当前位置:文档之家› 对拉螺栓力学性能表 强度计算公式

对拉螺栓力学性能表 强度计算公式

对拉螺栓力学性能表 强度计算公式
对拉螺栓力学性能表 强度计算公式

对拉螺栓力学性能表强度计算公式(穿墙螺丝)

作者:建材租赁来源:穿墙螺丝日期:2011-5-14 14:10:04 人气:1693 导读:对拉螺栓(穿墙螺丝)力学性能表,强度计算公式,力学性能验算。

1.对拉螺栓(穿墙螺丝)力学性能表

2.强度验算

已知2[100×50×3.0 冷弯槽钢

强度满足要求。

(二) 挠度验算

验算挠度时,所采用的荷载,查表得知仅采用新浇混凝土侧压力的标准荷载(F)。

以:

已知

钢楞容许挠度按表。

挠度满足要求。

二、主钢楞验算

(一) 强度验算

1.计算简图

2.荷载计算

P为次钢楞支座最大反力(当次钢楞为连续梁端已含反力为、中跨反力为0.5ql,所以,0.6+0.5)。

3.强度验算

强度不够,为此应采取下列措施之一:

(1) 加大钢楞断面,再进行验算;

(2) 增加穿墙螺栓,在每个主次钢楞交点处均设穿墙螺栓,则主钢楞可不必再验算。

例3:已知混凝土对模板的侧压力为F=30kN/m2,对拉螺栓间距,纵向、横向均为0.9m,选用M16穿墙螺栓,试验算穿墙螺栓强度是否满足要求。

]

[解

对拉螺栓(穿墙螺丝)力学性能表

工程力学常用公式

公式: 1、轴向拉压杆件截面正应力 N F A σ= ,强度校核max []σσ≤ 2、轴向拉压杆件变形 Ni i i F l l EA ?=∑ 3、伸长率: 1100%l l l δ-= ?断面收缩率:1 100%A A A ψ-=? 4、胡克定律:E σε=,泊松比:'ευε=-,剪切胡克定律:G τγ= 5、扭转切应力表达式: T I ρρ τρ= ,最大切应力: max P P T T R I W τ= =, 4 4 (1) 32 P d I πα= -, 3 4 (1) 16 P d W πα= -,强度校核: max max []P T W ττ= ≤ 6、单位扭转角: P d T dx GI ?θ= =,刚度校核:max max []P T GI θθ=≤,长度为l 的一段 轴两截面之间的相对扭转角P Tl GI ?= ,扭转外力偶的计算公式:()(/min)9549KW r p Me n = 7、薄壁圆管的扭转切应力: 2 02T R τπδ= 8、平面应力状态下斜截面应力的一般公式: cos 2sin 22 2 x y x y x ασσσσσατα +-= + -, sin 2cos 22 x y x ασστατα -= + 9、平面应力状态三个主应力: '2 x y σσσ+= + ''2 x y σσσ+= '''0σ= 最大切应 力 max ''' 2 σστ-=± =,最大正应力方位 02tan 2x x y τασσ=- - 10 、第三和第四强度理论: 3r σ= , 4r σ=

11、平面弯曲杆件正应力: Z My I σ= ,截面上下对称时, Z M W σ= 矩形的惯性矩表达式:312Z bh I =圆形的惯性矩表达式:4 4(1) 64Z d I πα=- 矩形的抗扭截面系数:26Z bh W = ,圆形的抗扭截面系数:3 4(1)32Z d W πα=- 13、平面弯曲杆件横截面上的最大切应力: max max *S z S Z F S F K bI A τ= = 14、平面弯曲杆件的强度校核:(1)弯曲正应力max []t t σσ≤,max []c c σσ≤ (2)弯曲切应力max []ττ≤(3)第三类危险点:第三和第四强度理论 15、平面弯曲杆件刚度校核:叠加法max [] w w l l ≤,max []θθ≤ 16、(1)轴向载荷与横向载荷联合作用强度: max max min ()N Z F M A W σσ= ± (2)偏心拉伸(偏心压缩):max min ()N Z F F A W δ σσ= ± (3)弯扭变形杆件的强度计算: 3[]r Z σσ= = ≤4[] r Z σσ= = ≤

预应力钢绞线参数及计算公式汇总

预应力钢绞线参数及计算公式汇总 参数:钢绞线抗拉强度标准值fpk=1860Mpa,弹性模量:Ep=1.95*105Mpa,松弛率为2.5%,公称直径¢s=15.2mm,钢绞线面积A=140mm2,管道采用预埋金属波纹管成孔且壁厚不小于0.3mm。预应力筋平均张拉力按下式计算: p p=(p(1-e-(kx+μ?)))/kx+μ? 式中:p p---预应力筋平均张力(N)。 p-----预应力筋张拉端的张拉力(N)。 X-----从张拉端至计算截面的孔道长度(m)。 ?-----从张拉端至计算截面曲线孔道部分切线的夹角之和(rad)。 K-----孔道每米局部偏差对摩擦的影响系数,参见附表G-8。 μ-----预应力筋与孔道比壁的摩擦系数,参见附表G-8。 注:e=2.71828,当预应力筋为直线时p p= p。 预应力筋的理论伸长值△L(mm)可按下式计算; △L =(p p *L)/A p*Ep 式中:p p-----预应力筋的平均张拉力(N),直线筋取张拉端的拉力,两端张拉的曲线筋,计算方法见上式。 L-------预应力筋的长度(mm)。

A p-----预应力筋的截面面积(mm2)。 Ep------预应力筋的弹性模量(N/ mm2)。 附表G-8 系数K及μ值表 注意事项: 预应力筋张拉时,应先调整到初应力σ0该初应力宜为张拉控制应力σcom的10%~15%。伸长值应从初应力时开始量测。力筋的实际伸长值除量测的伸长值外,必须加上初应力以下的推算伸长值。对后张法构件,在张拉过程中产生的弹性压缩值一般可省略。 预应力张拉实际伸长值△L(mm)=△L1+△L2 式中:△L1-从预应力至最大张拉应力间的实测伸长值(mm)△L2-初应力以下的推算伸长值(MM),可采用相邻级的伸长值。

对拉螺栓力学性能表 强度计算公式.

对拉螺栓力学性能表强度计算公式(穿墙螺丝) 作者:建材租赁来源:穿墙螺丝日期:2011-5-14 14:10:04 人气:1693 导读:对拉螺栓(穿墙螺丝)力学性能表,强度计算公式,力学性能验算。 1.对拉螺栓(穿墙螺丝)力学性能表 螺栓直径(mm螺纹内径(mm净面积(mm2重量(kg/m容许拉力(N M12 M14 M16 9.85 11.55 13.55 76 105 144 0.89 1.21 1.58 12900 17800 24500 M18 M20 M22 14.93 16.93 18.93 174 225 282 2.00 2.46 2.98 29600 38200 47900 2.强度验算 已知2[100×50×3.0 冷弯槽钢 强度满足要求。

(二挠度验算 验算挠度时,所采用的荷载,查表得知仅采用新浇混凝土侧压力的标准荷载(F。 所以: 已知 钢楞容许挠度按表。 挠度满足要求。 二、主钢楞验算 (一强度验算 1.计算简图 2.荷载计算 P为次钢楞支座最大反力(当次钢楞为连续梁端已含反力为、中跨反力为0.5ql,所以,0.6+0.5。 3.强度验算 强度不够,为此应采取下列措施之一: (1 加大钢楞断面,再进行验算; (2 增加穿墙螺栓,在每个主次钢楞交点处均设穿墙螺栓,则主钢楞可不必再验算。 例3:已知混凝土对模板的侧压力为F=30kN/m2,对拉螺栓间距,纵向、横向均为0.9m,选用M16穿墙螺栓,试验算穿墙螺栓强度是否满足要求。

[解] 满足要求。 对拉螺栓(穿墙螺丝)力学性能表 螺栓直径(mm螺纹内径(mm净面积(mm2重量(kg/m容许拉力(N M12 M14 M16 9.85 11.55 13.55 76 105 144 0.89 1.21 1.58 12900 17800 24500 M18 M20 M2214.93 16.93 18.93 174 225 282 2.00 2.46 2.98 29600 38200 47900

工程力学公式大全

工程力学公式: 1、轴向拉压杆件截面正应力N F A σ= ,强度校核max []σσ≤ 2、轴向拉压杆件变形Ni i i F l l EA ?=∑ 3、伸长率:1100%l l l δ-=?断面收缩率:1100%A A A ψ-=? 4、胡克定律:E σε=,泊松比:'ευε=-,剪切胡克定律:G τγ= 5、扭转切应力表达式:T I ρρ τρ=,最大切应力:max P P T T R I W τ==,44(1)32P d I πα=-,3 4(1)16P d W πα=-,强度校核:max max []P T W ττ=≤ 6、单位扭转角:P d T dx GI ?θ==,刚度校核:max max []P T GI θθ=≤,长度为l 的一段轴两截面之间的相对扭转角P Tl GI ?=,扭转外力偶的计算公式:()(/min) 9549KW r p Me n = 7、薄壁圆管的扭转切应力:202T R τπδ= 8、平面应力状态下斜截面应力的一般公式: cos 2sin 222x y x y x ασσσσσατα+-=+-,sin 2cos 22x y x ασστατα-=+ 9、平面应力状态三个主应力 : '2x y σσσ+= ,''2 x y σσσ+='''0σ= 最大切应力max ''' 2σστ-=±=最大正应力方位02tan 2x x y τασσ=-- 10、 第三和第四强度理论:3r σ= 4r σ=11、平面弯曲杆件正应力:Z My I σ=,截面上下对称时,Z M W σ=

矩形的惯性矩表达式: 3 12 Z bh I=圆形的惯性矩表达式: 4 4 (1) 64 Z d I π α =- 矩形的抗扭截面系数: 2 6 Z bh W=,圆形的抗扭截面系数: 3 4 (1) 32 Z d W π α =- 13、平面弯曲杆件横截面上的最大切应力:max max * S z S Z F S F K bI A τ== 14、平面弯曲杆件的强度校核:(1)弯曲正应力 max [] t t σσ ≤, max [] c c σσ ≤ (2)弯曲切应力 max [] ττ ≤(3)第三类危险点:第三和第四强度理论 15、平面弯曲杆件刚度校核:叠加法max[] w w l l ≤, max [] θθ ≤ 16、(1)轴向载荷与横向载荷联合作用强度:max max min ()N Z F M A W σσ=± (2)偏心拉伸(偏心压缩): max min ()N Z F F A W δ σσ=± (3)弯扭变形杆件的强度计算: 22222 3 11 [] r y z Z M T M M T W W σσ =+=++≤ 22222 4 11 0.750.75[] r y z Z M T M M T W W σσ =+=++≤

工程力学常用公式

公式: 1、轴向拉压杆件截面正应力N F A σ=,强度校核max []σσ≤ 2、轴向拉压杆件变形Ni i i F l l EA ?=∑ 3、伸长率:1100%l l l δ-=?断面收缩率:1100%A A A ψ-=? 4、胡克定律:E σε=,泊松比:'ευε=-,剪切胡克定律:G τγ= 5、扭转切应力表达式:T I ρρτρ=,最大切应力:max P P T T R I W τ==,44(1)32P d I πα=-,34(1)16P d W πα=-,强度校核:max max []P T W ττ= ≤ 6、单位扭转角:P d T dx GI ?θ= =,刚度校核:max max []P T GI θθ=≤,长度为l 的一段轴两截面之间的相对扭转角P Tl GI ?=,扭转外力偶的计算公式:()(/min)9549KW r p Me n = 7、薄壁圆管的扭转切应力:202T R τπδ= 8、平面应力状态下斜截面应力的一般公式: cos 2sin 222x y x y x ασσσσσατα+-=+-,sin 2cos 22x y x ασστατα-=+ 9、平面应力状态三个主应力: '2x y σσσ+= ,''2 x y σσσ+='''0σ= 最大切应力max ''' 2σστ-=±=02tan 2x x y τασσ=-- 10 、第三和第四强度理论:3r σ= 4r σ=11、平面弯曲杆件正应力:Z My I σ=,截面上下对称时,Z M W σ= 矩形的惯性矩表达式:312Z bh I =圆形的惯性矩表达式:4 4(1)64Z d I πα=-

抗拉强度与伸长率测试方法与设备介绍

抗拉强度与伸长率测试方法与设备介绍 抗拉强度与伸长率测试方法与设备介绍 抗拉强度与伸长率,是指材料在拉断前承受的最大应力值与断裂时的伸长率。通过检 测能够有效解决材料抗拉强度不足等问题。Labthink 兰光研发生产的智能电子拉力试验 机系列产品,可专业适用于塑料薄膜、复合材料、软质包装材料、塑料软管、医用敷料、 保护膜、金属箔片、隔膜、背板材料、无纺布、橡胶、纸张等产品的抗拉强度与伸长率指 标测试。 抗拉强度与伸长率方法: 试样制备:宽度15mm ,取样长度不小于 150mm ,确保标距100mm ;对材料变形率较大试样,标距不得少于50mm 。 试验速度:500±30mm/min 试样夹持:试样置于试验机两夹具中,使试样纵轴与上下夹具中心连线重合,夹具松 紧适宜。 抗拉强度(单位面积上的力)计算公式: 拉伸强度计算公式σ=F/(b×d) σ:抗拉强度(MPa ) F :力值(N ) Labthink 兰光|包装检测仪器优秀供应商山东省济南市无影山路144号 b :宽度(mm ) d :厚度(mm ) 抗拉强度检测用设备——XLW(EC)智能电子拉力试验机: Labthink 兰光XLW(EC)智能电子拉力试验机专业适用于塑料薄膜、复合材料、软质包装材料、塑料软管、胶粘剂、胶粘带、不干胶、医用贴剂、保护膜、组合盖、金属箔、 隔膜、背板材料、无纺布、橡胶、纸张等产品的拉伸、剥离、变形、撕裂、热封、粘合、 穿刺力、开启力、低速解卷力、拨开力等性能测试。 XLW(EC) 是一款专业用于测试各种软包装材料拉伸性能等力学特性的电子拉力试验机;优于0.5级测试精度有效地保证了试验结果的准确性;系统支持拉压双向试验模式,试验 速度可自由设定;一台试验机集成拉伸、剥离、撕裂、热封等八种独立的测试程序,为用 户提供了多种试验项目选择;气动夹持试样,防止试样滑动,保证测试数据的准确性。 测试原理:

工程力学公式复习大全

工程力学公式复习大全

工程力学公式复习大全 第一章静力学的基本概念和公理及受力图 P2 刚体力的三要素:大小、方向、作用点 静力学公理:1力的平行四边形法则2二力平衡条件3加减平衡力系原理(1)力的可传性原理(2)三力平衡汇交定理4作用与反作用定律 P7 约束:柔索约束;光滑面约束;光滑圆柱(圆柱、固定铰链、向心轴承、辊轴支座);链杆约束(二力杆) 第二章平面汇交力系 P16 平面汇交力系平衡几何条件:力多边形自行封闭 P19 合力投影定理 P20平面汇交力系平衡条件:∑F ix=0;∑F iy=0。2个独立平衡方程 第三章力矩平面力偶系 P24 力矩M0(F)=±Fh(逆时针为正) P25 合力矩定理 P26力偶;力偶矩M=±Fd(逆时针为正) P27力偶的性质:力偶只能用力偶平衡 P28 平面力偶系平衡条件 第四章平面任意力系 P33 力的平移定理P34 平面力向力系一点简化

P36 平面任意力系平衡条件:∑F ix =0;∑F iy =0,∑M 0(Fi)=0。3个独立方程 P38平面平行力系平衡条件:2个独立方程 P39 静定,超静定 P43 摩擦,静摩擦力,动摩擦力 第五章 空间力系 重心 P53 空间力系平衡条件:6个方程;空间汇交力系:3个方程;空间平行力系:3个方程 第六章 点的运动 P64 质点 P65 点的速度dt ds v =, 加速度:切向加速度dt dv a =τ,速度大小变化;法向加速度ρ2v a n =,速度方向变化,加速度22n a a a +=τ 第七章 刚体的基本运动 P73 平动 P74转动,角速度dt d ?ω=,角加速度dt d ωα=,角速度n πω2=(n 是转速,r/s) P76 转动刚体内各点的速度ωR v =,加速度2ωατR a R a n ==, 第九章 刚体动力学基础 P87 质心运动定理:e F ma ∑= P88转动定理z z M J ∑=α,转动惯量:圆环2mR J z =;圆盘2/2mR J z =;细杆

螺栓剪切强度计算

螺栓剪切强度计算一、基本公式 mm M1螺栓的应力截面积:0.462 mm M2螺栓的应力截面积:2.072 mm M3螺栓的应力截面积:5.032 mm M4螺栓的应力截面积:8.782 mm M5螺栓的应力截面积:14.22 mm M6螺栓的应力截面积:20.12 mm M8螺栓的应力截面积:36.62 mm M10螺栓的应力截面积:582 mm M12螺栓的应力截面积:84.32 mm M14螺栓的应力截面积:1152

mm M16螺栓的应力截面积:1572 mm M18螺栓的应力截面积:1922 mm M20螺栓的应力截面积:2452 mm M22螺栓的应力截面积:3032 mm M24螺栓的应力截面积:3532 mm M27螺栓的应力截面积:4592 mm M30螺栓的应力截面积:5612 mm M33螺栓的应力截面积:6942 mm M36螺栓的应力截面积:8172 mm M39螺栓的应力截面积:9762 二、螺栓代号含义 8.8级螺栓的含义是螺栓强度等级标记代号由“?”隔开的两部分数字组成。标记代号中“?”前数字部分的含义表示公称抗拉强度,碳钢:公制螺栓机械性能等级可分为:3.6、4.6、4.8、5.6、5.8、6.8、8.8、9.8 、13.5 1 、螺栓材质公称抗拉强度达800MPa级;(第一个8) 2、螺栓材质的屈强比值为0.8;(第二个8就是0.8) 3、螺栓材质的公称屈服强度达800×0.8=640MPa级 三、剪应力和拉引力关系 实验证明,对于一般钢材,材料的许用剪应力与许用拉应力有如下关系: 塑性材料[t]=0.6-0.8[b];脆性材料[t]=0.8-1.0[b] 四、零件应力取值 机械设计或工程结构设计中允许零件或构件承受的最大应力值。要判定零件或构件受载后的工作应力过高或过低,需要预先确定一个衡量的标准,这个标准就是许用应力。凡是零件或构件中的工作应力不超过许用应力时,这个零件或构件在运转中是安全的,否则就是不安全的。许用应力是机械设计和工程结构设计中的基本数据。在实际应用中,许用应力值一般由国家工程主管部门根据安全和经济的原则,按材料的强度、载荷、环境情况、加工质量、计算精确度和零件或构件的重要性等加以规定。许用应力等于考虑各种影响因素后经适当修正的材料的失效应力(静强度设计中用屈服极限yield limit或强度极限strength limit疲劳强度设计中用疲劳极限fatigue limit)除以安全系数。塑性材料(大多数结构钢和铝合金)以屈服极限为基准,除以安全系数后得许用应力,即[σ]=σs/n(n=1.5~2.5);脆性材料(铸铁和高强钢)以强度极限为基准,除以安全系数后得许用应力,即[σ]=σb/n(n=2~5)。(n为安全系数)

2020年整理工程力学公式大全.doc

工程力学公式: 1、轴向拉压杆件截面正应力N F A σ=,强度校核max []σσ≤ 2、轴向拉压杆件变形Ni i i F l l EA ?= ∑ 3、伸长率:1100%l l l δ-= ?断面收缩率:1 100%A A A ψ-=? 4、胡克定律:E σε=,泊松比:'ευε=-,剪切胡克定律:G τγ= 5、扭转切应力表达式:T I ρρτρ=,最大切应力:max P P T T R I W τ==,44(1)32 P d I πα=-,3 4(1)16 P d W πα= -,强度校核:max max []P T W ττ= ≤ 6、单位扭转角:P d T dx GI ?θ= =,刚度校核:max max []P T GI θθ=≤,长度为l 的一段轴两截面之间的相对扭转角P Tl GI ?= ,扭转外力偶的计算公式:()(/min) 9549KW r p Me n = 7、薄壁圆管的扭转切应力:202T R τπδ = 8、平面应力状态下斜截面应力的一般公式: cos 2sin 22 2 x y x y x ασσσσσατα+-= + -,sin 2cos 22 x y x ασστατα-= + 9、平面应力状态三个主应力: '2 x y σσσ+= ,''2x y σσσ+='''0σ= 最大切应力max ''' 2 σστ-=± =最大正应力方位02tan 2x x y τασσ=- - 10、 第三和第四强度理论:3r σ= 4r σ= 11、平面弯曲杆件正应力:Z My I σ= ,截面上下对称时,Z M W σ=

矩形的惯性矩表达式: 3 12 Z bh I=圆形的惯性矩表达式: 4 4 (1) 64 Z d I π α =- 矩形的抗扭截面系数: 2 6 Z bh W=,圆形的抗扭截面系数: 3 4 (1) 32 Z d W π α =- 13、平面弯曲杆件横截面上的最大切应力:max max * S z S Z F S F K bI A τ== 14、平面弯曲杆件的强度校核:(1)弯曲正应力 max [] t t σσ ≤, max [] c c σσ ≤ (2)弯曲切应力 max [] ττ ≤(3)第三类危险点:第三和第四强度理论 15、平面弯曲杆件刚度校核:叠加法max[] w w l l ≤, max [] θθ ≤ 16、(1)轴向载荷与横向载荷联合作用强度:max max min ()N Z F M A W σσ=± (2)偏心拉伸(偏心压缩): max min ()N Z F F A W δ σσ=± (3)弯扭变形杆件的强度计算: 22222 3 11 [] r y z Z M T M M T W W σσ =+=++≤ 22222 4 11 0.750.75[] r y z Z M T M M T W W σσ =+=++≤

工程力学材料力学_知识点_及典型例题

作出图中AB杆的受力图。 A处固定铰支座 B处可动铰支座 作出图中AB、AC杆及整体的受力图。 B、C光滑面约束 A处铰链约束 DE柔性约束 作图示物系中各物体及整体的受力图。 AB杆:二力杆 E处固定端 C处铰链约束

(1)运动效应:力使物体的机械运动状态发生变化的效应。 (2)变形效应:力使物体的形状发生和尺寸改变的效应。 3、力的三要素:力的大小、方向、作用点。 4、力的表示方法: (1)力是矢量,在图示力时,常用一带箭头的线段来表示力;(注意表明力的方向和力的作用点!) (2)在书写力时,力矢量用加黑的字母或大写字母上打一横线表示,如F、G、F1等等。 5、约束的概念:对物体的运动起限制作用的装置。 6、约束力(约束反力):约束作用于被约束物体上的力。 约束力的方向总是与约束所能限制的运动方向相反。 约束力的作用点,在约束与被约束物体的接处 7、主动力:使物体产生运动或运动趋势的力。作用于被约束物体上的除约束力以外的其它力。 8、柔性约束:如绳索、链条、胶带等。 (1)约束的特点:只能限制物体原柔索伸长方向的运动。 (2)约束反力的特点:约束反力沿柔索的中心线作用,离开被约束物体。() 9、光滑接触面:物体放置在光滑的地面或搁置在光滑的槽体内。 (1)约束的特点:两物体的接触表面上的摩擦力忽略不计,视为光滑接触面约束。被约束的物体可以沿接触面滑动,但不能沿接触面的公法线方向压入接触面。 (2)约束反力的特点:光滑接触面的约束反力沿接触面的公法线,通过接触点,指向被约束物体。() 10、铰链约束:两个带有圆孔的物体,用光滑的圆柱型销钉相连接。 约束反力的特点:是方向未定的一个力;一般用一对正交的力来表示,指向假定。()11、固定铰支座 (1)约束的构造特点:把中间铰约束中的某一个构件换成支座,并与基础固定在一起,则构成了固定铰支座约束。

联接螺栓强度计算方法

联接螺栓的强度计算方法

一.连接螺栓的选用及预紧力: 1、已知条件: 螺栓的s=730MPa 螺栓的拧紧力矩T= 2、拧紧力矩: 为了增强螺纹连接的刚性、防松能力及防止受载螺栓的滑动,装配时需要预紧。 其拧紧扳手力矩T用于克服螺纹副的阻力矩T1及螺母与被连接件支撑面间的摩 擦力矩T2。装配时可用力矩扳手法控制力矩。 公式:T=T1+T2=K* F* d 拧紧扳手力矩T= 其中K为拧紧力矩系数, F为预紧力N d为螺纹公称直径mm 其中K为拧紧力矩系数, F为预紧力N d为螺纹公称直径mm 摩擦表面状态K值 有润滑无润滑 精加工表面 一般工表面 表面氧化 镀锌 粗加工表面- 取K=,则预紧力 F=T/*10*10-3=17500N 3、承受预紧力螺栓的强度计算: 螺栓公称应力截面面积As(mm)=58mm2 外螺纹小径d1=8.38mm 外螺纹中径d2=9.03mm

计算直径d3=8.16mm 螺纹原始三角形高度h=1.29mm 螺纹原始三角形根部厚度b=1.12mm 紧螺栓连接装配时,螺母需要拧紧,在拧紧力矩的作用下,螺栓除受预紧力F0的拉伸而产生拉伸应力外,还受螺纹摩擦力矩T1的扭转而产生扭切应力,使螺栓处于拉伸和扭转的复合应力状态下。 螺栓的最大拉伸应力σ1(MPa)。 1s F A σ= =17500N/58*10-6m 2=302MPa 剪切应力: =1σ=151 MPa 根据第四强度理论,螺栓在预紧状态下的计算应力: =*302= MPa 强度条件: =≤*=584 预紧力的确定原则: 拧紧后螺纹连接件的预紧应力不得超过其材料的屈服极限s σ的80%。 4、 倾覆力矩 倾覆力矩 M 作用在连接接合面的一个对称面内,底板在承受倾覆力矩之前,螺栓已拧紧并承受预紧力F 0。作用在底板两侧的合力矩与倾覆力矩M 平衡。 已知条件:电机及支架总重W1=190Kg ,叶轮组总重W2=36Kg ,假定机壳固定, () 2031 tan 2 16 v T d F T W d ?ρτπ += = 1.31ca σσ≈[] 02 11.34F ca d σσ π =≤

工程力学公式大全(河北工程大学)

工程力学资料 工程力学公式: 1、轴向拉压杆件截面正应力N F A σ=,强度校核max []σ σ≤ 2、轴向拉压杆件变形N i i i F l l EA ?=∑ 3、伸长率:1100% l l l δ -=?断面收缩率:1 100% A A A ψ-=? 4、胡克定律:E σ ε =,泊松比:'ευε=-,剪切胡克定律:G τ γ= 5、扭转切应力表达式:T I ρ ρ τρ =,最大切应力:m ax P P T T R I W τ = = , 4 4 (1) 32 P d I πα= -,3 4 (1)16 P d W πα= -,强度校核:m ax m ax []P T W ττ= ≤ 6、单位扭转角:P d T dx G I ?θ = = ,刚度校核:m ax m ax []P T G I θ θ= ≤,长度为 l 的一段轴两截面之间的相对扭转角P Tl G I ?= ,扭转外力偶的计 算公式:()(/m in) 9549 K W r p M e n = 7、薄壁圆管的扭转切应力:2 02T R τπδ = 8、平面应力状态下斜截面应力的一般公式: cos 2sin 22 2 x y x y x ασσσσσατα +-= + -,sin 2cos 22 x y x α σστατα -= + 9、平面应力状态三个主应力: 22 '( )2 2 x y x y x σσσσ στ+-= ++,22 ''( )2 2 x y x y x σσσσ στ+-= -+,'''0σ=

最大切应力22 m ax ''' ( )2 2 x y x σσ σστ τ--=± =±+,最大正应力方位 02tan 2x x y τασσ=- - 10、第三和第四强度理论:22 3 4r σστ =+,22 4 3r σ στ =+ 11、平面弯曲杆件正应力:Z M y I σ= ,截面上下对称时,Z M W σ = 矩形的惯性矩表达式: 3 12 Z bh I = 圆形的惯性矩表达式: 4 4 (1)64 Z d I πα= - 矩形的抗扭截面系数:2 6 Z bh W = ,圆形的抗扭截面系数: 3 4 (1)32 Z d W πα= - 13、平面弯曲杆件横截面上的最大切应力:max max *S z S Z F S F K bI A τ = = 14、平面弯曲杆件的强度校核:(1)弯曲正应力m ax [] t t σ σ≤, m ax []c c σσ≤ (2)弯曲切应力max []ττ≤(3)第三类危险点:第三和第四强度 理论 15、平面弯曲杆件刚度校核:叠加法 m ax [ ]w w l l ≤,m ax []θθ≤ 16、(1)轴向载荷与横向载荷联合作用强度: max max min ()N Z F M A W σσ=± (2)偏心拉伸(偏心压缩):m ax m in ()N Z F F A W δσ σ=± (3)弯扭变形杆件的强度计算:

螺栓抗拉承载力计算

螺栓抗拉承载力计算 首先,纠正一下,楼主的问题应当是:螺栓抗拉承载力计算。 简单说,强度是单位面积的承载力,是一个指标。 公式: 承载力=强度x 面积; 螺栓有螺纹,M24螺栓横截面面积不是24直径的圆面积,而是353平方毫米,称之为有效面积. 普通螺栓C级(4.6和4.8级)抗拉强度是170N/平方毫米。 那么承载力就是:170x353=60010N. 换算一下,1吨相当于1000KG,相当于10000N,那么M24螺栓也就是可以承受约6吨的拉力。 螺栓有效面积可以从五金手册或钢结构手册查,强度指标可以从相关钢结构手册或规范查。当然这些也可以从网上查. 焊缝的抗拉强度计算公式比较简单 许用应力乘焊接接头系数在乘焊缝面积除以总面积,这就是平均焊接抗拉强度 抗拉强度与伸长率计算 公称直径为$7.0mm,其最大拉伸力为22。4KN,其断后标距为76.10mm,计算它的抗拉强度与身长率~!] 抗拉强度=拉力值/实际横截面面积 伸长率=(断后标距-标距)/标距*100% 抗拉强度Rm=22.4/(3.14*3.5*3.5)*10000=713.38MPa,修约后=715MPa 延伸A=(76.1-70)/70=8.71% ,修约后=8.5% 修约规则<0.25 约为0 ≥0.75约为1 ≥0.25且小于0.75约为0.5 请问抗拉强度和屈服强度有什么区别? 抗拉强度: 当钢材屈服到一定程度后,由于内部晶粒重新排列,其抵抗变形能力又重新提高,此时变形虽然发展很快,但却只能随着应力的提高而提高,直至应力达最大值。此后,钢材抵抗变形的能力明显降低,并在最薄弱处发生较大的塑性变形,此处试件截面迅速缩小,出现颈缩现象,直至断裂破坏。钢材受拉断裂前的最大应力值(b点对应值)称为强度极限或抗拉强度

工程力学公式

工程力学公式大全 第一章: 力矩 用符号MO (F )表示。即 力矩矢量 描述力的转动效应 力矩矢量的模描述转动效应的大小,它等于力的大小与矩心到力作用线的垂直距离(力臂)的乘积,即 q 为矢径r 与力F 之间的夹角。 平面力系的合力对平面上任一点之矩等于力系中所有的力对同一点之矩的代数和 或者简写成 ()ABO h F M O ?±=?±=2F ()F r F ?=O M ()θsin F Fr Fh M O ==n O O O O 21R ()()()()n O O O O M M M M F F F F 21R +???++===n i i O O M M 1 R F F ()()∑==n i i O O M M 1R F F

力偶矩 第二章: 一主矢: 有任意多个力所组成的力系 (F1,F2…Fn),的矢量和: 二主矩: 力系中所有的力对同一点O 之矩的矢量和 用表示: 空间任意汇交系在oxyz 坐标中投影表达式: ()()Fh M M M O O ='+=F F ∑==n i Fi F 1)(10 0Fi n i M M ∑==∑==n i ix x F F 1 ∑==n i iy y F F 1 ∑==n i iz z F F 1

对于空间任意力系 主矩的分量表达式为 第三章 静力学平衡问题 平面一般力系的平衡方程: 00 ()0 x y o F F M F ===∑∑∑ 1n Ox O i i x M ==()1n Ox O i i x M =?? ???∑=M F 1 n Oy O i i y =()1n Oy O i i y M =?? ? ??∑=M F 1n Oz O i i z =???F ()1n Oz O i i z M =?? ???∑=M F

工程力学常用公式

工程力学常用公式 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

工程力学常用公式 1、轴向拉压杆件截面正应力N F A σ=,强度校核max []σσ≤ 2、轴向拉压杆件变形Ni i i F l l EA ?=∑ 3、伸长率:1100%l l l δ-= ?断面收缩率:1 100%A A A ψ-=? 4、胡克定律:E σε=,泊松比:'ευε=-,剪切胡克定律:G τγ= 5、扭转切应力表达式:T I ρρτρ= ,最大切应力:max P P T T R I W τ==,4 4 (1)32 P d I πα= -,3 4(1)16 P d W πα= -,强度校核:max max []P T W ττ= ≤ 6、单位扭转角:P d T dx GI ?θ==,刚度校核:max max []P T GI θθ=≤,长度为l 的一段轴两截面之间的相对扭转角P Tl GI ?= ,扭转外力偶的计算公式:()(/min) 9549 KW r p Me n = 7、薄壁圆管的扭转切应力:202T R τπδ = 8、平面应力状态下斜截面应力的一般公式: cos 2sin 22 2 x y x y x ασσσσσατα+-= + -,sin 2cos 22 x y x ασστατα-= + 9、平面应力状态三个主应力: '2 x y σσσ+= + ''2 x y σσσ+='''0σ=

最大切应力max ''' 2 σστ-=± =02tan 2x x y τασσ=- - 10 、第三和第四强度理论:3r σ= 4r σ=11、平面弯曲杆件正应力:Z My I σ= ,截面上下对称时,Z M W σ= 矩形的惯性矩表达式:3 12Z bh I =圆形的惯性矩表达式: 4 4(1)64 Z d I πα= - 矩形的抗扭截面系数:2 6Z bh W =,圆形的抗扭截面系数: 3 4(1)32 Z d W πα= - 13、平面弯曲杆件横截面上的最大切应力:max max *S z S Z F S F K bI A τ= = 14、平面弯曲杆件的强度校核:(1)弯曲正应力max []t t σσ≤, max []c c σσ≤ (2)弯曲切应力max []ττ≤(3)第三类危险点:第三和第四强度理论 15、平面弯曲杆件刚度校核:叠加法 max []w w l l ≤,max []θθ≤ 16、(1)轴向载荷与横向载荷联合作用强度: max max min ()N Z F M A W σσ=± (2)偏心拉伸(偏心压缩):max min ()N Z F F A W δ σσ=± (3)弯扭变形杆件的强度计算: 工程力学常用公式

工程力学公式总结

刚体 力的三要素:大小、方向、作用点 静力学公理:1力的平行四边形法则2二力平衡条件3加减平衡力系原理(1)力的可传性原理(2)三力平衡汇交定理4作用与反作用定律 约束:柔索约束;光滑面约束;光滑圆柱(圆柱、固定铰链、向心轴承、辊轴支座);链杆约束(二力杆) 平面汇交力系平衡的必要和充分条件是:力系的合力等于零。 平面汇交力系平衡几何条件:力多边形自行封闭 合力投影定理合力在任一轴上的投影,等于各分力在同一轴上投影的代数和。它表明了合力与分力在同一坐标轴投影时投影量之间的关系。 平面汇交力系平衡条件:∑F ix =0;∑F iy =0。2个独立平衡方程 第三章 力矩 平面力偶系 力矩M 0(F)=±Fh(逆时针为正) 合力矩定理:平面汇交力系的合力对平面上任一点力矩,等于力系中各分力对与同一点力矩的代数和。 Mo(F )=Mo(F1)+Mo(F 2)+...+Mo(F n)=∑Mo(F ) 力偶;由大小相等,方向相反,而作用线不重合的两个平行力组成的力系称为力偶 力偶矩M =±Fd(逆时针为正) 力偶的性质:性质1 力偶既无合力,也不能和一个力平衡,力偶只能用力偶来平衡。性质2 力偶对其作用面内任一点之矩恒为常数,且等于力偶矩,与矩心的位置无关。性质3 力偶可在其作用面内任意转移,而不改变它对刚体的作用效果。性质4 只要保持力偶矩的大小和转向不变,可以同时改变力偶中力的大小和力偶臂的长短, 而不改变其对刚体的作用效果。 平面力偶系平衡条件是合力偶矩等于零。 第四章 平面任意力系 力的平移定理:将力从物体上的一个作用点,移动到另外一点上,额外加上一个力偶矩,其大小等于这个力乘以2点距离,方向为移动后的力与移动前力的反向力形成的力偶的反方向 平面力向力系一点简化可得到一个作用在简化中心的主矢量和一个作用于原平面内的主矩,主矢量等于原力系中各力的矢量和,而主矩等于原力系中各力对点之矩的代数和。 平面任意力系平衡条件:∑F ix =0;∑F iy =0,∑M 0(Fi)=0。3个独立方程 平面平行力系平衡条件:∑F iy =0,∑M 0(Fi)=02个独立方程 摩擦,阻止两物体接触表面发生切向相互滑动或滚动的现象。静摩擦力,若两相互接触且相互挤压,而又相对静止的物体,在外力作用下如只具有相对滑动趋势,而又未发生相对滑动,则它们接触面之间出现的阻碍发生相对滑动的力,谓之“静摩擦力”。动摩擦力,两物体相对运动时的摩擦力。 重心是在重力场中,物体处于任何方位时所有各组成质点的重力的合力都通过的那一点。 第五章 空间力系 P53 空间力系平衡条件:6个方程。空间平行力系:3个方程 影响构件持久极限的主要因素:构件尺寸外形和表面质量。 质点的运动:点的速度dt ds v = ,加速度:切向加速度dt dv a = τ,速度大小变化;法向加速度ρ 2 v a n = , 速度方向变化,加速度2 2n a a a +=τ 刚体的基本运动角速度dt d ?ω= ,角加速度dt d ωα= ,角速度n πω2=(n 是转速,r/s) 转动刚体内各点的速度ωR v =,加速度2ωατR a R a n ==, 质心运动定理:e F ma ∑= 转动定理z z M J ∑=α,转动惯量:圆环2mR J z =;圆盘2/2 mR J z =:

工程力学公式大全修订版

工程力学公式大全修订 版 IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-ZZT18】

工程力学公式: 1、轴向拉压杆件截面正应力N F A σ= ,强度校核max []σσ≤ 2、轴向拉压杆件变形Ni i i F l l EA ?=∑ 3、伸长率:1100%l l l δ-=?断面收缩率:1100%A A A ψ-=? 4、胡克定律:E σε=,泊松比:'ευε=-,剪切胡克定律:G τγ= 5、扭转切应力表达式:T I ρρ τρ=,最大切应力:max P P T T R I W τ==,44(1)32P d I πα=-,3 4(1)16P d W πα=-,强度校核:max max []P T W ττ=≤ 6、单位扭转角:P d T dx GI ?θ==,刚度校核:max max []P T GI θθ=≤,长度为l 的一段轴两截面之间的相对扭转角P Tl GI ?=,扭转外力偶的计算公式:()(/min) 9549KW r p Me n = 7、薄壁圆管的扭转切应力:202T R τπδ= 8、平面应力状态下斜截面应力的一般公式: cos 2sin 222x y x y x ασσσσσατα+-=+-,sin 2cos 22x y x ασστατα-=+ 9、平面应力状态三个主应力:

'2x y σσσ+= ,''2x y σσσ+='''0σ= 最大切应力max ''' 2σστ-=±=最大正应力方位02tan 2x x y τασσ=-- 10、 第三和第四强度理论:3r σ= 4r σ= 11、平面弯曲杆件正应力:Z My I σ=,截面上下对称时,Z M W σ= 矩形的惯性矩表达式:312Z bh I =圆形的惯性矩表达式:4 4(1)64 Z d I πα=- 矩形的抗扭截面系数:26Z bh W =,圆形的抗扭截面系数:3 4(1)32 Z d W πα=- 13、平面弯曲杆件横截面上的最大切应力:max max *S z S Z F S F K bI A τ= = 14、平面弯曲杆件的强度校核:(1)弯曲正应力max []t t σσ≤,max []c c σσ≤ (2)弯曲切应力max []ττ≤(3)第三类危险点:第三和第四强度理论 15、平面弯曲杆件刚度校核:叠加法max []w w l l ≤,max []θθ≤ 16、(1)轴向载荷与横向载荷联合作用强度: max max min ()N Z F M A W σσ= ± (2)偏心拉伸(偏心压缩):max min ()N Z F F A W δσσ=± (3)弯扭变形杆件的强度计算:

螺栓疲劳强度计算分析

螺栓疲劳强度计算分析 摘要:在应力理论、疲劳强度、螺栓设计计算的理论基础之上,以疲劳强度计算所采取的三种方法为依据,以汽缸盖紧螺栓连接为研究对象,进行本课题的研究。假设汽缸的工作压力为0~1N/mm2=之间变化,气缸直径D2=400mm,螺栓材料为5.6级的35钢,螺栓个数为14,在F〞=1.5F,工作温度低于15℃这一具体实例进行计算分析。利用ProE建立螺栓连接的三维模型及螺杆、螺帽、汽缸上端盖、下端盖的模型。先以理论知识进行计算、分析,然后在分析过程中借助于ANSYS有限元分析软件对此螺栓连接进行受力分析,以此验证设计的合理性、可靠性。经过近几十年的发展,有限元方法的理论更加完善,应用也更广泛,已经成为设计,分析必不可少的有力工具。然后在其分析计算基础上,对于螺栓连接这一类型的连接的疲劳强度设计所采取的一般公式进行分类,进一步在此之上总结。 关键词:螺栓疲劳强度,计算分析,强度理论,ANSYS 有限元分析。

Bolt fatigue strength analysis Abstract:In stress fatigue strength theory, bolt, design calculation theory foundation to fatigue strength calculation for the three methods adopted according to the cylinder lid, fasten bolt connection as the object of research, this topic research. Assuming the cylinder pressure of work is 0 ~ 1N/mm2 changes, cylinder diameters between = = 400mm, bolting materials D2 for ms5.6 35 steel, bolt number for 14, in F "= 1.5 F below 15 ℃, the temperature calculation and analysis of concrete examples. Using ProE establish bolt connection three-dimensional models and screw, nut, cylinder under cover, cover model. Starts with theoretical knowledge calculate,analysis, and then during analysis, ANSYS finite element analysis software by this paper analyzes forces bolt connection, to verify the rationality of the design of and reliability. After nearly decades of development, the theory of finite element method is more perfect, more extensive application, has become an indispensable design, analysis the emollient tool. Then in its analysis and calculation for bolt connection, based on the type of connection to the fatigue strength design of the general formula classification, further on top of this summary. Keywords: bolt fatigue strength, calculation and analysis, strength theory,ANSYS finite elements analysis.

相关主题
文本预览
相关文档 最新文档