当前位置:文档之家› 交流全桥的应用——振动测量实验

交流全桥的应用——振动测量实验

交流全桥的应用——振动测量实验
交流全桥的应用——振动测量实验

第十二部分传感器技术

0 预备知识

传感器在机电一体化系统乃至整个现代科学技术领域占有极其重要的地位,当今信息时代,如果没有传感器,现代科学技术将无法发展。为了适应这一时代发展的需要,全国各大中专院校及各类职业技术学校都相继将传感器及实验教学纳入教学任务,作为物理、电子、测控以及自动化类专业的一门必修课。

传感器是机电一体化中各种设备和装置的“感觉器官”,是检测系统的第一个环节。它以一定的精度把被测量(各种各样形态各异的信息量)转换成与之有确定关系的、便于应用的某种量值的测量装置。顾名思义,传感器的功能是一感二传,即感受被测信息,并传送出去。根据传感器的功能特点,一般由三部分组成:敏感元件、转换元件、测量电路。

敏感元件:能够灵敏地感受被测量并作出响应的元件。如金属或半导体应变片,能感受压力的大小而引起形变,形变程度就是对压力大小的响应。铂电阻能感受温度的升降而改变其阻值,阻值的变化就是对温度升降的响应,所以铂电阻就是一种温度敏感元件,而金属或半导体应变片,就是一种压力敏感元件。

转换元件:将敏感元件感受的被测量转换成电路参数的元件。如果敏感元件本身就能直接将被测量变成电路参数,那么,该敏感元件就是具有了敏感和转换两个功能。如热敏电阻,它不仅能直接感受温度的变化,而且能将温度变化转换成电阻的变化,也就是将非电路参数(温度)直接变成了电路参数(电阻)。

测量电路:将转换元件转换的电学量进行测量的电路。

传感器的种类较多,根据被测物理量可分为:速度传感器、位移传感器、加速度传感器、温度传感器、压力传感器、光纤传感器等。根据工作原理分为:应变式、电压式、电容式、涡流式、差动变压器式等。根据能量的传递方式分为:有源的和无源的传感器。

了解和掌握一定的传感器技术对每个科技工作者来说是十分必要的。本部分内容通过两个实验的实际应用,使学生对传感器有一个初步了解

实验仅通过金属箔式电阻应变片的一种实际应用而使学生对传感器有一个初步了解。

实验一用金属箔式电阻应变片作交流全桥的应用

——振动测量实验

一、实验目的

1.了解金属箔式电阻应变片的结构和工作原理;

2.熟悉非平衡电桥的输出灵敏度特性;

3.掌握利用交流电桥测量动态应变参数的原理与方法。

二、实验内容

1.金属箔式电阻应变片的结构和工作原理

应变式电阻传感器的核心元件是电阻应变计,它能将机械物件上的应变的变化转换成电阻值的变化。通过对电阻值变化量的测量即可得知机械构件的应变情况,从而可以求出引起该变化的物理量的大小。其构造简图如图12-1所示。排成网状的高阻金属丝,栅状金属箔

或半导体片构成的敏感栅,用合适的粘合剂贴在绝缘的基片2上,敏感栅上贴有保护片3,栅丝较细,一般为0.015~0.06mm (或厚度为 0.003~0.010mm 的金属箔)。其两端焊有较粗(0.1~0.2mm )的低阻铜丝4 作为与电路相连的引线。

图 12-1 电阻丝应变片结构示意图

1、电阻丝

2、基片

3、覆盖层

4、引出线

使用时,选择合适的粘合剂将应变计贴在被测试件表面。试件形变引起敏感栅变形,于是其阻值发生变化,通过测量电路可将敏感栅的阻值变化转换为电压或电流的变化。如果将二片相同的应变计粘贴在平行梁上同一位置的正、反两面,则该平行梁形变所引起的二片应变计的电阻变化刚好相反,即:

△R 上=-△R 下

对于一根长为L ,截面积为S (直径为d ),电阻率为ρ的金属丝,其电阻R 为

S

L

R ρ

= 两边取对数,再微分得

S dS L dL d R dR -+=ρρ

将S=π.d 2

/4代入上式,并将微分写成增量式。

d d

L L R R ?-?+?=?2ρρ

由材料力学知,在弹性范围内金属丝沿长度方向伸长时,横向尺寸缩小,反之亦然。即纵向应变εx 与径向应变εr 存在下列关系:εr =-μ.εx (μ为材料的泊松比)。设

x

L L

ε=? r d d ε=?

ρ

ρ

εμμεερ

ρ

?+

+=++?=?x x x R R )21(2

由此可见,电阻丝的电阻变化由两部分组成:第一部分是材料的几何形变引起,即应变效应;第二部分是电阻率的变化引起的,即压阻效应。对金属材料而言,应变效应是主要的,

其灵

敏度K 0=1+2μ≈1.5~2.0。对于半导体材料,压阻效应是主要的,在制造工艺虽然比金属复杂,但灵敏度比金属约大50~100倍,甚至可以不用放大器而直接由电压表或示波器显示测量结果。对于金属材料,上式可进一步写成[1]

x

S K R R

ε+=?

式中,K S 对某一种金属材料在一定应变范围内为一常数,可见,金属材料电阻值的相对变化在一定范围内与应变成正比。

由于应变片电阻的阻值受环境温度的影响较大,在实际应用中要采用适当的方法对温度引起的误差进行补偿。通常因温度变化而引起应变片阻值变化的主要因素有两个:一是应变片的电阻丝具有一定的温度系数;二是电阻丝材料与测试材料的线膨胀系数不同。 2.电阻应变式传感器的转换电路

在电阻应变式传感器中,应变计是敏感元件,它将应变量εx 转换成电阻的相对变化 ,该量要经转换元件转换成电学量后,再由测量电路进行测量。电桥就是一种常用的转换测量电路,其基本形式如下:

图 12-3 电桥电路 图 12-4 全桥差动电路

由图12-3电桥电路中,根据戴维南定理可算出输出电压U O 为:

E U R R R R R R U ?+-+=)4

33

212(

在预平衡状态下(即U O =0),各臂电阻满足R1*R3=R2*R4。

通常电阻应变片的检测电路采用非平衡电桥,由非平衡电桥电路的特性可知:在采用全桥差动输入的情况下,其输出电压最大,且与电阻的变化成正比,(设ΔR1=ΔR2=ΔR3=ΔR4=ΔR )还可以起到温度补偿的作用。

E U R R

U ??=

1

0 3.实验原理

全桥测量电路中,将受力性质相同的两应变片接入电桥对边,不同的接入邻边。已知单全桥电路的∑R 分别为4

R

R

?。根据戴维南定理可以得出单臂电桥的输出电压近似等于

14

O EKu

U

,于是对应全桥的电压灵敏度为EKu 。由此可知,当E 和电阻相对变化一定时,电桥及电压灵敏度与各桥臂阻值的大小无关。从而灵敏度提高了,非线性误差和温度误差均得到改善。

此外,实验中将交流应变信号用交流电桥来测量,桥路输出的波形为一调制波,不能直接显示其应变值,只有通过移相、相敏检波和滤波电路后才能得到变化的应变信号,此信号可以从示波器或用交流电压表读得。

三、实验仪器

该实验是在ZY13Sens12SB 型传感器技术实验台上进行的。 1. ZY13Sens12SB 型传感器实验台

ZY13Sens12SB 型传感器实验台主要由音频振荡器、低频振荡器、应变式传感器实验模板、相敏检波器模板、振动源、三源板上等组成。实验台的结构及面板示意图如图12-5所示。

图12-5 ZY13Sens12SB 型传感器技术实验台

2. 应变式传感器结构示意图

应变式传感器主要由应变片、弹性体、模板、托盘、固定垫等组成,其结构示意图为图12-6。

图12-6 应变式传感器结构示意图

3.实验连线图

四、实验步骤

1、模块上的传感器不用,改为三源板板上振动梁的应变片,即台面上的应变输出。

2、将台面三源板上的应变插座用连接线插入应变传感器实验模板上。因振动梁上的四片应变片已组成全桥,引出线为四芯线,因此可直接接入实验模板面上已联成电桥的四个插孔上。接线时应注意连接线上每个插头的意义,对角线的阻值为350Ω,若二组对角线阻值均为350Ω则接法正确(万用表测量)。

3、根据图7-1,接好交流电桥调平衡电路及系统,R8、RW1w、C、RW2为交流电桥调平衡网络。检查接线无误后,合上主控台电源开关,将音频振荡器的频率调节到1KHz左右,幅度调节到10Vp-p,(频率可用数显表Fin监测,幅度用示波器监测)

4、将低频振荡器输出接入三源板振动单元中的低频输入插孔,调低频输出幅度和频率使振动台(圆盘)明显感到振动。

5、固定低频振荡器幅度旋钮位置不变,低频输出端接入数显单元的Fin,把数显表的切换开关打到频率档监测低频频率,调低频频率,用示波器读出频率改变时低通滤波器输出

从实验数据得振动梁的自振频率为 HZ。

五、实验注意事项

不用应变模块上的传感器,用专用的连接线将三源板上的应变输出和模块上的插孔连接起来。应变线的接线可参考图12-6。

六、实验思考题

1.分析移相器的工作原理。

2. 传感器不受外力作用时,理论上电桥应处于初始平衡状态,但实际测量时,电桥总是有点不平衡,为什么?

3.实验中采用移相、相敏检波和滤波电路有何作用?

参考文献

[1] 王化祥.张淑英编著.传感器原理及应用. 天津大学出版社. 1999.2第2版19-35.

[2]余成波.胡新宇编著.传感器与自动检测技术.高等教育出版社2004.2 第1版200-210

实验二光纤传感器的位移特性实验

光纤传感器(FOS Fiber Optical Sensor)是20世纪70年代中期发展起来的一种基于光导纤维的新型传感器。它是光纤和光通信技术迅速发展的产物,它与以电为基础的传感器有本质区别,光纤传感器用光作为敏感信息的载体,用光纤作为传递敏感信息的媒质,可测量位移、速度、加速度、液位、应变、压力、流量、振动、温度、电流、电压、磁场等物理量。本实验通过测量光纤传感器的位移特性来,对熟悉和掌握光纤传感器十分必要。

一、实验目的

1.理解光纤传感器的工作原理;

2.理解传光型光纤传感器的工作原理;

3.了解光纤位移传感器性能。

二、实验仪器

光纤传感器、光纤传感器实验模板、数显单元、测微头、直流源、反射面(用电涡流传感器的铁测片做反射面)等组成,如图所示。

图1 实验仪器图

三、实验原理

传光型光纤传感器是由光检测元件与光纤传输回路及测量电路所组成的测量系统。在传光型光纤传感器中光纤仅作为光的传播媒质,所以又称为结构型或非功能型光纤传感器。光纤仅仅起传输光信号的光学通路的作用,被测参数均在光纤之外,由外置敏感元件调制到光信号中去。

传光型传感器又叫结构型光纤传感器,或者非功能型光纤传感器,在这类传感器中,光纤的作用只是传输光,需要加上其他敏感元件,才能构成完整的传感器,为了得到较大受光量和传输的光功率,传光型光纤传感器通常采用竖直孔径和大的阶跃型多模光纤,它的结构比较简单,并且能够充分利用光电元件和光纤本身的特点,应用比较广,它的缺点是灵敏度比传感型光纤传感器要低,测量精度也较差。

案例:光纤位移传感器

上图所示为反射式光纤位移传感器,这种类型的传感器将发射光纤和接收光纤绑在一起,从发射光纤发射出的光经被测物体表面直接或者间接反射后,再经接收光纤照射到光敏元件上,光敏元件所接收到的光亮会随被测物体表面与传感器端面的相对位移的变化而变化。那么相对光强和相对位移之间的关系如下图所示。

从图上我们可以看出,当d 很小的时候,接收到的光亮也很小,随着物体与光纤端面d 的增大,接收到的光亮随着增加,到达某一值后,接收到的光亮由最大随着d 的增大开始减小,图中曲线的A 段,也就是光强由0到最大这段区间内,传感器所测位移较小,灵敏度高、适用与测量微米级的微小位移、震动或者是材料表面状态等;那么曲线中的B 段,所测位移较大,但灵敏度低。

本实验采用的是传光型光纤,它由两束光纤混合后,组成Y 型光纤,半园分布即双D 型一束光纤端部与光源相接发射光束,

另一束端部与光电转换器相接接

收光束。两光束混合后的端部是工作端亦称探头,它与被测体相距X,由光源发出的光纤传到端部出射后再经被测体反射回来,另一束光纤接收光信号由光电转换器转换成电量,而光电转换器转换的电量大小与间距X有关,因此可用于测量位移。

五、实验注意事项

1、实验时注意光纤探头与反射面保持平行,调整光纤探头使其位于反射面的圆心上。

2、实验前应用纸巾擦拭反射面,以保证反射效果。

六、实验步骤

1、根据图9-1安装光纤位移传感器,二束光纤插入实验板上的座孔上。其内部已和发光管D及光电转换管T 相接。

图9-1 光纤传感器安装示意图

2、将光纤实验模板输出端VO1与数显单元相连,见图9-2。

图9-2光纤传感器位移实验接线图

3、调节测微头,使探头与反射面圆平板接触。

4、实验模板接入±15V电源,合上主控台电源开关,调RW使数显表显示值最小,然后微调测微头使数显表显示为0.000(电压选择置2V档)。

6、根据上表数据,作光纤位移传感器的位移——输出曲线图。计算在量程1mm时灵敏度和非线性误差。

七、实验报告

在实验报告中填写《实验报告二十五》,详细记录实验过程中的原始记录(数据、图表、波形等)并结合原始记录进一步理解实验原理。

八、实验思考题

根据实验步骤(6)中的光纤位移传感器的位移——输出曲线图,分析其原理。

实验三机械手接近觉实验

机器人运动学描述了机器人关节与组成机器人的各刚体之间的运动关系。主要包括机器人末端手的位姿分析、速度分析、加速度分析等。当已知所有关节变量时,可用正运动学来确定机器人末端手的位姿。如果要使机器人末端手放在特定的点上并且具有特定的姿态,可用逆运动学来计算出每一关节变量的值,以此来实现对机器人进行运动分析、离线编程、轨迹规划等工作。机械手是应用计算机控制技术的教学实验装置本实验装置是一种具有接近觉、接触觉、滑动觉、力觉、热觉等五种感觉的两自由度智能机械手,所有感觉集中于手爪部位,通过手爪对模拟工件的操作,实现感觉信息的测量。在该实验装置上,可单独完成以下机器人感觉实验:

·接近觉实验

·接触觉实验

·滑动觉实验

·力觉实验

·热觉实验

·示教和再现操作(工作方式类同于一般示教再现机器人)

·自适应抓取实验(抓取鸡蛋、玻璃瓶等易碎物)

·多信息融合算法实践

作为实验装置,它使学生直接面对科学研究前沿,除多个实验可做生动的演示外,在信息处理部分可以融入自己的算法思想。在技术上,它具有控制方式灵活、人机界面友好、实验系统结构开放等特点。可作为“机械制造及其自动化”、“自动化”、“电子信息工程”等本科专业《机器人技术》课程的实验装置,也可用作相关专业研究生实践及研究开发平台。

整个实验装置由机械手本体、控制器、计算机等三部分组成,系统组成示意图如图0-1所示。

机械手本体由多感觉手爪(其中力传感器装在腕部)、升降筒、支撑力柱和底座工作平台等组成,手爪的张开与闭合及手臂的升降均由步进电机驱动。手爪为丝杠螺母传动,带动一平移夹持机构实现手爪开合。升降是滚珠丝杠传动,螺母与升降筒固定在一起,由直线导轨保持其运动精度。

控制器由控制面板(含液晶显示)、传感器信号处理板、机械手控制板、电机驱动器、直流电源等组成。控制面板(含液晶显示)是人机界面,由按键输入,液晶输出。传感器信号处理板完成各种感觉信息的模拟信号处理,分别输出到PC机和机械手控制板。机械手控制板包括感觉信号的A/D转换、键盘输入处理

和各种实验功能的实现(含手爪及升降电机的控制)。

计算机是各种感觉信息的演示界面,用LABVIEW软件开发,能用多个窗口观察各个感觉信息的实时变化,并进行多感觉信息融合算法的实践。

实验主菜单界面

首先将介绍具体的软件运行界面,以及菜单的使用方法。在打开多感觉机械手实验装置软件后,将直接弹出如图0-2所示的实验菜单界面:

标题框

菜单框

图0-2 实验菜单界面

由图0-2可知,实验菜单界面主要由标题框和菜单框组成。其中菜单框共包含7个菜单项,每个菜单项分别是一个实验的入口,要进入某个实验只需单击相应的菜单项,本实验系统可以提供的实验分别是:

1.自适应抓取实验

在自适应抓取实验中,将完成同时对4个传感器的数据采集并显示数据的波形,而且可以实现将某个传感器信号窗口进行放大观察的功能。

2.未知材料特征值提取实验

在未知材料特征提取实验中主要完成对未知材料的力觉特征和热觉特征的提取,并且提供一组参数,这些参数将在后续的多信息融合实验中用来判断机械手所抓取的工件的材质。

3.多信息融合实验

在多信息融合实验中将使用未知材料特征提取实验中所获取的数据进行处理和判断,并给出机械手所抓物体属于某种材料的概率。

4.接近觉实验

在接近觉实验中,将实现对单一的接近觉传感器信号的数据采集和分析。

5.触滑觉实验

在触滑觉实验中,将实现对单一的触滑觉传感器信号的数据采集和分析。6.力觉实验

在力觉实验中,将实现对单一的力觉传感器信号的数据采集和分析。 7.热觉实验

在热觉实验中,将实现对单一的热觉传感器信号的数据采集和分析。 在完成实验以后要退出实验菜单,可按下实验菜单界面的最下方的退出键,如果要重新开始运行,可以点击位于windows 工具栏上的空箭头按钮(如图0-3所示),它将再次启动程序。

注意:

除了可以在实验菜单中手工的选择做某个实验,也可以由控制箱选择作某个实验,即在控制箱上通过按键选择作何种实验,可以通过单片机和计算机的通信可以实现软件自动选择作的实验。为了让软件自动实现实验的选择,必须确保从控制箱的串行通信线正确的接到计算机的COM 1口。假如串行通信线未成功连接,计算机将需要手工的选择作何种实验,即通过菜单上的按键来实现实验的选择。

实验一 机械手操作实验

一、实验目的

1.了解机械手的控制结构和示教方式;

2.

二、实验装置

多感觉机械手实验装置 三、实验原理

机械手控制结构(框图)如图1-1所示。

重新开始按钮

图0-3 实验菜单界面

图中,8155接口负责机械手张开极限和升降极限位置的

I/O 检测、对液晶的输出显示控制;ADC0809完成对各种感觉信号的AD 转换并输入到计算机;2864芯片用于存储各个实验的经验数据,两块8253完成对步进电机的脉冲信号输出及其计数。

机械手示教工作:在示教工作模式下,利用面板(图1-2)上的相应键操纵手臂、手爪,使之完成预期的轨迹。操作者可通过液晶显示了解当前工作区位置、示教内容(工作点数)、当前机械手位置等信息。 示教模式工作流程如图1-3示:

图1-1 多感觉机械手控制系统结构示意图

四、操作步骤:

1.熟悉操作面板,通过面板上的“模式”按钮选择示教工作模式,显示如下:

2.按确认键,进入示教模式,显示如下:

其中A—00表明当前工作区为A区(可通过工作区键切换至B、C、D区),目前无工作点数(00),工作点最大可保存60点,不能超出;A:2AF0表明手臂当前位置;G:0000表明手爪当前位置。

3.示教过程中可以利用手爪的开、合,手臂的升、降点动和连续动作实现任务。

如:手臂上升到指定位置后,显示:

按下“记忆”键,系统将机械手此运动过程保存下来供再现使用,显示如下:

此时,表明系统已完成记忆工作,可继续进行示教工作。

4.在示教模式下,若想删除该工作区中的记忆内容,利用“删除”键实现。该功能键按下后,将当前示教区最后一个示教工作点删除,如此反复操作,可删除当前示教区所有工作点,以备新的示教程序使用。显示如下:

5.当示教完成后,利用“模式”选择键切换到再现模式下,显示如下:

表明当前再现任务工作区为A区,工作区示教点数为6。

6.按下“确认”键后机械手将先执行回原点(寻找绝对原点)操作,然后按照示教顺序完成示教任务。显示如下:

STEP—01表明当前机械手正在完成第一个示教点的工作任务,然后依次是02、03、

04、05、06,然后停止。再次按下“确认”键后重复上述操作过程。

实验二接近觉实验

一、实验目的

了解机器人接近觉的工作原理。

二、实验装置

多感觉机械手实验装置;PCI6024E采集卡;计算机

机械手控制结构(框图)如图1-1所示。

图中,8155

接口负责机械手张开极限和升降极限位置的I/O 检测、对液晶的输出显示控制;ADC0809完成对各种感觉信号的AD 转换并输入到计算机;2864芯片用于存储各个实验的经验数据,两块8253完成对步进电机的脉冲信号输出及其计数。

三、实验原理

接近觉采用红外反射光强法,其工作原理如下。

红外反射光强法接近觉的测量原理,如图2-1所示。由红外发光管发射经过调制的信号,红外光敏管接收经目标物反射的红外调制信号,环境红外光干扰的消除由信号调制和专用红外滤光片保证。

设输出信号V out 代表反射光强,则V out 是探头至工件间距离X 的函数: V out =f(x ,p)

式中p 表示工件的反射系数。

当工件为p 值一致的物体时,X 和V out 一一对应。典型的响应为非线性曲线,如图2-2所示,X 距离的推算根据预先对各种目标物的接近觉测量实验数据通过

图1-1 多感觉机械手控制系统结构示意图

插值得到。

反射系数p 与目标物表面颜色、粗糙度等有关,当目标物颜色较深、接近黑色或透明时,反射光很弱。若以输出信号达到某一阈值作为“接近”时,则对不同目标物,因其表面的颜色和粗糙度是不同,“接近”的距离是不同的。红外光强法接近觉对大多数目标物是能找到“接近”感觉的,所以这一并不十分精确的简单测距系统用做机器人的接近觉是完全能够胜任的。

接近觉信号处理电路分为发射部分和接收部分。信号调制与发射部分采用方波调制,电路见图2-3,调制信号(方波)由NE555产生,其调制频率由R1、R2、C2确定,改变电阻R2可改变占空比。调制频率约为500Hz 。图中虚线框为接近传感器的红外发光管部分。

发射A

图2-3 接近觉信号调制与发射

图2-1 红外光强法接近觉原理

图2-2 接近觉响应曲线

Vout

X

目标物

发射

接收X +5V

A B +5V

图2-4 接近觉信号接收与解调

信号接收及解调电路如图2-4所示,虚线框中为红外光敏三极管。图中第一级用于检测所接收的红外光强度,电路中C3起直流隔离作用,抑制环境噪声(环境光)的影响,后续电路由模拟开关和运放组成的混合电路实现解调功能。IC5A ,IC5C 为双向模拟开关,控制信号由图中C 、D 提供,控制逻辑相反。在正负半周分别控制不同的电路接入IC4B 运放,使正负对称的方波在输出时变为其绝对值,经低通滤波完成输出直流信号与接近距离的对应关系。解调过程波形分析如图2-5所示。

发射信号E F

调制信号

t

t

G

H

化学计算与测量实验之实验4分子振动

实验4 分子振动 实验目的 (1)完成H2O分子、CO2分子、氯代环丙烷分子、正丁酸分子的计算,掌握红外光谱的吸收图的绘制和每个振动的模式的分子图;找出实验的数据进行对比 (2)从理论上剖析振动光谱、简振模式,以及简振模式与振动光谱的对应关系。 (3)掌握红外光谱与Raman光谱的识别,掌握谱图中峰的辨认 计算方法 用密度泛函的B3LYP方法,在含有弥散函数的AUG-cc-pVDZ基组水平上,对分子做对称性限制的优化。在优化构型的基础上,进行简振频率、IR强度、Raman活性和简振模式的计算。计算使用Gaussian98程序包。 这是一个关于有机分子振动光谱的实验,涉及简振频率、红外光谱、拉曼光谱以及简振模式的计算。主要分析讨论简振模式的振动方式与分类、简振模与振动光谱的对应关系等。振动分析的结果会给出分子的全部振动模式。分子中的各个原子被放在一个称为标准取向的笛卡尔直角坐标系中。各个原子的振动则在该点的一个平行子坐标系中给出其在各轴上的分量。Chemcraft程序则可以直接转换成矢量形式,并动态模拟各个模式的振动。其频率值和振动的红外和拉曼强度也同时给出。注意要分析两种不同振动光谱产生的原因以及强度与振动的关系。 本实验依旧使用Schr?dinger equation与The Born-Oppenheimer Approximation,公式如下: 双原子分子振动能量: 当v=0时,能量最低,即在绝对零度时,振动能量为1/2。该能量也被称为零点能。

红外光谱红外光谱法是一种根据分子对特定频率的波的吸收来确定物质分子结构和鉴别化合物的分析方法。 物质产生红外吸收光谱必须满足两个条件: ①电磁波能量与分子两能级差相等,这决定了吸收峰出现的位置。 ②分子振动时其偶极矩必须发生变化。 拉曼光谱是一种散射光谱。拉曼光谱分析法是与入射光频率不同的散射光谱进行分析以得到分子振动、转动方面信息,并应用于分子结构研究的一种分析方法。 分子振动的过程中,极化率的变化导致拉曼光谱的产生,化学键的伸缩对极化率影响较大,而键角的变化影响则较小。 计算结果 (1)H2O 偶极矩Tot=2.1261 振动模式

实验一 DHVTC振动测试与控制学生实验系统的

实验一 DHVTC振动测试与控制学生实验系统的 组成与使用方法 一、实验目的 1、了解振动测试与控制实验系统的组成、安装和调整方法。 2、学会激振器、传感器与数采分析仪的操作、使用方法。 图1-1 二、DHVTC振动测试与控制学生实验系统的组成 图1-1 DHVTC振动测试与控制学生实验系统示意图 (1)底座(2)支座(3)二(三)自由度系统(4)薄壁圆板(5)非接触式激振器(6)接触式激振器(7)力传感器(8)偏心电机(9)磁电式速度传感器(10)被动隔振系统(11)简支梁(12)主动隔振系统(13)单/复式动力吸振器(14)压电式加速度传感器(15)电涡流位移传感器(16)磁性表座(17)单自由度系统 如图1-1所示,实验系统由“振动与控制实验台”、激振测振系统与动态分析仪组成。 1、振动与控制实验台 振动测试与控制实验台由弹性体系统(包括简支梁、悬臂梁、薄壁圆板、单自由度系统、二自由度系统、多自由度系统模型)配以主动隔振、被动隔振用的空气阻尼减震器、单式动

力吸振器、复式动力吸振器等组成。可完成振动与振动控制等20多个实验的试验平台。 2、激振系统与测振系统 (1) 激振系统 激振系统包括: DH1301正弦扫频信号源 JZ-1型接触式激振器 JZF-1型非接触式激振器 偏心电动机、调压器 力锤(包括测力传感器) (2) 测振系统 动态采集分析仪 MT-3T型磁电式振动速度传感器 DH130压电式加速度传感器 WD302电涡流位移传感器 测力传感器 (3) 动态采集分析系统 信号调理器 数据采集仪 计算机系统(或笔记本电脑) 控制与基本分析软件 模态分析软件 三、DHVTC-59型仪器的使用方法 1、激振系统的使用方法 DH1301型正弦扫频信号源 DH1301型正弦扫频信号源是配有功率放大后的正弦激振信号源,可推动JZ-1型接触式激振器或JZF-1型非接触式激振器。 A、技术指标:频率范围0.1~9999.99Hz 谐波失真<1% 最大输出功率5w 输出电流0~500 m A 功耗20w

桥梁施工测量方案

桥梁施工测量方案 测量是桥梁工程非常关键的工作,必须密切配合业主和监理方作好本工程测量工作,根据设计文件,按照规定的精度,将图纸上设计的桥梁墩台位置标定于地面,据此指导施工,确保建成的桥梁在平面位置、高程位置和外形尺寸等均符合设计要求。 一工程概述 中铁十局集团有限公司承建济南特大桥,此桥全长27532.19m,起止里程DK1+908.95~DK29+441.14,中心里程为:DK15+675.1。全桥墩台身共846个,桥墩采用圆端型实体桥墩,墩身高度3.5~17.5m;顶帽托盘采用C35钢筋混凝土,简支梁支承垫石采用C40钢筋混凝土,连续梁支承垫石采用C50钢筋混凝土;承台根据环境作用不同分别采用C35、C40、C45混凝土;钻孔桩共6954根(305215延米),桩径类型为1.0m,1.25m,1.5m,单根桩长30m~55m,桩基根据环境作用不同采用C30、C35、C40混凝土摩擦桩。 中铁十局济青高铁2标二分部承建济南特大桥DK13+500~DK27+000(351#墩~770#墩)的桥梁单位工程,施工内容包括基础及下部构造和区间连续梁部分,其中桩基础共3353根,承台419个,墩身419个。线路在DK11+354.76647~DK14+675.774为左偏曲线,曲线半径7000m;在DK18+791.680~DK22+588.693为左偏曲线,曲线半径8000m;在DK22 +951.956~DK29 +676.349为右偏曲线,曲线半径8500m。桥梁在DK21+124.28及DK24+554.08:分别上跨既有X303县道和潘王路,上部均采用(32+48+32)m连续梁。14+519.11:跨莱济高速公路上部采用(48.5+56+48.5)m连续梁。 二编制依据 1、《国家一、二等水准测量规范》(GB12897—1991); 2、《国家三、四等水准测量规范》(GB12898-1991);

机械振动实验报告

机械振动实验报告

《机械振动基础》实验报告(2015年春季学期)

专业机械设计制造及其自动化报告提交日期2015.05.07 哈尔滨工业大学

报告要求 1. 实验报告统一用该模板撰写,必须包含以下内容: (1) 实验名称 (2) 实验器材 (3) 实验原理 (4) 实验过程 (5) 实验结果及分析 (6) 认识体会、意见与建议等 2. 正文格式:四号字体,行距为1.25倍行距; 3. 用A4纸单面打印;左侧装订; 4. 报告需同时提交打印稿和电子文档进行存档,电子文档由班长收 齐,统 一发送至:Iiuyingxiang868@hit .edu .cn 5. 此页不得删除。 评语: 实验一报告正文 实验名称:机械振动的压电传感器测量及分析 教师签名: 年

二、实验器材 1、机械振动综台实验装置(压电悬臂梁)一套 2、激振器一套 3、加速度传感器一只 4、电荷放大器一台 5、信号发生器一台 6、示波器一台 7、电脑一台 & NI9215数据采集测试软件一套 9、NI9215数据采集卡一套 三、实验原理 信号发生器发出简谐振动信号,经过功率放大器放大,将简谐激励信号施加到电磁激振器上,电磁激振器振动杆以简谐振动激励安装在激振器上的压电悬臂梁。压电悬臂梁弯曲产生电流显示在示波器上,可以观测悬臂梁的振动情况;另一方面,加速度传感器安装在电磁激振器振动杆上,将加速度传感器与电荷放大器连接,将电荷放大器与数据采集系统连接,并将数据采集系统连接到计算机(PC机)上,操作NI9215数据采集测试软件,得到机械系统的振动响应变化曲线,可以观测电磁激振器的振动信号,并与信号发生器的激励信号作对比。实验中的YD64-310型压电式加速度计测得的加速度信号由DHF-2型电荷放大器后转变为一个电压信号。电荷放大器的内部等效电路如图1所示。

桥梁测量放线实例

项目工程概况 一、地形地貌 本项目位于关中平原东部地区,渭河两岸,路线总体呈南北走向,大部分位于渭河以北的渭河平原,少部分位于渭河以南的黄土台塬区,沿线地貌单元有渭河河床与漫滩、渭河一、二、三级阶地及渭河南岸黄土台塬。 二、工程地质与气象 1.路线所经区域内分为:渭河冲积平原工程地质区和黄土塬工程地质区。 渭河冲积平原工程地质区:位于本区渭河及其支流阶地分布区。低阶地土体结构为砂土、粘性土,砂土互层;高阶地上部为黄土、下部为粘性土、砂土、卵砾土。主要工程地质问题有:河漫滩、一级阶地区的饱和砂土液化和高阶地亚区的湿陷性黄土地基。 黄土塬工程地质区:位于本区的黄土塬,塬面平坦开阔,土体结构为单一的黄土,黄土塬路段的黄土地基存在的湿陷性黄土、黄土边坡变形问题。 2.渭南地区地处大陆腹地,在全国气候区划中属汾渭暖温带大陆性半干旱季风气候区,年平均气温11.6℃~1 3.6℃,元月份平均气温-1.2℃,极端最低气温-18.6℃,七月份平均气温26.6℃,极端最高气温42.7℃,年平均降雨量586.6~612.6mm,多集中在七~九月份。初霜一般在十月底,终霜为四月初,年最大积雪厚度为17cm,最大冻结深度10~45cm,工程施工基本不受季节限制。

三、交通、电力、通讯、施工用水条件 1.项目工程所在区域位于渭南地区,进入工地交通条件良好,现有国道108和省道201及地方道路,公路运输十分便利。 2.照明、生活用电可与乡村电网合并使用,工程用电可从渭南至蒲城之间的高压电路中挂接。 3.项目区域具有一定的有线通讯服务系统,无线通讯顺畅。 4.生活用水可引就近乡村的自来水,工程用水可利用就近农村灌溉水井、渠道水源。 四、主要工程量 渭蒲高速公路起点位于蒲城县东南东杨乡,与西禹高速公路相接,终点位于渭南市东赤水沟口西,与连霍高速公路相接,路线全段均在渭南市境内。 C-C02标段起点K3+800,终点为K17+400,全长13.5986km (短链1.389m)。主要工程内容为: 1.路基工程 (1)路基特殊处理:强夯:430853m2,置换碎石64988.84m3;冲击碾压:15遍188654m2,30遍162638m2;素土隔水墙6948.37m;8%石灰土垫层210775m3;水泥搅拌桩9669m;路床处理:填开山石渣497552m3,桥头路基处理:填开山石渣46474m3,6%石灰土15624 m3。 (2)路堤填筑:填筑开山石渣1932253m3,填筑砂砾314868m3。

振动测试系统

一、振动测试系统 1.主要功能 DASP V10振动测试系统包括信号采集和实时分析软硬件。DASP V10 是一套运行在Windows95/98/Me/NT/2000/Xp平台上的多通道信号采集和实时分析软件,通过和东方所的不同硬件配合使用,即可构成一个可进行多种动静态试验的试验室。DASP V10 软件既具有多类型视窗的多模块功能高度集成特性,具有操作便捷的特点。基于东方所在各种工程应用领域的长期经验,DASP-V10对各种功能模块重新进行整合,成为一套功能更加全面、操作更加便捷、界面更加美观、性能继续保持领先的动静态信号测试分析系统。DASP V10 软件的每一个模块中均包含了非常多的功能,各种功能可交错使用,在测试和分析的功能和性能上突破了以往信号分析仪的种种限制,与INV系列采集仪配合形成的系统的各项指标均可达到或超过国家高级仪器的标准。DASP V10 软件的所有测试分析结果都可以多种方式输出,包括图形的复制、存盘、打印,数据导出为TXT、CSV、Excel电子表格和Access数据库格式,并可轻松输出图文并茂的Word格式或者Html格式的分析报告。基于DASP V10 的平台上,还可以运行专业模态和动力学分析系统、虚拟仪器库、信号发生器以及针对声学、旋转机械、路桥土木、计量检定等行业的多种软件系统,满足各方面各层次的测试和分析需求。

3.隶属 (1)实验室:水机测控实验室(B01-205/207) (2)负责人:魏德华 二、ANSYS/CFD流体分析软件 1.主要功能 FLUENT、CFX是目前国际上比较流行的商用CFD软件包,国际市场占有率达70%。凡跟流体、热传递及化学反应等有关的领域均可使用。它具有丰富的物理模型、先进的数值方法以及强大的前后处理功能,在航空航天、汽车设计、石油天然气、涡轮机设计等方面都有着广泛应用,包括管路、渠道、流体机械、燃烧、环境分析、油气消散/聚积、喷射控制、多相流等方面的流动计算分析。 2.主要设备 3.隶属 (1)实验室:水机测控实验室(B01-205/207) (2)负责人:石祥钟

普通铁路桥梁施工测量放样步骤

普通铁路桥梁施工测量放样步骤 关键词:桥梁施工测量 1.控制点埋设 施工前现场埋设控制点,每个桥位埋设两个控制点,控制点之间的距离大于桥梁的长度。控制点位置便于观测放样。控制点的高度如果能和垫石位置齐平最好。距离路线有一定距离,防止路基施工破坏掉。 2.控制点坐标测量 控制点埋设完后,用GPS测量其坐标,这的桥长都不是很长,最长的有7跨,7跨32米梁。用GPS采集坐标时没有采用静态测量的功能,STONEX这款仪器RTK有个测量控制点的功能,架在那采集30个坐标,并计算平均值。 只用平面坐标,不用高程,高程用电子水准仪另测。本项目采用工程独立坐标系统.水准测量步骤如下图:从基准控制点到一个节点的往返闭合差小于规范再进行下一步测量,最后闭合到另一个基准点。 3.控制点坐标校验 全站仪复核两个点的距离,实测距离比设计距离小1CM,假如两点间距160米,说明坐标有问题,固定一个点的坐标,保持方位角不变,重测或重算另一点的坐标,X,Y值与之前相比有几毫米的差距。这样用全站仪放样出来的桥梁位置与设计的平面位置有点偏差,有1cm左右的偏差。但是结构尺寸是准确的。全站仪测距是经过校核的。 4.施工放样坐标的计算

接下来的工作是计算坐标,因为图纸没有给出各个部位的设计坐标,所以要自己算,办法就是用CAD画图的功能画出来。怎么画如下:首先计算线路坐标,采用计算软件(可用“轻松测量”,“道路测量员”等)计算桥墩中线,前墙台尾所对应的路线坐标。在墩中心位置处垂直于路线切线作垂线,计算垂线上点的坐标,比如路线右侧10米点坐标(计算软件有相应的功能)。这样桥墩的轴线就确定了。打开CAD画图软件用多段线(PL)功能,输入坐标(格式为Y,X),在此基础上画出墩。曲线桥图纸上是向路线外侧偏移40cm,半径小于1200米就有个E值,在图纸上有曲线布置图,所以在画桥墩图的时候,不但要偏移40CM,还要偏移E值。画CAD图时,比例按1:1画,画出来的图就是实际的平面尺寸。 画图时画出承台的图形,它的中点在曲线上,墩柱的中心是不和路线重合的,它沿垂直路线方向偏移40 E,偏向曲线的外侧。 桥台布置图采用的是折线布置方式,台前台尾统统偏移E,向曲线外侧偏移。如图: 5.放样 采用全站仪放样,莱卡TS06型全站仪放样步骤:设站,任意架设全站仪在方便观测的位置,后视两个控制点,这是后方交会法设站。仪器架在一个点上,对中整平,后视另一个控制点,这是坐标定向法设站。设站完成后就可以放样了,将待放样的坐标点输入仪器,选择放样功能,放样哪个点就选择哪个点,水平旋转照准部ΔHZ=0,指挥持镜者

2016年《振动测试实验》综合练习题 (2)

2016年《振动测试实验》综合练习题 1、关于振动传感器,请回答以下问题: 1)振动传感器主要有那些类型?哪种传感器目前使用最广泛? 答:①振动传感器按所测机械量分为位移传感器、速度传感器、加速度传感器、力传感器、应变传感器、扭振传感器、扭矩传感器。 ②目前使用最广泛的是加速度传感器。 2)加速度传感器安装方式有哪些?对于飞机空中振动环境测试,你认为哪几种安装方式较合适? 答:①加速度传感器安装方式:刚螺栓连接、胶合螺栓、石蜡粘接、双面胶、永久磁铁。 ②对于飞机空中振动环境测试,用刚螺栓连接、胶合螺栓较合适。 3)加速度传感器和力传感器的主要技术指标? 答:(1)灵敏度:电信号输出与被测运动输入之比。加速度传感器的灵敏度通常为V/g或PC/ms-2、V/ms-2。力传感器的灵敏度通常为V/N。(2)频率响应特性(包括幅频特性和相频特性)。(3)动态范围:可测量的最大振动量与最小振动量之比。下限取决于连接电缆和测量电路的电噪声,上限取决于传感器的结构强度。(4)横向灵敏度:垂直于主轴的横向振动也会使传感器产山输出信号。该信号与主轴灵敏度的百分比为横向灵敏度。(5)幅值线性度:实际传感器的输出信号只在一定幅值范围内与被测振动成正比(即保持线性特性)。在规定线性度内可测幅值范围称为线性范围。 4)一般振动数据采集设备最大输入电压为10伏。测量一结构加速度响应,加速度最大值预估约为20g,现有加速度传感器甲(灵敏度:50mv/g)、乙(灵敏度:500mv/g)各一只,选用哪一个传感器?请说明理由。 答:灵敏度等于输入电压除以加速度为10V/20g = 500 mv/g,所以选择乙传感器。 2、关于激振器,请回答以下问题: 1)常用的激振器安装方式有哪两种?两种安装方式的分别有何技术要求? 答:①常用的激振器安装方式:刚性支承、柔性悬挂。 ②刚性支承安装要求:垂直向、横向、纵向支承刚度足够大。 支承系统(激振器+支架)的最低阶固有频率>试验件最高阶固有频率。 柔性悬挂安装要求:垂直向、横向、纵向支承刚度足够小。

桥梁监控测量方案

桥梁监控测量方案 导线控制测量、桥轴线测量控制、墩、台、桩定位测量、支座垫石施工放样和支座安装、桥面控制测量、高程控制测量 1、导线控制测量 利用设计单位提供的已知点,用全站仪(必要时用GPS)补测导线点,并形成三维导线控制网进行桥轴线平面位置控制。经环导闭合测量,角度闭合差、坐标闭合差均满足一级导线技术要求。 2、桥轴线测量控制 利用已知的控制点坐标及施工图提供的桥轴线控制点坐标,用坐标放线法进行各匝道桥桥轴线恢复测量。即以桥轴线长度作为一个边,而布置成闭合导线,再采用坐标法施放轴线上各点。 3、墩、台、桩定位测量 施工阶段测定桥轴线长度,目的就是为了建立起施工放样墩、台、桩的平面控制。墩、台、桩定位测量的内容就是准确定出桥墩、台、桩的中心位置和它的纵轴线。可根据设计单位提供的墩、台、桩设计坐标,按坐标反算求出坐标法的放样数据,用以施放墩、台、桩平面位置。同时采用坐标法,在不同曲线控制点、交点设站,直接测距,对施放的墩、台、桩位置进行复核验证。 (1)桩基础钻孔定位放样 根据设计图计算出每个桩基中心的放样数据,设计图纸中已给出的数据也应经过复核后方可使用。施工放样采用全站仪坐标法进行。 (2)承台施工放样 用全站仪坐标法放出承台轮廓线特征点,供安装模板用。通过吊线法和水平靠尺进行模板安装,安装完毕后,用全站仪测定模板四角顶口坐标,直至符合规范和设计要求。用水准仪进行承台顶面的高程放样,其精度应达到四等水准要求,用红油漆标示出高程相应位置。 (3)墩身放样 桥墩墩身形式多样,大型桥梁地般采用分离式矩形薄壁墩。墩身放样时,先在已浇筑承台的顶面上放出墩身轮廓线的特征点,供支模板用(首节模板要严格控制其平整度)。用全站仪测出模板顶面特征点的三维坐标,并与设计值相比较,

振动测试实验

转子实验报告测量和分析参数: 通道数: 4 ; 采样频率: 2048Hz ; dt: 0.488281ms 数字跟踪滤波设置:不滤波 通道参数 表1: 通道参数 结果图形:

转子实验报告测量和分析参数: 通道数: 4 ; 采样频率: 2048Hz ; dt: 0.488281ms 数字跟踪滤波设置:不滤波 通道参数 表1: 通道参数 结果图形:

转子实验报告测量和分析参数: 通道数: 4 ; 采样频率: 2048Hz ; dt: 0.488281ms 数字跟踪滤波设置:不滤波 通道参数 表1: 通道参数 结果图形:

小结 本次实验为DASP(柔性转子实验),实验的目的是为了:①了解轴系挠度曲线与转 子转速变化关系;②观察转子在临界速度时的振动现象,振动幅值的变化情况;③测出临界 转速下柔性转子的一阶振型。 本次实验的变量为柔性转子不同转数500r/min、1000r/min、1500r/min,其余为不 变量。通过实验所生成的图表,可以直观明了的看到,随着转数的增加,柔性转子的轴心轨 迹由橄榄形(500r/min)→蝌蚪形(1000r/min)→包子形(1500r/min)。而其水平、垂直 位移的波形曲线也变的紧促、光滑和圆润。 通过本次实验,可以为摩托车发动机轴系结构的振动问题的研究,提供一定事实依据。也为我们研究此类问题做了一个很好的铺垫。 本次实验的实验仪器和设备为重庆科技学院提供,来源于东方振动和噪声技术研究所INV1612型(多功能柔性转子实验系统)。 小结 本次实验为单通道频谱分析,实验的目的是为了研究不同频率段的简支梁的振动情况。同时,测出此简支梁的共振点。 本次实验的变量为不同频率40Hz、45Hz、50Hz,其余为不变量。实验中,主要测得 了在不同频率的振动下的加速度、速度、位移,从而直观的反应出不同频率下的振动的能量 的大小。从实验的图形结果分析,可知在不同频段下的振幅表现为正态分布的特点。在梁的 共振频率段的振幅表现的最为强烈,而在低于或高于共振频率段的振动能量呈现出衰减的事态。 通过本次实验,可以为摩托车车架结构的振动问题的研究,提供一定事实依据。也为 我们研究此类问题做了一个很好的铺垫。 本次实验的实验仪器和设备为重庆科技学院提供,来源于东方振动和噪声技术研究所INV1601型(振动与控制教学实验系统)。

振动试验系统现状与发展

振动试验系统现状与发展 振动试验的目的在于确定所设计、制造的机器、构件在运输和使用过程中承受外来振动或者自身产生的振动而不至破坏,并发挥其性能、达到预定寿命的可靠性。随着对产品,尤其是航空航天产品可靠性要求的提高,作为可靠性试验关键设备的振动试验系统的发展显得越来越重要。 60年代,702所为满足航天产品振动试验的需要,开始了振动试验系统的研制,包括推力10N至100kN的振动台及各种振动测量仪表和传感器。目前,702所的振动试验设备不仅在航天领域而且在其他行业发挥着作用,成为该所的一项重要民品。用于振动试验的振动台系统从其激振方式上可分为三类:机械式振动台、电液式振动台和电动式振动台。从振动台的激振方向,即工作台面的运动轨迹来分,可分为单向(单自由度)和多向(多自由度)振动台系统。从振动台的功能来分,可分为单一的正弦振动试验台和可完成正弦、随机、正弦加随机等振动试验和冲击试验的振动台系统。以下笔者对各种振动台,主要对电动振动台,及其辅助设备的结构、性能和成本的现状及发展等进行简单的论述。 1.机械式振动台 机械式振动台可分为不平衡重块式和凸轮式两类。不平衡重块式是以不平衡重块旋转时产生的离心力来激振振动台台面,激振力与不平衡力矩和转速的平方成正比。这种振动台可以产生正弦振动,其结构简单,成本低,但只能在约 5Hz~100Hz的频率范围工作,最大位移为 6mm峰-峰值,最大加速度约10g,不能进行随机振动。 凸轮式振动台运动部分的位移取决于凸轮的偏心量和曲轴的臂长,激振力随运动部分的质量而变化。这种振动台在低频域内,激振力大时,可以实现很大的位移,如100mm。但这种振动台工作频率仅限于低频,上限频率为20Hz左右。最大加速度为3g左右,加速度波形失真很大。 机械式振动台由于其性能的局限,今后用量会越来越小。 2.电液式振动台 电液式振动台的工作方式是用小的电动振动台驱动可控制的伺服阀,通过油压使传动装置产生振动。这种振动台能产生很大的激振力和位移,如激振力可高达104kN,位移可达2. 5m,而且在很低的频率下可得到很大的激振力。大激振力的液压台比相同推力的电动式振动台价格便宜。电液台的局限性在于其高频性能较差,上限工作频率低,波形失真较大。虽然可以做随机振动,但随机振动激振力的rms额定值只能为正弦额定值的1/3以下。这种振动台因其大推力、大位移可以弥补电动振动台的不足,在未来的振动试验中仍将发挥作用,尤其是在船舶和汽车行业会有一定市场。 3.电动式振动台

施工图桥梁测量参数复核实例计算

施工图桥梁测量参数复核实例计算 (惠罗10标项目经理部张斌斌毛锦波) [摘要] 一些工程项目由于忽视施工图纸的审核工作,在施工过程中出现桩基、盖梁、支座垫石平面位置、标高偏差、梁长偏差等引发的质量问题,严重影响了项目的工程进度和质量,鉴于测量在图纸会审中的重要作用,下面本文就以惠罗10标公峨1#大桥右幅桥为例,重点阐述如何进行桥梁图纸中的竖曲线、平曲线、坐标、标高、横坡和梁长等测量参数的复核。 [关键词]:图纸会审;平曲线;竖曲线;纵断面;坐标;标高;横坡;梁长 1 、工程概况 1.1 桥梁工程地质概况 公峨1#大桥位于云贵高原与广西丘陵过渡的斜坡地带。桥区附近海拔516.5~650.0m,相对高差133.5m;轴线通过段地面高程为525.7~568.7m之间,相对高差为43.00m;桥位所处地面起伏变化较大。桥区位于罗甸县罗妥乡所管辖,有乡村公路通知桥 1.2 桥梁结构类型 ①. 通过两阶段施工的设计,对线性的优化以及调整,本阶段左幅1#桥采用7X30米预应力砼先简支 后连续的T型桥梁,左幅2#桥采用2X30米预应力砼先简支后连续的T型桥梁,左幅3#桥采用20X30预应力砼先简支后结构连续T型梁桥方案。 ②. 桥型结构上部结构:预应力砼先简支后连续T型梁; 下部结构:0#岸桥台采用重力式U型桥台,承台桩基础,20#台采用扩大基础施工。桥墩为钢筋砼圆形双柱式墩,基础为桩基础。 ③. 桥面采用分离式,桥面宽度为12.25m;具体布置为0.5m(护栏)+11.25(行车道)+0.5(护栏)。桥面 铺装为0.1(沥青)+防水层+0.08(混凝土)。 1.3 桥梁线性指标 1.3.1 平曲线 本桥平面分别位于圆曲线(起始桩号:YK106+538,终止桩号为YK106+686.872,半径:R=800m,左偏曲线)、缓和曲线(起始桩号:YK106+686.872,终止桩号:YK106+836.872,参数:A=346.410,左偏曲线)、直线(起始桩号:YK106+836.872,终止桩号:K107+006.007)、圆曲线(起始桩号:K107+006.007,终止桩号:107+156.889,半径R=2500m,右偏曲线),本初桥位17-20跨为整幅路基宽度,本桥处于断链上右幅YK107+000.122=整幅K107+006.007。桥墩径向布置,计算坐标以及桩基坐标是应该加以注意断链处坐标的处理。如下表1.3.1-1表所示

振动测试必须知道的27个基本常识59388

振动测试必须知道的27个基本常识 (2015-12-16 10:52:39) 转载▼ 标签: 杂谈 1、什么是振动 振动是机械系统中运动量(位移,速度和加速度)的振荡现象。 2、振动实验的目的 振动试验的目的是模拟一连串振动现象,测试产品在寿命周期中,是否能承受运输或使用过程的振动环境的考验,也能确定产品设计和功能的要求标准。振动试验的精义在于确认产品的可靠性及提前将不良品在出厂前筛检出来,并评估其不良品的失效分析使其成为高水平,高可靠性的产品。 3、振动分几种 振动分确定性振动和随机振动两种。 4、什么是正弦振动 能用一项正弦函数表达式表达其运动规律的周期运动。例如凡是旋转、脉动、振荡(在船舶、飞机、车辆、空间飞行器上所出现的)所产生的振动均是正弦振动。 5、正弦振动的目的 正弦振动试验的目的是在试验室内模拟电工电子产品在运输、储存、使用过程中所遭受的振动及其影响,并考核其适应性。 6、正弦振动的试验条件 正弦振动试验的验条件(严酷等级)由振动频率范围、振动量、试验持续时间(次数)共同确定。 7、什么是振动频率范围 振动频率范围表示振动试验由某个频率点到某个频率点进行往复扫频。例如:试验频率范围5-50Hz,表示由5Hz到50Hz进行往复扫频。 8、什么是频率 频率:每秒振动的次数.单位:Hz。 9、什么是振动量

振动量:通常通过加速度、速度和位移来表示。加速度:表示速度对时间倒数的矢量。加速度单位:g或m/s2速度:在数值上等于单位时间内通过的路程位移:表示物体相对于某参考系位置变化的矢量。位移单位:mm 10、什么是试验持续时间 振动时间表示整个试验所需时间,次数表示整个试验所需扫频循环次数。 11、什么是扫频循环 扫频循环:在规定的频率范围内往返扫描一次:例如:5Hz→50Hz→5Hz,从5Hz 扫描到50Hz后再扫描到5Hz。 12、什么是重力加速度 重力加速度:物体在地球表面由于重力作用所产生的加速度。1gn=10m/s2(GB/T 2422-1995 电工电子产品环境试验术语) 13、扫描方式分几种 线性扫描:是线性的,即单位时间扫过多少赫兹,单位是Hz/s或Hz/min,这种扫描用于细找共振频率的试验。对数扫描:频率变化按对数变化,扫描率可以是oct/min ,对数扫描的意思是相同的时间扫过的频率倍频程数是相同的。 14、什么是扫描速度 扫描速度(sweep speed):指从最低频率扫描到最高频率的速度。有以下几种:1)oct/min:多少倍频程每分钟。例:1oct/min,5Hz到10Hz需1分钟,10Hz到20Hz需1分钟。2)min/sweep:多少分钟每次扫频。例:5-500Hz,扫描速度:1分钟/sweep,表示从5Hz到500Hz需1分钟。3)Hz/s:多少Hz每秒。例:5-10Hz,扫描速度:1Hz/s,表示5Hz到6Hz需1秒,6Hz到7Hz需1秒。 15、振动试验中有几个方向 除有关规范另有规定外,应在产品的三个互相垂直方向上进行振动试验。一般定义产品长边为X轴向,短边为Y轴向,产品正常摆放上下为Z轴向。 16、什么是交越频率 交越频率:在振动试验中由一种振动特性量变为另一种振动特性量的频率。如交越频率由等位移——频率关系变为等加速度——频率关系时的频率。 17、为什么要共振搜寻 一般待测物上有各种零组件,而每一个不同的零组件,皆有其不同的共振频率,同时会因形状、重量、固定方式不同而在振动发生时产生不同的共振频率及放大

DHVTC-5901振动测试与控制实验系统组成与使用方法

实验一DHVTC-5901振动测试与控制实验系统组成与使用方法 一、实验目的 1、了解振动测试与控制实验系统的组成、安装和调整方法。 2、学会激振器、传感器与动态分析仪的操作、使用方法。 二、DHVTC振动测试与控制实验系统的组成 图1-1DHVTC振动测试与控制学生实验系统示意图 (1)底座(2)支座(3)二(三)自由度系统(4)薄壁圆板(5)非接触式激振器(6)接触式激振器(7)力传感器(8)偏心电机(9)磁电式速度传感器(10)被动隔振系统(11)简支梁(12)主动隔振空气阻尼器(13)单/复式动力吸振器(14)压电式加速度传感器(15)电涡流位移传感器(16)磁力表座 如图1-1所示,实验系统由“振动与控制实验台”、激振测振系统与动态分析仪组成。 1、振动与控制实验台 振动测试与控制实验台由弹性体系统(包括简支梁、悬臂梁、薄壁圆板、单自由度系统、二自由度系统、多自由度系统模型)配以主动隔振、被动隔振及动力吸振用的空气阻尼减震

器、单式动力吸振器、复式动力吸振器等组成。是完成振动与振动控制等近30个实验的试验平台。 2、激振系统与测振系统 (1)激振系统 激振系统包括: DH1301正弦扫频信号源 JZ-1型接触式激振器 JZF-1型非接式触激振器 偏心电动机、调压器 力锤(包括测力传感器) (2)测振系统 动态采集分析仪 ZG-1型磁电式振动速度传感器 压电式加速度传感器 WD302电涡流位移传感器 测力传感器 (3)动态采集分析系统 信号调理器 数据采集仪 计算机系统(或笔记本电脑) 控制与基本分析软件 模态分析软件 三、DHVTC-59型仪器的使用方法 1、激振系统的使用方法 DH1301型正弦扫频信号源是配有功率放大器的正弦激振信号源,可推动JZ-1型接触式激振器或JZF-1型非接式触激振器。 A、技术指标:频率范围10-1000Hz 谐波失真〈1% 最大输出功率5ω 输出电流0~500 m A 功耗20ω

振动平台系列设计试验

机械振动平台 设计性实验讲义(草) 编写:封玲 物理教学实验中心 2011.3.

机械振动平台系列设计实验 振动是声学、地震学、建筑力学、机械原理、造船等所必需的基础知识,也是光学、电学、交流电工学、无线电技术以及原子物理学所不可缺少的基础,这是因为除机械振动外,自然界中还存在很多类似于机械振动的现象。在不同的振动现象中最基本最简单的振动是简谐振动,一切复杂的振动都可以分解为一系列不同频率的简谐振动组合而成,这样的分解在数学上的依据是傅立叶级数或傅立叶积分的理论。让我们从研究最基础的简谐振动开始进行振动的研究吧。 平台仪器 转动传感器(CI-6538):它的核心是一个光学编码器,每转(360°)最多可采集1440个数据点。通过数据采集与处理软件可以设置每转采集数据点的个数,有360个数据点和1440个数据点(即分辨率为1°或360°)两种设置,旋转的方向同样可被感知。转动传感器最常用于测量物体的转动角度与转动位置。 光电门(ME-94F98A ):光电门也称为光电开关,利用狭窄的红外光束和快速的下降时间为计时提供精确的信号。当光门的光被挡住时,与光门相连的数字通道为0电压状态;光门透光时,与光门相连的数字通道为5V 电压状态。光门传感器相当于一个数字毫秒计,它通过测量固定挡光宽度(S )和挡光时间(t),从而可以得到该物体经过光门时的运动速度 (t S v / )。 机械振荡驱动器(ME-8750):用于驱动低频(0.3-3 Hz )、高转矩、正弦振荡设备,它由DC 电机、位移驱动臂、装配支架组成。驱动臂通过拉动细线,带动振荡设备进行正弦振荡。 功率放大器 II (CI-6552A ):是PASCO 计算机接口的附件。它放大从电脑输出的信 号,可以作为一个可控的DC 电源或AC 函数发生器。在DA TA STUDIO 软件控制下,可以生成正弦波sine 、方波square 、三角波triangle 和锯齿波sawtooth 。这意味着电脑现在可被用作DC 或AC 信号发生器给外电路供电。 直流电源(GPS —1850D ):18V/5A 。 受迫振动组合仪:该仪器是上述各仪器散件的组装,专用以测量研究受迫振动和受迫阻尼振动的运动规律。组装仪器主要包括:转动传感器(CI-6538)2个、金属圆盘1个、阻尼磁铁1个、弹簧2个、机械振荡驱动器(ME-8750)1个、A 型大支架1个等。

桥梁工程测量方案

桥梁测量定位放样 一、轴线测设 1、控制点的测设 本工程的控制网用2秒级ZL全站仪测设,测量计算将全部采用计算机程序化计算,严格按测量复核制进行,控制网经监理认可后方可采用。 A、首先,对设计院的测量交底桩与水准点进行复核,复核时须注意相邻标段控制点的校核。平面控制点的精度应满足边长相对误差≤1/40000,水准点的精度应符合±12√LMM。复核结果经现场监理复核认可后方可使用。根据设计所交的导线桩按照施工需要进行平面加密,设施工控制网,加密采用导向网或边角网,加密平均密度为300M,精度应满足边长相对误差≤1/40000。为了确保控制网的可靠性,将根据现场条件把控制点都选定在施工作业影响范围以外的地方,用混凝土护桩,做到各控制点的通视性良好,符合施工需要。控制点选定后经过实测和导线闭合的平差计算把整个工程范围内的控制点坐标确定。考虑到桩基施工和地基的沉降,将根据施工阶段定期复核整个控制网; B、根据控制点按施工需要测设平面曲线五要素和特殊点; C、总体测设(各桥墩纵横轴线),在桥位两侧布置墩台轴线控制点,在设定控制点时要充分考虑施工对场地的需要,把控制点布置在不影响施工的地方,桥位两侧各布置2点,并用混凝土护桩。注意相邻桥墩位置和距离的校核和斜交角方向核对,相邻桥墩距离精度确保±5MM并记录下控制点之间的距离及点到桥位点的距离。桥墩纵横轴线测设完毕后经现场监理复核认可后方可使用。丈量跨度和预制梁的钢尺均需经过校核鉴定。 2、下部结构的测设 本工程桥梁的桩基、立柱、箱梁均根据总样测定。及时熟悉设计图纸、领会设计意图是必要的,在计算桥墩放样要素时要特别注意复核,以免出错。 A、桩基放样:根据墩台纵横轴线用钢尺测设四根边角桩位,并用钢尺复核这四根桩的相对位置无误后,根据这四个点用钢尺测设桥墩的其他桩位; B、立柱放样:根据桩基轴线桩测设立柱纵横轴线。立柱纵横轴线用红色三角标注在已浇制完毕的桩基上; C、箱梁放样:箱梁是控制跨径和桥面标高的重要项目,因此箱梁测设时必

实验一+机械振动基本参数测量

实验一机械振动基本参数测量 一、实验目的 1、掌握位移、速度和加速度传感器工作原理及其配套仪器的使用方法。 2、掌握电动式激振器的工作原理、使用方法和特点。 3、熟悉简谐振动各基本参数的测量及其相互关系。 二、实验内容 1、用位移传感器测量振动位移。 2、用压电加速度传感器测量振动加速度。 3、用电动式速度传感器测量振动速度。 三、实验系统框图 实验设备及接线如图所示 四、实验原理

在振动测量中,振动信号的位移、速度、加速度幅值可用位移传感器、速度传感器或加速度传感器来进行测量。 设振动位移、速度、加速度分别为 、 、 ,其幅值分别为 、 、 ,当 时,有 式中:ω—振动角频率, —初相角, 则位移、速度、加速度的幅值关系为 由上式可知,振动信号的位移、速度、加速度的幅值之间有确定的关系,根据这种关系,只要用位移、速度或加速度传感器测出其中一种物理量的幅值,在测

出振动频率后,就可计算出其它两个物理量的幅值,或者利用测试仪或动态信号分 析仪中的微分、积分功能来进行测量。 简谐振动位移幅值的测量有多种方法,如测幅尺、读数显微镜、CCD激光位移传感器、电涡流位移传感器、加速度和速度传感器等。下面介绍测幅尺和读数显 微镜的测量原理。 1、测幅尺。是在一小块白色金属片上,画上带有刻度的三角形制成。使用 时,将三角形按直角短边平行于振动方向粘帖在振动物体上,当振动频率较快时, 标尺上的三角形因视觉暂留效果看起来形成上下两个灰色三角形,其重叠部分是一 个白色三角形。振动幅值与测幅尺尺寸之间的关系为 其中 为振动信号的幅值, 和 分别为测幅尺的长直角边和短直角边的长度, 为两个直角三角形的交点到顶点的距离。测幅尺的使用有一定局限性,它不能用于 频率小于10Hz、振动幅值小于0.1mm的振动信号测量,且由于测幅尺尺寸的限制,最大测量位移为三角形短直角边长度的二分之一。 2、读数显微镜。有内读数和外读数两种,外读数最小可测位移为0.01mm,内读数最小可测位移为0.05mm。测量时,首先在振动物体上贴一反光线或细砂纸,并用灯照亮,当结构静止时,调整显微镜位置,以清晰的看到许多亮点,当结 构振动时,由于视觉的暂留效果,这些亮点就成为许多直线。直线的长度与被测位 移的幅值关系为

转子实验平台振动实验报告

实验技能考核报告 姓名:专业:学号: 实验题目:转子振动测试实验 教师评语: 实验成绩:优□良□合格□不合格□ 实验指导教师签名:日期:年月日 实验报告 (1)实验目的 ①熟悉振动信号采集和处理的基本方法基本原理 ②掌握基本的振动信号测试的流程; ③测试转子在不同的转速下轴的振动情况。 (2)实验内容 ①组装好实验设备。实验中用到的设备有:电机(SSC-611(A)最大转速11000rpm)、脉冲编码器(型号OSS-05-1,500pr)、电涡流加速度传感器、示波器、直流电源。其中脉冲编码器用来测量转速,电涡流加速度传感器用来测量轴上X方向和Y 方向的振动,示波器用来显示脉冲编码器的脉冲信号,直流电源用来给传感器供电。实验设备实物连接图如图1所示。 ②调节电机在不同的转速,用实验室研发的Labview测试软件观察振动的时域波形和频域波形。

图1 实物连接图 (3)结果归纳与分析 当电机转速为2100r/min(频率35Hz)时,竖直Y方向的振动的时域图和频 域图如图2所示。 图2 转速为2100r/min时的时域图和频域图 由图2可知,频域上对于频率35Hz上,信号出现最大值,但此处频率对应 的信号幅值却小于其他频率对应的幅值。 当电机转速为3300r/min(55Hz)时,X方向和Y方向振动信号的时域图和频 域图如图3所示。图3中上面的图(第一通道)为Y方向振动情况,下面的图(第

二通道)为X方向振动情况。 图3 转速为3300r/min时的时域图和频域图 由图3可知,频域上对应频率在55Hz处,信号出现最大值。 当电机转速为3600r/min(60Hz)时,转子振动的Y方向、X方向时域图和频域图如图4所示。

振动法测量杨氏模量实验

动态法测量杨氏模量 杨氏模量是描述固体材料弹性形变的一个重要物理量,测量杨氏模量的方法很多,我们学过的有静态拉伸法,其缺点是不能真实地反映材料内部结构的变化,而且不能对脆性材料进行测量,本实验采用动态法。 一、 实验目的 1. 学习用动态法测量杨氏模量的原理和方法。 2. 学会用示波器观察判断样品共振的方法。 二、 实验仪器 LB-YM (动态)弹性模量测定仪、功率函数信号发生器、示波器、激发—接收换能器、悬挂测定支架及支撑测定支架。试样若干、悬丝、游标卡尺、螺旋测微计。 三、 共振法测量杨氏模量的基本理论 任何物体都有其固有的振动频率,这个固有振动频率取决于试样的振动模式、边界条件、弹性模量、密度以及试样的几何尺寸、形状。只要从理论上建立了一定振动模式、边界条件和试样的固有频率及其他参量之间的关系,就可通过测量试样的固有频率、质量和几何尺寸来计算弹性模量。 1. 杆振动的基本方程 一细长杆做微小横(弯曲)振动时,取杆的一端为坐标原点,沿杆的长度方向为x 轴建立坐标系,利用牛顿力学和材料力学的基本理论可推出杆的振动方程: 0442 2=??+??x U EI t U λ (1) 式中U (x , t )为杆上任一点x 在时刻t 的横向位移;E 为杨氏模量;I 为绕垂直于杆并通过横截面形心的轴的惯量矩;λ为单位长度质量。 对长度为L ,两端自由的杆,边界条件为: 弯矩 022=??=x U EJ M 作用力 3 3x U EJ x M F ??-=??= 即x = 0, L 时: 02 2=??x U ,033=??x U (2) 用分离变量法解微分方程(1)并利用边界条件(2),可推导出杆自由振动的频率方程: 1ch cos =?kL kL (3) 其中k 为求解过程中引入的系数,其值满足: EI k λ ω24 = (4) ω为棒的固有振动角频率。从方程(4)可知,当λ、E 、I 一定时,角频率ω(或频率f )是 待定系数k 的函数,k 可由方程(3)求得。方程(3)为超越方程,不能用解析法求解,利用数值计算法求得前n 个解为: π ππππ)2 1 (,,5005.4, 5004.3,4997.2,5060.14321+≈====n L k L k L k L k L k n 这样,对应k 的n 个取值,棒的固有振动频率有n 个f 1,f 2,f 3,…,f n 。其中f 1为棒振动的基频,f 2、f 3、…分别为棒振动的一次谐波频率、二次谐波频率、…。弹性模量是材料的特性参数,与谐波级次无关,根据这一点可以倒出谐波振动与基频振动之间的频率关系为:

相关主题
文本预览
相关文档 最新文档