当前位置:文档之家› 火电厂锅炉六大风机作用

火电厂锅炉六大风机作用

火电厂锅炉六大风机作用
火电厂锅炉六大风机作用

1、火电厂锅炉六大风机各自的作用

送风机:为锅炉提供燃烧用空气;

一次风机:干燥并输送煤粉进入炉膛;

引风机(吸风机):将燃烧后烟气抽出炉膛。

一般都是50%容量配置即双送双吸双一次风机,通常称为六大风机。

2、电厂锅炉风机的各自作用是什么

(1).送风机:提供二次风,通过空气预热器后,一部分到燃烧器提供周界风,夹心风等,对喷燃器处的火焰有影响,同时可以冷却喷燃器。另一部分提供锅炉燃烧所需要的氧量。最后还有一部是提供SOFA和COFA风,调整燃烧使用。

(2).一次风机:(以中速磨煤机,直吹式制粉系统为例)一次风机提供一次风,从风机出来分为两路,一路经过空预器后叫做热一次风,一路不经过空预器的叫冷一次风。其中,热一次风为磨煤机提供干燥出力和通风出力,将磨煤机磨好的煤粉干燥后携带煤粉进入到锅炉燃烧器。冷一次风与热一次风在磨煤机的入口处进行混合,起到调节磨煤机入/出口温度的作用,同时也是磨煤机通风出力的一部分。

(3).引风机:引风机是将锅炉的烟气抽出,维持锅炉负压的作用。烟气经过空预器----电除尘后进入到引风机,引风机将其送入到脱硫系统或直接排入到烟囱。

(4).增压风机:从引风机出来的风一路进入到增压风机,一路通过旁路进入到烟囱。(旁路在发电机组正常运行时不允许打开,否则不经过脱硫的烟气环保不达标,只有脱硫系统出现事故情况下才允许打开)增压风机出来的风进入到脱硫系统中将烟气脱硫后排入烟囱。(5).密封风机:风源取自冷一次风管道。密封风机为给煤机和磨煤机提供密封风用,其中磨煤机的密封风分为磨辊、磨碗、加载弹簧等部位。

(6).稀释风机:以前的机组基本没有这个,因为这个风机是提供机组脱硝用的,为脱硝系统提供空气用来稀释氨气。

3、一次风和二次风的区别

一次风由一次风机引入,用于携带煤粉进入炉膛

二次风由二次风机引入,用于补充燃烧所需的空气,经大风箱分配后,分层布置吹入炉膛二次风一般占到锅炉总风量的60%

(1)一次风量的调整

为保证锅炉有良好的工况和较高的热效率,在运行中应根据煤质和负荷的变化及时地调整一次风量,同时根据燃料燃烧,底料流化床温变化和料层差压的情况合理配风。如果配风过低,就不能使燃料充分燃烧,时间稍长,还会有结焦的危险;风量过大,又会使床温降低,同样会使燃料无法充分燃烧,排烟热损失也相应增大。另外需要强调的是当冷炉点火启动时,应根据底料的实际粒度和冷态实验情况,合理的调配最低流化风量,以防引起低温结焦。低负荷运行时,一次风量不能低于最低风量,否则就有结焦和灭火的可能。(2)二次风量的调整

投入和调整二次风量的基本原则是:一次风调整流化、炉温和料层差压,二次风控制总风量。当总风量不足时,可逐渐开启二次风小风门投入二次风,一般约在40t/h负荷时投入较为适合。随着锅炉负荷的不断增加,二次风逐渐增大,当达到额定蒸发量左右时,一、二次风的配比约占50%左右,此时过热器后氧量仍控制在3-5%左右。

应当注意的是投入二次风一定要根据负荷和炉温的不断升高、逐渐缓慢进行,切忌快速大量的投入。因此时锅炉刚刚投运,炉内热强度还很低、系统燃烧还不够稳定,此时如大量快速的投入温度较低的二次风,势必造成炉温较大的波动,给运行调整带来许多困难,

如果控制不好会造成灭火。

火电厂锅炉六大风机作用

1、火电厂锅炉六大风机各自的作用? 送风机:为锅炉提供燃烧用空气; 一次风机:干燥并输送煤粉进入炉膛; 引风机(吸风机):将燃烧后烟气抽出炉膛。 一般都是50%容量配置即双送双吸双一次风机,通常称为六大风机。 2、电厂锅炉风机的各自作用是什么? (1).送风机:提供二次风,通过空气预热器后,一部分到燃烧器提供周界风,夹心风等,对喷燃器处的火焰有影响,同时可以冷却喷燃器。另一部分提供锅炉燃烧所需要的氧量。最后还有一部是提供SOFA和COFA风,调整燃烧使用。 (2).一次风机:(以中速磨煤机,直吹式制粉系统为例)一次风机提供一次风,从风机出来分为两路,一路经过空预器后叫做热一次风,一路不经过空预器的叫冷一次风。其中,热一次风为磨煤机提供干燥出力和通风出力,将磨煤机磨好的煤粉干燥后携带煤粉进入到锅炉燃烧器。冷一次风与热一次风在磨煤机的入口处进行混合,起到调节磨煤机入/出口温度的作用,同时也是磨煤机通风出力的一部分。 (3).引风机:引风机是将锅炉的烟气抽出,维持锅炉负压的作用。烟气经过空预器----电除尘后进入到引风机,引风机将其送入到脱硫系统或直接排入到烟囱。 (4).增压风机:从引风机出来的风一路进入到增压风机,一路通过旁路进入到烟囱。(旁路在发电机组正常运行时不允许打开,否则不经过脱硫的烟气环保不达标,只有脱硫系统出现事故情况下才允许打开)增压风机出来的风进入到脱硫系统中将烟气脱硫后排入烟囱。(5).密封风机:风源取自冷一次风管道。密封风机为给煤机和磨煤机提供密封风用,其中磨煤机的密封风分为磨辊、磨碗、加载弹簧等部位。 (6).稀释风机:以前的机组基本没有这个,因为这个风机是提供机组脱硝用的,为脱硝系

2020版电站锅炉的三大风机

( 安全技术 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 2020版电站锅炉的三大风机 Technical safety means that the pursuit of technology should also include ensuring that people make mistakes

2020版电站锅炉的三大风机 电站风机主要指电站锅炉的三大风机---送风机、引风机和一次风机(或排粉尘风机),它们是火力发电厂的主要辅机之一,其耗电量约占发电厂发电量的1.5%~2.5%,其运行的安全经济性直接关系到发电机组乃至整个电厂的安全经济运行。因此,电站风机运行的可靠性和经济性一直是发电企业极为关注的问题。 近十年来,随着我国主要生产大型电站风机的几家制造厂对所引进技术消化吸收的逐步完善,大型电厂管理水平、运行水平和检修维护水平的提高,我国大型电站送、引风机的可靠性有了长足的进步。飞车等恶性事故得到遏制,非计划停运率明显提高,故障次数显著减少,由送、引风机引起的损失发电量大幅度降低。如1991年全国100MW及以上机组因在引风机故障造成的发电量损失就达12.7亿kWh,到2002年200MW及以上机组(其总容量远大于1991年

100MW及以上机组总容量)因引风机故障所造成的发电量损失为3.176亿kWh。但是,目前我国电站风机运行的安全可靠性和经济性与国外先进水平相比尚有一定差距,按引进技术生产的风机与直接引进的风机产品也还有差距。 目前大容量锅炉机组的制粉系统多采用中速磨煤机直吹式系统,采用W型火焰燃用难燃低挥发分煤种的锅炉,多数采用了双进双出钢球磨煤机正压直吹式制粉系统,还有循环流化床锅炉均需采用高压一次风机。这些一次风机输送的均是常温空气,有的钢球磨煤机中间储仓式热风送粉制粉系统采用一次风机输送高温空气。 现在,在我国电厂中运行的一次风机,除极少数全套机组直接引进和循环流化床锅炉的大多数一次风机为国外进口外,绝大多数为国产设备。排粉风机则全部是国产设备。 近年来,随着一次风机投运的增多,出现的问题比送、引风机更多。主要表现在轴承振动大和易损坏、机壳及进出口管道振动大,噪音高,对周围环境(居民和办公人员)影响大。双级动叶调节轴流式一次风机时有失速(喘振)问题发生,限制机组出力并威胁机组

电厂风机的作用

电厂风机的作用 送风机将锅炉尾部烟道上方的热空气再经过预热器加热后,分成一,二,三次风进入炉膛。一次风输送煤粉,二次风助燃,三次风调整燃烧。 引(吸)风机安装在锅炉烟道除尘器和烟囱之间,将烟气吸出炉膛,排入烟囱。吸风机功率大于送风机,能够形成炉膛负压。 一次风机:干燥燃料,将燃料送入炉膛。 二次风机:克服空气预热器,风道,燃烧器的阻力,输入燃烧风,维持燃料充分燃烧。 引风机:将烟气排除,维持炉膛压力,形成流动烟气,完成烟气及空气的热交换。 送风机将锅炉尾部烟道上方的热空气再经过预热器加热后,分成一,二,三次风进入炉膛。一次风输送煤粉,二次风助燃,三次风调整燃烧。 引(吸)风机安装在锅炉烟道除尘器和烟囱之间,将烟气吸出炉膛,排入烟囱。吸风机功率大于送风机,能够形成炉膛负压。 电厂三大主机 锅炉;汽轮机;发电机。 电力三大规程:安规,运行规程和检修规程(电力安全规程,电力检修规程,电力运行规程) 电厂的主机设备:电厂的主机设备为发电机、汽轮机和锅炉,俗称“机炉电”。前几年 机炉电对应的为电气车间、汽机车间和锅炉车间,为电厂三大主专业。随着机组容量的越来越大,如超临界机组、超超临界机组,现在热工专业越来越重要了。热工还属于辅助专业。余下的如化学车间、燃料车间、除尘车间等等在电厂的技术位置相对轻一些。 300MW的电厂需要什么类型的风机:一次风机需要风压头高,直接由大气取气源, 一般选择离心风机。 送风机要求风量大,一般根据实际情况选择单级或多级叶片可调式轴流风机; 引风机是接引烟气至脱硫设施或烟囱的设备,要求出口保持一定负压,300MW机组一般都是设计双烟道,所以正常情况下选择双侧进风离心式风机。 现在300MW火电机组都要求有脱硫设备,所以有增压风机,增压风机也是要求送风量大,并保持一定压头,一般选择动叶可调式轴流风机,不过现在也有新技术就是将引风机和增压风机合二为一。 这是四大风机,其他的一些小的风机比如火检风机或者冷却风机选择小型离心风机即可,空压机有螺杆式、活塞式几种,主流使用螺杆式较多。还有一些比较特别的风机比如脱硫的氧化风机、干灰的除尘风机选择罗茨风机。 电厂锅炉的六大风机的各自作用是:1.送风机:提供二次风,通过空气预热器后, 一部分到燃烧器提供周界风,夹心风等,对喷燃器处的火焰有影响,同时可以冷却喷燃器。另一部分提供锅炉燃烧所需要的氧量。最后还有一部是提供SOFA和COFA风,调整燃烧使用。 2.一次风机:(以中速磨煤机,直吹式制粉系统为例)一次风机提供一次风,从

火力发电厂锅炉运行中燃料管理的现状

火力发电厂锅炉运行中燃料管理的现状 发表时间:2019-06-21T17:01:54.157Z 来源:《工程管理前沿》2019年第05期作者:姚军 [导读] 从现阶段的分析来看,锅炉的运行稳定需要燃料的支持,所以在锅炉运行中需要重视对燃料的管理。 黑龙江省轻工设计院黑龙江哈尔滨 150040 摘要:锅炉在火力发电厂的运行中发挥着重要的作用,所以保证锅炉的运行稳定和可靠十分的必要。从现阶段的分析来看,锅炉的运行稳定需要燃料的支持,所以在锅炉运行中需要重视对燃料的管理。就当前的实践调查来看,火电厂在锅炉运行中存在着燃料管理方面的诸多问题,比如采制化不规范、入炉煤质量管理差等,正是因为这些问题导致了火电厂生产实践中的锅炉运行可靠性下降、资源消耗过大、成本控制不理想等。基于当前绿色经济和质量经济发展的需要,对火电厂锅炉运行中燃料管理的具体问题做分析并基于问题讨论解决对策现实意义显著。 关键词:火力发电厂;锅炉运行;燃料管理;方法措施 中图分类号:TM621 文献标识码:A 引言 燃料管理作为火力发电厂生产经营的重要组成部分,随着煤炭市场化运作的深入,燃料管理方式也发生了质的变化。虽煤炭行业已进入全面调控时代,但火电企业煤炭采购成本仍占企业成本的70%左右,其为火力发电厂最大的变动成本,涉及经营成本管控及从业风险管控,因此,做好火力发电厂锅炉运行中燃料管理具有重要的现实意义。 1火电厂锅炉运行中燃料管理现状 1.1管理不规范这种情况比较普遍 就目前资料分析和实践调查的结果来看,我国大型的火力发电厂普遍存在着管理意识淡薄的情况,在管理意识淡薄的影响下,火电厂燃料管理的意识以及相应的管理制度建设均处于缺乏的状态,没有稳定完善的制度做支撑,采制化管理的规范性严重受影响再者,在燃料管理中,相应的管理标准体系也没有得到完全的确立,这种情况影响了管理的专业化发展。总之,正是因为当前的采制化管理规范性弱,所以燃料质量的化验存在着较多的数据错误,这些错误的数据对管理造成了十分显著的影响。 1.2入炉煤的管理比较缺乏 从实践来看,在锅炉的运行中,入炉煤的燃烬率会影响燃料的利用率以及锅炉的运行可靠性和稳定性,而目前的锅炉运行缺乏比较合理的入炉煤管理制度,所以具体分析入炉煤,其存在着明显的煤料堆积或者是燃料不足现象,前者造成了燃料的浪费,后者造成了锅炉运行的稳定性下降,这对于火电厂的实际生产是非常不利的。 2火力发电厂锅炉运行中燃料管理的有效措施 2.1建立健全燃料信息管理系统,实现燃料的一体化管理 改革开放以来,随着我国社会主义市场经济的不断发展和工业化建设进程的不断加快,作为最基础的物质保证,燃料在火电企业生产过程中占据了重要作用,但从目前来看,由于传统燃料管理模式大多采用的人工管理的方式,不仅极大地增加了企业的管理成本,同时也对生产数据的准确性及实效性造成了影响,因此为从根本上有效地改变当下燃料管理现状,为火电企业的发展奠定良好基础,引进先进的管理思想和信息技术,建立完善燃料管理信息系统是目前加强火电企业燃料管理质量和管理效率的重要基础和根本前提。从某方面来讲,燃料信息管理系统的建立与完善,在一定程度上不仅能及时获取燃料的信息动态,为相关工作人员对生产成本的合理统计分析奠定了良好基础,同时这种系统的管理体系,也使得燃料在火电企业生产过程中各个部门的信息数据能够得到及时的交流和反馈,进而为管理人员根据实际生产状况制定相关决策创造了良好条件,为企业长期良性发展也打下了坚实基础。 经大量科研数据分析可知,燃料的入厂验收监管、燃料化验以及煤场管理是燃料信息的管理系统的三部分,通过建立和完善燃料信息系统,对上述三部分数据进行统计和分析,从某方面来讲不仅能最大程度地降低火电企业对燃料控制成本的投入,同时最主要的还保障了集团各个生产环节的安全运行,除此之外,燃料信息系统的建立和完善从某方面来讲也降低了大量人工劳动力的投入,极大地避免了因人工填写单据、人工进行统计结算和人工检斤检质等误差所带来的经济亏损现象,进而为企业的进一步发展创造了良好条件,与此同时近年来伴随着电子信息技术的不断发展和广泛应用,将互联网技术应用于燃料信息管理信息中,不仅能有效地将各个业务环节的科室联系到一起,从而大大减少了火电企业运转过程中人力资源在燃料管理过程中的损耗,同时由于从根本上提高了数据记录的科学性、合理性和有效性,也使得在后续的相关环节中信息交互更加及时深入,为燃料管理一体化的实现打下了坚实基础。 2.2提高对储煤场的重视,完善储煤场的管理系统 从某方面来讲,燃料管理模式的科学与否在一定程度上直接关系到燃料的数量、质量以及生产成本等问题,因此伴随着工程化建设进程的不断加快,火电企业数量不断增多、市场规模逐渐扩大的现代企业时代背景下,为从根本降低公司的生产成本,提高对燃料储煤场管理的重视也是当前火电企业重要的管理策略和管理手段,一方面火电企业在日常的工作中,为保证储煤场的安全性,相关工作人员在日常的管理工作者需提高对储煤场地的重视,即通过加强对煤场的巡检工作、定期对煤场的各种设施和场地进行维护、及时进行燃煤掺配和倒垛等操作,避免储煤场煤垛温度过高而导致燃料的损耗,也最大程度地避免了安全事故的发生,而另一方面在选择燃煤的掺烧方案时,企业相关工作人员必须综合考虑燃料自身、发电需求、储煤场大小以及燃料堆取料设备等因素,从而选出最佳的掺烧方案,最大限度地减少客观条件带来的不利影响,为企业整体效益最大化的实现打下了坚实基础。 2.3燃料智能化管理 (1)燃料运输管理智能化。燃料运输智能化管理涉及运输工具的调运、入厂、重车过衡、采样、卸车、轻车过衡、空车出厂、入厂无人值守、称重无人值守、回皮无人值守、防作弊、科学调度等围绕运输过程的运行环节,主要实现车辆自动识别、入厂排队等几个关键功能,用以保证数量验收结果的准确性、公正性、公平性。 (2)样品验收管理智能化。样品验收智能管理主要实现对燃料的采样、制样、封样、存样、取样、化验等无人值守的样品现场管理,从而遵循“人样分离、盲存盲取、即取即验”的管理原则。 (3)煤场智能化管理。运用定位技术、无线射频技术、计量统计技术以及与斗轮机、胶带秤等设备对接,实时获取进煤和出煤数据,

火力发电厂主要设备及其作用介绍

火力发电厂主要设备及其作用介绍 一次风机:干燥燃料,将燃料送入炉膛,一般采用离心式风机。 送风机:克服空气预热器、风道、燃烧器阻力,输送燃烧风,维持燃料充分燃烧。 引风机:将烟气排除,维持炉膛压力,形成流动烟气,完成烟气及空气的热交换。 磨煤机:将原煤磨成需要细度的煤粉,完成粗细粉分离及干燥。 空预器:空气预热器是利用锅炉尾部烟气热量来加热燃烧所需空气的一种热交换装置。提高锅炉效率,提高燃烧空气温度,减少燃料不完全燃烧热损失。空预器分为导热式和回转式。回转式是将烟气热量传导给蓄热元件,蓄热元件将热量传导给一、二次风,回转式空气预热器的漏风系数在8~10%。 炉水循环泵:建立和维持锅炉内部介质的循环,完成介质循环加热的过程。 燃烧器:将携带煤粉的一次风和助燃的二次风送入炉膛,并组织一定 精品

的气流结构,使煤粉能迅速稳定的着火,同时使煤粉和空气合理混合,达到煤粉在炉内迅速完全燃烧。煤粉燃烧器可分为直流燃烧器和旋流燃烧器两大类。 精品

汽轮机本体 汽轮机本体是完成蒸汽热能转换为机械能的汽轮机组的基本部分,即汽轮机本身。它与回热加热系统、调节保安系统、油系统、凝汽系统以及其他辅助设备共同组成汽轮机组。汽轮机本体由固定部分(静子)和转动部分(转子)组成。固定部分包括汽缸、隔板、喷嘴、汽封、紧固件和轴承等。转动部分包括主轴、叶轮或轮鼓、叶片和联轴器等。固定部分的喷嘴、隔板与转动部分的叶轮、叶片组成蒸汽热能转换为机械能的通流部分。汽缸是约束高压蒸汽不得外泄的外壳。汽轮机本体还设有汽封系统。 汽轮机:汽轮机是一种将蒸汽的热势能转换成机械能的旋转原动机。分冲动式和反动式汽轮机。 给水泵:将除氧水箱的凝结水通过给水泵提高压力,经过高压加热器加热后,输送到锅炉省煤器入口,作为锅炉主给水。 高低压加热器:利用汽轮机抽汽,对给水、凝结水进行加热,其目的是提高整个热力系统经济性。 精品

火力发电厂的分类

火力发电厂的分类: 发电厂:只产生电能,蒸汽在汽轮机做完功后排入凝结器凝结成水称为凝汽 式汽轮机,又称为纯发电企业。热电厂:即生产电能又对外供热;其中供热利用汽轮机可调节抽汽或较高的 压力排汽供给用户称为抽汽凝汽 式(如我公司电厂#1。3机组称为 单抽或双抽凝汽式汽轮发电机和 #2机称为背压式汽轮机。 热电厂的生产过程: 原煤有煤场经三条输煤皮带分级输送通过破碎设备把一定粒 度煤质送入原煤仓,由每炉四台给 煤机按一定比例加入炉膛燃烧,给 水在锅炉中吸收燃料燃烧时放出 的热量,产生具有一定压力和温度 的蒸汽,经主蒸气管道送入汽轮 机,在汽轮机内膨胀做功,推动汽 轮机转子高速旋转而带动发电机 转子转动,而实现一系列的能量转 变;

高温高压蒸气在汽轮机内膨胀做功后,压力和温度降低由汽轮机排汽 口排入凝结器并被冷却,凝结成水。 凝结水集中在凝结器下部由凝结水泵 送入汽轮机回热系统和除氧器,经除 氧后由给水泵升压经高压加热汽升温 后打入锅炉(送入锅炉的水称为给水)而完成汽水循环; 原煤在锅炉中燃烧放出热量,然烧后产生的烟汽经除尘后排入大气, 灰渣排入灰场; 发电机产生电能除电厂各转机自用电后经升压变压器和相关配电装置 送入电网同时经配电装置供各高配用 电; 化学制水设备主要把原水制备成合格的除盐水以补充系统中的各种损 失及供热损失。 火力发电厂生产过程中的能量转变:在锅炉设备中燃料的化学能转变成蒸汽的热能; 在汽轮机内把蒸汽的热能转变成汽

机转子旋转的机械能; 在发电机内把旋转的机械能转变成电能; 总之能量转换由燃料化学能-------热能-------机械能------电能 见下图:

600MW机组锅炉送风机双速改造节能分析

600MW机组送风机双速改造节能分析 陈 方 前 (淮沪煤电田集发电厂,安徽 淮南 232098) 【摘 要】本文论述了600MW机组锅炉送风机由于设计裕量过大,在机组运行中长时间工作在低效区,存在较大的节能空间。田集电厂#1炉在进行充分的理论分析与计算后实施高低速改造,有效的降低风机耗电率,取得了较好的节能效果,对同类型轴流风机节能改造具有一定的借鉴意义。 【关键词】 送风机 高低速 节能 引言 随着电力体制改革的进展,火力发电厂的节能降耗工作日趋重要,为降低自身的生产成本,将6KV大型辅机列为节能降耗的首选目标。对于600MW机组锅炉系统六大风机电负荷约占厂用电率的20%以上,如何进行风机的优化节电对火电厂的节能降耗有着重要的意义。300MW以上大型火电机组送风机的风量与压头裕量一般在10~30%,这主要是送风机取较大的裕量来弥补空预器实际运行时高于制造厂保证的漏风损失。随着空预器设计,制造和安装技术的提高,近年来 节能改造的空间。对交流电机进行变频改造虽然可以实现非常显著的节能效果,但却受到变频器工作的可靠性严重制约,尤其是锅炉风机更是不能有瞬间的停运,否则机组负荷与燃烧的稳定性必定受到严重影响。为了保证风机工作的可靠性兼顾节能优化,进行电机高低速改造的逐渐被广泛的采用。 1 设备系统简介 田集发电厂2台600MW超临界燃煤机组于2007年7月、10日相继投产,锅炉为上海锅炉厂有限公司引进美国ALSTOM 技术生产的单炉膛、一次中间再热、四角切圆燃烧、平衡通风、固态排渣、超临界螺旋管圈直流炉,型号为SG-1913/25.42-M967。锅炉送风机采用豪顿华工程有限公司2×50%动叶可调轴流式风机,型号为ANN2800/1400N。

电站锅炉风机选型和使用导则

目 次 前言 1范围 2规范性引用文件 3定义 4设计与制造 5风机的选择 6风机的安装 7风机的运行 8风机的噪声 9风机的试验与验收 10风机的系统设计 附录A(规范性附录) 选择风机需要的资料 附录B(资料性附录) 评定风机报价书需要的资料 前 言 本标准是根据原国家经贸委2000年度电力行业标准制、修订计划项目(电力[2000]70号文)的安排,对DL 468—1992《电站锅炉风机选型和使用导则》进行修订而编制的。本标准是推荐性标准。 本标准与DL 468—1992相比,其编写与主要技术内容变化如下: ——依照DL/T 600—2001的规定对编写进行了相应的改动。 ——定义和术语依据GB/T 1236—2000进行了修改和扩充。 ——增加了提高风机安全可靠性的内容。如热一次风机允许的最高进口温度由300℃提高到400℃且应符合JB/T 8822—1998《高温离心通风机技术条件》的规定;叶轮静强度设计应采用准确度较高的有限元分析方法,且应考虑动强度问题;对采用变速调节的风机,必须进行轴系扭振计算,避免发生轴系扭转振动;风机设计人员应对风机进出口管道布置提出推荐性意见和不允许的布置方式等。 ——增加了避免风机可能在不安全工况下运行的条款。如在风机选型时首先应了解所在系统的阻力曲线及其可能的极端工况点参数,避免所有可能的工况落入风机的不安全(不稳定)区域;对轴流式风机提出失速安全系数概念,并用于风机选型中;增加对风机运行参数和状况的监视仪表和自动报警保护装置。 ——增加了风机正式投运前必须进行的试验项目。如风机与实际系统的匹配性试验;轴流式风机失速保护装置动作准确性试验;在各种可能遇到的并联条件下的并联操作试验等。 本标准自实施之日起代替DL 468—1992。 本标准附录A为规范性附录。 本标准附录B为资料性附录。 本标准由中国电力企业联合会提出。 本标准由电力行业电站锅炉标准化技术委员会归口并解释。 本标准起草单位:国电热工研究院。 本标准主要起草人:刘家钰、董康田。 本标准首次发布时间:1992年5月16日。 电站锅炉风机选型和使用导则 1范围

火电厂锅炉运行常见问题及措施

火电厂锅炉运行常见问题及措施 发表时间:2018-12-24T16:07:07.767Z 来源:《电力设备》2018年第23期作者:胡明明 [导读] 摘要:电力在工农业生产和人民生活中的作用越来越突出。 (山西漳泽电力股份有限公司河津发电分公司山西省 043300) 摘要:电力在工农业生产和人民生活中的作用越来越突出。我国以煤炭为主要原料的能源结构决定了近几十年内燃煤电站的主导地位。电站锅炉作为火力发电厂的三大主机之一,对发电厂的安全高效运行及电力的充足稳定供应至关重要。本文介绍了电站锅炉的工作原理,分析其在运行过程中需要注意的事项,常见的问题以及应对故障应采取的措施,以期为从事锅炉运行的工作人员提供一定的指导和参考。 关键词:电站锅炉;煤粉燃烧;运行;问题;措施 近期内及未来十几年内,燃煤发电仍将占据60%左右的比重。电站锅炉是火力发电站的三大主机之一,通过燃烧将燃料的化学能转换成烟气的热能,再通过烟气与工质的换热,最终将给水加热成高温高压的水蒸汽,水蒸汽进而推动汽轮机做功。由于锅炉内进行剧烈的燃烧及工质换热,燃烧器、过热器、再热器等受热面及设备都处在非常恶劣的环境下工作,因此如果锅炉运行出现问题,则会影响汽水循环,损坏受热面,进而引起一系列的反应,因此锅炉运行调节是保证锅炉安全运行的重要手段。而锅炉燃烧调节则是保证锅炉良好运行的重要方式。 一、电站煤粉锅炉工作原理 电站锅炉由锅和炉两部分组成,锅指汽水系统,汽水系统的作用是吸收燃料的热量,将给水加热到一定参数的过热蒸汽,组成部分包括过热器、再热器、水冷壁、联想、省煤器、汽包等设备及其连接管道。 炉指燃烧系统,燃烧系统的作用是组织燃煤在炉内的良好燃烧,通过燃烧将燃料的化学能释放出来,组成部分有炉墙、构架、炉膛、燃烧器、空气预热器、点火系统及烟风道组成。 目前大型火力发电厂大多以煤粉炉为主,燃煤由原煤仓经过给煤机进入磨煤机,达到一定粒度的煤粉由来自空气预热器的热空气边干燥边输送至燃烧器,另一部分的热空气直接进入燃烧器,煤粉与空气通过燃烧器进入炉膛燃烧。煤粉与空气燃烧后生成高温的烟气,高温烟气与炉膛四周的水冷壁管、高温过热器、低温过热器、再热器、省煤器等受热面进行换热,进而将给水加热到具有额定温度和压力的高温高压水蒸汽。 二、影响锅炉运行的因素分析 锅炉运行是一个复杂的问题,影响锅炉安全高效运行的因素有很多。燃煤的煤质、水质、负荷及运行人员的专业水平和专业素质等都会影响锅炉运行的安全性和经济性。 1.煤质 锅炉的结构和参数都以设计煤种热力计算的基础下确定的,但是由于我国的煤炭现状,种类繁多,差异很大,实际运行时,锅炉燃用煤种与设计煤种的煤质相差很大,由此就会产生很多的问题。 2.水质 火电厂热力系统中汽水品质的好坏也是影响火力发电厂锅炉安全、经济运行的重要因素之一,如果锅炉水质不良,会造成锅炉受热面的结垢、腐蚀和过热器积盐,结垢不仅会影响锅炉的经济性,严重的话还会引起爆管等事故的发生。 3.负荷 锅炉本体结构实在设计煤种、额定负荷下确定的。锅炉在其经济负荷下运行是最高效和安全的。但是由于峰谷差的问题,很多火电机组承担调峰的任务,有时不得不降负荷运行,低负荷工况下,炉膛内的燃烧工况不能很好的充满炉膛,易发生火焰中心偏斜问题,由此也会引起很多的运行问题。 4.运行人员专业素质 锅炉运行调节是复杂的过程,影响因素众多,而且运行中出现的问题及调整手段各有区别,必须对症下药,这就要求锅炉运行人员具有良好的的专业素质及运行经验。 三、火电厂锅炉运行常见问题及措施 1.炉膛结渣 火电厂燃煤锅炉的炉膛结渣足物理化学及复杂流体力学的过程。影响因素众多,不仅与灰熔点、灰成分、灰粘度等结渣特性有关系,还受到炉膛热力参数、燃烧器的结构与布置、炉膛内空气动力工况以及锅炉运行参数等的影响。燃用单一煤种的锅炉结渣与燃烧混煤的火电厂锅炉的结渣特性又是完全不同的。锅炉运行过程防止结渣的措施有燃烧调整、改变配风给粉方式、改变喷口倾角及假象切圆的直径大小以及提高气流的刚性;采用水平浓淡分离式的燃烧器;再易结渣部位加装吹灰和打渣孔;对于燃用混煤的锅炉改变入炉煤的掺煤比等。 2.“四管”爆破 水冷壁、过热器、再热器及省煤器是燃煤火电厂锅炉四管。“四管爆破”是火电机组非计划停运的主要原因。造成“四管爆破”的主要原因有应力超限、超温爆管、磨损、化学腐蚀及焊缝泄漏、结渣砸落、材质缺陷等原因。总的来说,“四管爆破”的原因是机组运行中缺陷处理不及时、安装、检修、调试质量缺陷、原材料质量缺陷、运行调整不当和燃用煤种超过设计允许范围。在运行过程中要定期检修,发现问题及时处理;确保给水的水质,避免过热器等受热面内结垢;燃用在设计范围内的煤种及时对锅炉燃烧工况的良好调节,避免炉膛出现结渣等问题。 3.漏风 漏风也是火电厂锅炉运行中不可忽视酌问题之一。锅炉制造水平和运行操作不当使火电厂锅炉的漏风问题对火力发电厂的经济性产生越来越大的影响。锅炉漏风是指温度低于炉膛温度的冷空气漏入锅炉内。为了避免煤粉和烟气喷出炉膛,火电厂锅炉一般都是在负压下运行,因此冷空气会通过各种间隙漏入炉膛。漏入炉膛的冷空气会对锅炉的温度场造成影响,严重的漏风还会对锅炉运行的安全性和经济性造成影响。火电厂锅炉漏风根据漏风的位置分为炉膛漏风、烟道漏风、制粉系统漏风及空气预热器漏风。炉膛漏风又有炉膛下部漏风和炉膛上部漏风之分。炉膛下部漏风会降低炉膛平均温度,推迟煤粉着火,火焰中心上移,排烟温度升高,火焰中心上移过高时还会造成过热

火力发电厂主要设备及其作用介绍

一次风机:干燥燃料,将燃料送入炉膛,一般采用离心式风机。 送风机:克服空气预热器、风道、燃烧器阻力,输送燃烧风,维持燃料充分燃烧。 引风机:将烟气排除,维持炉膛压力,形成流动烟气,完成烟气及空气的热交换。 磨煤机:将原煤磨成需要细度的煤粉,完成粗细粉分离及干燥。 空预器:空气预热器是利用锅炉尾部烟气热量来加热燃烧所需空气的一种热交换装置。提高锅炉效率,提高燃烧空气温度,减少燃料不完全燃烧热损失。空预器分为导热式和回转式。回转式是将烟气热量传导给蓄热元件,蓄热元件将热量传导给一、二次风,回转式空气预热器的漏风系数在8~10%。 炉水循环泵:建立和维持锅炉内部介质的循环,完成介质循环加热的过程。 燃烧器:将携带煤粉的一次风和助燃的二次风送入炉膛,并组织一定的气流结构,使煤粉能迅速稳定的着火,同时使煤粉和空气合理混合,达到煤粉在炉内迅速完全燃烧。煤粉燃烧器可分为直流燃烧器和旋流燃烧器两大类。 汽轮机本体:汽轮机本体是完成蒸汽热能转换为机械能的汽轮机组的基本部分,即汽轮机本身。它与回热加热系统、调节保安系统、油系统、凝汽系统以及其他辅助设备共同组成汽轮机组。汽轮机本体由固定部分(静子)和转动部分(转子)组成。固定部分包括汽缸、隔板、喷嘴、汽封、紧固件和轴承等。转动部分包括主轴、叶轮或轮鼓、叶片和联轴器等。固定部分的喷嘴、隔板与转动部分的叶轮、叶片组成蒸汽热能转换为机械能的通流部分。汽缸是约束高压蒸汽不得外泄的外壳。汽轮机本体还设有汽封系统。 汽轮机:汽轮机是一种将蒸汽的热势能转换成机械能的旋转原动机。分冲动式和反动式汽轮机。 给水泵:将除氧水箱的凝结水通过给水泵提高压力,经过高压加热器加热后,输送到锅炉省煤器入口,作为锅炉主给水。 高低压加热器:利用汽轮机抽汽,对给水、凝结水进行加热,其目的是提高整个热力系统经济性。 除氧器:除去锅炉给水中的各种气体,主要是水中的游离氧。 凝汽器:使汽轮机排汽口形成最佳真空,使工质膨胀到最低压力,尽可能多地将蒸汽热能转换为机械能,将乏汽凝结成水。 凝结泵:将凝汽器的凝结水通过各级低压加热器补充到除氧器。 油系统设备:一是为汽轮机的调节和保护系统提供工作用油,二是向汽轮机和发电机的各轴承供应大量的润滑油和冷却油。主要设备包括主油箱、主油泵、交直流油泵、冷油器、油净化装置等。 在发电厂中,同步发电机是将机械能转变成电能的唯一电气设备。因而将一次能源(水力、煤、油、风力、原子能等)转换为二次能源的发电机,现在几乎都是采用三相交流同步发电机。在发电厂中的交流同步发电机,电枢是静止的,磁极由原动机拖动旋转。其励磁方式为发电机的励磁线圈FLQ(即转子绕组)由同轴的并激直流励磁机经电刷及滑环来供电。同步发电机由定子(固定部分)和转子(转动部分)两部分组成。定子由定子铁心、定子线圈、机座、端盖、风道等组成。定子铁心和线圈是磁和电通过的部分,其他部分起着固定、支持和冷却的作用。 转子由转子本体、护环、心环、转子线圈、滑环、同轴激磁机电枢组成。 主变压器:利用电磁感应原理,可以把一种电压的交流电能转换成同频率的另一种电压等级的交流电的一种设备。 6KV、380V配电装置:完成电能分配,控制设备的装置。 电机:将电能转换成机械能或将机械能转换成电能的电能转换器。 蓄电池:指放电后经充电能复原继续使用的化学电池。在供电系统中,过去多用铅酸蓄电池,现多采用镉镍蓄电池 控制盘:有独立的支架,支架上有金属或绝缘底板或横梁,各种电子器件和电器元件安装在底板或横梁上的一种屏式的电控设备。 1、汽轮机冲转前应具备那些条件? 答:主汽压、主汽温、再热汽温应符合规程要求;主油压与润滑油压正常;润滑油温正常;大轴弯曲度正常;发电机密封油压、内冷水压正常,且有关差压正常;汽轮机金属温差、差胀、轴向位移正常;轴承温度正常。 2、启动前应先对主、辅设备检查那些项目? 答:检查并确认所有的检修工作结束;工具、围栏、备用零部件均已收拾干干净;所有的安全设施均已到位(接地装置、保护罩、保护盖);拆卸下来的保温层均已装复,工作场所整齐整洁;检查操作日志,从事主辅设备检修的检修工作目标已经注销。 3、汽轮机有那些不同的启动方式? 答:a.按启动过程中主蒸汽参数分:额定参数启动和滑参数启动。b.按启动前汽轮机金属温度(内缸或转子表面)水平分:冷态启动;温态启动;热态启动。按冲转时汽轮机的进汽方式分:高中压缸启动;中压缸启动。C.按控制汽轮机进汽流量的阀门分:调节阀启动;自动主汽阀或电动主汽阀启动。 4、汽轮机热态启动的金属温度水平是如何划分的? 答:金属温度低于150℃~180℃者称为冷态启动;金属温度在180℃~350℃之间者称为温态启动;金属温度在350℃以上者称为热态启动。有时热态又分为热态(350~450℃)和极热态(450℃以上)。

火电厂锅炉六大风机作用

1火电厂锅炉六大风机各自的作用? 送风机:为锅炉提供燃烧用空气; 一次风机:干燥并输送煤粉进入炉膛; 引风机(吸风机):将燃烧后烟气抽出炉膛。 一般都是50%容量配置即双送双吸双一次风机,通常称为六大风机。 2、电厂锅炉风机的各自作用是什么? (1)?送风机:提供二次风,通过空气预热器后,一部分到燃烧器提供周界风,夹心风等,对 喷燃器处的火焰有影响,同时可以冷却喷燃器。另一部分提供锅炉燃烧所需要的氧量。最后还有一部是提供SOFA和COFA风,调整燃烧使用。 (2)?一次风机:(以中速磨煤机,直吹式制粉系统为例)一次风机提供一次风,从风机出来 分为两路,一路经过空预器后叫做热一次风,一路不经过空预器的叫冷一次风。其中,热一 次风为磨煤机提供干燥出力和通风出力,将磨煤机磨好的煤粉干燥后携带煤粉进入到锅炉燃 烧器。冷一次风与热一次风在磨煤机的入口处进行混合,起到调节磨煤机入/出口温度的作用,同时也是磨煤机通风出力的一部分。 (3)?引风机:引风机是将锅炉的烟气抽出,维持锅炉负压的作用。烟气经过空预器----电除尘后进入到引风机,引风机将其送入到脱硫系统或直接排入到烟囱。 (4)?增压风机:从引风机出来的风一路进入到增压风机,一路通过旁路进入到烟囱。(旁路 在发电机组正常运行时不允许打开,否则不经过脱硫的烟气环保不达标,只有脱硫系统出现事故情况下才允许打开)增压风机出来的风进入到脱硫系统中将烟气脱硫后排入烟囱。 (5)?密封风机:风源取自冷一次风管道。密封风机为给煤机和磨煤机提供密封风用,其中磨煤机的密封风分为磨辊、磨碗、加载弹簧等部位。 (6)?稀释风机:以前的机组基本没有这个,因为这个风机是提供机组脱硝用的,为脱硝系统提供空气用来稀释氨气。 3、一次风和二次风的区别? 一次风由一次风机引入,用于携带煤粉进入炉膛 二次风由二次风机引入,用于补充燃烧所需的空气,经大风箱分配后,分层布置吹入炉膛 二次风一般占到锅炉总风量的60% (1 )一次风量的调整

火力发电厂锅炉运行优化分析

火力发电厂锅炉运行优化分析 发表时间:2019-12-12T11:08:22.263Z 来源:《当代电力文化》2019年第15期作者:苏乙桐[导读] 随着我国社会经济的不断发展,人们生活水平不断提高以及科学技术产品的不断运用摘要:随着我国社会经济的不断发展,人们生活水平不断提高以及科学技术产品的不断运用,对于电能的需求量也日益增多。火力发电是国内的重要资源,运用该方式能够为社会生产出所需要的电能。但是火力发电需要耗费大量的煤炭资源,这对于环境有着严重的影响,为了能够保护环境,保证工厂的收益,本文主要讨论对火力发电厂的锅炉改进。在火力发电的技术之中,运用锅炉是最基本的方法。 锅炉是火力发电的主要构成。也正是如此,如何对火力发电厂的锅炉进行优化,如何运用更低的火力产生更多的环保、优质的电能是本文主要探讨的问题。关键词:火力发电;锅炉优化;优化措施;研究引言从锅炉整体构造的角度而言,火电厂锅炉主要应当包含辅助性的锅炉运行设备以及锅炉本体设备。锅炉设施在具体运行时,热能主要产生于燃煤原料。在受热面的作用下,迅速升高的锅炉水温将会导致水蒸气的生成。由此可见,发电装置赖以正常运转的关键动力就在于锅炉对其提供蒸汽动能。为此,火电厂对于内部现有的各种锅炉装置都应当逐步予以改进优化,通过优化锅炉性能的措施来保障电厂各类设施的正常运行。 1火力发电厂现有的锅炉运行难点 1.1蒸汽的参数问题蒸汽的参数是体现锅炉平稳运行的关键。锅炉在火场进行发电的过程中为发电提供动能。若是蒸汽产生的不稳定则会影响热能转化为电能。因此,如果要保证锅炉的平稳运行就需要蒸汽参数稳定。但是蒸汽参数并不好控制,在许多的火力发电厂内,对于锅炉产生蒸汽都需要应用煤炭的燃烧来使锅炉产生蒸汽。因此,对于煤炭的量的控制,对于煤炭燃烧所需要的时间的控制都需要更加专业。只有仔细分析燃烧煤炭的情况才能够保证蒸汽参数的平稳。 1.2煤炭燃烧产生的环保问题煤炭在其燃烧过程中会产生大量有毒有害气体、粉尘,若这些有害气体、粉尘未经环保设备进行除尘、脱硫、脱硝处理而直接排放,将造成严重的环境污染和环保事件。 1.3煤炭燃烧产生的杂质问题煤炭燃烧除了能够释放大量的热能以外,还会产生许多的细小的灰尘。灰尘会影响热能的传递,也会导致锅炉的工作效率降低。积灰会导致传热的热阻增大,使得热交换的效率降低,影响热交换,使其恶化。除此之外,积灰若是堵塞相关通道时,更会导致锅炉的使用情况发生恶化,严重时可能会损坏锅炉设备,导致不能再进行工作。 2如何对锅炉运行进行优化 2.1关于优化锅炉设备本体近些年以来,很多电厂锅炉逐渐增大了异常运行的概率,其中根源就在于较长的锅炉投产年限。在现有的锅炉异常现象中,较为典型的就是磨煤机出现卡涩、过热器脱落氧化皮、较高的脱硫风机能耗以及其他运行故障。经过全方位的燃烧技术转型与技术优化后,锅炉本体设备将会达到更好的运行性能指标。因此可见,全面改造锅炉本体设备的举措具有显著的必要性。火力发电厂具体在改造现有的锅炉设备时,关键措施在于同步控制锅炉系统目前的耗电量以及系统运行阻力,确保实现显著降低的系统耗电比例,提升锅炉装置现有的系统阻力。并且针对挡板频繁出现卡涩的情况来讲,重点应当关注优化现有的磨煤机系统,以便于灵活调节分离器。此外,改造锅炉本体设备还应当体现在控制煤粉细度、控制氧化皮脱落以及延长设备固有的运行年限等。 2.2对于锅炉装置及时清理在煤炭燃烧的过程中,很容易产生大量的灰尘颗粒,这些灰尘颗粒的导热性能差,并且会对设备进行隔热,因此,如果不及时清理积灰,长时间的积累,会导致锅炉内部向外散热减小,传热效率降低,热能减小,更有甚者是弱势锅炉内部的热能无法发散除去,锅炉内部温度过高,会导致故障的出现。所以在每天进行蒸汽的产生,对煤炭进行燃烧时,更需要的是对装置进行清理,防止积灰对装置的运行有影响。因此,工厂应当要安排人员对每天都进行使用的装置设备进行清理,减少积灰对于生产的影响。 2.3优化锅炉的热损耗锅炉燃烧过程如果伴有较高比例的热量损耗,则会造成偏高的锅炉能量消耗,甚至还可能引发锅炉燃烧污染。在此前提下,作为现阶段的火电厂尤其需要运用科学手段来优化锅炉装置现有的各项热损指标,如此才能保证稳定并且安全的锅炉运行效果。反之,锅炉热损指标如果无法得到及时的降低,那么火力发电厂对此将会投入较多的资金成本。并且,过高的锅炉热损还会造成超标的火电厂污染,对于此种现状亟待予以优化改进。具体在优化各项相应的锅炉热损指标时,技术人员需要做到全面着眼于送风量、煤粉细度、锅炉排烟损耗及其他相关指标。这是由于,锅炉燃烧效率较大程度上决定于排烟损失。为了保证整个锅炉机组能够达到最大化的机组经济效益以及锅炉燃烧效率,那么关键举措就在于改善现有的空气系数。对于煤粉在送入锅炉以前,应当对其予以反复的查看,确保其符合特定的煤粉细度指标,避免锅炉本体受到煤粉的磨损。 2.4针对锅炉配风方式进行调节锅炉采用倒三角配风方式时,会提升锅炉火焰中心位置,相应的蒸发换热面吸热量减少,对流换热面吸热量增加,可用于调节蒸汽参数不足问题,相应的锅炉烟气在炉膛停留时间变少,煤粉颗粒燃尽率降低。锅炉采用正三角配风方式时,火焰中心位置下移,可提高锅炉蒸发量,蒸汽品质会降低,可调节优化过、再热器超温、减温水流量大等问题。锅炉采用束腰型配风方式,可有效降低火焰中心热负荷强度,对NOx生成产生抑制影响,降低水冷壁结焦风险。锅炉采用腰鼓型配风,可增加火焰中心热负荷集中度,有利于提高燃烧稳定性、燃尽性。锅炉实际运行中需要根据实际需求采用不同的配风方式,在局部燃烧器配风时各个配风方式可相互组合,以达到锅炉燃烧组织最优工况。结语

火力发电厂锅炉基础方案祥解

锅炉基础施工方案 1、工程概况 1.1概述 某电厂一期2×600MW 新建工程锅炉基础,布置在主厂房D框架后侧,K1轴线距D列柱轴线距离9.5米,锅炉中心线B3与主厂房12轴线同轴。锅炉基础从K1至K6,共计30个独立基础,部分独立基础间由LL 剪力墙连接。 锅炉基础的±0.000米标高相当于绝对标高424.00米,基础埋深-6.25、-4.85、-4.01米不等。 1.2基础结构设计 1.2.1独立基础具体尺寸,详设计图纸,基础放大脚上套有炉架基础和运转层平台基础的大小短柱40根。 1.2.2独立基础、剪力墙设计采用C35混凝土,短柱采用C40混凝土,垫层C10混凝土。 1.2.3基础、剪力墙及短柱钢筋为φ—HPB235和Φ—HRB335。 1.3工程特点 1.3.1独立基础平面尺寸大且厚,混凝土体积大,须按大体积混凝土拟定施工技术措施。 1.3.2由于独立基础的短柱上系安装钢结构炉架,因此对短柱的纵横中轴线定位要求十分精确,测量控制须高度重视,反复核对务求准备。 1.3.3独立基础的厚度大( 2.7米),混凝土浇筑时,对周边模板的侧压力大,模板的加固支撑系统应特别严密,确保模板的强度、刚度和稳定性。 1.4主要工程量(见统计表)

锅炉基础主要工程量统计表 2、施工布置 2.1生产、生活临建布置 锅炉基础工程的生产临建主要由钢筋房、木工房、工具室及生产办公室组成,这部分临建布置在2#机主厂房左侧的2#机施工区内,并早已实施,形成生产能力及办公能力。 生活临建布置在厂大门右侧距现场约1000米的临建生活区内,正在施工,投用前生产人员、生活居住在厂区附近的租用农房,基本能满足要求。 2.2施工道路布置 主厂房、锅炉基础环行道路路基基本形成,从加工房、工具房、办公室到锅炉间现场都有道路相通。基本能满足生产要求。 2.3施工排水布置 本次锅炉基础的施工,主要考虑基坑内排水,基坑开挖时,沿大开挖下口线设300×300排水沟接入集水坑,南面和北面各设一个集水坑,集水坑平面尺寸1000×1000,深800。基坑内所有积水抽排至排水沟,然后用DN50的潜水泵抽排坑内集水,将潜水泵的排水软管,分别引入南北两侧道路旁的雨水明沟或厂区排水沟。 2.4施工力能供应布置 2.4.1施工用电:锅炉基础施工用电,只需按机械功率的大小,配以足够截面的三相五芯橡皮绝缘电缆,从二级电源盘柜内接引电源,配电柜内的空

锅炉正压燃烧原因分析及对策

锅炉正压燃烧原因分析及对策 (总5页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

锅炉正压燃烧原因分析及对策 许治国 (郑州铁路局安全监察室 450052) 摘要:本文主要阐述了锅炉正压燃烧的判断方法,分析了产生锅炉正压燃烧的各种原因,并提出了解决和避免锅炉正压燃烧的方法、措施及对策。 关键词:锅炉、正压燃烧、对策、通风、引风机 引言:锅炉正压燃烧是锅炉工作中常见的故障,它影响锅炉正常运行,损坏锅炉及附属设备,降低锅炉出力,加大设备日常维护及保养的难度,有时还危机操作人员的人身安全,因此正确对待锅炉正压燃烧问题,是保证锅炉安全运行的必要前提条件。 在《特种设备安全监察条例》中,给出了锅炉如下定义:是指利用各种燃料,电或其它能源,将所盛装的液体加热到一定的参数,并对外输出热能的设备,其范围规定为容积大于或者等于30L的承压蒸汽锅炉;出口压力大于或等于0.1Mpa,且额定功率大于或等于0.1MW的承压热水锅炉、有机热载体锅炉。从锅炉定义不难看出,锅炉是一种密闭承压的容器,是一种涉及生命安全,危险性、破坏性极大的特种设备。因此锅炉是否能正常工作,是避免锅炉事故的前提条件,而锅炉正压燃烧是锅炉房常见问题之一,所以解决和避免锅炉正压燃烧问题是保证锅炉安全运行的关键。 所谓锅炉正压燃烧,就是指锅炉炉膛内的气压大于一个正常气压(即外界气压)。锅炉正压燃烧主要表现为:向炉外冒火,四周冒烟,造成炉门发红,炉体损坏加剧,长期正压运行导致炉体变形,炉墙烧损脱落,保温材料损失,炉排烧断卡死,甚至发生炉拱、炉墙倒塌等严重事故。结果:燃料燃烧不充分,不能达到锅炉额定工况。判断锅炉是否正压燃烧的方法是:站在炉门旁,点燃一支香烟或拿一条软布条(软纸条)放在观察孔处,如果烟柱或布条(纸条)向观察孔走或飘动,证明锅炉非正压燃烧运行,反之锅炉正压燃烧运行。 一、锅炉正压燃烧原因分析

火电厂锅炉主要运行参数的耗差分析

火电厂锅炉主要运行参数的耗差分析 发表时间:2019-03-12T16:34:57.277Z 来源:《电力设备》2018年第27期作者:李延明 [导读] 摘要:当锅炉主要运行参数偏离目标值时,会引起锅炉热效率的下降,导致机组发电煤耗升高。 (内蒙古通辽市通辽发电总厂内蒙古通辽市 028000) 摘要:当锅炉主要运行参数偏离目标值时,会引起锅炉热效率的下降,导致机组发电煤耗升高。为此,分析了煤气锅炉热效率的计算要点,并提出了适用于煤气锅炉的煤耗偏差分析模型,给出了锅炉运行过程中排烟温度、排烟氧量、排烟CO含量变化时的发电煤耗偏差计算模型。实际计算结果表明,该模型能够较准确地计算出锅炉主要运行参数偏离目标值所引起的煤耗偏差,可为机组的优化运行提供数据依据。 关键词:煤气锅炉;运行参数;煤耗偏差 火电厂对锅炉性能进行在线监测和分析的目的在于了解锅炉运行过程中的热经济性和煤耗偏差情况,以使锅炉尽量处于高效率的运行状态。煤耗偏差是指机组当前运行参数值偏离目标值所造成的煤耗变化量。在对锅炉效率和各项热损失进行在线计算的基础上进行耗差分析,可了解导致锅炉效率变化的影响因素及其影响的程度,以指导运行,使锅炉时刻处于最佳或接近最佳运行状态,从而提高锅炉的运行经济性。 1煤耗偏差计算模型 机组运行参数偏离目标值时的煤耗偏差计算模型为: 式中:(Δb)i为某项运行参数偏离目标值导致的机组发电煤耗变化量,g/(kW·h);(δE)i为某项运行参数偏离目标值导 致的机组热经济性指标的相对变化量;bb为发电标准煤耗率g/(kW·h),其中Qdw为煤气低位发热量,kJ/m3,Vg为单位发电量对应的煤气耗量,m3/(kW·h)。排烟氧量、排烟温度、排烟CO含量等锅炉运行参数对机组热经济性的影响主要通过锅炉热效率反映,将上式变换为: 式中,(δηb)i为某项运行参数偏离目标值导致的锅炉热效率的相对变化量,%。因此,只需计算出由于锅炉运行参数改变所引起的锅炉热效率相对变化量,即可求出煤耗偏差。 2煤气锅炉热效率计算模型 煤气锅炉热效率ηb一般采用热损失法: 式中:q2为排烟热损失,%;q3为可燃气体未完全燃烧热损失,%;q4为机械未完全燃烧热损失,%;q5为锅炉散热损失,%;q6为灰渣物理热损失,%。煤气锅炉不存在机械未完全燃烧热损失q4和灰渣物理热损失q6,因此这2项均为0。其中,排烟热损失q2在煤气锅炉中所占比例最大。锅炉的排烟热损失q2是由于排烟温度高于外界空气温度造成的热损失。在锅炉的各项热损失中,q2是最大的一项,一般为4%~8%。影响q2的主要因素有排烟温度和排烟容积,其计算公式为: 式中:Vgy为实际干烟气量,m3/m3(煤气);VH2O为烟气中所含水蒸气容积,m3/m3(煤气);θpy为排烟温度,℃;t0为基准温度,℃;cp,gy为干烟气在t0至θpy温度间的平均比定压热容,kJ/(m3·K);cp,H2O为水蒸气在t0至θpy温度间的平均比定压热容,kJ/(m3·K);Qr为输入热量,kJ/m3(煤气);cp,r为煤气在t0至tr温度间的平均比定压热容,kJ/(m3·K);tr为煤气温度,℃。 3参数变化时煤耗偏差模型 3.1排烟温度 当排烟温度偏离基准值时,排烟热损失会发生变化,进而导致锅炉热效率变化。排烟温度变化引起的排烟热损失变化量为: 锅炉效率相对变化量为: 由此得到排烟温度变化引起的发电煤耗偏差为: 3.2排烟氧量 排烟氧量变化引起的排烟热损失变化量为:

相关主题
文本预览
相关文档 最新文档