当前位置:文档之家› 主成分进行综合评价 综合评价主成分分析方法与因子分析方法的比较

主成分进行综合评价 综合评价主成分分析方法与因子分析方法的比较

主成分进行综合评价 综合评价主成分分析方法与因子分析方法的比较
主成分进行综合评价 综合评价主成分分析方法与因子分析方法的比较

主成分进行综合评价综合评价主成分分析方法

与因子分析方法的比较

统计研究

主成分分析方法和因子分析方法都是寻求从高维空间到低维空间的映射的方法,其目的是起到降维的效果,以便于用几个较少的综合指标来综合所研究总体各方面的信息,且这几个指标所代表的信息不重叠,也就是说从高维空间到低维空间的映射仍保持高维空间的“序”的结构。但这两种综合评价方法往往易混淆,本文从这两种方法的统计依据、数学模型、计算方法、综合指标的选取等方面比较它们的异同,以供初学者参考。

1、统计依据不同。主成分分析方法的统计问题:依P个指标戈l,x2,A,戈P的/7,个观察值矩阵X=G0帅,能否找到能较好地综合反映这个P

、二

指标的线性函数Y=乞atxt,即

i=1

找到这个主成分的方法就是主成分分析方法。

因子分析方法的统计问题仍

口由P个指标戈。,戈:,A,却的几个观钱道察信息阵X=GF)忡,用有限个不翠

可观测的潜在变量来解释原始变量间的相关性或协方差关系,寻求这几个公因子的方法就是因子缉含汗价士气分析劣珐乡图分奸劣珐的火仪

分析法。它的原理源于已知信息的指标向量戈=0。,戈:,A,菇P)’,总存在正交变换戈=Qy使得记x=Az,这里正交阵Q是X=G0。巾的

协方差阵y的特征向量排成的,y的各分量是不相关的,若茹的方差集中在少数几个变量三,,A,缸上,即y的特征值A,,A,A。较大,后几个特征值A㈨,A,A。很小几乎为零,于是就有因子模型算=4厂+s。寻求公因子、厂及因子载荷阵A的方法就是因子分析法。

2、数学模型不同。主成分分析的数学模型:Y=Eat、、ri,

1=1

即主成分是原始指标的线性函数。因子分析的数学模型:戈=4厂+£,A为因子载荷阵。厂为公因子向量,£为随机误差项,Vnroq=I。,Var=o,Var

I30圈羹堑绻过丝Q丝生皇塑万

方数据=D。从形式上看二者的模型不同,但主成分分析又为因子分析中因子的寻求提供了一个有效的途径。主成分分析与因子分析法最易混淆的地方在于,将主成分分析方法与因子分析

方法中估计公因子及因子载荷阵的主分量法混为一谈。求解因子模型的方法有多种,也就是说因子模型的解不惟一,主分量法仅仅是其中的一种参数估计方法。

3、计算方法不同。因子分析的主分量法:为估计

模型石气伊£的A及、厂'设样本协方差阵y的特征值为

A1>--A:≥A≥A,≥0,相应的特征向量为e,,e2,A,e,,若前

o、

个特征值的和与总方差上4的比大于,则

loI

VzAgle:+人+丸已。em7+D

f√五彳1f《

=,砰=%一∑彳,,

t=l

由这种方法得到因子模型的一个解A及D就是因子模型的主分量解。因子载荷阵A中的第J列的元素与

主成分分析中第,个主成分乃=∑唧^的系数啕仅相差

r-

Id

√^倍,因子分析的主分量解也是因此而得名。因子

载荷阵A,舻=b21怕刍+A,坛+研,即

b;反映了因子、五载荷了施的方差的量。故我们在求

解因子模型时,可将因子作旋转,使因子载荷阵中每一行的值尽可能两极化,使其因子更具实际意义,这样就有了因子旋转的方法求解因

子模型。石=Ap8=APl盼8,令g=可,B=APl,则髫=

则为斜交变换。曰为因子模型的又一解。

4、综合评价的指标不同。因子得分是公因子的估归分析中的参数估计,因为公因子是潜在因素,事先无法度量和观察的。有了因子得分,它们的加权组合就得到综合评价指标E。即、f个因子的得分为向量

《旁

丑、

,∑一

羔A。。

盼£,若P为正交阵,则上述变换g=可为正交变换,否

计值。可用最小二乘回归的方法估计,但它又不同于回

统计研究

出相应的研究结果。

“旧房房价收入比”是指某一整体内上市旧房上市交易的平均价格与居民家庭户均收入的比例,这一指标与新房房价收入比

对照,可用于评估该整体内的旧房折旧程度,也可以比较居民家庭对新旧住房的需求情况,从而得出研究结果。

在计算新房房价收入比与旧房房价收入比基础上,再按上市住房总蜃中新房所占的比例和旧房所占的比例作为新房房价收入比和旧房房价收入比的权重,加权计算整体房价收入比,公式为:房价收入比=∑新房房价收入比×新房占上市住房的比例。

三、按照居民是否拥有自有住房细分计算房价收入比

目前,我国大多数城市居民家庭拥有自有住房。他们如要进入市场,绝大多数是卖掉原有住房,再去买大些好些的住房,以改善居住条件。对于拥有住房的家庭户,购买新建商品房,其住房消费承受能力不能按新建商品房销售价格与家庭收入的比较来衡量。因为这部分居民可以通过销售自有住房所得来支付购买新建商品房房款÷’,也可以出租自有住房所得来支付银行按揭购房的按揭款。如果考虑这一因素,对这一部分居民家庭购房的房价收入比可以按以下公式计算:有房户房价收入比=÷拥有自有住房居民家庭户均收入。

计算公式的这一改变对房价收入比的计算方法起到了补充和扩展作用,因为它考虑了我国经济发展水平和多数居民拥有自有住房的特点,能够较好的衡量城市居民购买住房的实际承受能力。这一公式计算结果会降低某一区域的房价收入比指标值,在政策与舆论导向上会提高居民购房的心理承受能力。实际上,我国大多数城市房地产业发展很快,房价涨幅较高,主要因素是居

民的住房消费需求大于住房供给的结果。城市中,除了最低收入者外,大多数拥有住房的家庭,都具有一定的购买更大更好住房的能力或是具有置换住房的能力。

对于没有住房的居民家庭,情况也不一样,大体可以分为三类:第一类是自身有较高收入或可以得到家庭支持的无房户,实际上有较高的购房能力;第二类是中等收入者无房户,其中年轻人占的比重最大,政府应鼓励他们购房,用人单位给予一定的补贴;第三类是低收人者无房户,应通过政府的廉租屋政策来解决居住问题,不参加买方行列,使他们能享受政府福利,享受改革开放的成果。对第一类与第二类无房户,房价收入比可以按市场平均房价与它们的平均收入之比计算。

在分别计算有房户与无房户的房价收入比基础上,同样也可以用有房户和无房户占总家庭户数的比例作为它们各自房价收入比的权重,计算某地区的综合房价收入比,公式为:房价收入比=∑有房户的房价收入比×有房户家庭户数占总家庭房数的比例。

总之,为了正确的衡量广大居民住房消费的能力,制定科学合理的政策,引导房地产市场的健康发展,需要不断的深化研究房价收入比的计算方法。前面介绍的房价收入比指标从不同的角度反映居民住房消费承受能力,而且每种角度计算都会使得整体的房价收入比指标值比现行计算的房价收入比指标值要小,也就

是说,考虑到各收入阶层的不同、新旧住房的区别、是否存在自有住房这几方面因素之后,让我们再用所得到的房价收人比来评价整体居民的住房消费承受能力,就会对部分专家认为的“现在我国已经出现了住房泡沫危机”有一个更清晰的认识。

分析发达国家经济发展历史,对照我国房地产业发展过程,我国的房地产业总体上还是处在起步阶段。当然在房地产业发展过程中,特别是在起步阶段,市场还不够成熟,市场规则制定与完善以及居民住房消费理性预期的养成,都需要有一个过程,因而,在现阶段,部分地方房价涨幅比较高,也是正常的。笔者觉得,就整体而言,我国现行的房地产业并没有出现很大的泡沫,但可能少数城市,由于人为炒作等原因,可能会存在结构性的供求失衡,存在一定的房地产泡沫。

综上所述,主成分分析与因子分析都是综合评价的有效方法,它们有区别,也有联系,第_『个因子上的载荷是该总体第J个主成分的系数的A,倍。用因子分析作综合评价不仅可以给出排名顺序,还可以进一步探索影响排名次序的因素,从而找到进一步努力的方向,这就是因子分析所具有的独到的优越性。

{;;;;i!{j|;;;;;j;;;i;Ejj;;;;;;;i;jj;i;;i;ij;;;;;i;;;;!;;i;i;;!;;;i;÷;;;iii;;;;!i;i;;;;;;j;;;;;!;;;

i;;;E;ij;;;;;;;;;;i;;;;i;;;;;ji;!;;;;;;;ii;;;;

而主成分分析一般按第一主成分的得分Y-=艺口rXi的i=1

值排序,若第一主成分作为综合指标损失较多的信息,

可继续选取第二主成分y2,A,ym等,然后计算其综合得

分二wjyj再利用综合得分指标排序。

万方数据

综合评价主成分分析方法与因子分析方法的比较

作者:作者单位:刊名:英文刊名:年,卷:被引用次数:钱道翠

浙江工商大学统计与计算科学学院浙江统计

ZHEJIANG STATISTICS20xx5次

引证文献

1、高磊基于主成分分析方法的体育健身消费行为影响因素研究[期刊论文]-市场论坛

2、田开、郑宗培、虞小海主成分分析法在学生成绩分析中的应用[期刊论文]-大众商务 Nina、刘新平入境游客对我国旅游接待设施评价的因子分析[期刊论文]-西安石油大学学报

4、应敏多元统计分析在考试成绩分析中的应用[期刊论文]-中国科技信息

5、石丽君国际科技活动效率评价方法研究[学位论文]硕士本文链接::///Periodical_ 本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意!---------------本文为网络收集精选范文、公文、论文、和其他应用文档,如需本文,请下载--------------

PCA主成分分析原理及应用

主元分析(PCA)理论分析及应用 什么是PCA? PCA是Principal component analysis的缩写,中文翻译为主元分析/主成分分析。它是一种对数据进行分析的技术,最重要的应用是对原有数据进行简化。正如它的名字:主元分析,这种方法可以有效的找出数据中最“主要”的元素和结构,去除噪音和冗余,将原有的复杂数据降维,揭示隐藏在复杂数据背后的简单结构。它的优点是简单,而且无参数限制,可以方便的应用与各个场合。因此应用极其广泛,从神经科学到计算机图形学都有它的用武之地。被誉为应用线形代数最价值的结果之一。 在以下的章节中,不仅有对PCA的比较直观的解释,同时也配有较为深入的分析。首先将从一个简单的例子开始说明PCA应用的场合以及想法的由来,进行一个比较直观的解释;然后加入数学的严格推导,引入线形代数,进行问题的求解。随后将揭示PCA与SVD(Singular Value Decomposition)之间的联系以及如何将之应用于真实世界。最后将分析PCA理论模型的假设条件以及针对这些条件可能进行的改进。 一个简单的模型 在实验科学中我常遇到的情况是,使用大量的变量代表可能变化的因素,例如光谱、电压、速度等等。但是由于实验环境和观测手段的限制,实验数据往往变得极其的复杂、混乱和冗余的。如何对数据进行分析,取得隐藏在数据背后的变量关系,是一个很困难的问题。在神经科学、气象学、海洋学等等学科实验中,假设的变量个数可能非常之多,但是真正的影响因素以及它们之间的关系可能又是非常之简单的。 下面的模型取自一个物理学中的实验。它看上去比较简单,但足以说明问题。如图表 1所示。这是一个理想弹簧运动规律的测定实验。假设球是连接在一个无质量无摩擦的弹簧之上,从平衡位置沿轴拉开一定的距离然后释放。

主成分分析法matlab实现,实例演示

利用Matlab 编程实现主成分分析 1.概述 Matlab 语言是当今国际上科学界 (尤其是自动控制领域) 最具影响力、也是 最有活力的软件。它起源于矩阵运算,并已经发展成一种高度集成的计算机语言。它提供了强大的科学运算、灵活的程序设计流程、高质量的图形可视化与界面设计、与其他程序和语言的便捷接口的功能。Matlab 语言在各国高校与研究单位起着重大的作用。主成分分析是把原来多个变量划为少数几个综合指标的一种统计分析方法,从数学角度来看,这是一种降维处理技术。 1.1主成分分析计算步骤 ① 计算相关系数矩阵 ?? ? ???? ???? ?? ?=pp p p p p r r r r r r r r r R 2 122221 11211 (1) 在(3.5.3)式中,r ij (i ,j=1,2,…,p )为原变量的xi 与xj 之间的相关系数,其计算公式为 ∑∑∑===----= n k n k j kj i ki n k j kj i ki ij x x x x x x x x r 1 1 2 2 1 )() () )(( (2) 因为R 是实对称矩阵(即r ij =r ji ),所以只需计算上三角元素或下三角元素即可。

② 计算特征值与特征向量 首先解特征方程0=-R I λ,通常用雅可比法(Jacobi )求出特征值 ),,2,1(p i i =λ,并使其按大小顺序排列,即0,21≥≥≥≥p λλλ ;然后分别求 出对应于特征值i λ的特征向量),,2,1(p i e i =。这里要求i e =1,即112 =∑=p j ij e ,其 中ij e 表示向量i e 的第j 个分量。 ③ 计算主成分贡献率及累计贡献率 主成分i z 的贡献率为 ),,2,1(1 p i p k k i =∑=λ λ 累计贡献率为 ) ,,2,1(11 p i p k k i k k =∑∑==λ λ 一般取累计贡献率达85—95%的特征值m λλλ,,,21 所对应的第一、第二,…,第m (m ≤p )个主成分。 ④ 计算主成分载荷 其计算公式为 ) ,,2,1,(),(p j i e x z p l ij i j i ij ===λ (3)

基于主成分分析的经济发展水平综合评价

基于主成分分析的经济发展水平综合评价1 吴冲,王栋 哈尔滨工业大学管理学院,哈尔滨 (150001) E-mail:wuchong@https://www.doczj.com/doc/b01629223.html, 摘要:衡量一个国家的经济发展程度,要从其社会生产的各个方面去考察,要看各项生产能力的综合效果。为了客观、科学地分析我国的经济发展状况,本文首次把居民消费价格指数和商品零售价格指数引入评价指标体系中,提出一种新的社会发展水平综合指标体系,并通过SPSS分析软件进行上机计算,应用主成分分析方法对我国31个省、直辖市、自治区(不包括香港、澳门和台湾)的经济发展水平进行综合分析和评价,突出了各大省市经济发展进程的特点和优势,为我国实现均衡发展提供理论依据。 关键词:主成分分析,经济发展,综合评价 1. 引言 要描述和评价一个社会的经济发展状况,最理想的是找到一个总括性社会指标体系评价方法,其测度结果能够反映社会经济发展的全部或大部分信息。20世纪60年代以来一些国际性组织、国家和地区的职能部门以及研究学者曾经提出各种不尽完全相同的指标体系评价方法[1]。我国系统地研究社会发展指标体系评价方法起步较晚,但发展很快,20世纪80年代以来,国内一些政府部门、研究单位和个人先后设计了一些“社会指标体系评价方法”[2-4],如:唐晓东[5]采用了21个指标变量的函数模型来评价我国社会经济发展状况,然而此模型一个最大缺点,就是没有把所有反映经济情况的因素考虑在内,得不到预期效果。但到目前为止,还没有形成一套完善、客观的社会经济发展综合指标体系评价方法,为了更加全面、客观地反映我国各地区的社会发展水平,本文在借鉴国内外研究成果的基础上,通过对我国已有研究成果的修正和充实,首次把居民消费价格指数和商品零售价格指数引入评价指标体系中,提出一种新的社会发展水平综合指标体系。 在实际经济问题中,不同的经济变量之间具有一定的相关性,如职工平均工资和消费水平必然有一定的关联性,这样势必增加分析问题的复杂性,因此需要有一种进行简化的方法。主成分分析法可以用较少的指标来代替原来较多的指标,并使这些较少的指标尽可能地反映原来指标的信息,从根本上解决了指标间的信息重叠问题,又大大简化了原指标体系的指标结构,用主成分分析法分析经济发展水平的优势主要体现在: (1)全面性(消除评价指标的相互影响),在满足n p f的条件下,不限制指标的个数,可以综合评价一国的经济发展状况,主成分分析的降维处理技术能较好地解决多指标评价的要求,在选择了() p个主成分后, m m p 仍能保留原是数据信息的85%以上,因此这一方法综合评价经济发展水平比较全面,可以克服片面追求个别经济指标而忽略全面经济发展指标的倾向;(2)可加性(数据标准化处理),在综合评价经济发展水平时,所建立的评价指标量纲往往不同,变差不能直接综合,主成分分析法避免了此现象的发生,因为在计算过程中,主成分分析法把各个指标进行了标准化处理,这就使得各个经济指标之间具有可比性即可加性;(3)客观性(科学的确定权重),在层次分析法计算过程中,通过专家打分来确定权重,也就是说在确定权重的问题上具有了人为因素,而主成分分析法在确定综合因子的权重时,克服了某些评价方法中人为确定权重的缺陷,使得综合评价结果唯一;(4)简单性(计算简介),随着电子计算机技术的发展,SPSS、SAS等计 1本课题得到高校博士点基金(20050213037)资助。

主成分分析法总结

主成分分析法总结 在实际问题研究中,多变量问题是经常会遇到的。变量太多,无疑会增加分析问题的难度与复杂性,而且在许多实际问题中,多个变量之间是具有一定的相关关系的。 因此,人们会很自然地想到,能否在相关分析的基础上,用较少的新变量代替原来较多的旧变量,而且使这些较少的新变量尽可能多地保留原来变量所反映的信息? 一、概述 在处理信息时,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠,例如,高校科研状况评价中的立项课题数与项目经费、经费支出等之间会存在较高的相关性;学生综合评价研究中的专业基础课成绩与专业课成绩、获奖学金次数等之间也会存在较高的相关性。而变量之间信息的高度重叠和高度相关会给统计方法的应用带来许多障碍。 为了解决这些问题,最简单和最直接的解决方案是削减变量的个数,但这必然又会导致信息丢失和信息不完整等问题的产生。为此,人们希望探索一种更为有效的解决方法,它既能大大减少参与数据建模的变量个数,同时也不会造成信息的大量丢失。主成分分析正式这样一种能够有效降低变量维数,并已得到广泛应用的分析方法。 主成分分析以最少的信息丢失为前提,将众多的原有变量综合成较少几个综合指标,通常综合指标(主成分)有以下几个特点: ↓主成分个数远远少于原有变量的个数 原有变量综合成少数几个因子之后,因子将可以替代原有变量参与数据建模,这将大大减少分析过程中的计算工作量。 ↓主成分能够反映原有变量的绝大部分信息 因子并不是原有变量的简单取舍,而是原有变量重组后的结果,因此不会造成原有变量信息的大量丢失,并能够代表原有变量的绝大部分信息。 ↓主成分之间应该互不相关 通过主成分分析得出的新的综合指标(主成分)之间互不相关,因子参与数据建模能够有效地解决变量信息重叠、多重共线性等给分析应用带来的诸多问题。 ↓主成分具有命名解释性 总之,主成分分析法是研究如何以最少的信息丢失将众多原有变量浓缩成少数几个因子,如何使因子具有一定的命名解释性的多元统计分析方法。 主成分分析的具体步骤如下: (1)计算协方差矩阵 计算样品数据的协方差矩阵:Σ=(s ij )p ?p ,其中 1 1()() 1n ij ki i kj j k s x x x x n ==---∑i ,j=1,2,…,p (2)求出Σ的特征值 i λ及相应的正交化单位特征向量i a Σ的前m 个较大的特征值λ1≥λ2≥…λm>0,就是前m 个主成分对应的方差,i λ对应的单 位特征向量 i a 就是主成分Fi 的关于原变量的系数,则原变量的第i 个主成分Fi 为:

主成分分析原理及详解

第14章主成分分析 1 概述 1.1 基本概念 1.1.1 定义 主成分分析是根据原始变量之间的相互关系,寻找一组由原变量组成、而彼此不相关的综合变量,从而浓缩原始数据信息、简化数据结构、压缩数据规模的一种统计方法。 1.1.2 举例 为什么叫主成分,下面通过一个例子来说明。 假定有N 个儿童的两个指标x1与x2,如身高和体重。x1与x2有显著的相关性。当N较大时,N观测量在平面上形成椭圆形的散点分布图,每一个坐标点即为个体x1与x2的取值,如果把通过该椭圆形的长轴取作新坐标轴的横轴Z1,在此轴的原点取一条垂直于Z1的直线定为新坐标轴的Z2,于是这N个点在新坐标轴上的坐标位置发生了改变;同时这N个点的性质也发生了改变,他们之间的关系不再是相关的。很明显,在新坐标上Z1与N个点分布的长轴一致,反映了N个观测量个体间离差的大部分信息,若Z1反映了原始数据信息的80%,则Z2只反映总信息的20%。这样新指标Z1称为原指标的第 358

一主成分,Z2称为原指标的第二主成分。所以如果要研究N个对象的变异,可以只考虑Z1这一个指标代替原来的两个指标(x1与x2),这种做法符合PCA提出的基本要求,即减少指标的个数,又不损失或少损失原来指标提供的信息。 1.1.3 函数公式 通过数学的方法可以求出Z1和Z2与x1与x2之间的关系。 Z1=l11x1+ l12x2 Z2=l21x1+ l22x2 即新指标Z1和Z2是原指标x1与x2的线性函数。在统计学上称为第一主成分和第二主成分。 若原变量有3个,且彼此相关,则N个对象在3维空间成椭圆球分布,见图14-1。 通过旋转和改变原点(坐标0点),就可以得到第一主成分、第二主成分和第三主成分。如果第二主成分和第三主成分与第一主成高度相关,或者说第二主成分和第三主成分相对于第一主成分来说变异很小,即N个对象在新坐标的三维空间分布成一长杆状时,则只需用一个综合指标便能反映原始数据中3个变量的基本特征。 359

主成分分析法精华讲义及实例

主成分分析 类型:一种处理高维数据的方法。 降维思想:在实际问题的研究中,往往会涉及众多有关的变量。但是,变量太多不但会增加计算的复杂性,而且也会给合理地分析问题和解释问题带来困难。一般说来,虽然每个变量都提供了一定的信息,但其重要性有所不同,而在很多情况下,变量间有一定的相关性,从而使得这些变量所提供的信息在一定程度上有所重叠。因而人们希望对这些变量加以“改造”,用为数极少的互补相关的新变量来反映原变量所提供的绝大部分信息,通过对新变量的分析达到解决问题的目的。 一、总体主成分 1.1 定义 设 X 1,X 2,…,X p 为某实际问题所涉及的 p 个随机变量。记 X=(X 1,X 2,…,Xp)T ,其协方差矩阵为 ()[(())(())], T ij p p E X E X X E X σ?∑==-- 它是一个 p 阶非负定矩阵。设 1111112212221122221122T p p T p p T p p p p pp p Y l X l X l X l X Y l X l X l X l X Y l X l X l X l X ?==+++? ==+++?? ??==+++? (1) 则有 ()(),1,2,...,, (,)(,),1,2,...,. T T i i i i T T T i j i j i j V ar Y V ar l X l l i p C ov Y Y C ov l X l X l l j p ==∑===∑= (2) 第 i 个主成分: 一般地,在约束条件 1T i i l l =

及 (,)0,1,2,..., 1.T i k i k C ov Y Y l l k i =∑==- 下,求 l i 使 Var(Y i )达到最大,由此 l i 所确定的 T i i Y l X = 称为 X 1,X 2,…,X p 的第 i 个主成分。 1.2 总体主成分的计算 设 ∑是12(,,...,) T p X X X X =的协方差矩阵,∑的特征值及相应的正交单位化特 征向量分别为 120p λλλ≥≥≥≥ 及 12,,...,, p e e e 则 X 的第 i 个主成分为 1122,1,2,...,,T i i i i ip p Y e X e X e X e X i p ==+++= (3) 此时 (),1,2,...,,(,)0,. T i i i i T i k i k V ar Y e e i p C ov Y Y e e i k λ?=∑==??=∑=≠?? 1.3 总体主成分的性质 1.3.1 主成分的协方差矩阵及总方差 记 12(,,...,) T p Y Y Y Y = 为主成分向量,则 Y=P T X ,其中12(,,...,)p P e e e =,且 12()()(,,...,),T T p Cov Y Cov P X P P Diag λλλ==∑=Λ= 由此得主成分的总方差为 1 1 1 ()()()()(),p p p T T i i i i i i V ar Y tr P P tr P P tr V ar X λ ==== =∑=∑=∑= ∑∑∑ 即主成分分析是把 p 个原始变量 X 1,X 2,…,X p 的总方差

用主成分分析模型构造综合评价指数

用主成分分析模型构造中学考试综合评价指数 [摘要] 在中学考试的综合评价中,使用较多的指标进行描述使分析复杂化,难以对众多指标的影响作出正确的判断,需要少量几个“综合评价指标”。通过简单加权的合成方法,难以得到科学的结果。主成分分析是一种多元统计方法,可以将众多指标简化浓缩为少量几个甚至一个综合评价指标,使简化的指标既能基本包括全部指标具有的信息,又使指标之间相互无关,较好地解决了这一课题。 [关键词] 考试评价;主成分分析;数学模型;计算步骤,指数构造方法 一、问题的提出 在中学考试评价中,通常使用各学科的“平均分”、“优秀率”、“及格率”和“低分率”等指标。考虑到成绩的分布状况(“优秀率”与“及格率”之间的差距偏大,可能失去部分信息量),某些地区还使用了“良好率”指标。这样,k 个学科的考试评价的p 项指标将多达k ╳p 个。在对考试进行综合的评价时,使用较多的指标进行描述不仅会增加评价的工作量,而且会因评价指标间的相关性造成评价信息重叠,相互干扰,其结果使分析复杂化,难以对众多指标的影响作出正确的判断。因此,需要少数几个甚至一个“综合评价指标”来代替众多的且相互之间具有相关关系的指标,同时又需要不失去原有指标具有的信息量,这是考试评价中具有现实意义的课题。 某些地区采用一种“降维”的方法,较成功地把k ╳p 维指标降为p 维指标,即在使用“总分平均分”的同时,用“科平均╳╳率”取代各科的“╳╳率”(计算方法见备注1)。如何把p 维指标再合成为一个“综合评价指标”?采用一些简单加权的合成方法时,由于对各指标的影响不容易作出正确的定量化的判断,及权数产生的科学性等问题,往往难以得到令人信服的科学的结果。 主成分分析是一种多元统计方法,可以将众多指标简化浓缩为少数几个甚至一个综合评价指标,使简化的指标既能基本包括全部指标具有的信息,又使指标之间相互无关。较好地解决了这一课题。 二、主成分分析的数学模型 设有n 个样品,每个样品观测p 个指标(变量):X 1,X 2,…,X p , 得到原始数据矩阵: 用数据矩阵X 的p 个列向量(即p 个指标向量)作线形组合(即综合指标向量)为: 上述方程组要求: 且系数αij 由下列原则决定: ①、F i 与F j (i ≠j ,i ,j =1,…,p )不相关; ②、F 1是X 1,X 2,…,X p 的一切线性组合(系数满足上述方程组)中方差最大的,F 2是与F 1不相关的X 1,X 2,…,X p 的一切线性组合中方差最大的,…,F p 是是与F 1,F 2,…,F p-1都不相关的X 1,X 2,…,X p 的一切线性组合中方差最大的。 ?? ? ??? ? ???? ???=np n n p p x x x x x x x x x X 2122221 11211 ??? ?? ???????=ni i i i x x x X 2 1 ?? ???? ?+++=+++=+++=p pp p p p p p p p p X a X a X a F X a X a X a F X a X a X a F 22122221122122111111 2 2221=+++pi i i a a a

主成分分析法PCA的原理

主成分分析法原理简介 1.什么是主成分分析法 主成分分析也称主分量分析,是揭示大样本、多变量数据或样本之间内在关系的一种方法,旨在利用降维的思想,把多指标转化为少数几个综合指标,降低观测空间的维数,以获取最主要的信息。 在统计学中,主成分分析(principal components analysis, PCA)是一种简化数据集的技术。它是一个线性变换。这个变换把数据变换到一个新的坐标系统中,使得任何数据投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次类推。主成分分析经常用减少数据集的维数,同时保持数据集的对方差贡献最大的特征。这是通过保留低阶主成分,忽略高阶主成分做到的。这样低阶成分往往能够保留住数据的最重要方面。但是,这也不是一定的,要视具体应用而定。 2.主成分分析的基本思想 在实证问题研究中,为了全面、系统地分析问题,我们必须考虑众多影响因素。这些涉及的因素一般称为指标,在多元统计分析中也称为变量。因为每个变量都在不同程度上反映了所研究问题的某些信息,并且指标之间彼此有一定的相关性,因而所得的统计数据反映的信息在一定程度上有重叠。在用统计方法研究多变量问题时,变量太多会增加计算量和增加分析问题的复杂性,人们希望在进行定量分析的过程中,涉及的变量较少,得到的信息量较多。主成分分析正是适应这一要求产生的,是解决这类题的理想工具。 对同一个体进行多项观察时必定涉及多个随机变量X1,X2,…,X p,它们之间都存在着相关性,一时难以综合。这时就需要借助主成分分析来概括诸多信息的主要方面。我们希望有一个或几个较好的综合指标来概括信息,而且希望综合指标互相独立地各代表某一方面的性质。

数学建模主成分分析方法

主 成分分析方法 地理环境是多要素的复杂系统,在我们进行地理系统分析时,多变量问题是经常会遇到的。变量太多,无疑会增加分析问题的难度与复杂性,而且在许多实际问题中,多个变量之间是具有一定的相关关系的。因此,我们就会很自然地想到,能否在各个变量之间相关关系研究的基础上,用较少的新变量代替原来较多的变量,而且使这些较少的新变量尽可能多地保留原来较多的变量所反映的信息事实上,这种想法是可以实现的,这里介绍的主成分分析方法就是综合处理这种问题的一种强有力的方法。 一、主成分分析的基本原理 主成分分析是把原来多个变量化为少数几个综合指标的一种统计分析方法,从数学角度来看,这是一种降维处理技术。假定有n个地理样本,每个样本共有p个变量描述,这样就构成了一个n×p阶的地理数据矩阵:

111212122212p p n n np x x x x x x X x x x ???=????L L L L L L L (1) 如何从这么多变量的数据中抓住地理事物的内在规律性呢要解决这一问题,自然要在p 维空间中加以考察,这是比较麻烦的。为了克服这一困难,就需要进行降维处理,即用较少的几个综合指标来代替原来较多的变量指标,而且使这些较少的综合指标既能尽量多地反映原来较多指标所反映的信息,同时它们之间又是彼此独立的。那么,这些综合指标(即新变量)应如何选取呢显然,其最简单的形式就是取原来变量指标的线性组合,适当调整组合系数,使新的变量指标之间相互独立且代表性最好。 如果记原来的变量指标为x 1,x 2,…,x p ,它们的综合指标——新变量指标为z 1,z 2,…,zm (m≤p)。则 11111221221122221122,,......................................... ,p p p p m m m mp p z l x l x l x z l x l x l x z l x l x l x =+++??=+++????=+++?L L L (2)

主成分分析法实例

1、主成分法: 用主成分法寻找公共因子的方法如下: 假定从相关阵出发求解主成分,设有p 个变量,则可找出p 个主成分。将所得的p 个主成分按由大到小的顺序排列,记为1Y ,2Y ,…,P Y , 则主成分与原始变量之间存在如下关系: 11111221221122221122....................p p p p p p p pp p Y X X X Y X X X Y X X X γγγγγγγγγ=+++?? =+++??? ?=+++? 式中,ij γ为随机向量X 的相关矩阵的特征值所对应的特征向量的分量,因为特征向量之间彼此正交,从X 到Y 得转换关系是可逆的,很容易得出由Y 到 X 得转换关系为: 11112121212122221122....................p p p p p p p pp p X Y Y Y X Y Y Y X Y Y Y γγγγγγγγγ=+++?? =+++??? ?=+++? 对上面每一等式只保留钱m 个主成分而把后面的部分用i ε代替,则上式变为: 111121211 2121222221122................. ...m m m m p p p mp m p X Y Y Y X Y Y Y X Y Y Y γγγεγγγεγγγε=++++??=++++????=++++? 上式在形式上已经与因子模型相一致,且i Y (i=1,2,…,m )之间相互独立,且i Y 与i ε之间相互独立,为了把i Y 转化成合适的公因子,现在要做的工作只是把主成分i Y 变为方差为1的变量。为完成此变换,必须将i Y 除以其标准差,由主成分分析的知识知其标准差即为特征根的平方根 i λ/i i i F Y λ=, 1122m m λγλγλγ,则式子变为:

如何有效利用主成分分析进行综合评价

如何有效利用主成分分析进行综合评价 摘要:由于主成分分析在多元统计分析中的降维作用,使之在社会、经济、医疗、生化等 各领域运用越来越广泛,但由于传统主成分分析方法的局限性导致了一些问题的产生。这些 问题吸引了许多领域专家的关注,并具有针对性的提出了一些不同的改进方法。本文介绍了 主成分分析的基本和性质,并整理了近年来主成分分析在综合评价应用中遇到的普遍问题并整理验证了认同率较强的一些改进方法,以供大家研究学习。 关键词:主成分分析;综合评价;均值化 1引言 1.1研究的背景和意义 随着生产力的不断进步,生产方式由外延式扩张转化为追求经济效益的内涵式发展,以 致在生产过程中必须考虑经济效益的各个方面,如生产力水平、技术进步、资源占用等情况, 并需要就综合各方面的因素进行综合评价。 评价是根据确定的目的来测定对象系统的属性,并将这种属性变为客观定量的计值或者主观效用行为,整个过程离不开评价者的参与,而综合评价作为评价的一种也需要评价者做出相应反应或指示,而很多综合评价过程易受到评价者的干预,使评价结果产生偏差。 主成分分析能将高维空间的问题转化到低维空间去处理【9】,使问题变得比较简单、直 观,而且这些较少的综合指标之间互不相关,又能提供原有指标的绝大部分信息。而且,伴 随主成分分析的过程,将会自动生成各主成分的权重,这就在很大程度上抵制了在评价过程 中人为因素的干扰,因此以主成分为基础的综合评价理论能够较好地保证评价结果的客观性,如实地反映实际问题。主成分综合评价提供了科学而客观的评价方法,完善了综合评价 理论体系,为管理和决策提供了客观依据,能在很大程度上减少了上述不良现象的产生。 所以在社会经济、管理、自然科学等众多领域的多指标体系中,如节约型社会指标体系、生态环境可持续型指标体系、和谐社会指标体系、投资环境指标体系等,主成分分析法常被应用于综合评价与监控【6】。 综上所述,对综合评价指标体系理论进行研究,既有理论上的必要性,更有实践中的迫 切性。 1.2研究的发展史

主成分分析计算方法和步骤

主成分分析计算方法和步骤: 在对某一事物或现象进行实证研究时,为了充分反映被研究对象个体之间的差异, 研究者往往要考虑增加测量指标,这样就会增加研究问题的负载程度。但由于各指标都是对同一问题的反映,会造成信息的重叠,引起变量之间的共线性,因此,在多指标的数据分析中,如何压缩指标个数、压缩后的指标能否充分反映个体之间的差异,成为研究者关心的问题。而主成分分析法可以很好地解决这一问题。 主成分分析的应用目的可以简单地归结为: 数据的压缩、数据的解释。它常被用来寻找和判断某种事物或现象的综合指标,并且对综合指标所包含的信息给予适当的解释, 从而更加深刻地揭示事物的内在规律。 主成分分析的基本步骤分为: ①对原始指标进行标准化,以消除变量在数量极或量纲上的影响;②根据标准化后的数据矩阵求出相关系数矩阵 R; ③求出 R 矩阵的特征根和特征向量; ④确定主成分,结合专业知识对各主成分所蕴含的信息给予适当的解释;⑤合成主成分,得到综合评价值。 结合数据进行分析 本题分析的是全国各个省市高校绩效评价,利用全国2014年的相关统计数据(见附录),从相关的指标数据我们无法直接评价我国各省市的高等教育绩效,而通过表5-6的相关系数矩阵,可以看到许多的变量之间的相关性很高。如:招生人数与教职工人数之间具有较强的相关性,教育投入经费和招生人数也具有较强的相关性,教工人数与本科院校数之间的相关系数最高,到达了0.963,而各组成成分之间的相关性都很高,这也充分说明了主成分分析的必要性。 表5-6 相关系数矩阵 本科院校 数招生人数教育经费投入 相关性师生比0.279 0.329 0.252 重点高校数0.345 0.204 0.310 教工人数0.963 0.954 0.896 本科院校数 1.000 0.938 0.881 招生人数0.938 1.000 0.893 教育经费投 0.881 0.893 1.000 入

主成分分析法介绍(高等教育)

主成分分析方法 我们进行系统分析评估或医学上因子分析等时,多变量问题是经常会遇到的。变量太多,无疑会增加分析问题的难度与复杂性,而且在许多实际问题中,多个变量之间是具有一定的相关关系的。因此,我们就会很自然地想到,能否在各个变量之间相关关系研究的基础上,用较少的新变量代替原来较多的变量,而且使这些较少的新变量尽可能多地保留原来较多的变量所反映的信息?事实上,这种想法是可以实现的,本节拟介绍的主成分分析方法就是综合处理这种问题的一种强有力的方法。 第一节 主成分分析方法的原理 主成分分析是把原来多个变量化为少数几个综合指标的一种统计分析方法,从数学角度来看,这是一种降维处理技术。假定有n 样本,每个样本共有p 个变量描述,这样就构成了一个n×p 阶的数据矩阵: 111212122212.....................p p n n np x x x x x x X x x x ?? ? ?= ? ? ??? (1)

如何从这么多变量的数据中抓住事物的内在规律性呢?要解决这一问题,自然要在p 维空间中加以考察,这是比较麻烦的。为了克服这一困难,就需要进行降维处理,即用较少的几个综合指标来代替原来较多的变量指标,而且使这些较少的综合指标既能尽量多地反映原来较多指标所反映的信息,同时它们之间又是彼此独立的。那么,这些综合指标(即新变量)应如何选取呢?显然,其最简单的形式就是取原来变量指标的线性组合,适当调整组合系数,使新的变量指标之间相互独立且代表性最好。 如果记原来的变量指标为p x x x ,,21 ,它们的综合指标——新变量指标为 21,z z ,m z (m≤p)。则 )2.........(..........22112222121212121111??? ??? ?+++=+++=+++=p mp m m m p p p p x l x l x l z x l x l x l z x l x l x l z 在(2)式中,系数l ij 由下列原则来决定: (1)z i 与 z j (i≠j;i ,j=1,2,…,m)相互无关; (2)z 1是x 1,x 2,…,x p 的一切线性组合中方差最大者;z 2是与z 1不相关的x 1,x 2,…,x p 的所有线性组合中方差最大者;……;z m 是与z 1,z 2,……z m-1都不相关的x 1,x 2,…,x p 的所有线性组合中方差最大者。

主成分分析案例

姓名:XXX 学号:XXXXXXX 专业:XXXX 用SPSS19软件对下列数据进行主成分分析: ……

一、相关性 通过对数据进行双变量相关分析,得到相关系数矩阵,见表1。 表1 淡化浓海水自然蒸发影响因素的相关性 由表1可知: 辐照、风速、湿度、水温、气温、浓度六个因素都与蒸发速率在0.01水平上显著相关。 分析:各变量之间存在着明显的相关关系,若直接将其纳入分析可能会得到因多元共线性影响的错误结论,因此需要通过主成份分析将数据所携带的信息进行浓缩处理。 二、KMO和球形Bartlett检验 KMO和球形Bartlett检验是对主成分分析的适用性进行检验。 KMO检验可以检查各变量之间的偏相关性,取值范围是0~1。KMO的结果越接近1,表示变量之间的偏相关性越好,那么进行主成分分析的效果就会越好。实际分析时,KMO统计量大于0.7时,效果就比较理想;若当KMO统计量小于0.5时,就不适于选用主成分分析法。 Bartlett球形检验是用来判断相关矩阵是否为单位矩阵,在主成分分析中,若拒绝各变量独立的原假设,则说明可以做主成分分析,若不拒绝原假设,则说明这些变量可能独立提供一些信息,不适合做主成分分析。

由表2可知: 1、KMO=0.631<0.7,表明变量之间没有特别完美的信息的重叠度,主成分分析得到的模型又可能不是非常完善,但仍然值得实验。 2、显著性小于0.05,则应拒绝假设,即变量间具有较强的相关性。 三、公因子方差 公因子方差表示变量共同度。表示各变量中所携带的原始信息能被提取出的主成分所体现的程度。 由表3可知: 几乎所有变量共同度都达到了75%,可认为这几个提取出的主成分对各个变量的阐释能力比较强。 四、解释的总方差 解释的总方差给出了各因素的方差贡献率和累计贡献率。

主成分分析法介绍教学文稿

主成分分析法介绍

主成分分析方法 我们进行系统分析评估或医学上因子分析等时,多变量问题是经常会遇到的。变量太多,无疑会增加分析问题的难度与复杂性,而且在许多实际问题中,多个变量之间是具有一定的相关关系的。因此,我们就会很自然地想到,能否在各个变量之间相关关系研究的基础上,用较少的新变量代替原来较多的变量,而且使这些较少的新变量尽可能多地保留原来较多的变量所反映的信息?事实上,这种想法是可以实现的,本节拟介绍的主成分分析方法就是综合处理这种问题的一种强有力的方法。 第一节 主成分分析方法的原理 主成分分析是把原来多个变量化为少数几个综合指标的一种统计分析方法,从数学角度来看,这是一种降维处理技术。假定有n 样本,每个样本共有p 个变量描述,这样就构成了一个n×p 阶的数据矩阵: 11121212221 2 .....................p p n n np x x x x x x X x x x ?? ? ? = ? ? ??? (1)

如何从这么多变量的数据中抓住事物的内在规律性呢?要解决这一问题,自然要在p 维空间中加以考察,这是比较麻烦的。为了克服这一困难,就需要进行降维处理,即用较少的几个综合指标来代替原来较多的变量指标,而且使这些较少的综合指标既能尽量多地反映原来较多指标所反映的信息,同时它们之间又是彼此独立的。那么,这些综合指标(即新变量)应如何选取呢?显然,其最简单的形式就是取原来变量指标的线性组合,适当调整组合系数,使新的变量指标之间相互独立且代表性最好。 如果记原来的变量指标为p x x x ,,21 ,它们的综合指标——新变量指标为 21,z z ,m z (m≤p)。则 )2.........(..........22112222121212121111??? ?? ? ?+++=+++=+++=p mp m m m p p p p x l x l x l z x l x l x l z x l x l x l z 在(2)式中,系数l ij 由下列原则来决定: (1)z i 与 z j (i≠j;i ,j=1,2,…,m)相互无关; (2)z 1是x 1,x 2,…,x p 的一切线性组合中方差最大者;z 2是与z 1不相关的x 1,x 2,…,x p 的所有线性组合中方差最大者;……;z m 是与z 1,z 2,……z m-1都

主成分分析原理

主成分分析原理 (一)教学目的 通过本章的学习,对主成分分析从总体上有一个清晰地认识,理解主成分分析的基本思想和数学模型,掌握用主成分分析方法解决实际问题的能力。 (二)基本要求 了解主成分分析的基本思想,几何解释,理解主成分分析的数学模型,掌握主成分分析方法的主要步骤。 (三)教学要点 1、主成分分析基本思想,数学模型,几何解释 2、主成分分析的计算步骤及应用 (四)教学时数 3课时 (五)教学内容 1、主成分分析的原理及模型 2、主成分的导出及主成分分析步骤 在实际问题中,我们经常会遇到研究多个变量的问题,而且在多数情况下,多个变量之间常常存在一定的相关性。由于变量个数较多再加上变量之间的相关性,势必增加了分析问题的复杂性。如何从多个变量中综合为少数几个代表性变量,既能够代表原始变量的绝大多数信息,又互不相关,并且在新的综合变量基础上,可以进一步的统计分析,这时就需要进行主成分分析。 第一节主成分分析的原理及模型 一、主成分分析的基本思想与数学模型 (一)主成分分析的基本思想 主成分分析是采取一种数学降维的方法,找出几个综合变量来代替原来众多的变量,使这些综合变量能尽可能地代表原来变量的信息量,而且彼此之间互不相关。这种将把多个变量化为少数几个互相无关的综合变量的统计分析方法就叫做主成分分析或主分量分析。

主成分分析所要做的就是设法将原来众多具有一定相关性的变量,重新组合为一组新的相互无关的综合变量来代替原来变量。通常,数学上的处理方法就是将原来的变量做线性组合,作为新的综合变量,但是这种组合如果不加以限制,则可以有很多,应该如何选择呢?如果将选取的第一个线性组合即第一个综合变量记为1F ,自然希望它尽可能多地反映原来变量的信息,这里“信息”用方差来测量,即希望)(1F Var 越大,表示1F 包含的信息越多。因此在所有的线性组合中所选取的1F 应该是方差最大的,故称1F 为第一主成分。如果第一主成分不足以代表原来p 个变量的信息,再考虑选取2F 即第二个线性组合,为了有效地反映原来信息,1F 已有的信息就不需要再出现在2F 中,用数学语言表达就是要求0),(21=F F Cov ,称2F 为第二主成分,依此类推可以构造出第三、四……第p 个主成分。 (二)主成分分析的数学模型 对于一个样本资料,观测p 个变量p x x x ,,21,n 个样品的数据资料阵为: ?? ? ? ? ? ? ??=np n n p p x x x x x x x x x X 2 1 22221 11211 ()p x x x ,,21= 其中:p j x x x x nj j j j ,2,1, 21=???? ?? ? ??= 主成分分析就是将 p 个观测变量综合成为p 个新的变量(综合变量),即 ?? ???? ?+++=+++=+++=p pp p p p p p p p x a x a x a F x a x a x a F x a x a x a F 22112222121212121111 简写为: p jp j j j x x x F ααα+++= 2211 p j ,,2,1 = 要求模型满足以下条件:

主成分分析PCA(含有详细推导过程以及案例分析matlab版)

主成分分析法(PCA) 在实际问题中,我们经常会遇到研究多个变量的问题,而且在多数情况下,多个变量之间常常存在一定的相关性。由于变量个数较多再加上变量之间的相关性,势必增加了分析问题的复杂性。如何从多个变量中综合为少数几个代表性变量,既能够代表原始变量的绝大多数信息,又互不相关,并且在新的综合变量基础上,可以进一步的统计分析,这时就需要进行主成分分析。 I. 主成分分析法(PCA)模型 (一)主成分分析的基本思想 主成分分析是采取一种数学降维的方法,找出几个综合变量来代替原来众多的变量,使这些综合变量能尽可能地代表原来变量的信息量,而且彼此之间互不相关。这种将把多个变量化为少数几个互相无关的综合变量的统计分析方法就叫做主成分分析或主分量分析。 主成分分析所要做的就是设法将原来众多具有一定相关性的变量,重新组合为一组新的相互无关的综合变量来代替原来变量。通常,数学上的处理方法就是将原来的变量做线性组合,作为新的综合变量,但是这种组合如果不加以限制,则可以有很多,应该如何选择呢?如果将选取的第一个线性组合即第一个综合变量记为1F ,自然希望它尽可能多地反映原来变量的信息,这里“信息”用方差来测量,即希望)(1F Var 越大,表示1F 包含的信息越多。因此在所有的线性组合中所选取的1F 应该是方差最大的,故称1F 为第一主成分。如果第一主成分不足以代表原来p 个变量的信息,再考虑选取2F 即第二个线性组合,为了有效地反映原来信息,1F 已有的信息就不需要再出现在2F 中,用数学语言表达就是要求 0),(21=F F Cov ,称2F 为第二主成分,依此类推可以构造出第三、四……第p 个主成分。 (二)主成分分析的数学模型 对于一个样本资料,观测p 个变量p x x x ,,21,n 个样品的数据资料阵为: ??????? ??=np n n p p x x x x x x x x x X 21 222 21112 11()p x x x ,,21=

主成分进行综合评价 综合评价主成分分析方法与因子分析方法的比较

主成分进行综合评价综合评价主成分分析方法 与因子分析方法的比较 统计研究 主成分分析方法和因子分析方法都是寻求从高维空间到低维空间的映射的方法,其目的是起到降维的效果,以便于用几个较少的综合指标来综合所研究总体各方面的信息,且这几个指标所代表的信息不重叠,也就是说从高维空间到低维空间的映射仍保持高维空间的“序”的结构。但这两种综合评价方法往往易混淆,本文从这两种方法的统计依据、数学模型、计算方法、综合指标的选取等方面比较它们的异同,以供初学者参考。 1、统计依据不同。主成分分析方法的统计问题:依P个指标戈l,x2,A,戈P的/7,个观察值矩阵X=G0帅,能否找到能较好地综合反映这个P 、二 指标的线性函数Y=乞atxt,即 i=1 找到这个主成分的方法就是主成分分析方法。 因子分析方法的统计问题仍 口由P个指标戈。,戈:,A,却的几个观钱道察信息阵X=GF)忡,用有限个不翠

可观测的潜在变量来解释原始变量间的相关性或协方差关系,寻求这几个公因子的方法就是因子缉含汗价士气分析劣珐乡图分奸劣珐的火仪 分析法。它的原理源于已知信息的指标向量戈=0。,戈:,A,菇P)’,总存在正交变换戈=Qy使得记x=Az,这里正交阵Q是X=G0。巾的 协方差阵y的特征向量排成的,y的各分量是不相关的,若茹的方差集中在少数几个变量三,,A,缸上,即y的特征值A,,A,A。较大,后几个特征值A㈨,A,A。很小几乎为零,于是就有因子模型算=4厂+s。寻求公因子、厂及因子载荷阵A的方法就是因子分析法。 , 2、数学模型不同。主成分分析的数学模型:Y=Eat、、ri, 1=1 即主成分是原始指标的线性函数。因子分析的数学模型:戈=4厂+£,A为因子载荷阵。厂为公因子向量,£为随机误差项,Vnroq=I。,Var=o,Var I30圈羹堑绻过丝Q丝生皇塑万 方数据=D。从形式上看二者的模型不同,但主成分分析又为因子分析中因子的寻求提供了一个有效的途径。主成分分析与因子分析法最易混淆的地方在于,将主成分分析方法与因子分析

主成分分析法概念及例题

主成分分析法 主成分分析(principal components analysis,PCA)又称:主分量分析,主成分回归分析法 目录 [显示] 1 什么是主成分分析法 2 主成分分析的基本思想 3 主成分分析法的基本原理 4 主成分分析的主要作用 5 主成分分析法的计算步骤 6 主成分分析法的应用分析 o案例一:主成分分析法在啤酒风味评价分析中的应用[1] 1 材料与方法 2 主成分分析法的基本原理 3 主成分分析法在啤酒质量一致性评价中的应用 4 结论 7 参考文献 [编辑] 什么是主成分分析法 主成分分析也称主分量分析,旨在利用降维的思想,把多指标转化为少数几个综合指标。 在统计学中,主成分分析(principal components analysis,PCA)是一种简化数据集的技术。它是一个线性变换。这个变换把数据变换到一个新的坐标系统中,使得任何数据投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次类推。主成分分析经常用减少数据集的维数,同时保持数据集的对方差贡献最大的特征。这是通过保留低阶主成分,忽略高阶主成分做到的。这样低阶成分往往能够保留住数据的最重要方面。但是,这也不是一定的,要视具体应用而定。 [编辑] 主成分分析的基本思想

在实证问题研究中,为了全面、系统地分析问题,我们必须考虑众多影响因素。这些涉及的因素一般称为指标,在多元统计分析中也称为变量。因为每个变量都在不同程度上反映了所研究问题的某些信息,并且指标之间彼此有一定的相关性,因而所得的统计数据反映的信息在一定程度上有重叠。在用统计方法研究多变量问题时,变量太多会增加计算量和增加分析问题的复杂性,人们希望在进行定量分析的过程中,涉及的变量较少,得到的信息量较多。主成分分析正是适应这一要求产生的,是解决这类题的理想工具。 同样,在科普效果评估的过程中也存在着这样的问题。科普效果是很难具体量化的。在实际评估工作中,我们常常会选用几个有代表性的综合指标,采用打分的方法来进行评估,故综合指标的选取是个重点和难点。如上所述,主成分分析法正是解决这一问题的理想工具。因为评估所涉及的众多变量之间既然有一定的相关性,就必然存在着起支配作用的因素。根据这一点,通过对原始变量相关矩阵内部结构的关系研究,找出影响科普效果某一要素的几个综合指标,使综合指标为原来变量的线性拟合。这样,综合指标不仅保留了原始变量的主要信息,且彼此间不相关,又比原始变量具有某些更优越的性质,就使我们在研究复杂的科普效果评估问题时,容易抓住主要矛盾。上述想法可进一步概述为:设某科普效果评估要素涉及个指标,这指标构成的维随机向量为。对作正交变换,令,其中为正交阵,的各分量是不相关的,使得的各分量在某个评估要素中的作用容易解释,这就使得我们有可能从主分量中选择主要成分,削除对这一要素影响微弱的部分,通过对主分量的重点分析,达到对原始变量进行分析的目的。的各分量是原始变量线性组合,不同的分量表示原始变量之间不同的影响关系。由于这些基本关系很可能与特定的作用过程相联系,主成分分析使我们能从错综复杂的科普评估要素的众多指标中,找出一些主要成分,以便有效地利用大量统计数据,进行科普效果评估分析,使我们在研究科普效果评估问题中,可能得到深层次的一些启发,把科普效果评估研究引向深入。 例如,在对科普产品开发和利用这一要素的评估中,涉及科普创作人数百万人、科普作品发行量百万人、科普产业化(科普示范基地数百万人)等多项指标。经过主成分分析计算,最后确定个或个主成分作为综合评价科普产品利用和开发的综合指标,变量数减少,并达到一定的可信度,就容易进行科普效果的评估。 [编辑] 主成分分析法的基本原理 主成分分析法是一种降维的统计方法,它借助于一个正交变换,将其分量相关的原随机向量转化成其分量不相关的新随机向量,这在代数上表现为将原随机向量的协方差阵变换成对角形阵,在几何上表现为将原坐标系变换成新的正交坐标系,使之指向样本点散布最开的p 个正交方向,然后对多维变量系统进行降维处理,使之能以一个较高的精度转换成低维变量系统,再通过构造适当的价值函数,进一步把低维系统转化成一维系统。 [编辑] 主成分分析的主要作用

相关主题
文本预览
相关文档 最新文档