当前位置:文档之家› 人教版高中数学选修23全部教案

人教版高中数学选修23全部教案

人教版高中数学选修23全部教案
人教版高中数学选修23全部教案

人教版选修2-3

第一章计数原理

1.1分类加法计数原理与分部乘法计数原理

探究与发现子集的个数有多少

1.2排列与组合

探究与发现组合数的两个性质

1.3二项式定理

小结

第二章随机变量及其分布

2.1离散型随机变量及其分布列

2.2二项分布及其应用

阅读与思考这样的买彩票方式可行吗?

探究与发现服从二项分布的随机变量取何值时概率最大

2.3离散型随机变量的均值与方差

2.4正态分布

信息技术应用μ,б对正态分布的影响

小结

第三章统计案例

3.1回归分析的基本思想及其初步应用

3.2独立性检验的基本思想及其初步应用

实习作业

小结

第一章 计数原理

1.1分类加法计数原理和分步乘法计数原理

第一课时

1 分类加法计数原理 (1)提出问题

问题 1.1:用一个大写的英文字母或一个阿拉伯数字给教室里的座位编号,总共能够编出多少种不同的号码?

问题1.2:从甲地到乙地,可以乘火车,也可以乘汽车.如果一天中火车有3班,汽车有2班.那么一天中,乘坐这些交通工具从甲地到乙地共有多少种不同的走法? (2)发现新知

分类加法计数原理 完成一件事有两类不同方案,在第1类方案中有m 种不同的方法,

在第2类方案中有n 种不同的方法. 那么完成这件事共有

n m N +=种不同的方法. (3)知识应用

例1.在填写高考志愿表时,一名高中毕业生了解到,A,B 两所大学各有一些自己感兴趣的强项专业,具体情况如下:

A 大学

B 大学 生物学 数学 化学 会计学 医学 信息技术学 物理学 法学 工程学

如果这名同学只能选一个专业,那么他共有多少种选择呢?

分析:由于这名同学在 A , B 两所大学中只能选择一所,而且只能选择一个专业,又由于两所大学没有共同的强项专业,因此符合分类加法计数原理的条件.解:这名同学可以选择 A , B 两所大学中的一所.在 A 大学中有 5 种专业选择方法,在 B 大学中有 4 种专业选择方法.又由于没有一个强项专业是两所大学共有的,因此根据分类加法计数原理,这名同学可能的专业选择共有 5+4=9(种).

变式:若还有C 大学,其中强项专业为:新闻学、金融学、人力资源学.那么,这名同学可能的专业选择共有多少种?

探究:如果完成一件事有三类不同方案,在第1类方案中有1m 种不同的方法,在第2类方案中有2m 种不同的方法,在第3类方案中有3m 种不同的方法,那么完成这件事共有多少种不同的方法?

如果完成一件事情有n 类不同方案,在每一类中都有若干种不同方法,那么应当如何计数呢?

一般归纳:

完成一件事情,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2

m 种不同的方法……在第n 类办法中有n m 种不同的方法.那么完成这件事共有

n m m m N +???++=21种不同的方法. 理解分类加法计数原理:

分类加法计数原理针对的是“分类”问题,完成一件事要分为若干类,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类中的任何一种方法都可以单独完成这件事.

例2.一蚂蚁沿着长方体的棱,从的一个顶点爬到相对的另一个顶点的最近路线共有多少条?

解:从总体上看,如,蚂蚁从顶点A 爬到顶点C1有三类方法,从局部上看每类又需两步完成,所以,

第一类, m1 = 1×2 = 2 条 第二类, m2 = 1×2 = 2 条

第三类, m3 = 1×2 = 2 条

所以, 根据加法原理, 从顶点A 到顶点C1最近路线共有 N = 2 + 2 + 2 = 6 (条)

第二课时

2 分步乘法计数原理 (1)提出问题

问题2.1:用前6个大写英文字母和1—9九个阿拉伯数字,以1A ,2A ,…,1B ,2B ,…的方式给教室里的座位编号,总共能编出多少个不同的号码?

用列举法可以列出所有可能的号码:

我们还可以这样来思考:由于前 6 个英文字母中的任意一个都能与 9 个数字中的任何一个组成一个号码,而且它们各不相同,因此共有 6×9 = 54 个不同的号码. (2)发现新知

分步乘法计数原理 完成一件事有两类不同方案,在第1类方案中有m 种不同的方法,

在第2类方案中有n 种不同的方法. 那么完成这件事共有 n m N ?= 种不同的方法. (3)知识应用

例1.设某班有男生30名,女生24名. 现要从中选出男、女生各一名代表班级参加比赛,共有多少种不同的选法?

分析:选出一组参赛代表,可以分两个步骤.第 l 步选男生.第2步选女生. 解:第 1 步,从 30 名男生中选出1人,有30种不同选择;

第 2 步,从24 名女生中选出1人,有 24 种不同选择.根据分步乘法计数原理,共有30×24 =720种不同的选法.

一般归纳:

完成一件事情,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法……做第n 步有n m 种不同的方法.那么完成这件事共有n m m m N ??????=21种不同的方法.

理解分步乘法计数原理:

分步计数原理针对的是“分步”问题,完成一件事要分为若干步,各个步骤相互依存,完成任何其中的一步都不能完成该件事,只有当各个步骤都完成后,才算完成这件事. 3.理解分类加法计数原理与分步乘法计数原理异同点 ①相同点:都是完成一件事的不同方法种数的问题

②不同点:分类加法计数原理针对的是“分类”问题,完成一件事要分为若干类,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类中的任何一种方法都可以单独完成这件事,是独立完成;而分步乘法计数原理针对的是“分步”问题,完成一件事要分为若干步,各个步骤相互依存,完成任何其中的一步都不能完成该件事,只有当各个步骤都完成后,才算完成这件事,是合作完成.

例2 .如图,要给地图A 、B 、C 、D 四个区域分别涂上3种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同的颜色,不同的涂色方案有多少种?

解: 按地图A 、B 、C 、D 四个区域依次分四步完成,

第一步, m1 = 3 种, 第二步, m2 = 2 种, 第三步, m3 = 1 种, 第四步, m4 = 1 种, 所以根据乘法原理, 得到不同的涂色方案种数共有N = 3 × 2 ×1×1 = 6

第三课时

3 综合应用

例1. 书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放2本不同的体育书.

①从书架上任取1本书,有多少种不同的取法?

②从书架的第1、2、3层各取1本书,有多少种不同的取法? ③从书架上任取两本不同学科的书,有多少种不同的取法? 【分析】

①要完成的事是“取一本书”,由于不论取书架的哪一层的书都可以完成了这件事,因此是分类问题,应用分类计数原理.

②要完成的事是“从书架的第1、2、3层中各取一本书”,由于取一层中的一本书都只完成了这件事的一部分,只有第1、2、3层都取后,才能完成这件事,因此是分步问题,应用分步计数原理.

③要完成的事是“取2本不同学科的书”,先要考虑的是取哪两个学科的书,如取计算机和文艺书各1本,再要考虑取1本计算机书或取1本文艺书都只完成了这

件事的一部分,应用分步计数原理,上述每一种选法都完成后,这件事才能完成,因此这些选法的种数之间还应运用分类计数原理.

解: (1) 从书架上任取1本书,有3类方法:第1类方法是从第1层取1本计算机书,有4 种方法;第2 类方法是从第2 层取1本文艺书,有3 种方法;第3类方法是从第 3 层取 1 本体育书,有 2 种方法.根据分类加法计数原理,不同取法的种数是

123N m m m =++=4+3+2=9;

( 2 )从书架的第 1 , 2 , 3 层各取 1 本书,可以分成3个步骤完成:第 1 步从第 1 层取 1 本计算机书,有 4 种方法;第 2 步从第 2 层取1本文艺书,有 3 种方法;第 3 步从第3层取1 本体育书,有 2 种方法.根据分步乘法计数原理,不同取法的种数是

123N m m m =??=4×3×2=24 .

(3)26232434=?+?+?=N 。

例2. 要从甲、乙、丙3幅不同的画中选出2幅,分别挂在左、右两边墙上的指定位置,问共有多少种不同的挂法?

解:从 3 幅画中选出 2 幅分别挂在左、右两边墙上,可以分两个步骤完成:第 1 步,从 3 幅画中选 1 幅挂在左边墙上,有 3 种选法;第 2 步,从剩下的 2 幅画中选 1 幅挂在右边墙上,有 2 种选法.根据分步乘法计数原理,不同挂法的种数是

N=3×2=6 .

6 种挂法可以表示如下:

分类加法计数原理和分步乘法计数原理,回答的都是有关做一件事的不同方法的种数问题.区别在于:分类加法计数原理针对的是“分类”问题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事,分步乘法计数原理针对的是“分步”问题,各个步骤中的方法互相依存,只有各个步骤都完成才算做完这件事.

例3.随着人们生活水平的提高,某城市家庭汽车拥有量迅速增长,汽车牌照号码需交通管理部门出台了一种汽车牌照组成办法,每一个汽车牌照都必须有3个不重复的英文字母和 3 个不重复的阿拉伯数字,并且 3 个字母必须合成一组出现,3个数字也必须合成一组出现.那么这种办法共能给多少辆汽车上牌照?

分析:按照新规定,牌照可以分为 2类,即字母组合在左和字母组合在右.确定一个牌照的字母和数字可以分6个步骤. 解:将汽车牌照分为 2 类,一类的字母组合在左,另一类的字母组合在右.字母组合在左时,分6个步骤确定一个牌照的字母和数字:

第1步,从26个字母中选1个,放在首位,有26种选法;

第2步,从剩下的25个字母中选 1个,放在第2位,有25种选法; 第3步,从剩下的24个字母中选 1个,放在第3位,有24种选法; 第4步,从10个数字中选1个,放在第 4 位,有10种选法; 第5步,从剩下的 9个数字中选1个,放在第5位,有9种选法; 第6步,从剩下的 8个字母中选1个,放在第6位,有8种选法.

根据分步乘法计数原理,字母组合在左的牌照共有26 ×25×24×10×9×8=11 232 000(个) .

同理,字母组合在右的牌照也有11232 000 个.所以,共能给 11232 000 + 11232 000 = 22464 000(个) .辆汽车上牌照.

用两个计数原理解决计数问题时,最重要的是在开始计算之前要进行仔细分析 ― 需要分类还是需要分步.分类要做到“不重不漏”.分类后再分别对每一类进行计数,最后用分类加法计数原理求和,得到总数.分步要做到“步骤完整” ― 完成了所有步骤,恰好完成任务,当然步与步之间要相互独立.分步后再计算每一步的方法数,最后根据分步乘法计数原理,把完成每一步的方法数相乘,得到总数.

练习

1.乘积

12312312345)()()a a a b b b c c c c c ++++++++(展开后共有多少项? 2.某电话局管辖范围内的电话号码由八位数字组成,其中前四位的数字是不变的,后四

位数字都是。到 9 之间的一个数字,那么这个电话局不同的电话号码最多有多少个?

3.从 5 名同学中选出正、副组长各 1 名,有多少种不同的选法?

4.某商场有 6 个门,如果某人从其中的任意一个门进人商场,并且要求从其他的门出去,共有多少种不同的进出商场的方式?

第四课时

例1.给程序模块命名,需要用3个字符,其中首字符要求用字母 A ~G 或 U ~Z , 后两个要求用数字1~9.问最多可以给多少个程序命名?

分析:要给一个程序模块命名,可以分三个步骤:第 1 步,选首字符;第2步,选中间字符;第3步,选最后一个字符.而首字符又可以分为两类.

解:先计算首字符的选法.由分类加法计数原理,首字符共有7 + 6 = 13 种选法. 再计算可能的不同程序名称.由分步乘法计数原理,最多可以有13×9×9 = = 1053 个不同的名称,即最多可以给1053个程序命名.

例2. 核糖核酸(RNA )分子是在生物细胞中发现的化学成分一个 RNA 分子是一个有着数百个甚至数千个位置的长链,长链中每一个位置上都由一种称为碱基的化学成分所占据. 总共有 4 种不同的碱基,分别用A,C,G,U 表示.在一个 RNA 分子中,各种碱基能够以任意次序出现,所以在任意一个位置上的碱基与其他位置上的碱基无关.假设有一类 RNA 分子由 100 个碱基组成,那么能有多少种不同的 RNA 分子?

分析:用图1. 1一2 来表示由100个碱基组成的长链,这时我们共有100个位置,每个位置都可以从A , C , G , U 中任选一个来占据.

解:100个碱基组成的长链共有 100个位置,如图1 . 1一2所示.从左到右依次在每一个位置中,从 A , C , G , U 中任选一个填人,每个位置有 4 种填充方法.根据分步乘法计数原理,长度为 100 的所有可能的不同 RNA 分子数目有

100100

4444???=(个)

例3.电子元件很容易实现电路的通与断、电位的高与低等两种状态,而这也是最容易控制的两种状态.因此计算机内部就采用了每一位只有 O 或 1 两种数字的记数法,即二进制.为了使计算机能够识别字符,需要对字符进行编码,每个字符可以用一个或多个字节来表示,其中字节是计算机中数据存储的最小计量单位,每个字节由 8 个二进制位构成.问:

(1)一个字节( 8 位)最多可以表示多少个不同的字符?

(2)计算机汉字国标码(GB 码)包含了6 763 个汉字,一个汉字为一个字符,要对这些汉字进行编码,每个汉字至少要用多少个字节表示?

分析:由于每个字节有 8 个二进制位,每一位上的值都有 0,1两种选择,而且不同的顺序代表不同的字符,因此可以用分步乘法计数原理求解本题.

解:(1)用图1.1一3 来表示一个字节.

图 1 . 1 一 3

一个字节共有 8 位,每位上有 2 种选择.根据分步乘法计数原理,一个字节最多可以表示 2×2×2×2×2×2×2×2= 28 =256 个不同的字符;

( 2)由( 1 )知,用一个字节所能表示的不同字符不够 6 763 个,我们就考虑用2 个字节能够表示多少个字符.前一个字节有 256 种不同的表示方法,后一个字节也有 256 种表示方法.根据分步乘法计数原理,2个字节可以表示 256×256 = 65536

个不同的字符,这已经大于汉字国标码包含的汉字个数 6 763.所以要表示这些汉字,每个汉字至少要用 2 个字节表示.

例4.计算机编程人员在编写好程序以后需要对程序进行测试.程序员需要知道到底有多少条执行路径(即程序从开始到结束的路线),以便知道需要提供多少个测试数据.一般地,一个程序模块由许多子模块组成.如图1.1一4,它是一个具有许多执行路径的程序模块.问:这个程序模块有多少条执行路径?

另外,为了减少测试时间,程序员需要设法减少测试次数你能帮助程序员设计一个测试方法,以减少测试次数吗?

图1.1一4

分析:整个模块的任意一条执行路径都分两步完成:第 1 步是从开始执行到 A 点;第 2 步是从 A 点执行到结束.而第 1 步可由子模块 1 或子模块 2 或子模块 3 来完成;第 2 步可由子模块 4 或子模块 5 来完成.因此,分析一条指令在整个模块的执行路径需要用到两个计数原理.

解:由分类加法计数原理,子模块 1 或子模块 2 或子模块 3 中的子路径共有18 + 45 + 28 = 91 (条) ;

子模块 4 或子模块 5 中的子路径共有38 + 43 = 81 (条) .

又由分步乘法计数原理,整个模块的执行路径共有91×81 = 7 371(条).

在实际测试中,程序员总是把每一个子模块看成一个黑箱,即通过只考察是否执行了正确的子模块的方式来测试整个模块.这样,他可以先分别单独测试 5 个模块,以考察每个子

模块的工作是否正常.总共需要的测试次数为

18 + 45 + 28 + 38 + 43 =172.

再测试各个模块之间的信息交流是否正常,只需要测试程序第1 步中的各个子模块和第2 步中的各个子模块之间的信息交流是否正常,需要的测试次数为3×2=6 .

如果每个子模块都工作正常,并且各个子模块之间的信息交流也正常,那么整个程序模块就工作正常.这样,测试整个模块的次数就变为 172 + 6=178(次).

显然,178 与7371 的差距是非常大的.

巩固练习:

1.如图,从甲地到乙地有2条路可通,从乙地到丙地有3条路可通;从甲地到丁地有4条路可通, 从丁地到丙地有2条路可通。从甲地到丙地共有多少种不同的走法?

2.书架上放有3本不同的数学书,5本不同的语文书,6本不同的英语书.

(1)若从这些书中任取一本,有多少种不同的取法?

(2)若从这些书中,取数学书、语文书、英语书各一本,有多少种不同的取法?

(3)若从这些书中取不同的科目的书两本,有多少种不同的取法?

3.如图一,要给①,②,③,④四块区域分别涂上五种颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同颜色,则不同涂色方法种数为()

A. 180

B. 160

C. 96

D. 60

若变为图二,图三呢?

5.五名学生报名参加四项体育比赛,每人限报一项,

报名方法的种数为多少?又他们争夺这四项比赛的冠军,获得冠军的可能性有多少种?

6.(2007年重庆卷)若三个平面两两相交,且三条交线互相平行,则这三个平面把空间分成( C )

A.5部分 B.6部分 C.7部分 D.8部分

【注意】运用分类加法计数原理与分步乘法计数原理的注意点:

分类加法计数原理:首先确定分类标准,其次满足:完成这件事的任何一种方法必属于某一类,并且分别属于不同的两类的方法都是不同的方法,即"不重不漏".

分步乘法计数原理:首先确定分步标准,其次满足:必须并且只需连续完成这n个步骤,这件事才算完成.

分配问题

把一些元素分给另一些元素来接受.这是排列组合应用问题中难度较大的一类问题.因为这涉及到两类元素:被分配元素和接受单位.而我们所学的排列组合是对一类元素做排列或进行组合的,于是遇到这类问题便手足无措了.

事实上,任何排列问题都可以看作面对两类元素.例如,把10个全排列,可以理解为在10个人旁边,有序号为1,2,……,10的10把椅子,每把椅子坐一个人,那么有多少种坐法?这样就出现了两类元素,一类是人,一类是椅子。于是对眼花缭乱的常见分配问题,可归结为以下小的“方法结构”:

①.每个“接受单位”至多接受一个被分配元素的问题方法是m

n

A,这里n m≥.其中m是“接受单位”的个数。至于谁是“接受单位”,不要管它在生活中原来的意义,只要n m

≥.个数为m的一个元素就是“接受单位”,于是,方法还可以简化为A少多.这里的“多”只要≥“少”.

图一图二图三

②.被分配元素和接受单位的每个成员都有“归宿”,并且不限制一对一的分配问题,方法是

A.

分组问题的计算公式乘以k

k

1.2.1排列

第一课时

一、讲解新课:

问题:

问题1.从甲、乙、丙3名同学中选取2名同学参加某一天的一项活动,其中一名同学参加上午的活动,一名同学参加下午的活动,有多少种不同的方法?

分析:这个问题就是从甲、乙、丙3名同学中每次选取2名同学,按照参加上午的活动在前,参加下午活动在后的顺序排列,一共有多少种不同的排法的问题,共有6种不同的排法:甲乙甲丙乙甲乙丙丙甲丙乙,其中被取的对象叫做元素

解决这一问题可分两个步骤:第 1 步,确定参加上午活动的同学,从 3 人中任选 1 人,有 3 种方法;第 2 步,确定参加下午活动的同学,当参加上午活动的同学确定后,参加下午活动的同学只能从余下的 2 人中去选,于是有 2 种方法.根据分步乘法计数原理,在 3 名同学中选出 2 名,按照参加上午活动在前,参加下午活动在后的顺序排列的不同方法共有 3×2=6 种,如图 1.2一1 所示.

把上面问题中被取的对象叫做元素,于是问题可叙述为:从3个不同的元素 a , b ,。中任取 2 个,然后按照一定的顺序排成一列,一共有多少种不同的排列方法?所有不同的排列是 ab,ac,ba,bc,ca, cb,

共有 3×2=6 种.

问题2.从1,2,3,4这 4 个数字中,每次取出3个排成一个三位数,共可得到多少个不同的三位数?

分析:解决这个问题分三个步骤:第一步先确定左边的数,在4个字母中任取1个,有4种方法;第二步确定中间的数,从余下的3个数中取,有3种方法;第三步确定右边的数,从余下的2个数中取,有2种方法

由分步计数原理共有:4×3×2=24种不同的方法,用树型图排出,并写出所有的排列由

显然,从 4 个数字中,每次取出 3 个,按“百”“十”“个”位的顺序排成一列,就得到一个三位数.因此有多少种不同的排列方法就有多少个不同的三位数.可以分三个步骤来解决这个问题:

第 1 步,确定百位上的数字,在 1 , 2 , 3 , 4 这 4 个数字中任取 1 个,有 4 种方法;

第 2 步,确定十位上的数字,当百位上的数字确定后,十位上的数字只能从余下的 3 个数字中去取,有 3 种方法;

第 3 步,确定个位上的数字,当百位、十位上的数字确定后,个位的数字只能从余下的2 个数字中去取,有 2 种方法.

根据分步乘法计数原理,从 1 , 2 , 3 , 4 这 4 个不同的数字中,每次取出 3 个数字,按“百”“十”“个”位的顺序排成一列,共有

4×3×2=24

种不同的排法, 因而共可得到24个不同的三位数,如图1. 2一2 所示.

由此可写出所有的三位数:

123,124, 132, 134, 142, 143, 213,214, 231, 234, 241, 243, 312,314, 321, 324, 341, 342, 412,413, 421, 423, 431, 432 。 同样,问题 2 可以归结为:

从4个不同的元素a, b, c ,d 中任取 3 个,然后按照一定的顺序排成一列,共有多少种不同的排列方法?

所有不同排列是

abc, abd, acb, acd, adb, adc, bac, bad, bca, bcd, bda, bdc, cab, cad, cba, cbd, cda, cdb, dab, dac, dba, dbc, dca, dcb. 共有4×3×2=24种. 树形图如下

a b c d

b c d a c d a b d a b c

2.排列的概念:

从n 个不同元素中,任取m (m n ≤)个元素(这里的被取元素各不相同)按照一定的顺....序.排成一列,叫做从n 个不同元素中取出m 个元素的一个排列....说明:(1)排列的定义包括两个方面:①取出元素,②按一定的顺序排列; (2 3.排列数的定义:

从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数叫做从n 个元素中取出m 元素

的排列数,用符号m n A 表示注意区别排列和排列数的不同:“一个排列”是指:从n 个不同元

素中,任取m 个元素按照一定的顺序.....排成一列,不是数;“排列数”是指从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数,是一个数所以符号m n A 只表示排列数,而不表示

4.排列数公式及其推导:

由2n A 的意义:假定有排好顺序的2个空位,从n 个元素12,,n a a a 中任取2个元素去填空,

一个空位填一个元素,每一种填法就得到一个排列,反过来,任一个排列总可以由这样的一种填法得到,因此,所有不同的填法的种数就是排列数2n A .由分步计数原理完成上述填空共

有(1)n n -种填法,∴2n A =(n n -由此,求3n A 可以按依次填3个空位来考虑,∴3

n A =(1)(2)n n n --, 求m n A 以按依次填m 个空位来考虑(1)(2)(1)m

n

A n n n n m =---+,

排列数公式:

(1)(2)

(1)m

n A n n n n m =---+

(,,m n N m n *∈≤)

说明:(1)公式特征:第一个因数是n ,后面每一个因数比它前面一个 少1,最后一个因数是1n m -+,共有m 个因数;

(2)全排列:当n m =时即n 个不同元素全部取出的一个排列全排列数:(1)(2)21!n

n

A n n n n =--?=(叫做n 的阶乘)

另外,我们规定 0! =1 .

例1.用计算器计算: (1)410A ; (2)518A ; (3)1813

1813A

A ÷.

解:用计算器可得:

由( 2 ) ( 3 )我们看到,51813

181813A A A =÷.那么,这个结果有没有一般性呢?即

!

()!n

m n n

n m n m A n A A n m --==

-. 排列数的另一个计算公式:

(1)(2)

(1)m n A n n n n m =---+

(1)(2)(1)()321()(1)321n n n n m n m n m n m ---+-??=---??=!()!n n m -=n

n n m n

m

A A --.

即 m n A =

!

()!

n n m -

例2.解方程:33

22126x

x x A A A +=+. 解:由排列数公式得:3(1)(2)2(1)6(1)x x x x x x x --=++-, ∵3x ≥,∴ 3(1)(2)2(1)6(1)x x x x --=++-,即2317100x x -+=,

解得 5x =或2

3

x =

,∵3x ≥,且x N *∈,∴原方程的解为5x =. 例3.解不等式:2996x x A A ->. 解:原不等式即

9!9!

6(9)!(11)!

x x >?--,

也就是

16(9)!(11)(10)(9)!

x x x x >--?-?-,化简得:2211040x x -+>,

解得8x <或13x >,又∵29x ≤≤,且x N *∈, 所以,原不等式的解集为{}2,3,4,5,6,7.

例4.求证:(1)n m n m n n n m A A A --=?;

(2)(2)!

135(21)2!

n n n n =??-?.

证明:(1)!

()!!()!

m n m n n m n A A n m n n m --?=

-=-n n A =,∴原式成立

(2)

(2)!2(21)(22)

4321

2!2!

n

n n n n n n n ?-?-???=??

2(1)

21(21)(23)

31

2!

n n n n n n n ?-??--?=?

!13

(23)(21)

!

n n n n ??--=

=135

(21)n ??-=右边

说明:(1)解含排列数的方程和不等式时要注意排列数m n A 中,,m n N *∈且m n ≤这些限制条件,要注意含排列数的方程和不等式中未知数的取值范围;

(2)公式(1)(2)(1)m

n

A n n n n m =---+常用来求值,特别是,m n 均为已知时,公式

m

n A =

!

()!

n n m -,常用来证明或化简

例5.化简:⑴

1231

2!3!4!

!

n n -++++

;⑵11!22!33!!n n ?+?+?++?

⑴解:原式11111111!2!2!3!3!4!

(1)!!n n =-

+-+-++

-=-1

1!

n - ⑵提示:由()()1!1!!!n n n n n n +=+=?+,得()!1!!n n n n ?=+-, 原式()1!1n =+-

说明:

111

!(1)!!

n n n n -=--. 第二课时

例1.(课本例2).某年全国足球甲级(A 组)联赛共有14个队参加,每队要与其余各队在主、客场分别比赛一次,共进行多少场比赛?

解:任意两队间进行1次主场比赛与 1 次客场比赛,对应于从14个元素中任取2个元

素的一个排列.因此,比赛的总场次是2

14A =14×13=182.

例2.(课本例3).(1)从5本不同的书中选 3 本送给 3 名同学,每人各 1 本,共有多少种不同的送法?

(2)从5种不同的书中买3本送给3名同学,每人各1本,共有多少种不同的送法? 解:(1)从5本不同的书中选出3本分别送给3名同学,对应于从5个不同元素中任取 3 个元素的一个排列,因此不同送法的种数是35A =5×4×3=60.

(2)由于有5种不同的书,送给每个同学的1本书都有 5 种不同的选购方法,因此送给 3 名同学每人各 1 本书的不同方法种数是5×5×5=125.

例 8 中两个问题的区别在于: ( 1 )是从 5 本不同的书中选出 3 本分送 3 名同学,各人得到的书不同,属于求排列数问题;而( 2 )中,由于不同的人得到的书可能相同,因此不符合使用排列数公式的条件,只能用分步乘法计数原理进行计算.

例3.(课本例4).用0到9这10个数字,可以组成多少个没有重复数字的三位数?分析:在本问题的。到 9 这 10 个数字中,因为。不能排在百位上,而其他数可以排在任意位置上,因此。是一个特殊的元素.一般的,我们可以从特殊元素的排列位置人手来考虑问题

解法 1 :由于在没有重复数字的三位数中,百位上的数字不能是O ,因此可以分两步完成排列.第1步,排百位上的数字,可以从1到9 这九个数字中任选

1 个,有

19A 种选法;第2步,排十位和个位上的数字,可

以从余

下的9个数字中任选2个,有2

9

A 种选法(图1.2一

5) .根据分步乘法计数原理,所求的三位数有

1

299A A ?=9×9×8=648(个) .

解法 2 :如图1.2 一6 所示,符合条件的三位数可分成 3 类.每一位数字都不是位数有 A 母个,个位数字是 O 的三位数有揭个,十位数字是 0 的三位数有揭个.根据分类加法计数原理,符合条件的三位数有

322999A A A ++=648个.

解法 3 :从0到9这10个数字中任取3个数字的排列数为310A ,其中 O 在百位上的排

列数是29A ,它们的差就是用这10个数字组成的没有重复数字的三位数的个数,即所求的三位数的个数是

310A -29A =10×9×8-9×8=648.

对于例9 这类计数问题,可用适当的方法将问题分解,而且思考的角度不同,就可以有不同的解题方法.解法 1 根据百位数字不能是。的要求,分步完成选 3 个数组成没有重复数字的三位数这件事,依据的是分步乘法计数原理;解法 2 以 O 是否出现以及出现的位置为标准,分类完成这件事情,依据的是分类加法计数原理;解法 3 是一种逆向思考方法:先求出从10个不同数字中选3个不重复数字的排列数,然后从中减去百位是。的排列数(即不是三位数的个数),就得到没有重复数字的三位数的个数.从上述问题的解答过程可以看到,引进排列的概念,以及推导求排列数的公式,可以更加简便、快捷地求解“从n 个不同元素中取出 m (m ≤n )个元素的所有排列的个数”这类特殊的计数问题.

1.1节中的例 9 是否也是这类计数问题?你能用排列的知识解决它吗? 四、课堂练习:

1.若!3!

n x =,则x = ( )()A 3

n A ()B 3n n A - ()C 3n A

()D 3

3n A -

2.与37107A A ?不等的是 ( )()A 910A ()B 8881A ()C 9

910A ()D 1010

A 3.若53

2m m A A =,则m 的值为 ( )()A 5 ()B 3 ()C 6

()D 7

4.计算:56

99

6

10239!A A A +=- ; 11

(1)!()!n m m A m n ---=?- . 5.若1

1

(1)!

242m m m A --+<

≤,则m 的解集是 . 6.(1)已知10

1095m

A =???,那么m = ; (2)已知9!362880=,那么79A = ;

(3)已知2

56n A =,那么n = ; (4)已知2247n n A A -=,那么n = .

7.一个火车站有8股岔道,停放4列不同的火车,有多少种不同的停放方法(假定每股岔道

只能停放1列火车)?

8.一部纪录影片在4个单位轮映,每一单位放映1场,有多少种轮映次序? 答案:1. B 2. B 3. A 4. 1,1 5. {}2,3,4,5,6

6. (1) 6 (2) 181440 (3) 8 (4) 5

7. 1680

8. 24

第三课时

例1.(1)有5本不同的书,从中选3本送给3名同学,每人各1本,共有多少种不同的送法?

(2)有5种不同的书,要买3本送给3名同学,每人各1本,共有多少种不同的送法? 解:(1)从5本不同的书中选出3本分别送给3名同学,对应于从5个元素中任取3个元素

的一个排列,因此不同送法的种数是:3

5

54360A =??=,所以,共有60种不同的送法(2)由于有5种不同的书,送给每个同学的1本书都有5种不同的选购方法,因此送给3

名同学,每人各1本书的不同方法种数是:555125??=,所以,共有125种不同的送法 说明:本题两小题的区别在于:第(1)小题是从5本不同的书中选出3本分送给3位同学,各人得到的书不同,属于求排列数问题;而第(2)小题中,给每人的书均可以从5种不同的书中任选1

例2.某信号兵用红、黄、蓝3面旗从上到下挂在竖直的旗杆上表示信号,每次可以任意挂1面、2面或3面,并且不同的顺序表示不同的信号,一共可以表示多少种不同的信号?

解:分3类:第一类用1面旗表示的信号有1

3A 种;第二类用2面旗表示的信号有23A 种;

第三类用3面旗表示的信号有33A 种,由分类计数原理,所求的信号种数是:

12333333232115A A A ++=+?+??=,

例3.将4位司机、4位售票员分配到四辆不同班次的公共汽车上,每一辆汽车分别有一位司机和一位售票员,共有多少种不同的分配方案?

分析:解决这个问题可以分为两步,第一步:把4位司机分配到四辆不同班次的公共汽车上,即从4个不同元素中取出4个元素排成一列,有44A 种方法;

第二步:把4位售票员分配到四辆不同班次的公共汽车上,也有44A 种方法,

解:由分步计数原理,分配方案共有444

4576N A A =?=(种)例4.用0到9这10个数字,可

以组成多少个没有重复数字的三位数?

解法1:用分步计数原理:

所求的三位数的个数是:

1299998A A ?=??=

解法2:符合条件的三位数可以分成三类:每一位数字都不是0的三位数有39A 个,个位数

字是0的三位数有29A 个,十位数字

是0的三位数有

29A 个,

由分类计数原理,符合条件的三位数的个数是:3

229

99648A A A ++=. 解法3:从0到9这10个数字中任取3个数字的排列数为3

10A ,其中以0为排头的排列数为29A ,因此符合条件的三位数的个数是3

210

9648A A -=-29A . 说明:解决排列应用题,常用的思考方法有直接法和间接法直接法:通过对问题进行恰

当的分类和分步,直接计算符合条件的排列数如解法1,2;间接法:对于有限制条件的排列

应用题,可先不考虑限制条件,把所有情况的种数求出来,然后再减去不符合限制条件的情况种数如解法3.对于有限制条件的排列应用题,要恰当地确定分类与分步的标准,防止重

第四课时

例5.(1)7位同学站成一排,共有多少种不同的排法?

解:问题可以看作:7个元素的全排列77A =5040.

(2)7位同学站成两排(前3后4),共有多少种不同的排法? 解:根据分步计数原理:7×6×5×4×3×2×1=7!=5040.

(3)7位同学站成一排,其中甲站在中间的位置,共有多少种不同的排法? 解:问题可以看作:余下的6个元素的全排列——66A =720. (4)7位同学站成一排,甲、乙只能站在两端的排法共有多少种? 解:根据分步计数原理:第一步 甲、乙站在两端有22A 种;

第二步 余下的5名同学进行全排列有55A 种,所以,共有22A 55A ?=240种排列方法(5)7位同学站成一排,甲、乙不能站在排头和排尾的排法共有多少种? 解法1(直接法):第一步从(除去甲、乙)其余的5位同学中选2位同学站在排头和排尾有25A 种方法;第二步从余下的5位同学中选5位进行排列(全排列)有55A 种方法,所以一共有25A 55A =2400种排列方法解法2:(排除法)若甲站在排头有66A 种方法;若乙站在排尾有66A 种方法;若甲站在排头且乙站在排尾则有55A 种方法,所以,甲不能站在排头,乙不能排在排尾的排法共有77A -662A +55A =2400种.

说明:对于“在”与“不在”的问题,常常使用“直接法”或“排除法”,对某些特殊元素可以优先考虑

例6.从10个不同的文艺节目中选6个编成一个节目单,如果某女演员的独唱节目一定不能排在第二个节目的位置上,则共有多少种不同的排法?

解法一:(从特殊位置考虑)1360805

919

=A A ; 解法二:(从特殊元素考虑)若选:595A ?;若不选:69A , 则共有56995136080A A ?+=种;

解法三:(间接法)65

10

9136080A A -= 第五课时

例7. 7位同学站成一排,

(1)甲、乙两同学必须相邻的排法共有多少种?

解:先将甲、乙两位同学“捆绑”在一起看成一个元素与其余的5个元素(同学)一起进

行全排列有66A 种方法;再将甲、乙两个同学“松绑”进行排列有22A 种方法.所以这样的排法

一共有626

21440A A ?=种 (2)甲、乙和丙三个同学都相邻的排法共有多少种? 解:方法同上,一共有55A 33A =720种(3)甲、乙两同学必须相邻,而且丙不能站在排头和排尾的排法有多少种?

解法一:将甲、乙两同学“捆绑”在一起看成一个元素,此时一共有6个元素,因为丙不能站在排头和排尾,所以可以从其余的5个元素中选取2个元素放在排头和排尾,有25A 种方法;将剩下的4个元素进行全排列有44A 种方法;最后将甲、乙两个同学“松绑”进行排列有22A 种方法.所以这样的排法一共有25A 44A 22A =960种方法

解法二:将甲、乙两同学“捆绑”在一起看成一个元素,此时一共有6个元素,若丙站在排头或排尾有255A 种方法,

所以,丙不能站在排头和排尾的排法有960)2(225566

=?-A A A 种方法 解法三:将甲、乙两同学“捆绑”在一起看成一个元素,此时一共有6个元素,因为丙

不能站在排头和排尾,所以可以从其余的四个位置选择共有1

4A 种方法,再将其余的5个元素进行全排列共有55A 种方法,最后将甲、乙两同学“松绑”,所以,这样的排法一共有1

4

A 55A 22A =960种方法.

(4

解:将甲、乙、丙三个同学“捆绑”在一起看成一个元素,另外四个人“捆绑”在一起

看成一个元素,时一共有2个元素,∴一共有排法种数:342

3

42288A A A =(种) 说明:对于相邻问题,常用“捆绑法”(先捆后松).

例8.7位同学站成一排,

(1)甲、乙两同学不能相邻的排法共有多少种?

解法一:(排除法)3600226677

=?-A A A ; 解法二:(插空法)先将其余五个同学排好有55A 种方法,此时他们留下六个位置(就称为

“空”吧),再将甲、乙同学分别插入这六个位置(空)有26A 种方法,所以一共有36002

655

=A A 种方法.

(2)甲、乙和丙三个同学都不能相邻的排法共有多少种?

解:先将其余四个同学排好有44A 种方法,此时他们留下五个“空”,再将甲、乙和丙三个同学分别插入这五个“空”有35A 种方法,所以一共有44A 35A =1440种.

说明:对于不相邻问题,常用“插空法”(特殊元素后考虑).

第六课时

例9.5男5女排成一排,按下列要求各有多少种排法:(1)男女相间;(2)女生按指定

解:(1)先将男生排好,有55A 种排法;再将5名女生插在男生之间的6个“空挡”(包括两端)中,有552A 种排法故本题的排法有55

55228800N A A =?=(种);

(2)方法1:10

5

101055

30240A N A A ===;

方法2:设想有10个位置,先将男生排在其中的任意5个位置上,有5

10A 种排法;余下

的5

故本题的结论为5

10

130240N A =?=(种) 2007年高考题

1.(2007年天津卷)如图,用6种不同的颜色给图中的4个格子涂色,

每个格子涂一种颜色,要求最多使用3种颜色且相邻的两个格子颜色不同,则不同的涂色方法共有 390 种(用数字作答). 2.(2007年江苏卷)某校开设9门课程供学生选修,其中,,A B C 三门由于上课时间相同,至多选一门,学校规定每位同学选修4门,共有 75 种不同选修方案。(用数值作答) 3.(2007年北京卷)记者要为5名志愿都和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有( B ) A.1440种 B.960种 C.720种 D.480种

4.图3是某汽车维修公司的维修点分布图,公司在年初分配给A、B、C、D四个维修点的某种配件各50件,在使用前发现需将A、B、C、D四个维修点的这批配件分别调整为40、45、54、61件,但调整只能在相邻维修点之间进行,那么完成上述调整,最少的调动件次(n个配件从一个维修点调整到相邻维修点的调动件次为n)为答案:B ; (A)15 (B)16 (C)17 (D)18

5.(2007年全国卷I )从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有 36 种.(用数字作答) 6.(2007年全国卷Ⅱ)从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有( B ) A .40种 B .60种 C .100种 D .120种

7. (2007年陕西卷)安排3名支教老师去6所学校任教,每校至多2人,则不同的分配方案共有 210 种.(用数字作答) 8.(2007年四川卷)用数字0,1,2,3,4,5可以组成没有重复数字,并且比20000大的五位偶数共有( )

(A )288个 (B )240个 (C )144个 (D )126个 解析:选B .对个位是0和个位不是0两类情形分类计数;对每一类情形按“个位-最高位

-中间三位”分步计数:①个位是0并且比20000大的五位偶数有3

4

1496A ??=个;②个位不是0并且比20000大的五位偶数有3

4

23144A ??=个;故共有96144240+=个.本题考查两个基本原理,是典型的源于教材的题目.

9.(2007年重庆卷)某校要求每位学生从7门课程中选修4门,其中甲乙两门课程不能都选,则不同的选课方案有____25_____种.(以数字作答) 10.(2007年宁夏卷)某校安排5个班到4个工厂进行社会实践,每个班去一个工厂,每个工厂至少安排一个班,不同的安排方法共有 240 种.(用数字作答)

11.(2007年辽宁卷)将数字1,2,3,4,5,6拼成一列,记第i 个数为i (i 126)a =,,,,若11a ≠,

33a ≠,55a ≠,135a a a <<,则不同的排列方法有 种(用数字作答).

解析:分两步:(1)先排531,,a a a ,1a =2,有2种;1a =3有2种;1a =4有1种,共有5种;(2)再排642,,a a a ,共有633=A 种,故不同的排列方法种数为5×6=30,填30.

1.2.2组合

第一课时

一、讲解新课:

组合的概念:一般地,从n 个不同元素中取出m ()m n ≤个元素并成一组,叫做从n 个不同

元素中取出m 个元素的一个组合

说明:⑴不同元素;⑵“只取不排”——无序性;⑶相同组合:元素相同 例1.判断下列问题是组合还是排列

(1)在北京、上海、广州三个民航站之间的直达航线上,有多少种不同的飞机票?有多少种不同的飞机票价?

(2)高中部11个班进行篮球单循环比赛,需要进行多少场比赛?

(3)从全班23人中选出3人分别担任班长、副班长、学习委员三个职务,有多少种不同的选法?选出三人参加某项劳动,有多少种不同的选法?

(4)10个人互相通信一次,共写了多少封信?(5)10个人互通电话一次,共多少个电话?

问题:(1)1、2、3和3、1、2是相同的组合吗? (2)什么样的两个组合就叫相同的组合

2.组合数的概念:从n 个不同元素中取出m ()m n ≤个元素的所有组合的个数,叫做从n 个

不同元素中取出m 个元素的组合数...

.用符号m n C 表示. 例2.用计算器计算7

10C .

解:由计算器可得

例3.计算:(1)47C ; (2)7

10C ;

(1)解: 4

77654

4!

C ???=

=35; (2)解法1:7

10109876547!

C ??????=

=120. 解法2:7

1010!10987!3!3!

C ??==

=120. 第二课时

3.组合数公式的推导:

(1)从4个不同元素,,,a b c d 中取出3个元素的组合数34C 是多少呢?

启发:由于排列是先组合再排列.........

,而从4个不同元素中取出3个元素的排列数3

4A 可以求得,故我们可以考察一下34C 和3

4A 的关系,如下:

组 合 排列

dcb

cdb bdc dbc cbd bcd bcd

dca cda adc dac cad acd acd dba bda adb dab bad abd abd

cba bca acb cab bac abc abc ,,,

,

,,,,,,,,,,,,,,,,→

→→→ 由此可知,每一个组合都对应着6个不同的排列,因此,求从4个不同元素中取出3个元

素的排列数34A ,可以分如下两步:① 考虑从4个不同元素中取出3个元素的组合,共有3

4C 个;② 对每一个组合的3个不同元素进行全排列,各有33A 种方法.由分步计数原理得:34A =

?34

C 33

A ,所以,333

4

34

A A C =.

(2)推广:一般地,求从n 个不同元素中取出m 个元素的排列数m n A ,可以分如下两步: ① 先求从n 个不同元素中取出m 个元素的组合数m n C ;

② 求每一个组合中m 个元素全排列数m m A ,根据分步计数原理得:m n A =m n C m m A ?.

(3)组合数的公式:

(1)(2)(1)

!

m m n n

m m A n n n n m C A m ---+==

或)!

(!!

m n m n C m n -=

,,(n m N m n ≤∈*且

数学选修23知识点总结

第二章 概率 总结 一、知识结构 二、知识点 1.随机试验的特点: ①试验可以在相同的情形下重复进行; ②试验的所有可能结果是明确可知的,并且不止一个 ③每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果. 2.分类 随机变量 (如果随机试验可能出现的结果可以用一个变量X 来表示,并且X 是随着试验的结果的不同而变化,那么这样的变量叫做随机变量. 随机变量常用大写字母X 、Y 等或希腊字母 ξ、η等表示。) 离散型随机变量 在上面的射击、产品检验等例子中,对于随 机变量X 可能取的值,我们可以按一定次序一 一列出,这样的随机变量叫做离散型随机变 量. 连续型随机变量 对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变 量.连续型随机变量的结果不可以一一列出. 随机变量 条件概率 事件的独立性 正态分布 超几何分布 二项分布 数学期望 方差 离散型随机变量的数字特征 离散型随机变量 连续性随机变量

3.离散型随机变量的分布列 一般的,设离散型随机变量X可能取的值为 x1,x2, ,x i , ,x n X取每一个值xi(i=1,2,)的概率 P(ξ=x i)=P i,则称表 为离散型随机变量X 的概率分布,简称分布列 性质: ①pi≥0, i =1,2,…; ②p1 + p2 +…+p n= 1. ③一般地,离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和。 4.求离散型随机变量分布列的解题步骤 例题:篮球运动员在比赛中每次罚球命中得1分,不中得0分,已知某运动员罚球命中的概率为0.7,求他罚球一次的得分的分布列. 解:用随机变量X表示“每次罚球得的分值”,依题可知,X可能的取值为:1,0 且P(X=1)=0.7,P(X=0)=0.3 因此所求分布列为: 引出 二点分布 如果随机变量X的分布列为: 其中0

高中数学选修4-4全套教案

高中数学选修4-4全套教案 第一讲坐标系 一平面直角坐标系 课题:1、平面直角坐标系 教学目的: 知识与技能:回顾在平面直角坐标系中刻画点的位置的方法 能力与与方法:体会坐标系的作用 情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。 教学重点:体会直角坐标系的作用 教学难点:能够建立适当的直角坐标系,解决数学问题 授课类型:新授课 教学模式:启发、诱导发现教学. 教具:多媒体、实物投影仪 教学过程: 一、复习引入: 情境1:为了确保宇宙飞船在预定的轨道上运行,并在按计划完成科学考察任务后,安全、准确的返回地球,从火箭升空的时刻开始,需要随时测定飞船在空中的位 置机器运动的轨迹。 情境2:运动会的开幕式上常常有大型团体操的表演,其中不断变化的背景图案是由看台上座位排列整齐的人群不断翻动手中的一本画布构成的。要出现正确的背景 图案,需要缺点不同的画布所在的位置。 问题1:如何刻画一个几何图形的位置? 问题2:如何创建坐标系? 二、学生活动 学生回顾 刻画一个几何图形的位置,需要设定一个参照系 1、数轴它使直线上任一点P都可以由惟一的实数x确定 2、平面直角坐标系 在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。它使平面上任一点P都可以由惟一的实数对(x,y)确定 3、空间直角坐标系 在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系。它使空间上任一点P 都可以由惟一的实数对(x,y,z)确定 三、讲解新课: 1、建立坐标系是为了确定点的位置,因此,在所建的坐标系中应满足: 任意一点都有确定的坐标与其对应;反之,依据一个点的坐标就能确定这个点的位置

高中数学选修2-3知识点汇编 (2)

高二数学选修2-1知识点 第一章常用逻辑用语 1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句. 假命题:判断为假的语句. 2、“若p,则q”形式的命题中的p称为命题的条件,q称为命题的结论. 3、对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,则这两个命题称为互逆命题.其中一个命题称为原命题,另一个称为原命题的逆命题. 若原命题为“若p,则q”,它的逆命题为“若q,则p”. 4、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,则这两个命题称为互否命题.中一个命题称为原命题,另一个称为原命题的否命题. 若原命题为“若p,则q”,则它的否命题为“若p ?,则q ?”. 5、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,则这两个命题称为互为逆否命题.其中一个命题称为原命题,另一个称为原命题的逆否命题. 若原命题为“若p,则q”,则它的否命题为“若q ?,则p ?”. 6、四种命题的真假性: 四种命题的真假性之间的关系: ()1两个命题互为逆否命题,它们有相同的真假性; ()2两个命题为互逆命题或互否命题,它们的真假性没有关系. 7、若p q ?,则p是q的充分条件,q是p的必要条件. 若p q ?,则p是q的充要条件(充分必要条件). 8、用联结词“且”把命题p和命题q联结起来,得到一个新命题,记作p q ∧. 当p、q都是真命题时,p q ∧是真命题;当p、q两个命题中有一个命题是假命题时,p q ∧是假命题. 用联结词“或”把命题p和命题q联结起来,得到一个新命题,记作p q ∨.当p、q两个命题中有一个命题是真命题时,p q ∨是真命题;当p、q两个命题都是假命题时,p q ∨是假命题. 对一个命题p全盘否定,得到一个新命题,记作p ?. 若p是真命题,则p ?必是假命题;若p是假命题,则p ?必是真命题. 9、短语“对所有的”、“对任意一个”在逻辑中通常称为全称量词,用“?”表示.含有全称量词的命题称为全称命题. 全称命题“对M中任意一个x,有() p x成立”,记作“x ?∈M,() p x”. 短语“存在一个”、“至少有一个”在逻辑中通常称为存在量词,用“?”表示.含有存在量词的命题称为特称命题. 特称命题“存在M中的一个x,使() p x成立”,记作“x?∈M,() p x”. 10、全称命题p:x ?∈M,() p x,它的否定p ?:x?∈M,() p x ?.全称命题的否定是特称命题. 第二章圆锥曲线与方程 11、平面内与两个定点 1 F, 2 F的距离之和等于常数(大于 12 F F)的点的轨迹称为椭圆.这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距. 12、椭圆的几何性质: 焦点的位置焦点在x轴上焦点在y轴上图形 标准方程() 22 22 10 x y a b a b +=>>() 22 22 10 y x a b a b +=>>范围a x a -≤≤且b y b -≤≤b x b -≤≤且a y a -≤≤顶点 () 1 ,0 a A-、() 2 ,0 a A () 1 0,b B-、() 2 0,b B () 1 0,a A-、() 2 0,a A () 1 ,0 b B-、() 2 ,0 b B 轴长短轴的长2b =长轴的长2a = 焦点() 1 ,0 F c-、() 2 ,0 F c() 1 0, F c-、() 2 0, F c 焦距() 222 12 2 F F c c a b ==- 对称性关于x轴、y轴、原点对称 原命题逆命题否命题逆否命题真真真真 真假假真 假真真真 假假假假

高中数学选修2-3答案

选修2-3课本例题习题改编 1.原题(选修2-3第二十七页习题1.2A 组第四题)改编1 某节假日,附中校办公室要安排从一号至六号由指定的六位领导参加的值班表. 要求每一位领导值班一天,但校长甲与校长乙不能相邻且主任丙与主任丁 也 不 能 相 邻 , 则 共 有 多 少 种 不 同 的 安 排 方 法 ( )A .336 B .408 C .240 D .264 解:方法数为:选 改编2 某地高考规定每一考场安排24名考生,编成六行四列就坐.若来自同一学校的甲、乙两名学生同 时排在“考点考场”,那么他们两人前后左右均不相邻的概率是 ( )A . B . C . D . 解:若同学甲坐在四角的某一个位置,有种坐法,此时同学乙的选择有种;若同学甲坐在四边(不在角上)的某一个位置,有种坐法,此时同学乙的选择有种;若同学甲坐在中间(不在四边、角上)的某一个位置,有种坐法,此时同学乙的选择有种;故所求概率为答 案选 2.原题(选修2-3第二十七页习题 1.2A 组第九题)改编 1 在正方体 的各个顶点与各棱的中点共20个点中,任取2点连成 直线,在这些直线中任取一条,它与对角线垂直的概率为_________. 解:如图,分别为相应棱上的中点,容 易证明正六边形,此时在正六边形上有条,直 线与直线垂直;与直线垂直的平面还有平面、平面、 平面、平面,共有直线条.正方体的各个顶点与各棱的中点共20个点,任取2点连成直线数为条直线(每条棱上如直线其实 为一条),故对角线垂直的概率为 改编2 考察正方体6个面的中心,甲从这6个点中任意选两个点连成直线,乙也从这6个点中任意选两个点连成直线,则所得的两条直线相互平行但不重合的概率等于 (A ) (B ) (C ) (D ) 解:如图,甲从这6个点中任意选两个点连成直线,乙也从这6个点中任意 625224 6252242336,A A A A A A -+=.A ????276119272 119136119138119 42112208194211220819119 ,2423138 ?+?+?=?.D 1111ABCD A B C D -1BD ,,,,,,,,,,,E F G H I J K L M N P Q 1BD ⊥EFGHIJ 2 615C =1BD 1BD ACB NPQ KLM 11A C B 2 3412C ?=1111ABCD A B C D -22 20312(1)166C C -?-=,,AE ED AD 1BD 151227 .166166 +=1752753754 75 ???? ?B C D E F 图4

高中数学选修2-2知识点

高中数学选修2----2 知识点 第一章导数及其应用 一.导数概念的引入 1. 导数的物理意义:瞬时速率。一般的,函数y f ( x) 在x x0处的瞬时变化率是 lim f ( x0x)f ( x ) , x0x 我们称它为函数y f ( x) 在x x0处的导数,记作 f ( x0 ) 或 y |x x, 即 f (x0 ) =lim f ( x0x) f (x0 ) x 0x 2.导数的几何意义:曲线的切线.通过图像 ,我们可以看出当点P n趋近于P时,直线PT与曲线相切。容易 知道,割线 PP n的斜率是k n f ( x n )f ( x ) ,当点 P n趋近于P时,函数y f ( x) 在x x0处的导 x n x0 数就是切线 PT 的斜率 k,即k f (x n ) f ( x0) lim f ( x0 ) x0x n x0 3.导函数:当 x变化时, f ( x) 便是x的一个函数,我们称它为 f (x) 的导函数.y f ( x) 的导函数有 时也记作 y ,即 f ( x)lim f ( x x) f ( x) x0x 二 .导数的计算 1)基本初等函数的导数公式: 1 若f ( x) c (c为常数),则 f( x)0; 2若 f ( x)x ,则 f (x)x1; 3若 f ( x)sin x ,则 f(x)cos x 4若 f ( x)cos x ,则 f(x)sin x ; 5若6若f ( x) a x,则 f ( x) a x ln a f ( x) e x,则 f ( x)e x 7若 f ( x)log a x,则f ( x)1 x ln a 8若 f ( x)ln x ,则 f ( x) 1 x 2)导数的运算法则

高中数学选修2-2-2-3知识点

-可编辑- 高中数学选修2----2知识点 第一章 导数及其应用 知识点: 一.导数概念的引入 1. 导数的物理意义:瞬时速率。一般的,函数()y f x =在0x x =处的瞬时变化率是000 ()() lim x f x x f x x ?→+?-?, 我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0|x x y =', 即0()f x '=000 ()() lim x f x x f x x ?→+?-? 2. 导数的几何意义:曲线的切线.通过图像,我们可以看出当点n P 趋近于P 时,直线PT 与曲线相切。容易知道,割 线n PP 的斜率是00 ()() n n n f x f x k x x -= -,当点n P 趋近于P 时,函数()y f x =在0x x =处的导数就是切线PT 的 斜率k ,即000 ()() lim ()n x n f x f x k f x x x ?→-'==- 3. 导函数:当x 变化时,()f x '便是x 的一个函数,我们称它为()f x 的导函数. ()y f x =的导函数有时也记作y ', 即0 ()() ()lim x f x x f x f x x ?→+?-'=? 考点:无 知识点: 二.导数的计算 1)基本初等函数的导数公式: 1若()f x c =(c 为常数),则()0f x '=; 2 若()f x x α =,则1 ()f x x αα-'=; 3 若()sin f x x =,则()cos f x x '= 4 若()cos f x x =,则()sin f x x '=-; 5 若()x f x a =,则()ln x f x a a '= 6 若()x f x e =,则()x f x e '= 7 若()log x a f x =,则1()ln f x x a '= 8 若()ln f x x =,则1()f x x '= 2)导数的运算法则 1. [()()]()()f x g x f x g x '''±=± 2. [()()]()()()()f x g x f x g x f x g x '''?=?+? 3. 2 ()()()()() [ ]()[()] f x f x g x f x g x g x g x ''?-?'= 3)复合函数求导 ()y f u =和()u g x =,称则y 可以表示成为x 的函数,即(())y f g x =为一个复合函数 (())()y f g x g x '''=? 考点:导数的求导及运算 ★1、已知 ()22sin f x x x π=+-,则()'0f = ★2、若()sin x f x e x =,则()'f x = ★3.)(x f =ax 3+3x 2+2 , 4)1(=-'f ,则a=( ) 3 19.3 16 .3 13.3 10.D C B A ★★4.过抛物线y=x 2上的点M )4 1,21(的切线的倾斜角是() A.30° B.45° C.60° D.90° ★★5.如果曲线2 932 y x = +与32y x =-在0x x =处的切线互相垂直,则0x = 三.导数在研究函数中的应用 知识点: 1.函数的单调性与导数: 一般的,函数的单调性与其导数的正负有如下关系: 在某个区间(,)a b 内,如果()0f x '>,那么函数()y f x =在这个区间单调递增; 如果()0f x '<,那么函数()y f x =在这个区间单调递减. 2.函数的极值与导数 极值反映的是函数在某一点附近的大小情况. 求函数()y f x =的极值的方法是: (1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么0()f x 是极大值;

数学选修2-3知识点总结

第二章概率总结 一、知识结构 二、知识点 1.随机试验的特点: ①试验可以在相同的情形下重复进行; ②试验的所有可能结果是明确可知的,并且不止一个 ③每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果. 2.分类 随机变量 (如果随机试验可能出现的结果可以用一个变量X来表示,并且X是随着试验的结果的不同而 变化,那么这样的变量叫做随机变量.随机变量常用大写字母X、Y等或希腊字母ξ、η等 表示。) 离散型随机变量 在上面的射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量. 连续型随机变量 对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量.连续型随机变量的结果不可以一一列出.

3.离散型随机变量的分布列 一般的,设离散型随机变量X可能取的值为 x 1,x 2 , ,x i , ,x n X取每一个值 xi(i=1,2, )的概率 P(ξ=x i )=P i ,则称表 为离散型随机变量X 的概率分布,简称分布列 性质: ① pi≥0, i =1,2,…; ② p 1 + p 2 +…+p n = 1. ③一般地,离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和。 4.求离散型随机变量分布列的解题步骤 例题:篮球运动员在比赛中每次罚球命中得1分,不中得0分,已知某运动员罚球命中的概率为0.7,求他罚球一次的得分的分布列. 解:用随机变量X表示“每次罚球得的分值”,依题可知,X可能的取值为:1,0 且P(X=1)=0.7,P(X=0)=0.3 因此所求分布列为: 引出 二点分布 如果随机变量X的分布列为: 其中0

高中数学选修2-3知识点总结

高中数学选修2-3知识点总结

第一章 计数原理 1、分类加法计数原理:做一件事情,完成它有 N 类办法,在第一类办法中有M 1种不同的 方法,在第二类办法中有M 2种不同的方 法,……,在第N 类办法中有M N 种不同的 方法,那么完成这件事情共有 M 1+M 2+……+M N 种不同的方法。 2、分步乘法计数原理:做一件事,完成它需要 分成N 个步骤,做第一 步有m1种不同的 方法,做第二步有M 2不同的方法,……, 做第N 步有M N 不同的方法.那么完成这件 事共有 N=M 1M 2...M N 种不同的方法。 3、排列:从n 个不同的元素中任取m(m ≤n )个元 素,按照一定顺序...... 排成一列,叫做从n 个不同元素中取出m 个元素的一个排列 4、排列数: ),,()! (!)1()1(N m n n m m n n m n n n A m ∈≤-=+--=Λ 5、组合:从n 个不同的元素中任取m (m ≤n )个 元素并成一组,叫做从n 个不同元素中取出 m 个元素的一个组合。 6、组合数:)!(!!!)1()1(m n m n C m m n n n A A C m n m m m n m n -=+--==Λ )!(!!!)1()1(m n m n C m m n n n A A C m n m m m n m n -=+--==Λ ;m n n m n C C -= m n m n m n C C C 1 1+-=+

7、二项式定理 :()a b C a C a b C a b C a b C b n n n n n n n n r n r r n n n +=++++++---011222…… 8、二项式通项公式展开式的通项公式:,……T C a b r n r n r n r r +-==101() 9.二项式系数的性质: ()n a b +展开式的二项式系数是0n C ,1n C ,2n C ,…,n n C .r n C 可以看成以r 为自变 量的函数()f r ,定义域是{0,1,2,,}n L , (1)对称性.与首末两端“等距离”的两个二项式系数相等(∵m n m n n C C -=). (2)增减性与最大值:当n 是偶数时,中间一项2n n C 取得最大值;当n 是奇数时,中间两项1 2n n C -,1 2n n C +取得最大值. (3)各二项式系数和:∵1(1)1n r r n n n x C x C x x +=+++++L L , 令1x =,则0122n r n n n n n n C C C C C =++++++L L 第二章 随机变量及其分布 知识点: (3)随机变量:如果随机试验可能出现的结果 可以用一个变量X 来表示,并且X 是随着 试验的结果的不同而变化,那么这样的变量 叫做随机变量. 随机变量常用大写字母X 、 Y 等或希腊字母 ξ、η等表示。 (4)离散型随机变量:在上面的射击、产品检 验等例子中,对于随机变量X 可能取的值, 我们可以按一定次序一一列出,这样的随机 变量叫做离散型随机变量.

高中数学教材选修2-3知识点

高中数学选修2-3知识点汇总 目录 第一章计数原理 (2) 分类加法计数原理 (2) 分步乘法计数原理 (2) 二项式定理 (2) 第二章随机变量及其分布 (3) 第三章统计案例 (6)

高中数学选修2-3知识点总结 第一章计数原理 知识点: 分类加法计数原理 做一件事情,完成它有N 类办法,在第一类办法中有M 1种不同的方法,在第二类办法中有M 2种不同的方法,……,在第N 类办法中有M N 种不同的方法,那么完成这件事情共有M 1+M 2+……+M N 种不同的方法。 分步乘法计数原理 做一件事,完成它需要分成N 个步骤,做第一 步有m1种不同的方法,做第二步有M 2不同的方法,……,做第N 步有M N 不同的方法.那么完成这件事共有 N=M 1M 2...M N 种不同的方法。 3、排列:从n 个不同的元素中任取m(m ≤n )个元素,按照一定顺序......排成一列,叫做从n 个不同元素中取出m 个元素的一个排列 4、排列数: ),,()! (! )1()1(N m n n m m n n m n n n A m ∈≤-= +--=Λ 5、组合:从n 个不同的元素中任取m (m ≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合。 6、组合数:)!(!!!)1()1(m n m n C m m n n n A A C m n m m m n m n -=+--==Λ )!(!!!)1()1(m n m n C m m n n n A A C m n m m m n m n -=+--==Λ ; m n n m n C C -= m n m n m n C C C 1 1+-=+ 二项式定理 ()a b C a C a b C a b C a b C b n n n n n n n n r n r r n n n +=++++++---011222…… 8、二项式通项公式展开式的通项公式:,……T C a b r n r n r n r r +-==101()

人教版高中数学选修2-1优秀全套教案

高中数学人教版选修2-1全套教案 第一章常用逻辑用语 日期: 1.1.1命题 (一)教学目标 1、知识与技能:理解命题的概念和命题的构成,能判断给定陈述句是否为命题,能判断命题的真假;能把命题改写成“若p,则q”的形式; 2、过程与方法:多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力; 3、情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。 (二)教学重点与难点 重点:命题的概念、命题的构成 难点:分清命题的条件、结论和判断命题的真假 教具准备:与教材内容相关的资料。 教学设想:通过学生的参与,激发学生学习数学的兴趣。 教学时间 (三)教学过程 学生探究过程: 1.复习回顾 初中已学过命题的知识,请同学们回顾:什么叫做命题? 2.思考、分析 下列语句的表述形式有什么特点?你能判断他们的真假吗? (1)若直线a∥b,则直线a与直线b没有公共点. (2)2+4=7. (3)垂直于同一条直线的两个平面平行. (4)若x2=1,则x=1. (5)两个全等三角形的面积相等. (6)3能被2整除. 3.讨论、判断 学生通过讨论,总结:所有句子的表述都是陈述句的形式,每句话都判断什么事情。其中(1)(3)(5)的判断为真,(2)(4)(6)的判断为假。 教师的引导分析:所谓判断,就是肯定一个事物是什么或不是什么,不能含混不清。 4.抽象、归纳 定义:一般地,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.命题的定义的要点:能判断真假的陈述句. 在数学课中,只研究数学命题,请学生举几个数学命题的例子.教师再与学生共同从命题的定义,判断学生所举例子是否是命题,从“判断”的角度来加深对命题这一概念的理解.

高中数学选修2_2全套知识点与练习答案解析

选修2-2 知识点及习题答案解析 导数及其应用 一.导数概念的引入 1. 导数的物理意义: 瞬时速率。一般的,函数()y f x =在0x x =处的瞬时变化率是000 ()()lim x f x x f x x ?→+?-?, 我们称它为函数 () y f x =在 x x =处的导数,记作 0() f x '或 |x x y =',即 0()f x '=000 ()()lim x f x x f x x ?→+?-? 2. 导数的几何意义: 曲线的切线.通过图像,我们可以看出当点n P 趋近于P 时,直线PT 与曲线相切。容易知道,割线n PP 的斜率是00()()n n n f x f x k x x -=-,当点n P 趋近于P 时,函数 ()y f x =在0x x =处的导数就是切线PT 的斜率 k ,即00 ()()lim ()n x n f x f x k f x x x ?→-'==- 3. 导函数:当x 变化时, ()f x '便是x 的一个函数,我们称它为()f x 的导函数. ()y f x =的导函数有 时也记作 y ',即 ()()()lim x f x x f x f x x ?→+?-'=? 二.导数的计算 基本初等函数的导数公式: 1若()f x c =(c 为常数),则()0f x '=; 2 若()f x x α=,则1 ()f x x αα-'=; 3 若()sin f x x =,则()cos f x x '= 4 若()cos f x x =,则()sin f x x '=-; 5 若()x f x a =,则()ln x f x a a '= 6 若()x f x e =,则()x f x e '= 7 若 ()log x a f x =,则1()ln f x x a '= 8 若 ()ln f x x =,则1()f x x '= 导数的运算法则 1. [()()]()()f x g x f x g x '''±=± 2. [()()]()()()()f x g x f x g x f x g x '''?=?+? 3. 2 ()()()()()[]()[()] f x f x g x f x g x g x g x ''?-?'= 复合函数求导 ()y f u =和()u g x =,称则y 可以表示成为x 的函数,即(())y f g x =为一个复合函数 (())()y f g x g x '''=? 三.导数在研究函数中的应用 1.函数的单调性与导数: 一般的,函数的单调性与其导数的正负有如下关系: 在某个区间(,)a b 内

(完整版)高中数学选修2-3知识点

111--++=?+=m n m n m n m m m n m n mA A C A A A 高中数学 选修2-3知识点 第一章 计数原理 1、分类加法计数原理:做一件事情,完成它有N 类办法,在第一类办法中有M 1种不同的方法,在第二类办法中有M 2种不同的方法,……,在第N 类办法中有M N 种不同的方法,那么完成这件事情共有M 1+M 2+……+M N 种不同的方法。 2、分步乘法计数原理:做一件事,完成它需要分成N 个步骤,做第一 步有m1种不同的方法,做第二步有M 2不同的方法,……,做第N 步有M N 不同的方法.那么完成这件事共有 N=M 1M 2...M N 种不同的方法。 3、排列:从n 个不同的元素中任取m(m ≤n )个元素,按照一定顺序......排成一列,叫做从n 个不同元素中取出m 个元素的一个排列 4、排列数:从n 个不同元素中取出m (m≤n )个元素排成一列,称为从n 个不同元素中取出m 个元素的一 个排列. 从n 个不同元素中取出m 个元素的一个排列数,用符号m n A 表示。 ),,()! (! )1()1(N m n n m m n n m n n n A m ∈≤-= +--=Λ 5、公式: , 11 --=m n m n nA A 6、组合:从n 个不同的元素中任取m (m ≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合。 7、公式:)!(!!!)1()1(m n m n C m m n n n A A C m n m m m n m n -=+--==Λ )!(!!!)1()1(m n m n C m m n n n A A C m n m m m n m n -=+--==Λ ; m n n m n C C -= m n m n m n C C C 1 1+-=+ 8、二项式定理: ()a b C a C a b C a b C a b C b n n n n n n n n r n r r n n n +=++++++---011222…… 9、二项式通项公式展开式的通项公式:,……T C a b r n r n r n r r +-==101() 10、二项式系数C n r 为二项式系数(区别于该项的系数) 11、杨辉三角: () ()对称性:,,,……,1012C C r n n r n n r ==- ()系数和:…2C C C n n n n n 012+++=

高中数学【北师大选修1-1】教案全集

第一章常用逻辑用语1.1 命题 教学过程: 一、复习准备: 阅读下列语句,你能判断它们的真假吗? (1)矩形的对角线相等; >; (2)312 >吗? (3)312 (4)8是24的约数; (5)两条直线相交,有且只有一个交点; (6)他是个高个子. 二、讲授新课: 1. 教学命题的概念: ①命题:可以判断真假的陈述句叫做命题(proposition). 也就是说,判断一个语句是不是命题关键是看它是否符合“是陈述句”和“可以判断真假”这两个条件. 上述6个语句中,(1)(2)(4)(5)(6)是命题. ②真命题:判断为真的语句叫做真命题(true proposition); 假命题:判断为假的语句叫做假命题(false proposition). 上述5个命题中,(2)是假命题,其它4个都是真命题. ③例1:判断下列语句中哪些是命题?是真命题还是假命题? (1)空集是任何集合的子集; (2)若整数a是素数,则a是奇数; (3)2小于或等于2; (4)对数函数是增函数吗? x<; (5)215 (6)平面内不相交的两条直线一定平行; (7)明天下雨. (学生自练→个别回答→教师点评) ④探究:学生自我举出一些命题,并判断它们的真假. 2. 将一个命题改写成“若p,则q”的形式: ①例1中的(2)就是一个“若p,则q”的命题形式,我们把其中的p叫做命题的条件,q 叫做命题的结论. ②试将例1中的命题(6)改写成“若p,则q”的形式. ③例2:将下列命题改写成“若p,则q”的形式. (1)两条直线相交有且只有一个交点; (2)对顶角相等; (3)全等的两个三角形面积也相等. (学生自练→个别回答→教师点评) 3. 小结:命题概念的理解,会判断一个命题的真假,并会将命题改写“若p,则q”的形式. 巩固练习: 教材 P4 1、2、3 4. (师生共析→学生说出答案→教师点评) ②例1:写出下列命题的逆命题、否命题、逆否命题,并判断它们的真假: (1)同位角相等,两直线平行; (2)正弦函数是周期函数;

高中数学教材选修2-2知识点

高中数学选修2-2知识点汇总 目录 第一章导数及其应用 (2) 常见的函数导数和积分公式 (2) 常见的导数和定积分运算公式 (3) 用导数求函数单调区间的步骤 (3) 求可导函数f(x)的极值的步骤 (3) 利用导数求函数的最值的步骤 (4) 求曲边梯形的思想和步骤 (4) 定积分的性质 (4) 定积分的取值情况 (4) 第二章推理与证明 (5) 第三章数系的扩充和复数的概念 (7) 常见的运算规律 (8)

高中数学选修2-2知识点总结 第一章 导数及其应用 1.函数的平均变化率为 = ??=??x f x y x x f x x f x x x f x f ?-?+=--)()()()(111212 注1:其中x ?是自变量的改变量,可正,可负,可零。 注2:函数的平均变化率可以看作是物体运动的平均速度。 2、导函数的概念:函数)(x f y =在0x x =处的瞬时变化率是x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即 )(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 3.函数的平均变化率的几何意义是割线的斜率;函数的导数的几何意义是切线的斜率。 4导数的背景(1)切线的斜率;(2)瞬时速度;(3)边际成本。 常见的函数导数和积分公式

常见的导数和定积分运算公式 若()f x ,()g x 均可导(可积),则有: 用导数求函数单调区间的步骤 ①求函数f (x )的导数'()f x ②令'()f x >0,解不等式,得x 的范围就是递增区间.③令'()f x <0,解不等式,得x 的范围,就是递减区间;[注]:求单调区间之前一定要先看原函数的定义域。 求可导函数f(x)的极值的步骤 (1)确定函数的定义域。(2) 求函数f (x )的导数'()f x (3)求方程'()f x =0的根(4) 用函数的导数为0的 点,顺次将函数的定义区间分成若干小开区间,并列成表格,检查/ ()f x 在方程根左右的值的符号, 如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值;如果左右不改变符号,那么f (x )在这个根处无极值

高中数学人教版选修1-2全套教案

高中数学人教版选修1-2全套教案 第一章统计案例 第一课时 1.1回归分析的基本思想及其初步应用(一) 教学要求:通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用. 教学重点:了解线性回归模型与函数模型的差异,了解判断刻画模型拟合效果的方法-相关指数和残差分析. 教学难点:解释残差变量的含义,了解偏差平方和分解的思想. 教学过程: 一、复习准备: 1. 提问:“名师出高徒”这句彦语的意思是什么?有名气的老师就一定能教出厉害的学生吗?这两者之间是否有关? 2. 复习:函数关系是一种确定性关系,而相关关系是一种非确定性关系. 回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法,其步骤:收集数据→作散点图→求回归直线方程→利用方程进行预报. 二、讲授新课: 1. 教学例题: ① 例1 从某大学中随机选取8名女大学生,其身高和体重数据如下表所示: 体重. (分析思路→教师演示→学生整理)

第一步:作散点图第二步:求回归方程第三步:代值计算 ②提问:身高为172cm的女大学生的体重一定是60.316kg吗? 不一定,但一般可以认为她的体重在60.316kg左右. ③解释线性回归模型与一次函数的不同 事实上,观察上述散点图,我们可以发现女大学生的体重y和身高x之间的关系并不能用一次=+来严格刻画(因为所有的样本点不共线,所以线性模型只能近似地刻画身高和体函数y bx a 重的关系). 在数据表中身高为165cm的3名女大学生的体重分别为48kg、57kg和61kg,如果能用一次函数来描述体重与身高的关系,那么身高为165cm的3名女在学生的体重应相同. 这就说明体重不仅受身高的影响还受其他因素的影响,把这种影响的结果e(即残差变量或随机 =++,其中残差变量e中包含体重变量)引入到线性函数模型中,得到线性回归模型y bx a e 不能由身高的线性函数解释的所有部分. 当残差变量恒等于0时,线性回归模型就变成一次函数模型. 因此,一次函数模型是线性回归模型的特殊形式,线性回归模型是一次函数模型的一般形式. 2. 相关系数:相关系数的绝对值越接近于1,两个变量的线性相关关系越强,它们的散点图越接近一条直线,这时用线性回归模型拟合这组数据就越好,此时建立的线性回归模型是有意义. 3. 小结:求线性回归方程的步骤、线性回归模型与一次函数的不同.

高二数学选修2-1知识点总结材料(精华版)

高二数学选修2-1知识点 1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句. 假命题:判断为假的语句. 2、“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论. 3、对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,则这两个命题称为互逆命题.其中一个命题称为原命题,另一个称为原命题的逆命题. 若原命题为“若p ,则q ”,它的逆命题为“若q ,则p ”. 4、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,则这两个命题称为互否命题.中一个命题称为原命题,另一个称为原命题的否命题. 若原命题为“若p ,则q ”,则它的否命题为“若p ?,则q ?”. 5、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,则这两个命题称为互为逆否命题.其中一个命题称为原命题,另一个称为原命题的逆否命题. 若原命题为“若p ,则q ”,则它的否命题为“若q ?,则p ?”. 6、四种命题的真假性: 原命题 逆命题 否命题 逆否命题 真 真 真 真 真 假 假 真 假 真 真 真 假 假 假 假 四种命题的真假性之间的关系: ()1两个命题互为逆否命题,它们有相同的真假性; ()2两个命题为互逆命题或互否命题,它们的真假性没有关系. 7、若p q ?,则p 是q 的充分条件,q 是p 的必要条件. 若p q ?,则p 是q 的充要条件(充分必要条件). 8、用联结词“且”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∧. 当p 、q 都是真命题时,p q ∧是真命题;当p 、q 两个命题中有一个命题是假命题时,p q ∧是假命题(一假必假). 用联结词“或”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∨. 当p 、q 两个命题中有一个命题是真命题时,p q ∨是真命题(一真必真);当p 、q 两个命题都是假命题时,p q ∨是假命题. 对一个命题p 全盘否定,得到一个新命题,记作p ?. 若p 是真命题,则p ?必是假命题;若p 是假命题,则p ?必是真命题. 9、短语“对所有的”、“对任意一个”在逻辑中通常称为全称量词,用“?”表示. 含有全称量词的命题称为全称命题. 全称命题“对M 中任意一个x ,有()p x 成立”,记作“x ?∈M ,()p x ”. 短语“存在一个”、“至少有一个”在逻辑中通常称为存在量词,用“?”表示.

人教版高中数学选修1-1知识点总结

高中数学选修1-1知识点总结 1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句.假命题:判断为假的语句. 2、“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论. 3、原命题:“若p ,则q ” 逆命题: “若q ,则p ” 否命题:“若p ?,则q ?” 逆否命题:“若q ?,则p ?” 4、四种命题的真假性之间的关系: (1)两个命题互为逆否命题,它们有相同的真假性; (2)两个命题为互逆命题或互否命题,它们的真假性没有关系. 5、若p q ?,则p 是q 的充分条件,q 是p 的必要条件. 若p q ?,则p 是q 的充要条件(充分必要条件). 利用集合间的包含关系: 例如:若B A ?,则A 是B 的充分条件或B 是A 的必要条件;若A=B ,则A 是B 的充要条件; 6、逻辑联结词:⑴且(and) :命题形式p q ∧;⑵或(or ):命题形式p q ∨; ⑶非(not ):命题形式p ?. 7、⑴全称量词——“所有的”、“任意一个”等,用“ 全称命题p :)(,x p M x ∈?; 全称命题p 的否定?p :)(,x p M x ?∈?。 ⑵存在量词——“存在一个”、“至少有一个”等,用“?”表示;

特称命题p :)(,x p M x ∈?; 特称命题p 的否定?p :)(,x p M x ?∈?; 第二章 圆锥曲线 1、平面内与两个定点1F ,2F 的距离之和等于常数(大于 12F F )的点的轨迹称为椭圆. 即:|)|2(,2||||2121F F a a MF MF >=+。 这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距. 2、椭圆的几何性质:

高中数学选修2-3知识点总结

1 数学选修2-3第一章计数原理知识点必记 1. 什么是分类加法计数原理? 答:做一件事情,完成它有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法…在第n 类办法中有n m 种不同的方法。那么完成这件事情共有n m m m N +++= 21种不同的方法。 2. 什么是分步乘法计数原理? 答:做一件事情,完成它需要n 个步骤,做第一个步骤有1m 种不同的方法,做第二个步骤有2m 种不同的方法……做第n 个步骤有n m 种不同的方法。那么完成这件事情共有n m m m N ???= 21种不同的方法。 3. 排列的定义是什么? 答:一般地,从n 个不同的元素中任取()n m m ≤个元素,按照一定的顺序排成一列,叫做从n 个不同的元素中任取m 个元素的一个排列。 4. 组合的定义是什么? 答:一般地,从n 个不同的元素中任取()n m m ≤个元素并成一组,叫做从n 个不同的元素中任取m 个元素的一个组合。 5. 什么是排列数? 答:从n 个不同的元素中任取()n m m ≤个元素的所有排列的个数,叫做从n 个不同的 元素中任取m 个元素的排列数,记作m n A 。 6. 什么是组合数? 答:从n 个不同的元素中任取()n m m ≤个元素的所有组合的个数,叫做从n 个不同的 元素中任取m 个元素的组合数,记作m n C 。 7.排列数公式有哪些? 答:(1)()()()121+---=m n n n n A m n 或()! m n n A m n -=! ; (2)!n A n n =,规定1!0=。 8.组合数公式有哪些? 答:(1)()()()! 121m m n n n n C m n +---= 或()!!m n m n C m n -=!; (2)m n n m n C C -=,规定10=n C 。 9.排列与组合的区别是什么?答:排列有顺序,组合无顺序。 10.排列与组合的联系是什么?答:m m m n m n A C A ?=,即排列就是先组合再全排列。 11.排列与组合的性质有哪些? 答:两个性质公式:(1)排列的性质公式:1 1-++=m n m n m n mA A A (2)组合的性质公式:m n n m n C C -=;1 1-++=m n m n m n C C C 12.二项式定理是什么? 答:()()+---∈++++++=+N n b C b a C b a C b a C a C b a n n n r r n r n n n n n n n n 222110。 13二项展开式的通项是什么? 答:()+-+∈∈≤≤=N n N r n r b a C T r r n r n r ,,01。 14.()n x +1的展开式是什么? 答:()0 221101x C x C x C x C x n n n n n n n n n ++++=+-- ,若令1=x ,则有 ()n n n n n n n C C C C ++++==+ 210211。 数学选修2-3第二章随机变量及其分布知识点必记 15.什么是随机变量? 答:在某试验中,可能出现的结果可以用一个变量X 来表示,并且X 是随着试验的结果的不同而变化的,我们把这样的变量X 叫做一个随机变量。 离散型随机变量:如果随机变量X 的所有可能的取值都能一一列举出来,则称X 为离散型随机变量。 16.什么是概率分布列? 答:要掌握一个离散型随机变量X 的取值规律,必须知道:

相关主题
文本预览
相关文档 最新文档