当前位置:文档之家› 0203《线性代数》12月期末考 试指导

0203《线性代数》12月期末考 试指导

0203《线性代数》12月期末考 试指导
0203《线性代数》12月期末考 试指导

三、典型习题

单项选择

1、三阶行列式143

020

004

的值为( )

(A )1 (B )2 (C )4 (D ) 8

2、若A ,B 都是n 阶方阵,I 时n 阶单位矩阵,则( )

(A )222()2A B A AB B +=++ (B )

22()()A B A B A B +=+- (C )22()21A I A A +=++ (D )22()2A I A A I +=++ 3、设A ,B 为同阶对称矩阵,则( )不一定是对称矩阵。

(A) A -B 对称 (B )AB 对称 (C )'A B +对称 (D ) 'A B +对称

4、向量组1a =(-1,-1,1),2a =(2,1,0),3a

=(1,0,1),的秩是( )

(A )0 ; (B )1 ; (C )2 ; (D ) 3 5、当λ=( )时,方程 :

12312312350

530

70x x x x x x x x x λλλ++=-+-=++=,有非零解 (A ) 2 ; (B ) -2 ; (C ) 0 ; (D ) 3

6、设α=(1,1,2),β=(3,5,λ),若α⊥β,则λ=( )

(A ) 4 ; (B ) 1 ; (C ) -4 ; (D ) 2

7、在R3中,所有与a1=(1,1,1),a2=(1,2,1)都正交的单位向量是( )

(A )(1,0,-1) (B

)±(0

(C )

(D

,0

8、设A ,B 均为n 阶可逆方阵,则( )

(A )111()AB A B ---= (B )

111()AB B A ---= (C )111()A B A B ---+=+ (D )111()A B A B ----=-

9、线性方程组

12

31233203960x x x x x x -+=-+-= 的一组基础解系由( )个向量组成。

(A )0 (B )1 (C )2 (D ) 3

10、设A 为2阶方阵,且| A | =2,则 | 2 A | = ( )

(A )1 (B )2 (C )4 (D )8

11、设r (A )=r ,则( )

(A )A 中任意r 个列向量线性无关 ; (B ) A 中前r 个列向量线性无关 ;

(C )A 中所有r 个列向量线性相关; (D ) A 有r 个列向量线性无关。

12、两个矩阵的特征值相同式这两个矩阵相似的( )

(A )充分不必要条件; (B )必要不充分条件;

(C )充要条件; (D )不充分也不必要条件。

13、二次型21x +22x +223x -223tx x 是正定的,则( )

(A )t ; (B )t ; (C )t >1 ; (D )t

<1

二、填空题

1、设一个行列式的值为a ,则交换这个行列式的两行后所得新行列式的值为 .

2、设A =1101?? ???,B =

a b c d ?? ???,则AB =BA 的充要条件是 .

3、非齐次线性方程m n A ?1n X ?=1m b ?有解的充要条件是 .

4、设A ,B ,C 都是n 阶正交矩阵,则''A BC = .

5、二次型123(,,)f x x x =t 21x +(1)t -22x +223(2)t x -正定的充要条件是 .

6、在R3中,向量α=(1,2,3)在基1ε=(1,0,0),

2ε=(0,1,0),3ε=(0,0,1)下的坐标为 .

7、设A 都是n 阶正交矩阵,则 | A | = . 8、 实二次型f =21x +422x +tx1x2为正定二次型的充要条件是 .

9、 设λ是A 的特征值,a1,a2是(λI -A )X =0的一个基础解系,则A 的属于λ的全部特征向量为 .

10、设三阶矩阵A 的特征值为-1,1,1,则| 2A | = .

11、设一个行列式的值为a ,则这个行列式的第一行乘以2以后所得新行列式的值为

. 12、行列式101

023

001-的值为 .

三、简答题

1、设A =0a b c ??

???,问A 何时可逆?当A 可逆时,A 的逆是什么?

2、简述求解非齐次线性方程组的解的过程。

3、非齐次线性方程组与它的导出齐次线性方程组的解之间的关系。

4、简述如何判断一个二次型是否正定?

四、计算题

求解非齐次线性方程组: 12341341234323

2341

624x x x x x x x x x x x -++=-+=---+-=。

2、求矩阵111

131111A -??

?

=- ?

???的特征值与特征向量。

3、将矩阵1111??

???对角化。

4、设A =112031003-??

?

- ? ?

??。求矩阵方程XA =A +2X 的解。

5、设向量组1a =(1,0,1),2a =(-1,1,2),3a =(0,1,a )线性相关,求a

五、证明题

1、设A 是一个n 阶矩阵,P 是一个n 阶可逆矩阵,证明:1212()P AP P A P --=

2、设矩阵A 满足22340A A I ++=。证明A I +可逆,并求A I +的逆

四、习题答案:

选择题 DDBCB C DBCD DB

二、填空题

1、-a

2、c =0,a =d

3、 r (m n A ?)=r (

m n A ?,1m b ?) ; 4、±1 ;

5

、t >;

6、(1,2,3);

7、±1;

8、| t | < 4 ;

9、1122a a a a +(1a ,2a

不同时为零);

10、-8;

11、2a ;

12、-2。

三、简答题

1、提示:根据行列式的值判定: 当| A | = ac ≠0式可逆,此时其逆为1

ac 0c b a -?? ???

2、提示:

对其增广矩阵施行行初等变换,若增广矩阵的秩与系数矩阵的秩相等则有解,否则无解。

3、提示:如果一个非齐次线性方程足有解则它的导出齐次线性方程组一定有解,但反之不

然,因为齐次线性方程组一定有解的。若一个非齐次线性方程组有唯一解,则它的导出齐次

线性方程组也有唯一解。两个非齐次线性方程组的解的差为它的导出齐次线性方程组的解。

非齐次线性方程组的通解可以写成它的一个特解与其导出齐次线性方程组的通解之和。

4、(1)各顺序主子式都大于零;

(2)代入任意不全为零的实数时,二次型的值都大于零;

(3)特征值全部大于零。

四、计算题

1、提示:对其系数矩阵做变换:

?=

113232034111624-?? ?-- ? ?---??→2110232970102200000??-- ? ? ?-- ? ? ? ???。 其通解为X =1k 329210?? ? ? ? ? ? ? ???+2k 2001-?? ? ? ? ? ???+

127210??- ? ? ?- ? ? ? ???。其中1k ,2k 为任意实数。 提示:

A 的特征多项式

()()()()()()1

111

31131113111

11

I A λλλλλλλλλλ---=--=-------+-+---- ()()22132322λλλλλ=-+---++- 32

223631λλλλλλ=-+-+-+-

32584λλλ=-+-

()()

2144λλλ=--+

()()2120λλ=--=

因此A 的特征值为1,2,2λ=。 当1

λ=011,121110I A λ?? ? ? ???-则-=----110110121011011011???? ? ?→→ ? ? ? ?????----- 1110101101101110000001ξ-?????? ? ? ?→→ ? ? ? ? ? ???????--=。

131323230,,0,x x x x x x x x +==--==。

1111112,111000111000I A λλ--???? ? ?=-=--→ ? ? ? ?--????则。 23111,001ζζ-???? ? ?== ? ? ? ?????

1231230,x x x x x x +-==-+。 提示:?????

?0002 4、提示:X (A -2I )=A 。A -2I =112011001--?? ?- ? ???。1(2)A I --=

111011001--?? ? ? ???。 所以X =A 1(2)A I --=

122032003--?? ? ? ???. 5、提示:a=3

五、证明题

1、提示:

12()P AP -=1()P AP - 1()P AP -=1P A - 1()PP - AP =1P A -AP =12P A P -

2、提示:2234A A I ++=0

?()(2)3A I A I I ++=-?1()(2)3A I A I ??+-+ ???=I 。 于是A I +可逆,且1()A I -+=1(2)3A I -+=213

3A I -- 。

说明:本考试指导只适用于201109学期期末考试使用,包括正考和重修内容。指导中的章节知识点涵盖考试所有内容,给出的习题为考试类型题,习题中未给出答案的部分请参考课程讲义或笔记,如果在复习中有疑难问题请到课程答疑区提问。最后祝大家顺利通过考试!

线性代数习题3答案(高等教育出版社)

习题3 1.11101134032αβγαβαβγ ===-+-设(,,),(,,),(,,),求和 1110111003231112011340015αβαβγ-=-=+-=+-=解:(,,)(,,)(,,) (,,)(,,)(,,)(,,) 1231232.32525131015104111αααααααααα -++=+===-设()()(),其中(,,,) (,,,),(,,,),求1231233251 32561 [32513210151054111] 6 1234ααααααααααα-++=+=+-=+--=解:因为()()(),所以(), 所以(,,,)(,,,)(,,,)(,,,) 123412343.12111111111111111111,,,βααααβαααα===--=--=--设有(,,,),(,,,),(,,,), (,,,),(,,,)试将表示成的线性组合。 123412341234123412341234 1211 5111 ,,,; 4444 5111 4444 x x x x x x x x x x x x x x x x x x x x βαααα+++=??+--=? ?-+-=??--+=?===-=-=+--解:因为线性方程组的解为 所以得: 1234.111112313) t ααα===设讨论下面向量组的线性的相关性 ()(,,),(,,),(,, 111 1235, 1355t t t t =-=≠解:因为所以,当时,向量组线性相关,当时线性无关。 . 323232.5213132321321的线性相关性, ,线性无关,讨论,,设αααααααααααα++++++ . 0)23()32()23(.0)32()32()32(332123211321213313223211=++++++++=++++++++ααααααααααααx x x x x x x x x x x x 整理得:解:设

线性代数与概率论课程教学大纲

线性代数与概率论课程教学大纲 一、课程说明 (一)课程名称、所属专业、课程性质、学分; 课程名称:线性代数与概率论 所属专业:材料物理与材料化学 课程属性:必修 学分:4 (二)课程简介、目标与任务; 本课程将对线性代数和概率论里的一些常见概念和基础知识进行讲解。线性代数里所涉及到的对向量和矩阵的分析和操作,在科学研究和工程技术中均有着广泛的应用。从向量和矩阵中抽象出来的线性空间和线性变换的概念,将为学生以后更深入的学习和实践提供必要的背景和知识准备。概率论是统计方向的理论基础,对于将来实际工作中的数据分析和处理有着指导性作用。这门72学时的课把线性代数和概率论放在一起讲实际上强度是比较大的。 线性代数部分先从行列式讲起,接着介绍关于向量组和矩阵的一些基本概念和运算。有了这些知识储备后,在第三章对于线性方程组问题给出了一个完整的解答。第四章对向量和矩阵的数学抽象引入了线性空间与线性变换,并对空间的代数结构和变换性质作了讨论。最后两章是关于矩阵的比较实用部分,包括特征值与特征向量,矩阵对角化与二次型。概率论部分先定义了样本空间与随机事件,接着引入概率的概念,列举了一些计算简单概率的方法和例子。随后对随机事件的量化导致了随机变量的引入。从第四章到第七章均是关于随机变量和随机变量函数的内容,我们讨论了一些常见分布及其数字特征,包括期望值,方差和关联函数(协方差)等。对于独立的随机变量序列,我们运用切比雪夫不等式证明了大数律,最后介绍了中心极限定理。 希望学生通过本课程的学习,能够熟悉线性代数里的一些基本概念和思考问题的方法,培养数学抽象思维的能力,理解和熟练掌握向量和矩阵的一些性质和相关运算,对于随机过程和随机变量亦有一个初步的具体认识。 (三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接; 所需要的先修知识储备为基本的微积分,代数方程和一些矢量分析。线性代数的知识,包括向量,矩阵和二次型,在以后的学习中都会用到。线性空间和线性变换的概念在后继的理论课例如量子力学和群论的学习中将扮演重要角色。概率论是后继数理统计

地大《线性代数》在线作业一_答案

免费免费免费免费 地大《线性代数》在线作业一 1. A. A B. B C. C D. D 正确答案:B 满分:4 分得分:4 2. A. A B. B C. C D. D 正确答案:D 满分:4 分得分:4 3. A. A B. B C. C D. D 正确答案:D 满分:4 分得分:4 4. A. A B. B C. C D. D 正确答案:C 满分:4 分得分:4 5. A. A B. B C. C D. D 正确答案:C 满分:4 分得分:4 6. A. A B. B C. C D. D 正确答案:C 满分:4 分得分:4 7. A. A B. B C. C D. D

正确答案:A 满分:4 分得分:4 8. A. A B. B C. C D. D 正确答案:C 满分:4 分得分:4 9. A. A B. B C. C D. D 正确答案:C 满分:4 分得分:4 10. A. A B. B C. C D. D 正确答案:D 满分:4 分得分:4 11. A. A B. B C. C D. D 正确答案:D 满分:4 分得分:4 12. A. A B. B C. C D. D 正确答案:B 满分:4 分得分:4 13. A. A B. B C. C D. D 正确答案:A 满分:4 分得分:4 14. A. A B. B C. C D. D 正确答案:C 满分:4 分得分:4 15.

B. B C. C D. D 正确答案:A 满分:4 分得分:4 16. A. A B. B C. C D. D 正确答案:A 满分:4 分得分:4 17. A. A B. B C. C D. D 正确答案:D 满分:4 分得分:4 18. A. A B. B C. C D. D 正确答案:B 满分:4 分得分:4 19. A. A B. B C. C D. D 正确答案:C 满分:4 分得分:4 20. A. A B. B C. C D. D 正确答案:B 满分:4 分得分:4 21. A. A B. B C. C D. D 正确答案:C 满分:4 分得分:4 22. A. A B. B

(完整word版)线性代数考试题及答案解析

WORD 格式整理 2009-2010学年第一学期期末考试 《线性代数》试卷 答卷说明:1、本试卷共6页,五个大题,满分100分,120分钟完卷。 2、闭卷考试。 评阅人:_____________ 总分人:______________ 一、单项选择题。(每小题3分,共24分) 【 】1.行列式=----3111131111311113 (A)0 (B) 1 (C) 2 (D)3 【 】2.设A 为3阶方阵,数2-=λ,3=A ,则=A λ (A) 24 (B) 24- (C) 6 (D) 6- 【 】3.已知,,B A 为n 阶方阵,则下列式子一定正确的是 (A)BA AB = (B)2222B)(A B AB A ++=+ (C)BA AB = (D) 22))((B A B A B A -=-+ 【 】4.设A 为3阶方阵, 0≠=a A ,则=*A (A) a (B) 2a (C) 3a (D) 4a __ __ ___ __ __ ___ __ __ 系_ __ __ ___ __ 专业_ __ __ ___ __ _班级 姓名_ __ ___ __ __ ___ __ 学号__ ___ __ __ ___ __ _ ………… … … … … … … … … ( 密) … … … … … … … … … … … … ( 封 ) … … … …… … … … … … … … ( 线 ) … … … … … … … … … … … …

(A) )()(B R A R < (B) )()(B R A R > (C) )()(B R A R = (D) 不能确定)(A R 和)(B R 的大小 【 】6.设n 元齐次线性方程组0=Ax 的系数矩阵A 的秩为r ,则0=Ax 有非零解 的充分必要条件是 (A) n r = (B) n r ≥ (C) n r < (D) n r > 【 】7. 向量组)2(,,,21≥m a a a m 线性相关的充分必要条件是 (A) m a a a ,,,21 中至少有一个零向量 (B) m a a a ,,,21 中至少有两个向量成比例 (C) m a a a ,,,21 中每个向量都能由其余1-m 个向量线性表示 (D) m a a a ,,,21 中至少有一个向量可由其余1-m 个向量线性表示 【 】8. n 阶方阵A 与对角阵相似的充分必要条件是 (A)n A R =)( (B)A 有n 个互不相同的特征值 (C)A 有n 个线性无关的特征向量 (D)A 一定是对称阵 二、填空题。(每小题3分,共15分) 1.已知3阶行列式D 的第2行元素分别为1,2,1-,它们的余子式分别为2,1,1-,则=D 。 2.设矩阵方程??????-=???? ??12640110X ,则=X 。 3.设*=ηx 是非齐次线性方程组b Ax =的一个特解,21,ξξ为对应齐次线性方程组 0=Ax 的基础解系, 则非齐次线性方程组b Ax =的通解为 . 4.设n m ?矩阵A 的秩r A R =)(,则n 元齐次线性方程组0=Ax 的解集S 的最大无关组S 的秩=R 。

《线性代数》课程教学大纲

《线性代数》课程教案大纲 课程代码:课程性质:专业基础理论课必修 适用专业:工科类各专业总学分数: 总学时数:修订年月: 编写年月:执笔:韩晓卓、李锋 课程简介(中文): 线性代数是理、工、经管各专业重要的基础课之一。它是以讨论有限维空间线性理论为主,具有较强的抽象性与逻辑性,是数学的一个重要分支,其理论与方法已广泛应用于其它科学领域中。主要包括:矩阵、行列式、线性方程组、秩问题、矩阵的特征值和特征向量、二次型等内容。 课程简介(英文): , . , , . . , , , , , , . 一、课程目的 《线性代数》是高等院校工科专业学生必修的一门基础理论课。它是以讨论有限维空间线性理论为主,具有较强的抽象性与逻辑性。通过本课程的学习,使学生比较系统地获得线性代数中的行列式、矩阵、线性方程组、矩阵和向量组的秩,矩阵的特征值和特征向量等方面的基本概念、基本理论和基本方法,培养学生独特的代数思维模式和解决实际问题的能力,同时使学生了解线性代数在经济方面的简单应用,并为学生学习后继课程及进一步扩大数学知识面奠定必要的数学基础。 二、课程教案内容及学时分配 (一)教案内容 第一章行列式(学时) 教案内容:

二阶三阶行列式;阶行列式的定义;行列式的性质(证明选讲);行列式按行(列)展开(定理证明选讲,行列式按某行(列)展开选讲);克莱姆法则。 本章的重点与难点: 重点:行列式的性质;行列式按一行(列)展开定理;克莱姆法则的应用。 难点:阶行列式的定义的理解;阶行列式计算。 第二章矩阵(学时) 教案内容: 矩阵的概念;矩阵的运算(矩阵的加、减法;数乘;乘法;矩阵转置;方阵的幂;方阵的行列式);几种特殊的矩阵(对角矩阵,数量矩阵,三角形矩阵,单位矩阵,对称矩阵与反对称矩阵);分块矩阵(分块阵及其运算,分块对角阵);逆矩阵(可逆阵的定义;奇异阵,伴随阵与逆阵的关系;逆阵的性质,二阶上三角分块阵的求逆方法);本章的重点与难点: 重点:矩阵的运算规律;逆矩阵的性质以及求法; 难点:矩阵的乘积及分块矩阵的乘积;逆矩阵(抽象矩阵的逆矩阵)的求法。 第三章矩阵的初等变换与线性方程组(学时) 教案内容: 矩阵的初等变换(初等矩阵定义;初等矩阵与矩阵初等变换的关系。用初等变换求矩阵的逆);矩阵的秩(矩阵的秩的定义;矩阵的秩与其子式的关系;初等变换求矩阵的秩)。线性方程组的消元解法(消元解法与初等行变换的关系;线性方程组有唯一解、无穷多组解和无解的讨论;线性方程组有解的判别定理;齐次线性方程组有非零解的充分和必要条件); 本章的重点与难点: 重点:利用初等变换求矩阵的逆矩阵与矩阵的秩;利用初等变换求线性方程组的通解。 难点:利用初等变换求线性方程组的通解。

线性代数考试题及答案3

2009-2010学年第一学期期末考试 《线性代数》试卷 答卷说明:1、本试卷共6页,五个大题,满分100分,120分钟完卷。 2、闭卷考试。 评阅人:_____________ 总分人:______________ 一、单项选择题。(每小题3分,共24分) 【 】1.行列式=----3111131111311113 (A)0 (B) 1 (C) 2 (D)3 【 】2.设A 为3阶方阵,数2-=λ,3=A ,则=A λ (A) 24 (B) 24- (C) 6 (D) 6- 【 】3.已知,,B A 为n 阶方阵,则下列式子一定正确的是 (A)BA AB = (B)2222B)(A B AB A ++=+ (C)BA AB = (D) 22))((B A B A B A -=-+ 【 】4.设A 为3阶方阵, 0≠=a A ,则=*A (A) a (B) 2a (C) 3a (D) 4a 【 】5.设矩阵A 与B 等价,则有 __ __ ___ __ __ ___ __ __ 系_ __ __ ___ __ 专业_ __ __ ___ __ _班级 姓名_ __ ___ __ __ _____ 学号__ ___ __ __ ___ __ _ …… …… … … … … … … … … ( 密 ) … … … … … … … … … … … … ( 封 ) … … … …… … … … … … … … ( 线 ) … … … … … … … … … … … …

(C) )()(B R A R = (D) 不能确定)(A R 和)(B R 的大小 【 】6.设n 元齐次线性方程组0=Ax 的系数矩阵A 的秩为r ,则0=Ax 有非零解 的充分必要条件是 (A) n r = (B) n r ≥ (C) n r < (D) n r > 【 】7. 向量组)2(,,,21≥m a a a m 线性相关的充分必要条件是 (A) m a a a ,,,21 中至少有一个零向量 (B) m a a a ,,,21 中至少有两个向量成比例 (C) m a a a ,,,21 中每个向量都能由其余1-m 个向量线性表示 (D) m a a a ,,,21 中至少有一个向量可由其余1-m 个向量线性表示 【 】8. n 阶方阵A 与对角阵相似的充分必要条件是 (A)n A R =)( (B)A 有n 个互不相同的特征值 (C)A 有n 个线性无关的特征向量 (D)A 一定是对称阵 二、填空题。(每小题3分,共15分) 1.已知3阶行列式D 的第2行元素分别为1,2,1-,它们的余子式分别为2,1,1-,则=D 。 2.设矩阵方程??????-=???? ??12640110X ,则=X 。 3.设*=ηx 是非齐次线性方程组b Ax =的一个特解,21,ξξ为对应齐次线性方程组 0=Ax 的基础解系, 则非齐次线性方程组b Ax =的通解为 . 4.设n m ?矩阵A 的秩r A R =)(,则n 元齐次线性方程组0=Ax 的解集S 的最大无关组0S 的秩=0s R 。 5.设λ是方阵A 的特征值,则 是2 A 的特征值

2020线性代数试题(带解题过程)

线性代数试题 一 填空题 ◆1. 设A 为3阶方阵且2=A ,则=-*-A A 231 ; 【分析】只要与*A 有关的题,首先要想到公式,E A A A AA ==**,从中推 你要的结论。这里11*2--==A A A A 代入 A A A A A 1)1(231311-= -=-=---*- 注意: 为什么是3)1(- ◆2. 设133322211,,α+α=βα+α=βα+α=β, 如321,,ααα线性相关,则321,,βββ线性______(相关) 如321,,ααα线性无关,则321,,βββ线性______(无关) 【分析】对于此类题,最根本的方法是把一个向量组由另一个向量表示的问题转化为矩阵乘 法的关系,然后用矩阵的秩加以判明。 ???? ??????=110011101],,[],,[321321αααβββ,记此为AK B = 这里)()()(A r AK r B r ==, 切不可两边取行列式!!因为矩阵不一定是方阵!! 你来做 下面的三个题: (1)已知向量组m ααα,,,21 (2≥m )线性无关。设 111322211,,,,ααβααβααβααβ+=+=+=+=--m m m m m 试讨论向量组m βββ,,,21 的线性相关性。(答案:m 为奇数时无关,偶数时相关) (2)已知321,,ααα线性无关,试问常数k m ,满足什么条件时,向量组 312312,,αααααα---m k 线性无关?线性相关?(答案:当1≠mk 时,无关;当1=mk 时,相关) (3)教材P103第2(6)题和P110例4和P113第4题 ◆3. 设非齐次线性方程b x A m =?4,2)(=A r ,321,,ηηη是它的三个解,且

线性代数课程教学大纲

“线性代数”课程教学大纲 一、课程基本信息 开课单位:经济学院 课程名称:线性代数 课程编号:201003 英文名称:Linear Algebra 课程类型:学科基础课 总学时:54 理论学时: 54 实验学时: 0 学分:3 开设专业:经济学 先修课程:无 二、课程任务目标 (一)课程任务 本课程是高等学校理工科本科学生一门必修的重要学科基础理论课,是讨论代数学中线性关系的一门经典理论课程。它具有较强的抽象性与逻辑性,可以广泛应用于科学技术的各个领域。本课程的任务是通过教学的各个环节,运用各种教学手段与方法,使学生掌握该课程的基本理论与计算方法。培养学生分析问题、解决问题的能力。提高学生的抽象思维能力、逻辑思维能力以及运用计算机解决与线性代数相关的实际问题的能力,为学生学习后继课程奠定坚实的数学基础。 (二)课程目标 在学完本课程之后,学生能够: 1.能较好地掌握行列式、矩阵特有的分析概念; 2. 能够用行列式、矩阵的方法解决与线性代数相关的实际问题; 三、教学内容和要求 (一)理论教学的内容及要求 第一章行列式 第一节行列式的概念 1.了解行列式的概念; 2.会求二阶与三阶行列式。 第二节行列式的性质

1.了解余子式与代数余子式的概念; 2.掌握行列式的性质。 第三节行列式的计算 1.了解三角形行列式与对角形行列式的概念; 2.掌握范德蒙(Vandermonde)行列式; 3.掌握行列式的计算方法。 第四节行列式的应用 1.了解线性方程组的概念; 2.掌握克拉默法则。 第二章矩阵 第一节矩阵的概念 1.了解矩阵的概念; 2.理解几类特殊的矩阵。 第二节矩阵的运算 1.理解矩阵的加法,数乘,乘法与转置运算; 2.了解可交换矩阵,对称矩阵与反对称矩阵的概念; 3.掌握矩阵的加法,数乘,乘法,转置与方阵的运算规律。 第三节矩阵的分块 1.了解分块矩阵的概念; 2.掌握分块矩阵的加法,数乘与乘法的运算。 第四节逆矩阵 1.了解逆矩阵,伴随矩阵,奇异矩阵与非奇异矩阵的概念; 2.掌握可逆矩阵的判定定理与逆矩阵的求法; 3.理解可逆矩阵的性质。 第五节矩阵的初等变换 1.了解矩阵初等变换,初等矩阵与矩阵等价的概念; 2.了解行阶梯形矩阵,行最简形矩阵与标准形矩阵的概念,掌握用初等变换将矩阵转换成阶梯形矩阵,行最简形矩阵与标准形矩阵的方法; 3.掌握用初等变换求逆矩阵与矩阵方程的方法。 第六节矩阵的秩 1.理解矩阵的秩的概念;

线性代数试题三

一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.排列53142的逆序数τ(53142)=( ) A .7 B .6 C .5 D .4 2.下列等式中正确的是( ) A .()2 22 B BA AB A B A +++=+ B .()T T T B A AB = C .()()2 2 B A B A B A -=+- D .()A A A A 233-=- 3.设k 为常数,A 为n 阶矩阵,则|k A |=( ) A .k|A | B .|k||A | C .n k |A | D .n |k ||A | 4.设n 阶方阵A 满足02=A ,则必有( ) A .E A +不可逆 B .E A -可逆 C .A 可逆 D .0=A 5.设? ?? ?? ??=333231232221131211a a a a a a a a a A ,????? ??=321x x x X ,????? ??=321y y y Y ,则关系式( ) ??? ??+=+=+=3332231133 33222211223 312211111y a y a y a x y a y a y a x y a y a y a x +++ 的矩阵表示形式是 A .AY X = B .Y A X T = C .YA X = D .A Y X T = 6.若向量组(Ⅰ):r ,,,αααΛ21可由向量组(Ⅱ):s 21,βββ,,Λ线性表示,则必有( ) A .秩(Ⅰ)≤秩(Ⅱ) B .秩(Ⅰ)>秩(Ⅱ) C .r ≤s D .r>s 7.设21ββ,是非齐次线性方程组b Ax =的两个解,则下列向量中仍为方程组解的是( ) A .21+ββ B .21ββ- C . 222 1ββ+ D . 5 232 1ββ+ 8.设A ,B 是同阶正交矩阵,则下列命题错误..的是( ) A .1-A 也是正交矩阵 B .*A 也是正交矩阵 C .AB 也是正交矩阵 D .B A +也是正交矩阵 9.下列二次型中,秩为2的二次型是( ) A .212x B .212221 44x x x x -+ C .21x x D .322221 2x x x x ++ 10.已知矩阵??? ? ? ??--=21111010 0A ,则二次型=Ax x T ( ) A .32212 221 222x x x x x x -++ B .32312 322x x 2x x 2x 2x +-+ C .32312322 222x x x x x x -++ D .32312 321x x 2x x 2x 2x +-+ 二、填空题(本大题共10小题,每小题2分,共20分) 请在每小题的空格中填上正确答案。错填、不填均无分。 11.已知A ,B 为n 阶矩阵,A =2,B =-3,则1-B A T =_________________.

线性代数试题和答案(精选版)

线性代数习题和答案 第一部分选择题(共28分) 一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有 一个是符合题目要求的,请将其代码填在题后的括号内。错选或未选均无分。 1.设行列式a a a a 1112 2122 =m, a a a a 1311 2321 =n,则行列式 a a a a a a 111213 212223 + + 等于() A. m+n B. -(m+n) C. n-m D. m-n 2.设矩阵A= 100 020 003 ? ? ? ? ? ? ? ,则A-1等于() A. 1 3 00 1 2 001 ? ? ? ? ? ? ? ? ? ? B. 100 1 2 00 1 3 ? ? ? ? ? ? ? ? ?? C. 1 3 00 010 00 1 2 ? ? ? ? ? ? ? ?? D. 1 2 00 1 3 001 ? ? ? ? ? ? ? ? ? ? 3.设矩阵A= 312 101 214 - - - ? ? ? ? ? ? ? ,A*是A的伴随矩阵,则A *中位于(1,2)的元素是() A. –6 B. 6 C. 2 D. –2 4.设A是方阵,如有矩阵关系式AB=AC,则必有() A. A =0 B. B≠C时A=0 C. A≠0时B=C D. |A|≠0时B=C 5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于() A. 1 B. 2 C. 3 D. 4 6.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则() A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0 B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0 C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0 D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+ λsαs=0和μ1β1+μ2β2+…+μsβs=0 7.设矩阵A的秩为r,则A中() A.所有r-1阶子式都不为0 B.所有r-1阶子式全为0 C.至少有一个r阶子式不等于0 D.所有r阶子式都不为0 8.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是() A.η1+η2是Ax=0的一个解 B.1 2 η1+ 1 2 η2是Ax=b的一个解

线性代数模试题试题库

第一套线性代数模拟试题解答 一、填空题(每小题4分,共24分) 1、 若12335544i j a a a a a 是五阶行列式中带正号的一项,则,12 i j = =。 令1,2i j ==,(12354)(13524)134τπ+=+=,取正号。 2、 若将n 阶行列式D 的每一个元素添上负号得到新行列式D ,则D = (1)n D - 。 即行列式D 的每一行都有一个(-1)的公因子,所以D =(1)n D -。 3、设1101A ??= ? ?? , 则100A =110001?? ???。 2 3 111112121113,,010*********A A ????????????==== ??? ? ??? ????????????? L 可得 4、设A 为5 阶方阵,5A =,则5A =1 5n +。 由矩阵的行列式运算法则可知:1555n n A A +==。 5、A 为n 阶方阵,T AA E =且=+

对《线性代数》课程教学的认识

对《线性代数》课程教学的认识 【摘要】本文针对《线性代数》课程的“抽象性”的特点,从线性代数的研究对象、研究思想、概念和方法以及应用等方面,通过一些实例,提出了如何使线性代数课程生动起来的几点认识。 【关键词】线性代数;抽象性;生动;实例 《线性代数》与《高等数学》是大学数学教学中的两个最基本的课程。相比于《高等数学》,《线性代数》课程有它独有的特点,比如:学时相对较少、概念和内容比较抽象等。但是,学生通常并没有因为它的内容少,定理、公式少而觉得容易学习,反而因为线性代数的抽象性而“望而生畏”,很难入门。教师的任务就是如何化“抽象”为“生动”,引领学生走进线性代数的奇妙世界,使学生理解并掌握线性代数的思想与精髓,并能很顺利的加以应用,同时提高学生的数学素养。 1 让线性代数的研究对象和思想生动起来 每一门课程都有它的主要研究对象,线性代数的研究对象是向量空间及线性变换的理论。线性代数以代数的方法在解决几何问题,体现了代数与几何的结合。而将代数与几何互相转换的方式融入教学中去,就使得教学过程生动、形象而又直观。 (1)在学习矩阵的运算时,矩阵乘法相对来说,会使学生觉得非常“不自然”,如果适当融入一些与空间相关的例子,会产生意想不到的效果! 例1 计算cosφ sinφ-sinφ cosφ. 通过计算,我们得到:cosφ sinφ-sinφ cosφ= cos nφ sin nφ-sin nφ cos nφ. 事实上,我们知道,矩阵cosφ sinφ-sinφ cosφ可以表示二维空间,即平面上的旋转变换,指空间中的向量都旋转φ(弧度),是线性变换的一种。而cosφ sinφ-sinφ cosφ可以理解为空间做了n次这样的旋转变换,得到旋转nφ的变换,对应表示矩阵恰好为: cos nφ sin nφ-sin nφ cos nφ. 这样,我们就从几何空间的直观例子使矩阵乘法变得生动、形象。 (2)初等矩阵的理解也可以借助几何方法:如初等矩阵1 0 00 k 00 0 1可以理解为一个拉伸或压缩变换;1 0 00 1 00 c 1可以看做是一个投影平移变换等。 (3)利用正交变换使二次型化标准形,这是线性代数课程的一个难点,很多学生不理解为什么要化标准形?为什么要使用正交变换法?这样做有什么实际意义?下面我们举例说明。 例2 用正交变换法将二次型化为标准型:f=2x+3x+3x+4xx. 我们可以通过正交变换xxx=1 0 0 0 0 -yyy,使二次型化为标准形:f=2y+5y+y. 从几何角度理解,2x+3x+3x+4xx=1在三维线性空间中,表示什么样的曲面呢?我们知道正交变换保持正交性不变,即在变换后,在仍为空间直角坐标系的新坐标下,方程化为2y+5y+y=1,即表示的曲面是一个椭球! 二次型标准化问题是矩阵理论的一个应用,是将一个有中心的二次曲线(面)方程化为标准方程,从而对其进行分类,线性代数中将它推广到n维空间中,并给予了解决。如果将这种方法用到解析几何中,它可以解决有心曲线(面)的分类问题. 这充分反映了利用矩阵这个线性代数的重要工具,去研究问题的价值体现。也使得线性代数研究对象和思想的应用灵活起来。

线性代数模拟试题

模拟试题一 一、判断题:(正确:√,错误:×)(每小题2分,共10分) 1、若B A ,为n 阶方阵,则 B A B A +=+. ……………………( × ) 2、可逆方阵A 的转置矩阵T A 必可逆. ……………………………( √ ) 3、n 元非齐次线性方程组b Ax =有解的充分必要条件n A R =)(.…( ) 4、A 为正交矩阵的充分必要条件1-=A A T .…………………………( ) 5、设A 是n 阶方阵,且0=A ,则矩阵A 中必有一列向量是其余列向量的线性组合. …………………………………………………………( ) 二、填空题:(每空2分,共20分) 1、,A B 为 3 阶方阵,如果 ||3,||2A B ==,那么 1|2|AB -= 12 . 2、行列式中元素ij a 的余子式和代数余子式,ij ij M A 的关系是 . 3、在5阶行列式中,项5541243213a a a a a 所带的正负号是 . 4、已知()?? ?? ? ??-==256, 102B A 则=AB 10 . 5、若? ?? ? ??--=1225A ,则=-1 A . 6、设矩阵???? ? ??--2100013011080101是4元非齐次线性方程组b Ax =的增广矩阵,则b Ax =的通解为 . 7、()B A R + 《 ()()B R A R +. 8、若*A 是A 的伴随矩阵,则=*AA E . 9、设=A ??? ? ? ??-50021 011 1t ,则当t 5 时,A 的行向量组线性无关. 10、方阵A 的特征值为λ,方阵E A A B 342+-=,则B 的特征值为 . 三、计算:(每小题8分,共16分)

线性代数试题3

一、判断题。在每小题后面的小括号内打“√”号或“×”号 1.任何实对称矩阵都可以表成一系列初等矩阵的乘积。 ( ) 2.方阵A 与其转置阵 T A 有相同的特征值,因此有相同的特征向量。( ) 3.设ij A 为n 阶行列式||ij a D =中元素ij a 的代数余子式,若ij ij A a -=),,2,1,(n j i =, 则0≠D 。 ( ) 4.若r ηηη,,,21 为线性方程组0=AX 的基础解系,则与r ηηη,,,21 等价的向量组 也为此方程组的基础解系。 ( ) 5. 设c b a ,,是互不相等的数,则向量组 ),,,1(32a a a ,),,,1(32b b b ,),,,1(32c c c 是线性无关的。 ( ) 二、单项选择题 1. 设n 阶方阵C B A ,, 满足关系式E ABC =,则 成立。 A. E ACB =; B. E CBA =; C. E BAC =; D. E BCA =. 2. 设n 维向量)(,,,21n m m <ααα 线性无关,则n 维向量m βββ,,,21 线性无关的 充要条件为 。 A. 向量组m ααα,,,21 可由向量组m βββ,,,21 线性表示; B. 向量组m βββ,,,21 可由向量组m ααα,,,21 线性表示; C. 向量组m ααα,,,21 与向量组m βββ,,,21 等价; D. 矩阵=A (m ααα,,,21 )与矩阵=B (m βββ,,,21 )等价。 3.设非齐次线性方程组b AX =的两个不同解为21,ββ,它的导出组的一个基础解 系为21,αα,则线性方程组b AX =的通解X = (其中21,k k 为任意常数)。 A. )(2 1)(2121211ββααα-+ ++k k ;

线性代数教学大纲

线性代数Ⅰ课程教学大纲 一课程基本情况 课程名称:线性代数。 课程名称(英文): Linear Algebra。 课程编号:B11071。 课程总学时:40学时(全部为课堂讲授)。 课程学分:2学分。 课程分类:必修,考试课。 开课学期:第3学期。 开课专业:适合对数学类基础课要求较高的理工类本科专业,包括物理学(S)、计算机科学与技术(S)、农业机械化及其自动化、机械设计制造及其自动化、电气工程与自动化、电子信息工程、土木工程、工程管理等专业。 先修课程:无。 后续课程:大学物理等基础课和各专业相应专业课。 二课程的性质、地位、作用和任务 《线性代数》是高等学校上述各专业的重要基础课。由于线性问题广泛存在于科学技术的各个领域,某些非线性问题在一定条件下可以转化为线性问题,尤其是在计算机日益普及的今天,解大型线性方程组、求矩阵的特征值与特征向量等已成为科学技术人员经常遇到的课题,因此学习和掌握线性代数的理论和方法是掌握现代科学技术以及从事科学研究的重要基础和手段,同时也是实现我院上述各专业培养目标的必备前提。本课程的主要任务是学习科学技术中常用的矩阵方法、线性方程组及其有关的基本计算方法。使学生具有熟练的矩阵运算能力及用矩阵方法解决一些实际问题的能力。从而为学生进一步学习后续课程和进一步提高打下必要的数学基础。 三主要容、重点及深度 了解行列式的定义,掌握行列式的性质及其计算。理解矩阵(包括特殊矩阵)、逆矩阵、矩阵的秩的概念。熟练掌握矩阵的线性运算、乘法运算、转置及其运算规律。理解逆矩阵存在的充要条件,掌握矩阵的求逆的方法。掌握矩阵的初等变换,并会求矩阵的秩。理解n维向量的概念。掌握向量组的线性相关和线性无关的定义及有关重要结论。掌握向量组的极大线性无关组与向量组的秩。了解n 维向量空间及其子空间、基、维数等概念。理解克莱姆(Cramer)法则。理解非齐次线性方程组有解的充要条件及齐次线性方程组有非零解的充要条件。理解齐次线性方程组解空间、基础解系、通解等概念。熟练掌握用行初等变换求线性方程组通解的方法。掌握矩阵的特征值和特征向量的概念及其求解方法。了解矩阵相似的概念以及实对称矩阵与对角矩阵相似的结论。了解向量积及正交矩阵的概念和性质。了解二次型及其矩阵表示,会用配方法及正交变换法化二次型为标准形。了解惯性定理、二次型的秩、二次型的正定性及其判别法。

线性代数试题及答案3详解

线性代数习题和答案 第一部分选择题(共28分) 14小题,每小题2分,共28分)在每小题列出的四个选项中只有 请将其代码填在题后的括号内。 A. 如存在数入和向量a 使A a =入a,则a 是A 的属于特征值 入的特征向量 B. 如存在数入和非零向量a,使(入E - A ) a =0,则入是A 的特征值 C. A 的2个不同的特征值可以有同一个特征向量 D. 如入1,入2,入3是A 的3个互不相同的特征值, a 1, a 2, a 3依次是A 的属于入1,入2, 入3的特征向量,贝y a 1, a 2, a 3有可能线性相关 A. m+n a 11 a 12 =m, a 13 a 11 a 21 a 22 a 23 a 21 1.设行列式 =n , C. n- m 0 ' 0 3 丿 B. P 0 -(m+n) 0 2 0 则行列式 D. m- 2.设矩阵A = a 11 a 21 a 12 a 22 +313 +a 23 等于( <1 0 0 f 冷 i L 0 0 3 1 0 0 1 [ 12 1 1 3 [ J 1 I 0 2 0 B 0 2 0 C 0 1 0 D I 0 3 0 0 0 1 LI 0 1 0 0 1 1 0 0 1 丿 3丿 K 2 丿 1 丿 A. 、单项选择题(本大题共 一个是符合题目要求的, 错选或未选均无分。 3.设矩阵 广3 1 、三 B. -1 0 2 -1 , 4丿 C. A *是A 的伴随矩阵, 中位于( 2) 的元素是( B ) A. -6 4.设A 是方阵,如有矩阵关系式 A. A = 0 B. B HC 时 A = 0 D.— AB =AC ,则必有( C. A HO 时 B =C D ) D. | A I H 0 时 B =C 5.已知3X 4矩阵A 的行向量组线性无关,则秩( A T )等于(C ) A. 1 B. 2 C. 3 D. 4 6.设两个向量组 a 1, a 2, , a s 和 3 1, 3 , ',3 S 均线性 .相关,则 ( D ) A.有不全为 0 的数入1, 入2, ■ …,入S 使入1 a 什入 2 a ? ? + 入 a S =0 和 入1 3 1+ > 3 2+…s 3 S =0 B.有不全为 0 的数入1, 入2, …,入S 使入1 (a 1+3 1) +入2 (a 2+ 3 2) +…+入 S ( a S + 3 s ) =0 C.有不全为 0 的数入1, 入2, …,入S 使入1 (a 1- 3 +入2 (a 2- 3 2) +…+入 S ( a S - 3 s ) =0 D.有不全为 0 的数入1, 入2 , …,入S 和不全为 0的数 1 1 , 1 2,…, 1 S 使入1 a 1+ 入 2 a 2+- …+ 入 s a s =0 和 1 3 1+ 2 3 2+ …+ 1 S 3 S =0 7. 设矩阵A 的秩为r,则A 中(C A.所有 r- 1阶子式都不为0 C.至少有一个r 阶子式不等于0 8. 设Ax=b 是一非齐次线性方程组, A. n 什n 2是Ax=0的一个解 B.所有 D.所有 2是其任意 1 1 B. 1 n 1+ r- r 阶子式都不为 2个解,则下列结论错误的是 1阶子式全为 n 2是Ax=b 的一个解 D.2 n 1- n 2 是 Ax=b 的一个解 C. n 1-n 2是Ax=0的一个解 9. 设n 阶方阵A 不可逆,则必有( A.秩(A )<n B.秩(A )=n - 1 10. 设A 是一个n (>3)阶方阵,下列陈述中正确的是( B ) A C.A=0 ) D.方程组Ax=0只有零解 )

线性代数课程教学总结

线性代数课程教学总结 《线性代数课程教学总结》的范文,这里给大家。篇一:线性代数课程总结 线性代数精讲 曾经我学过线性代数,但是没有深入的学习,所有一直希望有一个机会能够深入学习线性代数的机会。没有想到的是,今年的选修课给了我这样一个机会。线性代数精讲,当我看到它的时候,毅然的选了这门选修课。 现在这学期快要结束了,当然这门选修课也即将结束,在这里我想总结一下这门选修课给我带来的帮助。首先从专业来说,对于学习计算机的人来说,数学的重要性不言而喻。打一个比方,数学就好比计算机的左膀右臂。对于想深入学习计算机的人来说,数学必须学得很好。所以线性代数这门课对我来说很重要,它与我们所讲的数据结构中的图有很大的联系。通过这门课程的学习,我已经深入了解了线性代数,它使我对原来学过的某些知识有种恍然大悟的感觉。以后我还会继续学习线性代数这门课程,我相信它给我带来的还远不止这些。 其次,从考研方面来说,对于考研考试中的数学试卷,线性代数占有很大的比重,这也显现出来线性代数对考研的学生来说有多么重要。我是一个将在后年要参加考研的学生,能听到线性代数精讲这样一门课,我很高兴。在这门课程的学习过程中,老

师深入地讲解了线性代数,让我的考研之路轻松了不少。而且,老师在将课的同时还插入例如考研真题,这是最让我感激的地方。有这样的辅导,我的线性代数还愁不过吗? 最后,我想从对实际生活的影响方面来说,生活中的思维模式是 数学思维模式的一种映射。从某一个方面来说吧,比如做数学中的证明题,每一步都不是凭空而来的,精品而是根据题中的实际要求一步一步推出来的,这就好比做生活中的某件事,如果没有一步一步踏踏实实的走过,是不可能有好的结果的。这门课的讲解,让我对数学的思维模式有了更深入地了解,对生活也有了更深入的认识。 通过这半学期的学习,让我学到了很多,我想说对老师说声谢谢。希望这门课能够一直的讲下去,让更多学弟学妹们受到帮助。 篇二:线性代数课程总结 线性代数课程总结 第一章行列式 1.1二阶、三阶行列式 (一)二阶行列式 (二)三阶行列式 1.2 (二)

线性代数考试题库及答案(三)

线性代数考试题库及答案 第六章 二次型 一、单项选择题 1.n 阶对称矩阵A 正定的充分必要条件是( )。 ()a 0A > ()b 存在阶阵C ,使T A C C = ()c 负惯性指数为零 ()d 各阶顺序主子式为正 2.设A 为n 阶方阵,则下列结论正确的是( )。 ()a A 必与一对角阵合同 ()b 若A 的所有顺序主子式为正,则A 正定 ()c 若A 与正定阵B 合同,则A 正定 ()d 若A 与一对角阵相似,则A 必与一对角阵合同 3.设A 为正定矩阵,则下列结论不正确的是( )。 ()a A 可逆 ()b 1A -正定 ()c A 的所有元素为正 ()d 任给12(,, ,)0,T n X x x x =≠均有0T X AX > 4.方阵A 正定的充要条件是( )。 ()a A 的各阶顺序主子式为正; ()b 1A -是正定阵; ()c A 的所有特征值均大于零; ()d A T A 是正定阵。 5.下列(,,)f x y z 为二次型的是( )。 ()a 222ax by cz ++ ()b 2ax by cz ++ ()c axy byz cxz dxyz +++ ()d 22ax bxy czx ++ 6. 设A 、B 为n 阶方阵,12(,,,)T n X x x x =且T T X AX X BX =则A=B 的充要 条件是( )。 ()a ()()r A r B = ()b T A A = ()c T B B = ()d T A A =,T B B =, 7. 正定二次型1234(,,,)f x x x x 的矩阵为A ,则( )必成立.

相关主题
文本预览
相关文档 最新文档