当前位置:文档之家› 汇编语言的格式

汇编语言的格式

汇编语言的格式
汇编语言的格式

5.2 汇编语言源程序的格式

在第四章介绍指令系统时曾给出若干程序举例,但是,它们仅仅是一些程序片段,并不是完整规范的汇编语言源程序。下而给出一个比较简单,然而比较规范的汇编语言源程序。例5.1要求将两个五字节16进制数相加,可以编写出以下汇编语言源程序。

DATA SEGMENT ;定义数据段DATA1 DB 0F8H,60H,0ACH,74H,3BH ;被加数

DATA2 DB 0C1H,36H,9EH,0D5H,20H ;加数

DATA ENDS ;数据段结束CODE SEGMMENT ;定义代码段

ASSUME CS:CODE,DS:DA TA

START:MOV AX,DATA

MOV DS,AX ;初始化DS

MOV CX,5 ;循环次数送CX

MOV SI,0;置SI初值为0

CLC;清CF标志LOOPER:MOV AL,DATA2[SI];取一个字节加数

ADC DA TA1[SI],AL;与被加数相加

INC SI;SI加1

DEC CX;CX减1

JNZ LOOPER;若不等于0,转LOOPER

MOV AH,4CH

INT21H;返回DOS CODE END;代码段结束

END START;源程序结束

5.2.1 分段结构

由上面的例子可以看出,汇编语言源程序的结构是分段结构形式,一个汇编语言源程序由若干段(SEGMENT)组成,每个段以SEGMENT语句开始,以ENDS语句结束。整个源程序的结尾是END语句。

这里所说的汇编语言源程序中的段与前面讨论的CPU管理的存储器的段,既有联系,又在概念上有所区别。我们已经知道,微处理器对存储器的管理是分段的,因而,在汇编语言程序中也要求分段组织指令、数据和堆栈,以便将源程序汇编成为目标程序后,可以分别装入存储器的相应段中。但是,以8086/8088 CPU为例,它有四个段寄存器(CS,ES,SS和DS),因此CPU对存储器按照四个物理段进行管理,即数据段,附加段,堆栈段和代码段。任何时侯CPU只能访问四个物理段。而在汇编语言源程序中,设置段的自由度比较大。例如一个源程序中可以有多个数据段或多个代码段等等。一般来说,汇编语言源程序中段的数目可以根据实际需要而设定。为了和CPU管理的存储器物理段相区别,我们将汇编语言程序中的段称为逻辑段。在不致发生混淆的地方,有时简称为段。

在上面的简单源程序中只有两个逻辑段,一个逻辑段的名字是DATA,其中存放着与程序有关的数据,称为逻辑数据段;另一个逻辑段的名字是CODE,其中包含着程序的指令,称为逻辑代码段。每个段内均有若干行语句(STA TEMENT),因此,可以说一个汇编源程序是由一行一行的语句组成的。下面我们来讨论汇编语言语句的类型和组成。

5.2.2 汇编语言语句的类型和格式

一.语句的类型

汇编语言源程序中的语句可以分为两种类型:指令语句,伪指令语句。

⒈指令语句:它是能产生目标代码,CPU 可以执行的能完成特定功能的语句。

⒉伪指令语句:它是一种不产生目标代码的语句,它仅仅在汇编过程中告诉汇编程序应如何汇编。例如,告诉汇编程序已写出的汇编语言源程序有几个段,段的名字是什么;定义变量,定义过程,给变量分配存储单元,给数字或表达式命名等。所以伪指令语句是为汇编程序在汇编时用的。

二.语句的格式

指令语句与伪指令语句的格式是类似的。一般情况下,汇编语言的语句可以由1~4部分构成:

[名字]? 助记符? [操作数]? [;注释]

其中带方括号的部分表示任选项,既可以有,也可以没有。例5.1中有如下语句:

LOOPER:MOV AL,DATA2[SI];取一个字节加数

DA TA1DB0F8H,60H,0ACH,74H,3BH;被加数

第一条语句是指令语句,其中“LOOP ER:”是名字,“MOV”是指令助记符,“AL,DA TA2[SI]”是操作数,“;”后面是注释部分;第二条语句是伪指令语句,其中“DATA1”是名字,“DB”是伪指令定义符,“0F8H,60H,0ACH,74H,3BH”是操作数,“;”后面是注释部分。下面对汇编语言中的各个组成部分进行讨论。

⒈名字

汇编语言语句的第一个组成部分是名字(Name)。在指令语句中,这个名字是一个标号。指令语句中的标号实质上是指令的符号地址。并非每条指令语句必须有标号,但如果一条指令前面有一标号,则程序中其它地方就可以引用这个标号。在例5.1中,START、LOOPER 就是标号。标号后面通常有一个冒号。

标号有三种属性:段、偏移量和类型。

①标号的段属性是定义标号在程序段的段地址,当程序中引用一个标号时,该标号的段值应在CS寄存器中。

②标号的偏移量属性表示标号所在段的起始地址到定义该标号的地址之间的字节数。偏移量是一个16位无符号数。

③标号的类型属性有两种:NEAR和FAR。前一种标号可以在段内被引用,地址指针为2个字节;后一种标号可以在其它段被引用,地址指针为4字节。如果定义一个标号时后跟冒号,则汇编程序确认其类型为NEAR。

伪指令语句中的名字可以是变量名、段名、过程名。与指令语句中的标号不同,这些伪指令语句中的名字并不总是任选的,有些伪指令规定前面必须有名字,有些则不允许有名字,也有一些伪指令的名字是任选的。即不同的伪指令对于是否有名字有不同的规定。伪指令语句的名字后面通常不跟冒号,这是它和标号的一个明显区别。

很多情况下伪指令语句中的名字是变量名,变量名代表存储器中一个数据区的名字,例

如例5.1中的DATA1、DA TA2就是变量名。

变量也有三种属性:段、偏移量和类型。

①变量的段属性是变量所代表的数据区所在段的段地址。由于数据区一般在存储器的数据段中,因此变量的段地址常常在DS和ES寄存器中。

②变量的偏移量属性是该变量所在段的起始地址与变量的地址之间的字节数。

③变量的类型属性有BYTE(字节)、WORD(字)、DWORD (双字)、QWORD (四字)、TBYTE(十字)等,表示数据区中存取操作对象的大小。

⒉助记符

汇编语言语句中的第二个组成部分是助记符(Memonic)。

在指令语句中的第二部分是CPU指令系统中指令的助记符,例如:MOV ADC等等。助记符约有90多种,在第四章中已经进行了详细的讨论。

在伪指令语句中的第二部分是伪指令的定义符,例如:DB、SEGMENT、ENDS 、END 等都是伪指令定义符。它们在程序中的作用是定义变量的类型、定义段以及告诉汇编程序结束汇编等。关于伪指令的作用和使用方法,将在本章第三节进行讨论。

⒊操作数

汇编语言语句中的第三个组成部分是操作数。在指令语句中是指令的操作数,可能有单操作数或双操作数,也可能无操作数;而在伪指令中可能有更多个操作数。当操作数不止一个时,相互之间应该用逗号隔开。

可以作为操作数的有:常数、寄存器、标号、变量和表达式等。

⑴常数

常数就是指令中出现的哪些固定值,可以分为数值常数和字符串常数两类。例如,立即数寻址时所有的立即数,直接寻址时所有的地址,ASCII字符串都是常数,常数是除了自身的值以外,没有其它属性的数值。在源程序中,数值常数按其基数的不同,可有二进制数,八进制数,十进制数,十六进制数等几种不同表示形式。汇编语言用不同的后缀加以区别。

还应指出,汇编语言中的数值常数的第一位必须是数字,否则汇编时将被看成是标识符,如常数B7H应写成0B7H,FFH应写成0FFH。字符串常数是由单引号括起来的一串字符。例如…ABCDEFG?和…179?。单引号内的字符在汇编时都以ASCII的代码形式存放在存储单元中。如上述两字符串的ASCII代码为41H,42H,43H,44H,…,48H和31H,37H,39H。字符串最长允许有255个字符。

⑵寄存器

8086/8088CPU的寄存器可以作为指令的操作数。

⑶标号

由于标号代表一条指令的符号地址,因此可以作为转移(无条件转移或条件转移)、过程调用CALL以及循环控制LOOP指令的操作数。

⑷变量

因为变量是存储器中某个数据区的名字,因此在指令中可以作为存储器操作数。

⑸表达式

汇编语言语句中的表达式,按其性质可分为两种:数值表达式和地址表达式。数值表达式产生一个数值结果,只有大小,没有属性。地址表达式的结果不是一个单纯的数值,而是一个表示存储器地址的变量或标号,它有三种属性:段、偏移量和类型。

表达式中常用的运算符有以下几种:

1) 算术运算符

常用的算术运算符有:+(加),-(减),*(乘),/(除)和MOD(模除,即两个整数相除后取余数)等。

以上算术运算符可用于数值表达式,运算结果是一个数值。在地址表达式中通常只使用其中的+和-(加和减)两种运算符。

2) 逻辑运算符

逻辑运算符有:AND(逻辑“与”),OR(逻辑“或”)、XOR(逻辑“异或”)和NOT(逻辑“非”)。

逻辑运算符只用于数值表达式中对数值进行按位逻辑运算,并得到一个数值结果。对地址进行逻辑运算是没有意义的。

3) 关系运算符

关系运算符有:EQ(等于),NE(不等),LT(小于),GT(大于),LE(小于或等于),GE(大于或等于)等。

参与关系运算的必须是两个数值或同一段中的两个存储单元地址,但运算结果只可能是两个特定的数值之一:当关系不成立(假)时,结果为0(全0);当关系成立(真)时,结果为0FFFFH(全1)。例如:

MOV AX,4 EQ 3 ;关系不成立,故(AX)←0

MOV AX,4 NE 3 ;关系成立,故(AX)←0FFFFH

4) 分析运算符

分析运算符用于分析一个存储器操作数的属性,如段值,偏移量和类型等,或取得它所定义的存储空间的大小。分析运算符有SEG、OFFSET、TYPE、SIZE和LENGTH等。

① SEG运算符

利用运算符SEG可以得到一个标号或变量所在段的段地址。例如下面两条指令将变量ARRAY的段地址送DS寄存器。

MOV AX,SEG ARRAY

MOV DS,AX

② OFFSET运算符

利用运算符OFFSET可以得到一个标号或变量的偏移地址,例如:

MOV DI,OFFSET DA TA1

③ TYPE运算符

运算符TYPE的运算结果是一个数值,这个数值与存储器操作数类型属性的对应关系见表5.1。

下面是使用TYPE运算符的例子:

V AR DW;变量V AR的类型为字

ARRAY DD10 DUP(?);变量ARRAY的类型为双字

STR DB'THIS IS TEST';变量STR的类型为字节…

MOV AX,TYPE V AR;(AX)←2

MOV BX,TYPE ARRAY;(BX)←4

MOV CX,TYPE STR;(CX)←1

其中的DW、DD、DB等为伪指令定义符,这将在第三节中介绍。

表5.1TYPE返回值与类型的关系

TYPE返回值存储器操作数的类型

1 BYTE

2 WORD

4 DWORD

6 FWORD

8 QWORD

10 TBYTE

-1 NEAR

-2 FAR

④ LENGTH运算符

如果一个变量已用重复操作符DUP说明其变量的个数,则利用LENGTH 运算符可得到这个变量的个数。如果未用DUP说明,则得到的结果总是1。

例如上面的例子中已经用“10 DUP(?)”说明变量ARRAY的个数,则LENGTH ARRAY 的结果为10。

⑤ SIZE运算符

如果一个变量是已用重复操作符DUP说明,则利用SIZE 运算符可得到分配给该变量的字节总数。如果未用DUP说明,则得到的结果是TYPE运算的结果。

例如上面例子中变量ARRAY的个数为10,类型为DWORD(双字),因此,SIZE ARRAY 的结果为10×4=40。由此可知,SIZE的运算结果等于LENGTH的运算结果乘以TYPE 的运算结果。

5) 合成运算符

合成运算符可以用来建立或临时改变变量或标号的类型或存储器操作数的存储单元类型。合成运算符有PTR、THIS、SHORT等。

① PTR运算符

PTR运算符可以指定或修改存储器操作数的类型,例如:

INC BYTE? PTR[BX][SI]

指令中利用PTR运算符明确规定了存储器操作数的类型是BYTE(字节),因此,本指令将一个字节型存储器操作数加1。

利用PTR运算符可以建立一个新的存储器操作数,它与原来的同名操作数具有相同的段和偏移量,但可以有不同的类型。不过这个新类型只在当前语句中有效。例如:STUFF DD? ;定义STUFF为双字类型变量:

MOV BX,WORD PTR STUFF;从STUFF中取一个字到BX

② THIS运算符

运算符THIS也可指定存储器操作数的类型。使用THIS运算符可以使标号或变量更具灵活性。例如要求对同一个数据区,既可以字节为单位,又可以字为单位进行存取,则可用以下语句:

TAB1EQU THIS WORD

TAB2DB100 DUP(?)

上面TAB1和TAB2实际上代表同一个数据区,其中共有100个字节,但TAB1的类型为WORD(字类型),而TAB2的类型为BYTE(字节类型)。

③ SHORT运算符

运算符SHORT指定一个标号的类型为SHORT(短标号),即标号到引用该标号指令之间的距离在-128~+127个字节的范围内。短标号可以被用于无条件转移指令中。使用短标号的指令比使用缺省的近标号的指令少一个字节。

6) 其它运算符

①段超越运算符“:”

运算符“:”(冒号)跟在段寄存器名(DS,ES,SS和CS)之后,表示段超越,用以给一个存储器操作数指定一个段属性,而不管其原来隐含的段是什么。例如:MOV AX,ES:[DI]

②字节分离运算符LOW和HIGH

运算符LOW和HIGH分别得到一个数值或地址表达式的低位和高位字节。例如:

汇编语言程序格式

汇编语言源程序用语句书写,MASM中可使用的语句分成两类,他们是指令性语句和伪指令语句

1.指令性语句:指令性语句与机器指令相对应,汇编程序将他翻译成目标代码(机器指令代码)。语句格为:

标号:指令助记符操作数,操作数;注释

标号表示指令语句的符号地址,标号后面必须紧跟“:”。标号可以省略,他经常作为转移指令或CALL指令的一个操作数,用以表示地址的转移。

指令助记符是该语句的指令名称的代表号码,他指出操作的类型,汇编程序将其翻译成机器指令。不可省略。

操作数表示参加本指令的运算数据,根据指令的操作类型,操作数不同,中间必须用“,”隔开。

注释指明一条指令的功能,可以省略。

2.伪指令语句

伪指令语句没有对应的机器指令。汇编程序汇编源程序时对伪指令进行处理,他可以完成数据定义,存储区分配,段定义,段分配,指示程序结束功能。伪指令语句的格式为:

名字伪指令指示符操作数,操作数;注释

名字时给伪指令取得名称,他用符号地址表示。伪指令中的名字通常是变量名,段名,过程名、符号名等。

伪指令指示符是汇编程序MASM规定的符号。

操作数是根据伪指令的具体要求来得。

3.数据项

汇编语言中使用的操作数,可以是常数、寄存器、存储器、变量、标号活表达式,其中藏书、变量和标号是三种基本数据项。

⑴常数必须是固定的值,没有属性,是确定的数据。

⑵变量在程序运行中是可以修改的。所有的变量具有三种属性

①段值(SEGMENT):指明变量所在段的基址。

②段内偏移地址(OFFSET):指变量所在地址与段首地址之间的偏移字节数。

③类型(TYPE):变量的类型属性指变量中每个单元所包含的字节数,类型有:字节变量(BYTE)、字变量(WORD)、双字变量(DOUBLE WORD)

⑶标号:标号是指可执行指令语句的地址的符号表示,他可作为转移指令和调用指令的目标操作数,以确定程序转换的目标地址,他具有三个属性。

①段值(SEGMENT):指明标号所在段的基址。

②段内偏移地址(OFFSET):指标号所在地址与所在段段首地址之间的偏移字节数。

③类型(TYPE):标号的类型属性指在转移指令中标号可转移的距离类型.NEAR,表示近标号只能实现在本代码段内转移或调用;FAR,表示远标号,可;以作为其他代码段中的目标地址,实现段间调用或转移。

第三章 8086汇编语言程序格式

第三章8086汇编语言程序格式 练习题 3.4.1 单项选择题 1.下列选项中不能作为名字项的是()。 A.FH B.A3 C.3B D.FADC 2.下列指令不正确的是()。 A.MOV AL,123 B.MOV AL,123Q C.MOV AL,123D D.MOV AL,123H 3.下列指令不正确的是()。 A.MOV BL,OFFSET A B.LEA BX,A C.MOV BX,OFFSET A D.MOV BX,A 4.若定义“BUF DB 1,2,3,4”,执行MOV AL,TYPE BUF 后AL=()。 A.0 B.1 C.2 D.3 5.若定义“A EQU 100”,执行“MOV AX,A”后,AX=()。 A.A的偏移地址B.A单元中的内容 C.100 D.A的段地址 6.若定义“B DW 1,2,10 DUP(0)”,则该伪指令分配()字节单元。 A.10 B.20 C.22 D.24 7.若定义“C DD 2,4”,则该伪指令分配()个字节单元。 A.2 B.4 C.6 D.8 8、伪指令是()规定的汇编说明符,它在源程序汇编时进行说明。 A、DEBUG B、LINK C、MASM D、EDIT 9.在上机操作过程中,MASM命令执行后,除了生成一个目标文件外,根据选择还可以生成一个()文件。 A..LST B..EXE C..MAP D..ASM 10.LINK命令执行后可以生成一个以()为扩展名的文件。 A.ASM B.EXE C.OBJ D.COM 11.一个段最大可定义()字节。 A.1M B.64K C.32K D.16K 12.若要求一个段的起始位置能被256整除的单元开始,在定位方式选项中应选()。 A.BYTE B.WORD C.PARA D.PAGE 13.宏指令与子程序相比,在多次调用时,宏指令调用的目标程序长度比子程序调用的()。 A.相同B.长C.短D.不定 14.宏指令与子程序相比,子程序调用的执行速度比宏指令的()。 A.相同B.快C.慢D.不定 15.ASSUME伪指令说明了汇编程序所定义段与段寄存器的关系,它只影响()的设定。 A.源程序B.目标程序C.汇编程序D.连接程序

(完整word版)汇编语言常用指令大全,推荐文档

MOV指令为双操作数指令,两个操作数中必须有一个是寄存器. MOV DST , SRC // Byte / Word 执行操作: dst = src 1.目的数可以是通用寄存器, 存储单元和段寄存器(但不允许用CS段寄存器). 2.立即数不能直接送段寄存器 3.不允许在两个存储单元直接传送数据 4.不允许在两个段寄存器间直接传送信息 PUSH入栈指令及POP出栈指令: 堆栈操作是以“后进先出”的方式进行数据操作. PUSH SRC //Word 入栈的操作数除不允许用立即数外,可以为通用寄存器,段寄存器(全部)和存储器. 入栈时高位字节先入栈,低位字节后入栈. POP DST //Word 出栈操作数除不允许用立即数和CS段寄存器外, 可以为通用寄存器,段寄存器和存储器. 执行POP SS指令后,堆栈区在存储区的位置要改变. 执行POP SP 指令后,栈顶的位置要改变. XCHG(eXCHanG)交换指令: 将两操作数值交换. XCHG OPR1, OPR2 //Byte/Word 执行操作: Tmp=OPR1 OPR1=OPR2 OPR2=Tmp 1.必须有一个操作数是在寄存器中 2.不能与段寄存器交换数据 3.存储器与存储器之间不能交换数据. XLAT(TRANSLATE)换码指令: 把一种代码转换为另一种代码. XLAT (OPR 可选) //Byte 执行操作: AL=(BX+AL) 指令执行时只使用预先已存入BX中的表格首地址,执行后,AL中内容则是所要转换的代码. LEA(Load Effective Address) 有效地址传送寄存器指令 LEA REG , SRC //指令把源操作数SRC的有效地址送到指定的寄存器中. 执行操作: REG = EAsrc 注: SRC只能是各种寻址方式的存储器操作数,REG只能是16位寄存器 MOV BX , OFFSET OPER_ONE 等价于LEA BX , OPER_ONE MOV SP , [BX] //将BX间接寻址的相继的二个存储单元的内容送入SP中 LEA SP , [BX] //将BX的内容作为存储器有效地址送入SP中 LDS(Load DS with pointer)指针送寄存器和DS指令 LDS REG , SRC //常指定SI寄存器。 执行操作: REG=(SRC), DS=(SRC+2) //将SRC指出的前二个存储单元的内容送入指令中指定的寄存器中,后二个存储单元送入DS段寄存器中。

汇编语言程序设计(第四版)第3章【课后答案】

汇编语言程序设计第四版 【课后习题答案】--囮裑為檤 第3章汇编语言程序格式 〔习题3.1〕伪指令语句与硬指令语句的本质区别是什么?伪指令有什么主要作用? 〔解答〕 伪指令语句与硬指令语句的本质区别是能不能产生CPU动作; 伪指令的作用是完成对如存储模式、主存变量、子程序、宏及段定义等很多不产生CPU动作的说明,并在程序执行前由汇编程序完成处理。 〔习题3.2〕什么是标识符,汇编程序中标识符怎样组成? 〔解答〕 为了某种需要,每种程序语言都规定了在程序里如何描述名字,程序语言的名字通常被称为标识符; 汇编语言中的标识符一般最多由31个字母、数字及规定的特殊符号(如-,$,?,@)组成,不能以数字开头。 〔习题3.3〕什么是保留字,汇编语言的保留字有哪些类型,并举例说明。 〔解答 保留字是在每种语言中规定了有特殊意义和功能的不允许再做其它用处的字符串;汇编语言的保留字主要有硬指令助记、伪指令助记符、运算符、寄存器名以及预定义符号等。汇编语言对大小写不敏感。如定义字节数和字符串的DB就是伪指令助记符。 〔习题3.4〕汇编语句有哪两种,每个语句由哪4个部分组成? 〔解答〕 汇编语句有执行性语句和说明性语句; 执行性语句由标号、硬指令助记符、操作数和注释四部分组成; 说明性语句由名字、伪指令助记符、参数和注释四部分组成 〔习题3.5〕汇编语言程序的开发有哪4个步骤,分别利用什么程序完成、产生什么输出文件。 〔解答〕 ⒈编辑文本编辑程序汇编语言源程序.asm ⒉汇编汇编程序目标模块文件.obj ⒊连接连接程序可执行文件.exe或.com

⒋调试调试程序应用程序 〔习题3.6〕区分下列概念: (1)变量和标号 (2)数值表达式和地址表达式 (3)符号常量和字符串常量 〔解答〕 (1)变量是在程序运行过程中,其值可以被改变的量;标号是由用户自定义的标识符,指向存储单元,表示其存储内容的逻辑地址。 (2)数值表达式一般是由运算符连接的各种常数所构成的表达式,地址表达式是由名字、标号以及利用各种的操作符形成的表达式。 (3)在程序中,为了使常量更便于使用和阅读,经常将一些常量用常量定义语句定义为符号常量,被一对双引号括起来的若干个字符组成的字符序列被称为字符串常量。 〔习题3.7〕假设myword是一个字变量,mybyte1和mybyte2是两个字节变量,指出下列语句中的错误原因。 (1)mov byte ptr [bx],1000 (2)mov bx,offset myword[si] (3)cmp mybyte1,mybyte2 (4)mov al,mybyte1+mybyte2 (5)sub al,myword (6)jnz myword 〔解答〕 (1)1000超出了一个字节范围 (2)寄存器的值只有程序执行时才能确定,而offset是汇编过程计算的偏移地址,故无法确定,改为lea bx,myword[si] (3)两个都是存储单元,指令不允许 (4)变量值只有执行时才确定,汇编过程不能计算 (5)字节量AL与字量myword,类型不匹配 (6)Jcc指令只有相对寻址方式,不支持间接寻址方式 〔习题3.8〕OPR1是一个常量,问下列语句中两个AND操作有什么区别? AND AL,OPR1 AND 0feh 〔解答〕

(完整word版)汇编语言指令集合-吐血整理,推荐文档

8086/8088指令系统记忆表 数据寄存器分为: AH&AL=AX(accumulator):累加寄存器,常用于运算;在乘除等指令中指定用来存放操作数,另外,所有的I/O指令都使用这一寄存器与外界设备传送数据. BH&BL=BX(base):基址寄存器,常用于地址索引; CH&CL=CX(count):计数寄存器,常用于计数;常用于保存计算值,如在移位指令,循环(loop)和串处理指令中用作隐含的计数器. DH&DL=DX(data):数据寄存器,常用于数据传递。他们的特点是,这4个16位的寄存器可以分为高8位: AH, BH, CH, DH.以及低八位:AL,BL,CL,DL。这2组8位寄存器可以分别寻址,并单独使用。 另一组是指针寄存器和变址寄存器,包括: SP(Stack Pointer):堆栈指针,与SS配合使用,可指向目前的堆栈位置; BP(Base Pointer):基址指针寄存器,可用作SS的一个相对基址位置; SI(Source Index):源变址寄存器可用来存放相对于DS段之源变址指针; DI(Destination Index):目的变址寄存器,可用来存放相对于ES 段之目的变址指针。 指令指针IP(Instruction Pointer) 标志寄存器FR(Flag Register) OF(overflow flag) DF(direction flag) CF(carrier flag) PF(parity flag) AF(auxiliary flag) ZF(zero flag) SF(sign flag) IF(interrupt flag) TF(trap flag) 段寄存器(Segment Register) 为了运用所有的内存空间,8086设定了四个段寄存器,专门用来保存段地址: CS(Code Segment):代码段寄存器; DS(Data Segment):数据段寄存器; SS(Stack Segment):堆栈段寄存器;

汇编语言程序设计课后习题解答宋人杰2版

第1章汇编语言基础知识 1.简述汇编语言源程序、汇编程序、和目标程序的关系。 答:用汇编语言编写的程序称为汇编源程序;汇编源程序在汇编程序的翻译下转换成计算机语言变成目标程序。 2. 简述汇编语言的优缺点。 答:(1) 汇编语言的优点: ①可有效地访问、控制计算机各种硬件设备,如磁盘、存储器、CPU、I/O端口等。. ②目标代码简短,占用内存少,执行速度快,是高效的程序设计语言。 ③可与高级语言配合使用,应用十分广泛。 (2) 汇编语言的缺点: ①通用性和可移植性较差 ②相对于高级语言来说较繁锁、易出错、不够直观。 3.CPU的寻址能力为8KB,那么它的地址总线的宽度为多少? 答:13 4. 1KB的存储器有多少个存储单元? 答:1024个字节。 5. 指令中的逻辑地址由哪两部分组成? 答:指令中的逻辑地址由段基址和偏移量组成。 6. 以下为用段基址:偏移量形式表示的内存地址,试计算它们的物理地址。 (1) 12F8:0100 (2) 1A2F:0103 (3) 1A3F:0003 (4) 1A3F:A1FF 答: (1) 13080H (2) 1A3F3H (3) 1A3F3H (4) 245EFH 7. 自12FA:0000开始的内存单元中存放以下数据(用十六进制形式表示): 03 06 11 A3 13 01,试分别写出12FA:0002的字节型数据、字型数据及双字型数据 的值。 答:字节型数据:11H 字型数据:0A311H 双字型数据:0113A311H 8. 内存中某单元的物理地址是19318H,段基地址为1916H,则段内偏移地址为 多少?若段内偏移地址为2228H,则段基地址为多少? 答:若段基地址为1916H,则段内偏移地址为01B8H;若段内偏移地址为2228H,则段基地址为170FH 9. 在实模式环境中,一个段最长不能超过多少字节? 答:64KB 10. 实模式可寻址的内存范围是多少? 答:1MB

汇编语言指令表

汇编语言指令表文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

伪指令 1、定位伪指令 ORG m 2、定义字节伪指令 DB X1,X2,X3,…,Xn 3、字定义伪指令 DW Y1,Y2,Y3,…,Yn 4、汇编结束伪指令 END 寻址方式 MCS-51单片机有五种寻址方式: 1、寄存器寻址 2、寄存器间接寻址 3、直接寻址 4、立即数寻址 5、基寄存器加变址寄存器间接寻址 6、相对寻址 7、位寻址 数据传送指令 一、以累加器A为目的操作数的指令(4条) MOV A,Rn ;(Rn)→A n=0~7 MOV A,direct ;( direct )→A MOV A,@Ri ;((Ri))→A i=0~1 MOV A,#data ; data →A 二、以Rn为目的操作数的指令(3条) MOV Rn ,A;(A)→ Rn MOV Rn ,direct;( direct )→ Rn MOV Rn ,#data; data → Rn 三、以直接寻址的单元为目的操作数的指令(5条) MOV direct,A;(A)→direct MOV direct,Rn;(Rn)→direct MOV direct,direct ;(源direct)→目的direct MOV direct,@Ri;((Ri))→direct MOV direct,#data; data→direct 四、以寄存器间接寻址的单元为目的操作数的指令(3条) MOV @Ri,A;(A)→(Ri) MOV @Ri,direct;(direct)→(Ri) MOV @Ri,#data; data→(Ri) 五、十六位数据传送指令(1条) MOV DPTR,#data16;dataH→DPH,dataL →DPL

实验2 建立运行汇编语言源程序

实验2建立运行汇编语言程序 实验目的: 1.熟悉8088/8086的数据传送和算术运算指令的书写格式、功能。 2.编写源程序,掌握汇编语言程序格式。 3.掌握汇编、连接、运行汇编程序的全过程;使用DEBUG调试和运行汇编程序。 实验内容: 在硬盘E中建立自己的文件夹,以“班级姓名”命名(比如计科1111张三),实验文件以“实验次数-序号”命名,比如sy2-1.asm。 1、有3个内存单元x,,y z,其中x=1234h,y=0c3f6h,z=10c5h,请编写源程序,计算x+2z-y,结果保存在z单元中,并用debug调试运行查看结果,观察标志位变化。 2、写一个完整的源程序,用DEBUG调试运行,查看运行结果。 DATA SEGMENT;定义数据段DATA AUGEND DD99251 SUM DD? DATA ENDS ;请补充语句定义附加段EXTRA,将ADDEND赋值为双精度数-15962 CODE SEGMENT;定义代码段CODE ASSUME CS:CODE,DS:DATA,ES:EXTRA START:MOV AX,DAT MOV DS,AX ;请补充完成给ES赋值的语句,将EXTRA赋值给ES。 ;请补充进行加法运算的语句,把数据段DATA中的AUGEND和附加段EXTRA中的ADDEND相加,并把结果存放在DATA的SUM中。 MOV AX,4C00H INT21H CODE ENDS END START 3、完成实验教程第一章的内容。学习字符串处理指令(课本P75)和DOS显示字符串功能调用(课本P335),理解实验教程例题1.1的程序。 实验报告要求:

ARM汇编语言源程序格式

ARM汇编语言源程序格式ARM汇编语言源程序格式2010-11-16 13:52 来源:MCU嵌入式领域 常用ARM源程序文件类型 汇编语言程序的结构1 汇编语言程序的结构2 汇编语言程序的结构3 汇编语言程序的结构4 ARM的汇编语言程序一般由几个段组成,每个段均由AREA伪操作定义。 段可以分为多种,如代码段、数据段、通用段,每个段又有不同的属性,如代码段的默认属性为READONLY,数据段的默认属性为READWRITE。 本程序定义了两个段,第一个段为代码段codesec,它在存储器中存放用于程序执行的代码以及main函数的本地字符串;第二个段为数据段constdatasec,存放了全局的字符串,由于本程序没有对数据进行写操作,该数据段定义属性为READONLY。 汇编语言的行构成1 格式: [标签]指令/伪操作/伪指令操作数[;语句的注释] 所有的标签必须在一行的开头顶格写,前面不能留空格,后面也不能跟C 语言中的标签一样加上":";

ARM汇编器对标识符的大小写敏感,书写标号及指令时字母的大小写要一致; 注释使用";"符号,注释的内容从";"开始到该行的结尾结束 汇编语言的行构成2 标签 标签是一个符号,可以代表指令的地址、变量、数据的地址和常量。 一般以字母开头,由字母、数字、下划线组成。 当符号代表地址时又称标号,可以以数字开头,其作用范围为当前段或者在下一个ROUT伪操作之前。 指令/伪操作 指令/伪操作是指令的助记符或者定义符,它告诉ARM的处理器应该执行什么样的操作或者告诉汇编程序伪指令语句的伪操作功能。 汇编语言的标号1 标号代表地址。 标号分为段内标号和段外标号。段内标号的地址值在汇编时确定,段外编号的地址值在链接时确定。 在程序段中,标号代表其所在位置与段首地址的偏移量。根据程序计数器(PC)和偏移量计算地址即程序相对寻址。 在映像中定义的标号代表标号到映像首地址的偏移量。映像的首地址通常被赋予一个寄存器,根据该寄存器值与偏移量计算地址即寄存器相对寻址。 例如:

汇编语言之程序的基本结构

第6章程序的基本结构在前面几章,我们分别介绍了用汇编语言进行程序设计所需要的几个最基本的知识:内存单元的寻址方式,变量定义和各种汇编指令格式。在掌握了这些基本内容之后,就需要学习如何把它们组成一个完整的汇编语言程序。 6.1 源程序的基本组成 汇编语言源程序的组成部分有:模块、段、子程序和宏等。一个模块对应一个目标文件,当开发较大型的应用程序时,该程序可能由若干个目标文件或库结合而成的。有关模块和子程序的知识和宏在第7章介绍,有关宏的知识将在第9章中叙述。 6.1.1 段的定义 微机系统的内存是分段管理的,为了与之相对应,汇编语言源程序也分若干个段来构成。8086CPU有四个段寄存器,在该系统环境下运行的程序在某个时刻最多可访问四个段,而80386及其以后的CPU都含有六个段寄存器,于是,在这些系统环境下开发的运行程序在某个时刻最多可访问六个段。 不论程序在某个时刻最多能访问多少个段,在编程序时,程序员都可以定义比该段数更多的段。在通常情况下,一个段的长度不能超过64K,在80386及其以后系统的保护方式下,段基地址是32位,段的最大长度可达4G。 段的长度是指该段所占的字节数:

、如果段是数据段,则其长度是其所有变量所占字节数的总和; 、如果段是代码段,则其长度是其所有指令所占字节数的总和。 在定义段时,每个段都有一个段名。在取段名时,要取一个具有一定含义的段名。 段定义的一般格式如下: 段名 SEGMENT [对齐类型] [组合类型] [类别] …;段内的具体内容 … 段名 ENDS 其中:“段名”必须是一个合法的标识符,前后二个段名要相同。可选项“对齐类型”、“组合类型”和“类别”的说明作用请见6.3节中的叙述。 一个数据段的定义例子: DATA1 S EGMENT word1 D W 1, 9078H, ? byte1 D B 21, 'World' DD 12345678H DATA1 E NDS 一个代码段的例子: CODE1 S EGMENT

练习汇编语言源程序的编辑、汇编和连接

实验二练习汇编语言源程序的编辑、汇编和连接 一、实验目的 1、熟练使用EDIT编辑软件编辑汇编语言源程序。 2、熟练使用MASM宏汇编软件汇编源程序。 3、熟练使用LINK连接程序生成.EXE文件。 二、实验任务 利用EDIT、MASM、LINK找出下面的源程序中的错误,并得出运行结果。 DATA SEGMENT A DW5F73H B DW CD89H C dw? Data ends CODE SEGMENT ASSUME CS:CODE,DS:DATA START:MOV AX,DATA MOV DS,AX MOV AL,A MOV BX,B ADD AX,BX

MOV C,AX MOV AH,4CH INT21H CODE ENDS END START 三、实验设备 PC机一台 四、实验步骤 1、输入源程序。 2、汇编、连接程序,生成.EXE文件,执行文件,检查结果。 3、

4、 5、 6、

实验一的相关知识 以下程序都是在DOS操作系统完成的。一般情况下MASM、LINK都在一个MASM子目录下。 一、编辑程序(EDIT) 用户在任一目录下都可以输入EDIT,进入编辑环境,输入源程序,并以.ASM的扩展名保存。 输入以下源程序,并以TEST.asm保存。 DATA SEGMENT A DW5F73H B DW CD89H C dw? Data ends CODE SEGMENT ASSUME CS:CODE,DS:DATA START:MOV AX,DATA MOV DS,AX MOV AL,A MOV BX,B ADD AX,BX MOV C,AX MOV AH,4CH

汇编语言指令

汇编语言指令集 数据传送指令集 MOV 功能: 把源操作数送给目的操作数 语法: MOV 目的操作数,源操作数 格式: MOV r1,r2 MOV r,m MOV m,r MOV r,data XCHG 功能: 交换两个操作数的数据 语法: XCHG 格式: XCHG r1,r2 XCHG m,r XCHG r,m PUSH,POP 功能: 把操作数压入或取出堆栈 语法: PUSH 操作数POP 操作数 格式: PUSH r PUSH M PUSH data POP r POP m PUSHF,POPF,PUSHA,POPA 功能: 堆栈指令群 格式: PUSHF POPF PUSHA POPA LEA,LDS,LES 功能: 取地址至寄存器 语法: LEA r,m LDS r,m LES r,m XLAT(XLATB) 功能: 查表指令 语法: XLAT XLAT m 算数运算指令 ADD,ADC 功能: 加法指令 语法: ADD OP1,OP2 ADC OP1,OP2 格式: ADD r1,r2 ADD r,m ADD m,r ADD r,data 影响标志: C,P,A,Z,S,O SUB,SBB 功能:减法指令 语法: SUB OP1,OP2 SBB OP1,OP2

格式: SUB r1,r2 SUB r,m SUB m,r SUB r,data SUB m,data 影响标志: C,P,A,Z,S,O INC,DEC 功能: 把OP的值加一或减一 语法: INC OP DEC OP 格式: INC r/m DEC r/m 影响标志: P,A,Z,S,O NEG 功能: 将OP的符号反相(取二进制补码) 语法: NEG OP 格式: NEG r/m 影响标志: C,P,A,Z,S,O MUL,IMUL 功能: 乘法指令 语法: MUL OP IMUL OP 格式: MUL r/m IMUL r/m 影响标志: C,P,A,Z,S,O(仅IMUL会影响S标志) DIV,IDIV 功能:除法指令 语法: DIV OP IDIV OP 格式: DIV r/m IDIV r/m CBW,CWD 功能: 有符号数扩展指令 语法: CBW CWD AAA,AAS,AAM,AAD 功能: 非压BCD码运算调整指令 语法: AAA AAS AAM AAD 影响标志: A,C(AAA,AAS) S,Z,P(AAM,AAD) DAA,DAS 功能: 压缩BCD码调整指令 语法: DAA DAS 影响标志: C,P,A,Z,S 位运算指令集 AND,OR,XOR,NOT,TEST 功能: 执行BIT与BIT之间的逻辑运算 语法: AND r/m,r/m/data OR r/m,r/m/data XOR r/m,r/m/data TEST r/m,r/m/data NOT r/m 影响标志: C,O,P,Z,S(其中C与O两个标志会被设为0) NOT指令不影响任何标志位SHR,SHL,SAR,SAL 功能: 移位指令 语法: SHR r/m,data/CL SHL r/m,data/CL SAR r/m,data/CL SAL r/m,data/CL 影响标志: C,P,Z,S,O ROR,ROL,RCR,RCL

一些常用的汇编语言指令

汇编语言常用指令 大家在做免杀或者破解软件的时候经常要用到汇编指令,本人整理出了常用的 希望对大家有帮助! 数据传送指令 MOV:寄存器之间传送注意,源和目的不能同时是段寄存器;代码段寄存器CS不能作为目的;指令指针IP不能作为源和目的。立即数不能直接传送段寄存器。源和目的操作数类型要一致;除了串操作指令外,源和目的不能同时是存储器操作数。 XCHG交换指令:操作数可以是通用寄存器和存储单元,但不包括段寄存器,也不能同时是存储单元,还不能有立即数。 LEA 16位寄存器存储器操作数传送有效地址指令:必须是一个16位寄存器和存储器操作数。 LDS 16位寄存器存储器操作数传送存储器操作数32位地址,它的16位偏移地址送16位寄存器,16位段基值送入DS中。 LES :同上,只是16位段基址送ES中。 堆栈操作指令 PUSH 操作数,操作数不能使用立即数, POP 操作数,操作数不能是CS和立即数 标志操作指令 LAHF:把标志寄存器低8位,符号SF,零ZF,辅助进位AF,奇偶PF,进位CF传送到AH 指定的位。不影响标志位。 SAHF:与上相反,把AH中的标志位传送回标志寄存器。 PUSHF:把标志寄存器内容压入栈顶。 POPF:把栈顶的一个字节传送到标志寄存器中。 CLC:进位位清零。 STC:进位位为1。 CMC:进位位取反。 CLD:使方向标志DF为零,在执行串操作中,使地址按递增方式变化。 STD:DF为1。 CLI:清中断允许标志IF。Cpu不相应来自外部装置的可屏蔽中断。 STI:IF为1。 加减运算指令

注意:对于此类运算只有通用寄存器和存储单元可以存放运算结果。如果参与运算的操作数有两个,最多只能有一个存储器操作数并且它们的类型必须一致。 ADD。 ADC:把进位CF中的数值加上去。 INC:加1指令 SUB。 SBB:把进位CF中数值减去。 DEC:减1指令。 NEG 操作数:取补指令,即用0减去操作数再送回操作数。 CMP:比较指令,完成操作数1减去操作数2,结果不送操作数1,但影响标志位。可根据ZF(零)是否被置1判断相等;如果两者是无符号数,可根据CF判断大小;如果两者是有符号数,要根据SF和OF判断大小。 乘除运算指令 MUL 操作数:无符号数乘法指令。操作数不能是立即数。操作数是字节与AL中的无符号数相乘,16位结果送AX中。若字节,则与AX乘,结果高16送DX,低16送AX。如乘积高半部分不为零,则CF、OF为1,否则为0。所以CF和OF表示AH或DX中含有结果的有效数。IMUL 操作数:有符号数乘法指令。基本与MUL相同。 DIV 操作数:被除数是在AX(除数8位)或者DX和AX(除数16位),操作数不能是立即数。如果除数是0,或者在8(16)位除数时商超过8(16)位,则认为是溢出,引起0号中断。IDIV:有符号除法指令,当除数为0,活着商太大,太小(字节超过127,-127字超过32767,-32767)时,引起0号中断。 符号扩展指令 CBW,CWD:把AL中的符号扩展到寄存器AH中,不影响各标志位。CWD则把AX中的符号扩展到DX,同样不影响标志位。注意:在无符号数除之前,不宜用这两条指令,一般采用XOR 清高8位或高16位。 逻辑运算指令与位移指令 注意:只能有一个存储器操作数;只有通用寄存器或存储器操作数可作为目的操作数,用于存放结果;操作数的类型必须一致。 NOT:取反,不影响标志位。 AND 操作数1 操作数2:操作结果送错作数1,标志CF(进位)、OF(溢出)清0,PF(奇偶)ZF(0标志) SF(符号)反映运算结果,AF(辅助进位)未定义。自己与自己AND值不变,她主要用于将操作数中与1相与的位保持不变,与0相与清0。(都为1时为1)OR 操作数1 操作数2:自己与自己OR值不变,CF(进位)、OF(溢出)清0,PF(奇偶)ZF(0标志)SF(符号)反映运算结果,AF(辅助进位)未定义。她使用于将若干位置1:

微机原理与接口技术汇编语言指令详解吐血版

第一讲 第三章 指令系统--寻址方式 回顾: 8086/8088的内部结构和寄存器,地址分段的概念,8086/8088的工作过 程。 重点和纲要:指令系统--寻址方式。有关寻址的概念;6种基本的寻址方式及 有效地址的计算。 教学方法、实施步骤 时间分配 教学手段 回 顾 5”×2 板书 计算机 投影仪 多媒体课件等 讲 授 40” ×2 提 问 3” ×2 小 结 2” ×2 讲授内容: 3.1 8086/8088寻址方式 首先,简单讲述一下指令的一般格式: 操作码 操作数 …… 操作数 计算机中的指令由操作码字段和操作数字段组成。 操作码:指计算机所要执行的操作,或称为指出操作类型,是一种助记符。 操作数:指在指令执行操作的过程中所需要的操作数。该字段除可以是操作数本身外,也可以是操作数地址或是地址的一部分,还可以是指向操作数地址的指针或其它有关操作数的信息。 寻址方式就是指令中用于说明操作数所在地址的方法,或者说是寻找操作数有效地址的方法。8086/8088的基本寻址方式有六种。 1.立即寻址 所提供的操作数直接包含在指令中。它紧跟在操作码的后面,与操作码一起放在代码段区域中。如图所示。 例如:MOV AX ,3000H

立即数可以是8位的,也可以是16位的。若是16位的,则存储时低位在前,高位在后。 立即寻址主要用来给寄存器或存储器赋初值。 2.直接寻址 操作数地址的16位偏移量直接包含在指令中。它与操作码—起存放在代码段区域,操作数一般在数据段区域中,它的地址为数据段寄存器DS加上这16位地址偏移量。如图2-2所示。 例如: MOV AX,DS:[2000H]; 图2-2 (对DS来讲可以省略成 MOV AX,[2000H],系统默认为数据段)这种寻址方法是以数据段的地址为基础,可在多达64KB的范围内寻找操作数。 8086/8088中允许段超越,即还允许操作数在以代码段、堆栈段或附加段为基准的区域中。此时只要在指令中指明是段超越的,则16位地址偏移量可以与CS或SS或ES相加,作为操作数的地址。 MOV AX,[2000H] ;数据段 MOV BX,ES:[3000H] ;段超越,操作数在附加段 即绝对地址=(ES)*16+3000H 3.寄存器寻址 操作数包含在CPU的内部寄存器中,如寄存器AX、BX、CX、DX等。 例如:MOV DS,AX MOV AL,BH 4.寄存器间接寻址 操作数是在存储器中,但是,操作数地址的16位偏移量包含在以下四个寄

汇编语言的编程步骤与调试方法

汇编语言的编程步骤与调试方法 一、汇编源程序的建立 1. 使用工具 (1)EDIT,记事本等文本编辑软件,编辑源程序,保存为.asm文 件; (2)ASM,MASM汇编程序,对源程序进行汇编,生成.obj文件- 目标文件,以及调试用.LST-列表文件和.CRF-交叉引用表; (3)Link连接程序,对使用的目标文件和库文件进行连接,生 成.exe文件,同时调试用.map-地址映像文件; 如果源程序无语法错误,上述三步将生成可运行的.exe文件, 如果运行结果无误,则完成对汇编程序的编程,如果运行后结果存 在错误,需要进行调试。 (4)Debug调试程序,对.exe文件进行调试,修改,直到程序正 确。 图3 目标程序生成步骤图2. 编程过程 (1)用文本编辑软件,编写扩展名为.asm的源文程序文件。 (2)用汇编程序对编好的源文件进行汇编。 命令行:masm [*.asm] ↙ 如果源文件中存在语法错误,则汇编程序将指出错误类型及位置,可根据这些信息重新编辑源文件,直至无语法错误,汇编后,将生成指定名称的目标文件.obj。 使用MASM50汇编程序进行汇编,输入命令行masm或者masm *.asm后,根据提示,输入文件名,在汇编没有错误的情况下,如屏幕所示:汇编程序可生成三个文件,*.obj,*.lst和*.crf。 *.obj-目标文件,用于连接生成可执行文件; *.lst-列表文件(可选),汇编语言汇编的机器语言与汇编语言对照表,可用于

调试; *.crf-交叉引用文件(可选),给出了用户定义的所有符号和对每个符号定义、引用的行号。 (3)目标文件的连接 命令行:link [*.obj] [*.obj] [*.lib] ↙ 连接程序,将多个目标程序及库文件,连接生成可执行的*.exe文件,同时可选择生成*.map文件。 *.map-地址映像文件,给出内存地址分配的有关信息。 下图所示屏幕,为Link连接两个目标文件,没有错误的情况下,生成*.exe 文件。 (4)执行程序 执行*.exe文件,观察程序运行结果,如果存在错误,需要进行调试。调试工具DEBUG是针对汇编语言程序设计的一种调试工具,熟练使用DEBUG有助于汇编语言程序员对于逻辑错误的调试。 二、汇编程序的调试

汇编语言源程序的运行过程复习课程

汇编语言源程序的运 行过程

收集于网络,如有侵权请联系管理员删除 汇编语言源程序的运行过程 一、概述 二、具体操作过程 1.编辑过程 在计算机“附件”的“记事本”中,用word 编辑汇编语言源程序,比用编辑程序EDLIN 要方便得多。因为使用后者,必须熟记它的各种命令及其功能。使用前者的操作步骤如下: 第一步:编辑并建立扩展名为ams 的文件 开始→程序→附件→记事本→键入汇编语言源程序(也可用Ctrl+C 及Ctrl+V 拷贝已有程序)→文件→另存为→出现“另存为”窗口→在‘文件名:’处为该文件命名,并切记:将扩展名由.txt 改为.asm →在“另存为”窗口里的“我的电脑”中找到含有MASM.EXE 、LINK.EXE 以及DEBUG.EXE 这三个工具的文件夹(如,8086experi ),并双击之→该文件夹名便出现在“保存在:”处→保存(至此,该文件夹中将出现你所编辑的扩展名为asm 的汇编语言源程序。此时的源程序以ASCII 码形式存盘,而非机器码)→关闭记事本。 注意:上述三个工具及用户程序必须在同一文件夹中。 此后,为显示,打印或修改该程序,双击该程序的图标即可。 在 编辑程序 文件NAME ·EXE

收集于网络,如有侵权请联系管理员删除 第二步:在DOS 下运行EDLIN ,以便查找并排除源程序中可能存在的语法错误。 window 状态→开始→运行→打开:cmd ↙→确定→出现DOS 提示符:C:\……>→指定存有你的程序的文件夹所在盘(如D 盘)为当前盘 D: ↙→D:\>cd 文件夹名↙→ D:\文件夹名>edlin 文件名.asm ↙ End of input file * E ↙ 按结束编辑命令E 之前,生成了一个扩展名为$$$的文件;结束编辑状态之后,该文件的扩展名由$$$变为BAK 。 特别指出:即使不用EDLIN 进行编辑,也必须进行此步。否则,若源程序中存在语法错误,下一步进行汇编后,不予提示,也不生成机器码文件,无法进行再下一步的连接,致使程序无法运行。除非源程序中无任何语法错误。 2.汇编过程 D:\文件夹名>masm 文件名;↙ 汇编程序负责将源程序文件(扩展名为.ASM )翻译为二进制的机器码文件(扩展名为.OBJ )。 在汇编过程中,计算机对源程序文件要进行语法检查,若有错误,在汇编结束后,屏幕上将出现错误信息提示,这时需要返回到编辑过程,对有语法错误的语句进行修改,修改后的源程序需要重新汇编,直到汇编结束时无语法错误为止。注意:汇编过程不能发现程序中的逻辑错误。 汇编结束时,生成扩展名为OBJ 的文件(即CPU 可识别的目标(object )文件,又称机器码文件)。若在编辑阶段中留有任何语法错误未改,则不能生成OBJ 文件,从而无法往下进行。 * L ↙ 显示24条指令 此处为选择性操作

汇编语言手册

寄存器与存储器 1. 寄存器功能 . 寄存器的一般用途和专用用途 . CS:IP 控制程序执行流程 . SS:SP 提供堆栈栈顶单元地址 . DS:BX(SI,DI) 提供数据段内单元地址 . SS:BP 提供堆栈内单元地址 . ES:BX(SI,DI) 提供附加段内单元地址 . AX,CX,BX和CX寄存器多用于运算和暂存中间计算结果,但又专用于某些指令(查阅指令表)。. PSW程序状态字寄存器只能通过专用指令(LAHF, SAHF)和堆栈(PUSHF,POPF)进行存取。 2. 存储器分段管理 . 解决了16位寄存器构成20位地址的问题 . 便于程序重定位 . 20位物理地址=段地址* 16 + 偏移地址 . 程序分段组织: 一般由代码段,堆栈段,数据段和附加段组成,不设置堆栈段时则使用系统内部的堆栈。 3. 堆栈 . 堆栈是一种先进后出的数据结构, 数据的存取在栈顶进行, 数据入栈使堆栈向地址减小的方向扩展。 . 堆栈常用于保存子程序调用和中断响应时的断点以及暂存数据或中间计算结果。 .堆栈总是以字为单位存取 指令系统与寻址方式 1. 指令系统 . 计算机提供给用户使用的机器指令集称为指令系统,大多数指令为双操作数指令。执行指令后,一般源操作数不变,目的操作数被计算结果替代。 . 机器指令由CPU执行,完成某种运算或操作,8086/8088指令系统中的指令分为6类: 数据传送,算术运算,逻辑运算,串操作,控制转移和处理机控制。 2. 寻址方式 . 寻址方式确定执行指令时获得操作数地址的方法 . 分为与数据有关的寻址方式(7种)和与转移地址有关的寻址方式(4)种。 . 与数据有关的寻址方式的一般用途: (1) 立即数寻址方式--将常量赋给寄存器或存储单元 (2) 直接寻址方式--存取单个变量 (3) 寄存器寻址方式--访问寄存器的速度快于访问存储单元的速度 (4) 寄存器间接寻址方式--访问数组元素 (5) 变址寻址方式 (6) 基址变址寻址方式 (7) 相对基址变址寻址方式(5),(6),(7)都便于处理数组元素 . 与数据有关的寻址方式中,提供地址的寄存器只能是BX,SI,DI或BP . 与转移地址有关的寻址方式的一般用途: (1) 段内直接寻址--段内直接转移或子程序调用 (2) 段内间接寻址--段内间接转移或子程序调用

汇编语言程序设计复习

知识点 第一章基础知识 (1)正负数的补码表示, 掌握计算机中数和字符的表示; eg.假设机器字长为8位,[+3]补=00000011B,[-3]补= 11111101 H 。 十六进制数0FFF8H表示的十进制正数为65528D,表示的十进制负数为-8D。 8位二进制数被看成是带符号补码整数时,其最小值是-128,最大值是 127 。 第二章80x86计算机组织 (1)中央处理机CPU的组成和80x86寄存器组,重点:专用寄存器,段寄存器 eg: IP寄存器中保存的是?代码段中的偏移地址FLAGS标志寄存器中共有几位条件状态位6位,有几位控制状态位2位,标志寄存器分为哪2类?陷阱标志,中断标志。 (2)存储单元的地址和内容每一个字节单元给以一个唯一的存储器地址,称为物理地址;一个存储单元中存放的信息称为该存储单元的内容。存储器地址的分段,(低位字节存放)低地址,(高位字节存放)高地址;实模式下逻辑地址、选择器和偏移地址;物理地址的表示段基地址加上偏移地址。 eg.如果SS=6000H,说明堆栈段起始物理地址是_____60000H___。 已知字节(00018H)=14H,字节(00017H)=20H,则字(00017H)为__1420H______。 如果(SI)=0088H,(DS)=5570H,对于物理地址为55788H的内存字单元,其内容为0235H,对于物理地址为5578AH的内存字单元,其内容为0E60H,那么执行指令LDS SI,[SI]以后,(SI)= 0235H ,(DS)= 0E60H . 第三章80x86的指令系统和寻址方式 与数据有关的寻址方式(立即寻址方式,寄存器寻址方式,直接寻址方式,寄存器间接寻址方式,寄存器相对寻址方式,基址变址寻址方式,相对基址变址寻址方式)和与转移地址有关的寻址方式(段内直接寻址,段内间接寻址,段间直接寻址,段间间接寻址)。数据传送指令(通用数据传送指令、累加器专用传送指令、输入输出指令)、算术指令(加法指令、减法指令(*加减指令对4个标志位的影响[of,cf,sf,zf])、乘法指令(*乘法指令的要求:目的操作数必须是累加器)、除法指令(*被除数在累加器中,除法指令执行完以后,商和余数在?))、逻辑指令(逻辑运算指令(*XOR,AND,OR,TEST指令及指令执行后对标志位的影响)、移位指令)、串处理指令(与REP相配合工作的MOVS、STOS、LODS 指令,与REPE/REPZ和REPNE/REPNZ联合工作的CMPS、SCAS指令)、控制转移指令(无条件转移指令、条件转移指令、循环指令、子程序调用指令、中断)。eg.【习题3.8】假定(DS)=2000H,(ES)=2100H,(SS)=1500H,(SI)=00A0H,

汇编语言的各条指令

常用命令 数据传送指令 一通用数据传送指令 MOV指令为双操作数指令,两个操作数中不能全为内存操作数 格式:MOV DST,SRC 执行操作:dst = src 注:1.目的数可以是通用寄存器,存储单元和段寄存器(但不允许用CS段寄存器). 2.立即数不能直接送段寄存器 3.不允许在两个存储单元直接传送数据 4.不允许在两个段寄存器间直接传送信息 PUSH入栈指令及POP出栈指令: 堆栈操作是以“后进先出”的方式进行数据操作。 格式:PUSH SRC //Word 执行操作:(SP)<-(SP)-2 ((SP)+1,(SP))<-(SRC) 注:1.入栈的操作数除不允许用立即数外,可以为通用寄存器,段寄存器(全部)和存储器。

2.入栈时高位字节先入栈,低位字节后入栈。 格式:POP DST //Word 执行操作:(DST)<-((SP+1),(SP)) (SP)<-(SP)+2 注:1.出栈操作数除不允许用立即数和CS段寄存器外,可以为通用寄存器,段寄存器和存储器。 2.执行POP SS指令后,堆栈区在存储区的位置要改变。 3.执行POP SP 指令后,栈顶的位置要改变。 XCHG(eXCHanG)交换指令: 将两操作数值交换。 格式:XCHG OPR1,OPR2 //Byte/Word 执行的操作:(OPR1)<-->(OPR2) 注:1.必须有一个操作数是在寄存器中 2.不能与段寄存器交换数据 存储器与存储器之间不能交换数据。 二累加器专用传送指令 IN输入指令 长格式为:IN AL,PORT(字节) IN AX,PORT(字) 执行的操作:(AL)<-(PORT)(字节)

相关主题
文本预览
相关文档 最新文档