷梁、大直径钢

管柱和碗扣支架进行承载力试验,总结相关试验规律和理论分析进行对比。

现浇连续箱梁桥施工方案

广南高速公路GN16合同段新212国道跨线桥现浇箱梁施工专项方案一、工程概况 本桥位于定水镇广南高速公路新212国道跨线桥(K142+)横跨新212国道线,斜交°,平面位置处于直线上,部分位于定水互通B匝道加减速车道内。上部采用20+32+20m三孔一联预应力现浇连续箱梁;下部采用桩柱式墩、重力式U型桥台、桩基础。梁体高米,腹板厚采用,顶、底板厚分别采用、,各箱室腹板与顶、底板设×的倒角,顶、底板在距墩中心及端部范围内均设×的倒角;箱梁悬臂长在靠近匝道设计中心线侧为,在另一侧为,根部尺寸均为;箱梁悬臂左半幅宽、三室,右半幅宽,四室,变截面采用增减箱室空腔尺寸来调整箱梁宽度。 二、施工平面布置(见附图1) 三、施工测量 采用全站仪,根据经校核的测量控制网点放出本现浇箱梁桥的桥梁中轴线,再对各个桥台的轮廓控制点进行测量定位。采用水准仪进行高程控制。 在施工测量之前,应对全桥测量座标进行复核,对全桥各个细部平面位置及高程进行列表计算,经复核无误后再现场放样。 四、施工方法 1 施工工艺流程图

见图现浇钢筋混凝土预应力箱梁工艺流程图 2 主要施工方法与施工措施 支架基础处理 施工前先对梁底地基进行处理:承台基坑分层回填夯实,同时进行地面平整碾压,在支

架工程范围内浇注10㎝厚素砼垫层,确保连续箱梁浇注砼时,满足上部立杆对地基承载力的要求;已满足上部立杆对地基承载力要求的地段不作处理。 2.1.2 支架工程 2.1.2.1 支架设计 计划采用碗扣式脚手支架,采用90cm×60cm间距布设支架,碗扣脚手架立杆上下设可调顶托和可调底托。水平联结杆上下间距120cm,最下方一层距地面和最上方一层距顶托顶均不大于40cm。上部用立杆可调顶托, 采用12cm×12cm木方做横梁,5cm×10cm方木和外径48mm,壁厚的钢管做纵梁,间距为15cm。在212国道双向分别设置5m×机动车行驶通道和×人行通道,其门架处采用碗扣支架支撑,顶托上靠近门洞边缘采用三道b12轨道钢做横梁,其上架设2【32槽钢做纵梁,纵梁间距,在其上方再铺设12cm×12cm方木,间距为50cm作为横梁。行车道两侧立柱支架加密间距为,最后铺设12mm桥工板。侧模支架上下步距80cm,梁翼板采用竹胶板结合木支架搭设。剪刀撑沿桥梁纵向、横向每隔4.5米布置一道。支架设计见支架布置示意图。 2.1.2.2 支架施工要求 a、支架施工时,工人必须带安全带和安全帽,扣件和支撑头不得乱抛; b、支架旁必须设人行步梯,步梯上要有扶手和防滑装备; c、支架两侧设0.9m宽人行道,通道外设安全防护措施; d、所有扣件必须按规范要求上紧; e、支架拆除顺序:每跨从跨中向两边拆除; f、模板支架预压 支撑体系搭设结束以后,进行支架预压,支撑体系预压采用在支撑顶面堆码编织袋装砂的方式,砂袋的重量为箱梁自重和模板重量的倍,用吊车吊装、人工堆码。待支撑体系沉降稳定以后,测出支架及地基变形量参数。满载后若连续48小时测量未见明显沉降,则可视为地基处理能满足要求;卸载后要求支架反弹在1cm以内,否则支架的竖向刚度需要加强。 2.1.2.3 荷载计算 1、单根立柱荷载: 新212国道跨线桥属变截面现浇箱梁桥,梁底宽度取平均宽度。分左右幅计算。 左幅梁底宽取,长72m,箱梁底总面积为828m2,箱梁砼方量,则每平方米的重量为×26÷828=。 右幅梁底宽取14m,长72m,箱梁底总面积为1008m2,箱梁砼方量,则每平方米的重量为×26÷1008=。 1)承载力计算: 左幅:支架采用多功能碗扣式支架,沿桥纵向步距90cm,横向步距60cm,每根立杆受正向压力为:××=,安全系数按考虑,则每根立杆受正向压力为:×=,小于碗扣式支架立杆允许承载力30KN,符合要求。 右幅:支架采用多功能碗扣式支架,沿桥纵向步距90cm,横向步距60cm,每根立杆受正向压力为:××=,安全系数按考虑,则每根立杆受正向压力为:×=,小于碗扣式支架立杆允许承载力30KN,符合要求。 2)强度验算: σ左=N/A=×103/489=<[σa]=205 Mpa σ右=N/A=×103/489=<[σa]=205 Mpa

预应力混凝土连续梁桥

一预应力混凝土连续梁桥 1.力学特点及适用范围 连续梁桥在结构重力和汽车荷载等恒、活载作用下,主梁受弯,跨中截面承受正弯矩,中间支点截面承受负弯矩,通常支点截面负弯矩比跨中截面正弯矩大。作为超静定结构,温度变化、混凝土收缩徐变、基础变位以及预加力等会使桥梁结构产生次内力。 由于预应力结构可以有效地避免混凝土开裂,能充分发挥高强材料的特性,促使结构轻型化,预应力混凝土连续梁桥具有比钢筋混凝土连续梁桥较大的跨越能力,加之它具有变形和缓、伸缩缝少、刚度大、行车平稳、超载能力大、养护简便等优点,所以在近代桥梁建筑中已得到越来越多的应用。 预应力混凝土连续梁桥适宜于修建跨径从30m到100多m的中等跨径和大跨径的桥梁。 2.立面布置 预应力混凝土连续梁桥的立面布置包括体系安排、桥跨布置、梁高选择等问题,可以设计成等跨或不等跨、等截面或变截面的结构形式(图1)。结构形式的选择要考虑结构受力合理性,同时还与施工方法密切相关。 a b a.不等跨不等截面连续梁 b. 等跨等截面连续梁 图1 连续梁立面布置 1.桥跨布置 根据连续梁的受力特点,大、中跨径的连续梁桥一般宜采用不等跨布置,但多于三跨的连续梁桥其中间跨一般采用等跨布置。当采用三跨或多跨的连续梁桥时,为使边跨与中跨的最大正弯矩接近相等,达到经济的目的,边跨取中跨的0.8倍为宜,当综合考虑施工和其他因素时,边跨一般取中跨的0.5~0.8倍。对于预应力混凝土连续梁桥宜取偏小值,以增加边跨刚度,减小活载弯矩的变化幅度,减少预应力筋的数量。若采用过小的边跨,会在边跨支座上产生拉力,需在桥台上设置拉力支座或压重。当受到桥址处地形、河床断面形式、通航(车)净空及地质条件等因素的限制,并且同时总长度受到制约时,可采用多孔小边跨与较大的中间跨相配合,跨径从中间向外递减,以使各跨内力峰值相差不大。 桥跨布置还与施工方法密切相关。长桥、选用顶推法施工或者简支—连续施工的桥梁,多采用等跨布置,这样做结构简单,统一模式。等跨布置的跨径大小

预应力混凝土连续弯箱梁桥设计

预应力混凝土连续弯箱梁桥设计 方、-1 预应力混凝土连续弯箱梁桥设计 摘要:老龙沟二号桥为山西运(城)■三(门峡)高速公路上的一座跨深谷桥梁,为预应力混凝土单箱单室等截面连续弯箱梁。文中以该桥施工图设计为根据,对其设计特点及施工顺序进行了简单介绍。 关键词:预应力混凝土弯箱梁斜腹板设计 一、概述运平至三门峡高速公路是国道主干线209 (二连浩特至河口)公路山西境内的一部分,是山西省quot;大quot;字型公路主骨架的重要组成部分,是晋煤外运主要通道之一。老龙沟二号桥位于209国道运城至平陆段内的山岭重丘区,跨越老龙沟,为双幅分离式高速公路大桥,桥梁全宽20.5mo 两幅桥之间的分离带为50cmo设计行车速度为60km /ho桥梁中心桩号为K17+930,起点中心桩号为K17+825,终点桩号为K18+035o该桥位于平曲线为圆曲线内,路线中心线半径为251m, 左幅桥中心线半径为256.25m,右幅桥中心线半径为245.75m。桥梁纵断面部分位于半径为R= 13000m的竖曲线内。竖曲线两边纵坡分别为3. 8%和3%,竖曲线半径为R= 13000m, T=117m, E=0. 526m。横桥向设有5%的超高。桥梁结构体系为单箱单室等截面预应力混凝土连续弯梁桥。 二、技术及工程用材(表1)设计荷载:汽车■超20级挂车-120。地震基本烈度:VII度。温度:极端最高温度43°C,最低温度-13.2°C,常年平均温度14. 6°Co支座沉降:0. 015m。

三、桥址区自然概况1?地形、地貌老龙沟二号桥位于山岭重丘区,跨越老龙沟,沟谷呈quot;Vquot;字型,地形起伏很大,山岭陡峭,沟谷幽深,属中条山脉西南段的低山重丘区,地层上部为坡积物,下伏为太古界二长花岗片麻岩,高差达80m o 2.气象桥址区属温带大陆性季风气候,一年四季分明,夏季干热多雨,冬季寒冷干燥,春秋季风较温和。年平均气温14. 6°C,最冷一月平均气温-1O C,极端最低气温-13. 2°C, 最热平均气温27.6°C,极端最高气温43°Co最大冻深33cm,最大积雪厚14cm,平均风速3.5m/s,最大风速18m/s,主导风向为东风。3.水文桥梁跨越老龙沟为V字型沟,两边基岩裸露,灌木荆棘丛生,沟壁陡峭,沟底平常只有一股细流流淌,水量受季节控制,雨季洪水时,流量增大,最深水位达1?1.5m,枯水期流量减少,水位只有1.5?0.8m左右。洪水主要由两边区域的山坡降雨汇流而成。4.工程地质桥址区分布的主要是太古界涕水群的变粒岩和后期燕山期泥合花岗岩以及由于热液变质作用形成的花岗片麻岩。其中夹有多层片麻岩。该区处于构造发育区,且中条山前大断裂至今仍在活动。使得岩石风化变质严重、节理、裂隙发育,岩石破碎。 四、主要材料1.混凝土上部结构主桥箱梁采用50号混凝土;防撞护栏釆用30号混凝土。下部结构桥墩釆用40号混凝土;基础釆用25号混凝土;桥头搭板、桥台耳墙、背墙均采用25号混凝土。2.钢材钢筋:直径12mm者,均釆用II级(20MnSi)热扎螺纹钢筋;直径V12mm者,釆用I级(A3)光圆钢筋。钢板:应符合GB700-65规定的A3钢材。3?其他锚具及管道成孔:主桥箱梁锚具釆用OVM15-12型,OVM15-12型连接器及其配套的相关配件,管道成孔采用内径为90mm的钢波纹管。支座均釆用KPZ系列抗震型

桥梁工程现浇连续箱梁施工方案

桥梁工程现浇连续箱梁施工方案 1、设计简介 本桥上部结构为4孔一联(4×25m)现浇预应力混凝土箱梁,梁高为1.40m,箱室高1.0m,桥梁全长100m,桥宽15.0m,分左右双幅,单幅宽7.5m,其中梁底宽3.75m。本桥与主线成正交,平面大部分位于直线段内,后小部分位于A=60、R=60m的缓和曲线段上,纵断位于纵坡+3.8%、-2.4%、竖曲线半径R=2000m 的竖曲线上,桥面采用双向横坡2%,桥面横坡以箱梁整体旋转而成。桥台采用单幅双GPZ3DX盆式支座,2号墩采用墩梁固结,1号、3号墩采用单幅单GPZ6DX 盆式支座。桥下地质为分别为4m厚亚粘土、5m厚含粘性土卵石、粉砂岩等。 2、施工方案概述 (1)支架基础 对可以施工的桥位进行清理、整平、回填清宕渣1m、碾压密实,然后用粉砂岩宕渣填筑至梁底下1m处,填筑时分层摊铺碾压,分层厚度为40cm,填筑时埋置沉降桩进行沉降观测,每三天观测一次,直至填筑完成一个月后,且连续三次每次沉降量不超过3mm,然后卸载1m,整平、碾压,经检测符合要求后最后铺设10cm厚的河卵石、浇筑10cm厚的C20素混凝土作为支架基础。具体见附图1。 (2)支架搭设 按设计方案采用满堂支架现浇施工,施工时左右幅分幅前后进行。在支架基础施工完成后,对箱梁支架进行放样,确定其平面位置,在架设时按预先确定的位置,竖向钢管平面纵横间距为80cm×80cm,腹板处支撑纵横间距加密为

40cm×40cm,墩四周的纵横间距同样加密为40cm×40cm。为了增加支架的整体性对于每根竖向钢管用纵横钢管水平相连结,水平钢管的竖向间距为120cm,支架顶部的水平钢管纵向(根据纵坡为弧线形)间距调整为40cm。为了确保满堂支架的整体强度、刚度和稳定性,每跨纵向每隔3m分别在桥墩处、1/8跨、3/8跨、跨中设置9道钢管剪刀撑,每跨横向设立5道剪刀撑。 搭设要求:竖杆要求每根竖直,采用单根钢管。立竖杆后及时加纵、横向平面钢管固定,确保满堂支架具有足够的强度、刚度、稳定性。满堂钢管支架搭设完毕后,应测量放样确定每根钢管的高度(每根钢管的高度按其位置处梁底高〈考虑预拱度设置〉减构造模板厚度和方木楞、木楔的厚度计算),并在钢管上做上标记,对高出部分的钢管用电焊机切割,保证整个支架的高度一致并满足设计要求。在支架顶部横桥向设横向钢管(以在其上直接设方木楞和木楔,铺装模板),在横向钢管扣件的下部紧设纵向钢管,要求横向钢管扣件紧贴在纵向钢管扣件之上,再在纵向钢管扣件下紧贴着增设一个加强扣件,这样就能保证横向钢管与竖向钢管的扣件连接具有足够的强度来承受施工荷载。为了施工方便和安全,分别在0号和4号台的外侧搭设人行工作梯,并在支架两侧设置1.2m宽的工作、检查平台,工作梯和平台均要安装1.2m高的护栏。(支架布置图见附图2)(3)施工预拱度的确定与设置 在支架上浇筑连续箱梁时,在施工中和卸架后,上部构造要发生一定的下沉和挠度,为保证上部构造在卸架后能达到设计要求的外形,在支架、模板施工时设置合适的预拱度。在确定预拱度时,主要考虑了以下因素: A、由结构自重及活载一半所引起的弹性挠度δ1;

桥梁毕业设计中期报告

毕业设计(论文)开题报告题目:嫩江大桥连续箱梁桥结构设计 院(系)交通科学与工程学院 专业桥梁与隧道工程 学生 学号 班号 指导教师 开题报告日期

说明 一、中期报告应包括下列主要内容: 1.论文工作是否按开题报告预定的内容及进度安排进行; 2.目前已完成的研究工作及结果; 3.后期拟完成的研究工作及进度安排; 4.存在的困难与问题; 5.如期完成全部论文工作的可能性。 二、中期报告由指导教师填写意见、签字后,统一交所在院(系)保存,以备检查。指导教师评语: 指导教师签字:检查日期:

一、研究方案及进度安排,预期达到的目标: 表1 进度安排 时间应完成的内容天数 收集相关资料、熟悉设计计算内容、理论以及计算软 20 件 2013. ~桥梁结构各构件截面尺寸拟定,截面几何性质计算10 桥梁结构初步有限元建模,计算恒载等各种作用下的 2013. ~ 20 结构内力分析 预应力钢筋估算与配置,箱梁应力与强度验算30 桥墩设计10 整理计算数据、绘制设计图纸,撰写毕业设计论文30 二、工作进度 1第一阶段进度: 3.1在哈尔滨工业大学图书馆和数据库中借阅、下载了开题报告中所列参考文献; 3.2安装Midas Civil、Auto CAD等软件完毕; 3.3认真阅读、熟悉和理解了毕业设计的任务内容。 2第二阶段进度: 本阶段完成了桥梁各截面尺寸的拟定,并计算出截面几何特性。 2.1各箱梁截面尺寸: 主桥箱梁采用单箱单室断面,主跨墩顶高度为7.3m,跨中高度2.8m,其间的梁高在纵桥向按次抛物线变化,抛物线方程为Y= ,在Midas软件中由于不能精确输入方程式,故只输入了抛物线次数—,进行近似计算。 箱梁全宽12.75m,其中,底板宽6.25m,翼缘板长度为3.25m。翼缘板厚度分成两段变化,端部为0.2m,在距离端部2.8m处为0.50m,根部为0.95m,其间按直线变化。底板与腹板相交处设置0.6m0.3m的承托。

现浇连续箱梁桥施工组织设计

普光倒虹管管桥现浇箱梁施工方案 一、工程概况 普光倒虹管管桥位于后河普光大桥下游2.4km,横跨后河,管道中心高程为349.00m。 管桥段全长257.96m,上部结构为C40砼箱梁简支结构,单跨长度13m~25m,高度 1.55m,梯形箱形结构,底板、侧墙厚度0.25m,顶板0.2m,两榀箱梁间设键槽连接, 上部为C40砼铺装层。箱梁下部设置排架10个,排架最大高度14.2m,排架立柱断面尺寸为0.8×0.8m,立柱中间设联系梁,间距4m。排架基础为C25砼机械灌注桩,桩径1.8m,横向桩距3.0m,桩端深入基岩中风化层。 二、施工测量 采用全站仪,根据经校核的测量控制网点放出本现浇箱梁桥的桥梁中轴线,再对各个 桥台的轮廓控制点进行测量定位。采用水准仪进行高程控制。 在施工测量之前,应对全桥测量座标进行复核,对全桥各个细部平面位置及高程进行列表计算,经复核无误后再现场放样。 三、施工方法 1 施工工艺流程图

见图现浇钢筋混凝土预应力箱梁工艺流程图 2 主要施工方法与施工措施 2.1 支架准备 施工前先对钢桁梁(计算承重荷载并放样)的准备,架子管、顶托、扣件、吊装的机械

设备及各项安全设备准备。 2.1.2 支架工程 2.1.2.1 支架设计 计划采用钢桁梁架,把钢桁梁吊在系梁上,在钢桁架下方跨距3/1处架设八字支撑,角度为45度。然后钢桁架上面铺设型钢(50*50)cm并用电焊焊接成一个整体。然后采用50cm ×80cm间距布设支架,脚手架立杆上下设可调顶托和可调底托。水平联结杆上下间距120cm,最下方一层距地面和最上方一层距顶托顶均不大于30cm。上部用立杆可调顶托, 采用12cm ×12cm木方做横梁,5cm×10cm方木和外径48mm,壁厚3.5mm的钢管做纵梁,间距为15cm。(施工通道(0.5米宽)搭建同上(立柱间距为一米)见附图 2.1.2.2 支架施工要求 a、支架施工时,工人必须带安全带和安全帽,扣件和支撑头不得乱抛; b、支架旁必须设人行步梯,步梯上要有扶手和防滑装备; c、支架两侧设0.5m宽人行道,通道外设安全防护措施; d、所有扣件必须按规范要求上紧; e、支架拆除顺序:每跨从跨中向两边拆除; f、模板支架预压 支撑体系搭设结束以后,进行支架预压,支撑体系预压采用在支撑顶面堆码编织袋装砂的方式,砂袋的重量为箱梁自重和模板重量的1.2倍,用吊车吊装、人工堆码。待支撑体系沉降稳定以后,测出支架及地基变形量参数。满载后若连续48小时测量未见明显沉降,则可视为地基处理能满足要求;卸载后要求支架反弹在1cm以内,否则支架的竖向刚度需要加强。 2.2 模板工程 ①、模板设计 模板规格尺寸根据图纸要求在厂家定制 ②、模板施工要求 a、外模要求光洁、平整、色泽一致、拼缝整齐,缝宽不得大于1mm;面板缝处必须外背方木; b、底板钢筋安装前,要均匀涂脱模剂; c、砼浇注前,模板要进行认真清洗,一般采用高压水冲洗; d、内模采用加工场加工,分块吊装,现场合体;内模要求尺寸正确,不准漏浆;砼浇注前均匀涂脱模剂; e、端模和底模钉在一起,注意预留的钢筋眼位正确; f、内模、端模一次性投入使用,外模可重复倒用; g、端模24h即可拆模,内模待砼达50%强度拆模,底模砼达100%强度方可拆模,箱底模拆除顺序是从跨中向两边; h、进人洞,设在距墩中心4~5m处,每跨设一个,尺寸50×80(纵向)cm,并在四角设15cm 的倒角,人孔局部增加适当的施工用加强刚筋。除底板钢束张拉所必须之外,其余人孔须在张拉预应力束之前全部封闭,封闭人孔时采用吊模施工,其模板不得许支撑到底板上,人孔内原割断的钢筋应等强度恢复; i、注意预埋件和预留洞; j、底模预留沉降5mm。

浅谈预应力混凝土连续箱梁桥设计中的问题

浅谈预应力混凝土连续箱梁桥设计中的问题 摘要桥梁设计是一项综合的工程,设计过程中会遇到一些问题,如桥位选择、桥面标高的确定、确定桥梁分孔、主梁截面选择、确定墩台基础形式、墩台基础埋置深度、结构尺寸的拟定,以及有关桥梁的其他问题,如主梁截面普通钢筋及预应力钢筋的布置、桥墩、桥台和桩基的配筋设计、桥面系的布置等。 关键词桥梁设计,预应力结构,连续箱梁桥,总体布置,结构计算 相对于简支梁桥,连续梁桥结构体系和受力特点具有明显的优势,其跨中正弯矩降低很多,同时支点出现负弯矩。混凝土材料耐久性较好,能够适应桥梁结构后期运营使用过程中产生的磨损,钢结构在使用过程中,应做好防腐措施,工程造价过高。在桥梁结构形式选择过程中,大多数设计单位会优先考虑混凝土连续箱梁桥,设计过程中遇到的问题,可以通过查阅桥梁规范,或者借鉴相似工程在设计过程中的经验取值,能够对设计具有指导作用。 1.桥梁总体布置 1.1 桥位设计 桥位的选择常与桥梁结构体系、原有或新建道路线形及周围环境等众多方面。桥位设计应能够保证原有或既定交通的正常运营,能够通过设计的洪水流量,满足通航要求,并与桥址周围的工农业、自然环境等相协调。桥位选择需要注意保护文物、保护生态环境,同时要注意尽量少占用耕地和农田,尽量做到对有意义及有价值的建筑物的保护。 桥位确定后,应进行桥孔布置。桥孔的大小和长度,应与天然状态桥下河槽或河滩流量分配相协调,并能满足泄洪排沙的要求。桥孔的布置,应该针对不同桥位进行不同的设计,河槽稳定不会扩宽或河槽不稳定时,桥孔布置需考虑以上因素。桥孔布置后桥墩的选择也应满足一定的要求,尽可能小的减小对河流的影响,充分考虑桥墩阻水的影响。 桥面标高的确定,应该根据该桥的使用要求进行选择,注意与既定道路之间的衔接。若桥面标高与既定道路高差过大,可以考虑设置引桥以克服高差。且河流通过设计水位时,须保证支座不受水流侵袭,同时还需要考虑桥墩阻水等各种因素引起的各类升高值,若桥梁结构有通航要求,还应该满足通航净空的要求。 1.2结构形式

预应力混凝土连续刚构箱梁桥

浅谈预应力混凝土连续刚构箱梁桥几种常用受力分析方法的对 比 【摘要】随着我国交通事业的迅速发展,公路桥梁与城市桥梁的修建也日益增多。同时由于技术的进步与成熟,桥型也由之前的简支转变为结构受力比较先进,跨度更大的连续梁或者连续刚构。当桥梁跨径加大时,结构性能优良的箱形截面往往是合宜的横截面选择。因此,对箱梁桥的受力分析方法的研究就显得很有必要。本文首先对箱梁截面的优点进行简要阐述,然后重点针对学者们对预应力混凝土连续钢构箱梁公路桥梁受力的几种常用分析方法进行阐述并加以对比,着重阐述了解析法和数值法在预应力箱梁受力分析中的原理和应用,并进一步得出相应结论。 1前言 箱型截面主要优点是截面抗弯、抗扭刚度大,结构在施工和使用过程中都具有良好的稳定性;顶板和底板都具有较大的混凝土面积,能有效抵抗正负弯矩,满足配筋的构造要求,并能很好适应管线等公共设施的布置;同时,箱形截面适应现代化施工方法的要求,如悬臂施工法、顶推法等,这些施工方法要求截面必须具备较厚的底板;而且,箱形截面承重结构和传力结构相结合,使各部件共同受力,截面效率高,并适合预应力混凝土结构空间布束,达到经济效果。其中箱梁由于具有较大的截面抗扭强度及抗弯强度、弯曲应力图形合理、剪应力小、稳定性好、行车平稳舒适、施工速度快和造价低等优点,能够很好的满足高等级公路行车高速、平稳、舒适的要求。在国内外得

到了十分迅速的发展和广泛的应用。 预应力混凝土的研究已有一百余年的历史。近三十年来,预应力混凝土桥梁的发展速度异常迅猛,不但在跨径上己跻身于大跨径之列,而且在建桥数量上亦遥遥领先,有关预应力的研究也愈来愈成熟。预应力混凝土连续钢构箱梁桥一般采用空间受力分析法,概括起来,主要是解析法和数值法。 2 解析法在预应力箱梁受力分析中的原理及应用 解析法是为了把问题简化,往往采用一些假定和近似处理方法。如将作用于箱形梁的偏心荷分解成对称荷载与反对称荷载。对称荷载作用时,按梁的弯曲理论求解;反对称荷载作用时,按薄壁杆件扭转理论分析;然后将二者计算结果叠加而得。扭转分析又根据截面的刚度区分为截面不变形(刚性扭转)和截面变形(畸变)两种不同情况。通过这些荷载分解,就单项问题进行较深入的探讨。采用若干假定,是解析法的另一特点,如对位移模式的假定等。 箱形梁剪力滞的分析方法有“加劲板”理论、比拟杆法以及Eleissnen根据能量原理的分析方法等。关于箱形梁的扭转分析,前苏联学者符拉索夫和乌曼斯基在这方面建立了完整的理论。对于箱形梁的畸变应力分析,有广义坐标法、等代梁法、弹性地基梁比拟法等。弹性地基梁比拟法具有物理概念清晰、受力分析明确、计算简便等特点,所以得到普遍推广应用。对于箱形梁的横向弯曲,分析方法有影响面法和框架分析法。影响面法计算较为繁琐,而框架分析法是一种颇为简便的方法。

连续箱梁桥工程施工组织设计.

xxx大桥工程 施工组织设计 目录 一、总体概况 (01) 1. 工程概述 (01) 2. 地形、地质、水文、气候特征 (01) 3. 技术标准 (02) 4. 工程数量 (03) 5. 交通、通讯、电力条件............................................................04 6. 工期要求...........................................................................05 二、施工组织机构及人员配备 (06) 1. 施工组织机构 (06) 2. 项目管理人员配置..................................................................09 三、总体施工部署 (10) 1. 指导思想 (10) 2. 主要工作目标 (10) 3. 工程施工总体安排 (11) 1) 施工准备阶段 (11) 2) 施工进度计划总体安排 (12) 3) 机械设备投入计划 (13) 4) 劳动力投入计划及保证措施 (15) 5) 材料投入计划及项目材料管理措施 (17) 四、大桥主要工程施工方案和施工方法 (21) 1. 桩基工程的施工方案及方法 (21) 1) 围堰施工 (21) 2) 桩位放样 (23) 3) 钢护筒安装 (24) 4) 钻机就位 (24) 5) 泥浆制备、循环 (24) 6) 钻孔 (24) 7) 清孔 (26) 8) 验孔 (26) 9) 钢筋笼加工及安放 (26) 10) 水下砼灌注 (27) 11) 防止塌孔的措施 (28) 12) 防止断桩的措施 (28)

重点连续梁施工注意事项

连续梁施工注意事项 1、培训资料提到的支座安装的5个案例,很有现实意义,尤其是临时锁定的设置和解锁尤为重要,切忌连续梁在合龙前拆除临时锁定。三项目部跨金丽温1#特大桥两联连续梁的临时锁定需要再加固。 2、在进行支座安装前,需要认真审图,正确提取支座的型号、尺寸。安装时注意不同支座型号对号入座,方向以及偏移量不可安反。 支座的纵向预偏量按L=-(L1+L2)进行设置,除固定墩对应支座外均应设置。L1为箱梁在预应力、二期恒载及收缩徐变作用下引起的支座预偏量,此值图纸上已给出,L2为各支座处梁体由于实际合拢温度与设计温度(5 °~10 °)之间的温差引起的偏移量,该值根据?铁路桥涵钢筋混凝土和预应力混凝土结构设计规范(TB10002.3-2005)?给出的L2=0.0000118S(Ti-T0)计算得出,当为正值时向远离固定支座方向偏移。 3、连续梁钢筋加工时尤其注意变截面腹板钢筋尺寸,要标注型号,防止形成绑扎时没能按照正确位置摆放,造成面板出现腹板筋凸出过高或过低,同时注意混凝土保护层满足要求。 4、梁面预埋的挡砟墙、竖墙、遮板的纵向钢筋要顺直,防止扭曲后在进行该部分混凝土施工时切割移位的钢筋。

5、桥面纵、横向预应力波纹管在安装过程中必须要拉线;腹板波纹管安装要按照设计坐标认真定位;另外锚垫板安装要与模板密贴,并须与波纹管保持垂直状态。横向预应力固定端注意留足保护层厚度,挤压头外露钢绞线保证在5mm左右即可。 6、挂篮行走安全尤为重要,此项工序出现的安全事故太多。尤其跨铁路、公路时,项目副经理、总工、安全总监必须亲临现场指挥作业。 7、挂篮的前后吊杆预留的预埋空位置要准确,防止吊筋弯曲。另外吊筋的连接器在安装之前,需要将精轧螺纹钢对应的连接器拧紧的位置做好油漆标识。 8、T构两端对称均衡进行施工。悬臂施工中左右两侧出现不对称施工时应检算墩梁临时固结或刚构稳定性,要求稳定系数不小于1.5。 梁体在进行混凝土浇筑过程中,布料及捣固尤为重要,尤其在腹板波纹管下部位在、齿块端头需捣固密实,确保齿板及锚垫板处混凝土质量。底板齿板禁止采用翻浆混凝土浇筑,而应采用粗细骨料均匀的混凝土浇筑并振捣密实。为防止出现锚后裂缝,锚后螺旋筋应紧靠锚垫板并加设钢筋网片。 同时在腹板位置要预埋测温管,及时测温并记录完整。 9、连续梁浇筑后的覆盖养生、梁面成品保护、端头凿毛等必须加强控制。 10、连续梁每道工序施工测量的准确度尤为重要,杜绝反复

等截面连续箱梁施工方案

现浇等截面连续箱梁施工方案 1、设计简介 本桥上部结构为4孔一联(4×25m)现浇预应力混凝土箱梁,梁高为1.40m,箱室高1.0m,桥梁全长100m,桥宽15.0m,分左右双幅,单幅宽7.5m,其中梁底宽3.75m。本桥与主线成正交,平面大部分位于直线段内,后小部分位于A=60、R=60m的缓和曲线段上,纵断位于纵坡+3.8%、-2.4%、竖曲线半径R=2000m的竖曲线上,桥面采用双向横坡2%,桥面横坡以箱梁整体旋转而成。桥台采用单幅双GPZ3DX盆式支座,2号墩采用墩梁固结,1号、3号墩采用单幅单GPZ6DX盆式支座。桥下地质为分别为4m厚亚粘土、5m厚含粘性土卵石、粉砂岩等。 2、施工方案概述 (1)支架基础 对可以施工的桥位进行清理、整平、回填清宕渣1m、碾压密实,然后用粉砂岩宕渣填筑至梁底下1m处,填筑时分层摊铺碾压,分层厚度为40cm,填筑时埋置沉降桩进行沉降观测,每三天观测一次,直至填筑完成一个月后,且连续三次每次沉降量不超过3mm,然后卸载1m,整平、碾压,经检测符合要求后最后铺设10cm厚的河卵石、浇筑10cm厚的C20素混凝土作为支架基础。具体见附图1。 (2)支架搭设 按设计方案采用满堂支架现浇施工,施工时左右幅分幅前后进行。在支架基础施工完成后,对箱梁支架进行放样,确定其平面位置,在架设时按预先确定的位置,竖向钢管平面纵横间距为80cm×80cm,腹板处支撑纵横间距加密为40cm×40cm,墩四周的纵横间距同样加密为40cm×40cm。为了增加支架的整体性对于每根竖向钢管用纵横钢管水平相连结,水平钢管的竖向间距为120cm,支架顶部的水平钢管纵向(根据纵坡为弧线形)间距调整为40cm。为了确保满堂支架的整体强度、刚度和稳定性,每跨纵向每隔3m分别在桥墩处、1/8跨、3/8跨、跨中设置9道钢管剪刀撑,每跨横向设立5道剪刀撑。

连续梁桥设计毕业设计

连续梁桥设计毕业设计公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

目录 第一章绪论................................................................ 第一节桥梁概述.................................................... 第二节方案比选 (3) 一、比选方案的主要标准.......................................... 二、方案编制.................................................... 第二章结构尺寸拟定............................................... 第一节结构尺寸拟定 (7) 一、桥梁横向布置................................................ 二、细部尺寸.................................................... 第二节截面几何特性................................................ 一、毛截面面积 ................................................. 二、惯性矩及刚度参数 ........................................... 第三章主梁内力计算............................................... 第一节横向分布系数的计算.......................................... 第二节恒载内力计算................................................ 一、单元化分.................................................... 第三节活载内力计算................................................ 一、冲击系数()u+1的计算......................................... 二、活载布载 (20) 第四章次内力计算 ................................................. 第一节基础位移引起的次内力计算.................................... 第二节温度应力引起的次内力计算. (24) 第三节混凝土收缩徐变引起的次内力计算.............................. 第五章作用效应组合Ⅰ............................................. 第一节承载力极限状态作用效应组合 (28) 第二节正常使用状态作用效应组合.................................... 第六章预应力筋的估算............................................. 第一节计算原理....................................................

连续小箱梁桥施工图说明

1 概述 1.1设计标准 1.道路等级:城市支路,设计速度20km/h; 2.路基宽度: 12m; 3.桥面宽度: 12m ; 4.汽车荷载等级:公路-I级,人群荷载3.5KN/m2; 5.桥下净高:不小于5.5m; 6.地震动峰值加速度:<0.05g; 7.环境类别:Ⅰ类 8.坐标系:1980年西安坐标系; 9.高程系:1985国家高程基准。 1.2设计采用的标准、规范、规程 1.《工程建设标准强制性条文》(市政工程部分)建标[2002]99号 2.《城市道路工程设计规范》(CJJ37-2012) 3.《城市桥梁设计规范》(CJJ11-2011) 4.《公路工程地质勘察规范》(JTG C20-2011) 5.《公路勘测规范》(JTG C10-2007) 6.《公路桥梁抗震设计细则》(JTGT B02-01-2008) 7.《公路路基设计规范》(JTG D30-2004) 8.《公路沥青路面设计规范》(JTG D50-2006) 9.《公路排水设计规范》(JTJ 018-97) 10.《公路桥涵设计通用规范》(JTG D60-2015) 11.《公路圬工桥涵设计规范》(JTG D61-2005) 12.《公路钢筋砼及预应力砼桥涵设计规范》(JTG D62-2004) 13.《公路桥涵地基与基础设计规范》(JTG D63-2007) 14.《公路桥涵施工技术规范》(JTG/TF50-2011) 15.《公路交通安全设施设计规范》(JTG D81-2006) 16.《城镇道路工程施工及质量验收规范》(CJJ1-2008) 17. 其他有关的国家及地方强制性规程、标准 2 项目自然地理概况 2.1地形、地貌 共科大桥位于XX省XX城市XX。勘察场地原为垄岗地貌,地形起伏较大,现为城市次干路横穿校园道路开挖形成路堑。勘察期间场地已基本整平,较为平坦。 2.2地震及区域地质简况 建地区域地质构造属扬子准地台的下扬子-钱塘台坳的九江台陷三级构造单元,北岭大别-淮阳台隆,南接弋阳-玉山台陷。上部第四系覆盖层厚度在10.0~25.0m左右,下伏基岩为第三系新余群砂砾岩。根据区域地质资料及本次钻探揭露结果显示,拟建场地未见明显新构造运动及全新断裂活动痕迹,勘察过程中也未发现有断裂痕迹。 根据《中国地震动参数区划图》、《XX省地震动参数区划工作用图》、《建筑抗震设计规范》(GB50011-2010),本场地抗震设防烈度为Ⅵ度,设计地震分组为一组,设计基本地震加速度为0.05g,设计特征周期值为0.35s。 2.3工程地质条件 根据野外踏勘及钻孔资料分析, 按地层堆积时代、成因、名称分类,场区土自上而下可分为5层:第①层:素填土(Qml);第②层:第四系中更新统冲积相粉质粘土(Q2al);第③层:第三系新余群全风化泥质粉砂岩(Exn);第④层:第三系新余群强风化泥质粉砂岩(Exn);第⑤层:第三系新余群中风化泥质粉砂岩(Exn)。 按其出露顺序从上到下,由新至老分叙如下: 第①层:素填土(Qml) ①素填土层:红褐色,稍湿,稍密,填料为路基填土以粘性土为主,底部少量碎石填料,压实,较均匀。全场地分布;最薄处为3.60米,见于ZK1号孔;最厚处为4.50米,见于ZK3号孔;平均厚度为4.09米;层面最高处标高为43.32米,见于ZK7号孔;层面最低处标高为36.08米,见于ZK4号孔;平均标高为39.63米。 第②层:第四系中更新统冲积相粉质粘土(Q2al)

桥梁工程课程设计(两跨连续结构)

2010级道路与桥梁专业《桥梁工程》课程设计题 先简支后连续预应力混凝土连续T梁桥设计计算 一、设计基本资料 1、桥梁线形布置:平面线形为直线,无竖曲线,设单向纵坡2%。 2、主要技术标准 (1)桥跨布置:2×30m先简支后连续,桥梁总体布置如图1所示;主梁横断面布置如图2所示,T梁截面尺寸如图3所示,主梁一般构造如图4所示。 (2)荷载等级:公路—Ⅰ(学号为奇数的),公路—Ⅱ级(学号为偶数的)。人群荷载3.0kN/m2(学号数字能被4整除的),人群荷载4.0kN/m2(学号数字能被3整除的),人群荷载3.5kN/m2(学号数字为其他的)。 (3)桥梁宽度:2×(1.75m+0.5m+10.75+0.5)m+1m=28m,单幅桥横坡为2%。 (4)航道等级:无通航要求。 (5)设计洪水频率:1/100。 (6)地震动参数:地震动峰值加速度<0.05g,地震动反应谱特征周期为0.35s,采用简易设防。 (7)设计基准期:100年。 (8)结构重要性系数:1.1。 3、主要材料 (1)混凝土:30m预制T形梁及其现浇接缝、封锚、墩顶现浇连续段和桥面现浇层均采用C50混凝土,基桩采用C25,其余均采用C30。 (2)普通钢筋:普通钢筋必须符合“GB1499-1998”和“GB13013-1991”标准的规定,其中:钢筋直径D≥12mm 全部采用HRB335钢筋,抗拉强度标准值f sk=335MPa;钢筋直径D<12mm 全部采用R235钢筋,抗拉强度标准值f sk=235MPa。 (3)钢材:所采用的钢材技术标准必须符合《普通碳素结构钢技术条件》(GB/T700-1988)规定的Q235,选用的焊接材料应符合《碳钢焊条》

连续梁桥施工

目录 摘要 (1) Abstract (2) 目录 (3) 第一章绪论 (4) 1.1选题背景4 第二章工程概况 (5) 2.1工程说明 (5) 2.1. 1地形地貌 (6) 2.1.2工程地质 (6) 2.1. 3 地震 (6) 2.1. 4 气候 (6) 2.1. 5 水文 (7) 2.2施工措施 (7) 2.2.1施工期间安全措施 (7) 2.2.2.确保工程质量的措施 (7) 2.2.3.工期保障措施 (7) 2.2.4.雨季施工及农忙季节的施工安排 (8) 2.2.5.环境保护和文明施工措施 (8) 第三章工程进度 (8) 3.1施工方法 (8) 3.1. 1路基的填料 (8) 3.1.2路基的压实 (9) 3.1. 3构造物两侧路基 (9) 3.1.4高填路基处理 (9) 3.1.5.其它施工注意事项 (11) 3.1. 8路基防护 (12) 3.2路基施工方案 (16) 3.2. 1施工准备 (16) 3.2.2人员及机具 (17) 3.2.3路基土石方填筑 (20) 3.2. 4质量保证措施 (20)

3.2.5安全保证措施 (21) 3.3劳动力计划 (21) 3.4主要材料计划表 (22) 3.5工程进度图 (23) 3. 5.1 主体工程进度图详见附表 (23) 3. 5. 2 附属工程进度图详见附表 (23) 3. 5. 3 土石方调配图详见附表 (23) 结论 (23) 致谢 (24) 参考文献: (25)

第一章绪论 1.1毕业设计的目的与意义 毕业设计的U的在于培养毕业生综合能力,灵活运用大学所学的各门基础课和专业课知识,并结合相关设讣规范,独立的完成一个专业课题的设计工作。设计过程中提高学生独立的分析问题,解决问题的能力以及实践动手能力,培养学生实事求是、谦虚谨慎的学习态度和刻苦钻研、勇于创新的精神,达到具备初步专业工程人员的水平,为将来走向工作岗位打下良好的基础。 桥梁的设讣需要综合考虑各方面的因素,其中包括桥址处地形、地貌、水文条件、工程地质、以及周围所处的环境等等,除此之外,任何一个设计都必须考虑怎样将经济性、美观性和实用性融入在设计当中。 本次设计为(40-60+40)m预应力栓连续梁,桥宽为28,分为两幅,设计时只考虑单幅的设计。梁体采用单箱双室箱型截面,全梁共分74个单元一般单元长度分为2m。顶板、底板、腹板厚度均不变。由于多跨连续梁桥的受力特点,黑近中间支点附近承受较大的负弯矩,而跨中则承受正弯矩,则梁高采用变高度梁,按二次抛物线变化。这样不仅使梁体自重得以减轻,还增加了桥梁的美观效果。 本次设计的预应力混凝土连续梁采用悬臂法施工。 本次设计中得到了魏永健、朱连波等儿位老师的悉心指导,在此表示衷心的感谢。 由于本人水平有限,且乂是第一次从事这方面的设计,难免出现错误,恳请各位老师批评指正。 1-2预应力混凝土连续梁桥概述 预应力混凝土连续梁桥以结构受力性能好、变形小、伸缩缝少、行车平顺舒适、造型简洁美观、养护工程量小、抗震能力强等而成为最富有竞争力的主要桥型之一。 山于普通钢筋混凝土结构存在不少缺点:如过早地出现裂缝,使其不能有效地釆用高强度材料,结构自重必然大,从而使其跨越能力差,并且使得材料利用率低。 为了解决这些问题,预应力混凝土结构应运而生,所谓预应力混凝土结构,就是在结构承担荷载之前,预先对混凝土施加压力。这样就可以抵消外荷载作用下混凝土产生的拉应力。自从预应力结构产生之后,很多普通钢筋混凝土结构被预应力结构所代替。 预应力混凝土桥梁是在二战前后发展起来的,当时西欧很多国家在战后缺钢的情况下,

预应力混凝土弯箱梁桥设计及实验研究

预应力混凝土弯箱梁桥设计及实验研究 随着社会经济的快速发展,城市高架桥及城市全互通立交桥在各大中城市中陆续出现。由于城市中影响设计施工的因素较多,就不可避免的需要修建较半径大跨径的城市桥梁。以往遇到这样的情况,往往是尽量在被交路中心设墩减小桥梁跨径,或采用钢结构形式,总是避免较小半径预应力混凝土弯箱梁桥的设计,这样势必会造成其他方面的损失(不必要的房屋拆迁、管道迁移,工程造价的大幅增加等)。 济南市顺河高架桥北延工程全长 4.12Km,全部采用高架桥型式。路线起终点分别设北绕城互通立交和北园路互通立交,其中北园路立交为5层全定向立交,为当时山东省内规模最大、技术标准较高的城市内立交。北园路作为济南市的东西向快速干道,要求桥梁跨越该路时既要注意交通畅通,也要考虑景观因素,因此立交主线桥和匝道桥必须一孔跨越。经过预应力混凝土箱梁和钢箱梁的比选,钢箱梁因造价太高被放弃,决定采用三跨变截面预应力连续弯箱梁刚架结构。其中A匝道桥平面设计线半径仅为112.3m,跨径组合为33+50+33=116m,箱梁底缘从根部到跨中按二次抛物线变化。本桥采用两阶段支架对称施工,施工接缝设在边跨距中墩11m处,接缝处设置张拉横梁,中跨内设置三道构造横梁。中墩墩柱为250x120cm圆倒角矩形断面,墩高14m,墩梁固结。(见图一) 图一桥梁纵横向断面图(尺寸单位:cm) 本桥设计中分别采用了平面杆系(GQJS)程序、空间杆系(桥梁博士)程序和通用有

限元(ANSYS)程序对施工过程和使用状态进行了计算分析,计算结果互相吻合良好。计算采用以下工况,分别是: 1)在支架上浇注50米主跨及边跨距墩顶11m悬臂段; 2)待混凝土强度达到85%以后;张拉预应力钢束,张拉完毕后及时封锚灌浆; 3)用联接器连接预应力钢束,在支架上浇注两侧边跨的22m合拢段; 4)待混凝土强度达到85%以后;张拉预应力钢束,张拉完毕后及时封锚灌浆;然后拆除支架; 5)安装护栏,浇筑桥面铺装;全桥形成。 图二空间有限元计算模型 为了对理论分析计算进行验证,同时也为了检验桥梁的施工质量及其强度、刚度和承载力等指标是否满足设计,我们对A匝道桥进行了施工阶段的现场测试和各级试验荷载作用下的现场试验。1.在第一、二施工阶段预应力钢筋张拉前、后检测桥梁结构主要截面的应变和变形。2.在各级试验荷载作用下检测桥梁结构主要截面的应变、变形。用钢弦应变计测梁体及桥墩的应变值,沿纵向分别在墩顶、边墩、边跨跨中、中跨跨中、中跨1/4跨等控制断面布置测点。每个截面沿箱梁外表面设5~10个测点,共用68个应变计。用全站仪和高精度水准仪分别观测桥梁结构控制截面控制点的平面位移和竖向位移。采用荷载等效原则,根据三种工况用30吨重载重汽车按指定位置进行加载。其中工况一为使边跨产生最大正弯矩,工况二为使墩顶产生最大负弯矩,工况三为使主跨产生最大正弯矩。综上试验各项内容所测数据及其变化规律,实测值接近于用空间有限元分析的理论计算值,采用通用有限元程序ANSYS对本桥进行结构分析和数值计算是准确可靠的。各项试验指标均满足《桥规》和《试验方法》的要求。结构工作状态良好,处于弹性工作阶段,也满足规范对于全预应力结构正常使用极限状态的要求。 通过北园路互通立交A匝道桥的设计计算分析、试验检测,对较大跨径预应力混凝土弯桥施加预应力是充分有效和可靠的,关键是要控制好施工质量和材料质量,以往的失败工程桥例许多是在这两方面出了问题造成的,比选方案钢桥虽然具有可以预制拼装、施工

相关主题
文本预览
相关文档 最新文档