当前位置:文档之家› 110JGU3鼓型转角塔

110JGU3鼓型转角塔

110JGU3鼓型转角塔

鼓泡塔参考资料

183 实验十六 鼓泡反应器中汽泡比表面及气含率的测定 A 实验目的 气液鼓泡的反应器的气泡表面和气含率,是判别反应器流动状态、传质效率的重要参数。气含率是鼓泡反应器中气相所占的体积分率,也是决定气泡比表面的重要参数,测定的方法很多,有体积法、重量法、光学法等。气泡比表面的测定有物理法、化学法等,己有许多学者进行了系统研究,确定了气泡比表面与气含率的计算关系,可以直接应用。本实验目的为: (1) 掌握静压法测定气含率的原理与方法; (2) 掌握气液鼓泡反应器的操作方法; (3) 了解气液比表面的确定方法。 B 实验原理 (1) 气含率 气含率是表征气液鼓泡反应器流体力学特性的基本参数之一,它直接影响反应器内气液接触面积,从而影响传质速率与宏观反应速率,是气液鼓泡反应器的重要设计参数,测定气含率的方法很多,静压法是较精确的一种,基本原理由反应器内伯努利方程而来,可测定各段平均气含率,也可测定某一水平位置的局部气含率。根据伯努利方程有: ?? ? ??? ??? ??+=dH dp g g L c G ρε1 (1) 采用U 型压差计测量时,两测压点平均气含率为: H h G ?= ε (2) 当气液鼓泡反应器空塔气速改变时,气含率G ε会作相应变化,一般有如下关系: n G G u ∝ε (3) n 取决于流动状况。对安静鼓泡流,n 值在0.7~1.2之间;在湍动鼓泡流或过渡流区,G u 影响较小,n 为0.4—0.7范围内。 假设 n G G ku =ε (4) 则 G G u n k lg lg lg +=ε (5) 根据不同气速下的气含率数据,以G εlg 对G u lg 作图标绘,或用最小二乘法进行数据拟合,即可得到关系式中参数k 和n 值。 (2) 气泡比表面 气泡比表面是单位液相体积的相界面积,也称气液接触面积,比相界面积,也是气液鼓泡反应器很重要的

110KV输电线路转角塔设计

毕业设计(论文)题目厦门市李同线110KV输电线路转角塔设计 学生姓名高梓瑞学号2010107135 专业输电线路工程班级20101974 指导教师高广德 评阅教师 完成日期2014年5 月23 日

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。本人完全意识到本声明的法律后果由本人承担。 作者签名: 2014年 05 月 23 日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保障、使用学位论文的规定,同意学校保留并向有关学位论文管理部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权省级优秀学士学位论文评选机构将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。本学位论文属于 1、保密□,在_________年解密后适用本授权书。 2、不保密□。 (请在以上相应方框内打“√”) 作者签名: 2014年 05 月 23 日 导师签名:年月日

目录 摘要 (1) 前言 (3) 1输电铁塔简介 (4) 1.1 国内外输电事业的发展状况 (4) 1.2 输电线路耐张塔的现状及存在问题 (5) 1.3 输电铁塔的特点和分类 (6) 1.4 输电铁塔设计的复杂性 (6) 1.5 设计步骤 (6) 2设计条件选择 (7) 2.1原始资料及主要参数 (7) 2.2架空线应力弧垂计算 (8) 2.3金具的选用 (13) 2.4塔头尺寸的确定 (16) 3 铁塔的荷载组合及计算 (17) 3.1运行工况杆塔荷载计算 (17) 3.2断线时杆塔荷载计算 (21) 3.3安装工况荷载计算 (25) 3.4杆塔风荷载计算 (26) 4 铁塔的内力计算 (28) 4.1塔身受压计算 (28) 4.2塔身受扭计算 (31) 4.3塔头内力的计算 (33) 4.4 塔腿内力的计算 (35) 4.5 受压构件稳定性的计算 (39) 5 铁塔节点连接计算 (40) 5.1螺栓数目的计算 (40) 5.2 铁塔节点的设计 (41) 6 铁塔的稳定计算 (42) 6.1 等截面格构式柱的强度和稳定计算 (42)

不等高基础分坑

输电线路知识 分坑测量、跨越测量、交叉角测量、弧垂测量及计算 分坑测量 定义:根据定位的中心桩位,根据基础类型依照设计图纸规定的尺寸进行坑口放样工作,称为分坑测量。也就是根据设计要求确定各塔杆腿基础砼中心及设计基准面高(包括基础尺寸)。 分为: 带拉线直线单杆的分坑;2.直线双杆分坑;3.带拉线双杆(转角双杆)的分坑;4.方形塔基础分坑;5.矩形塔基础分坑;6.不等高塔腿基础分坑;7.中心点位移的转角塔分坑;主要就是6、7进行说明一下。 一般方形塔塔腿方向确定: 分坑测量步骤:设计图纸计算->桩位复测->初步分坑->降低基面、平整基础施工面->砼中心找正->验证 设计图纸计算:1、认证阅读图纸资料。2、根据设计图纸及说明计算各腿的半根开、半对角线根开等。 桩位复测:根据线路复测时所钉立的顺线路方向的横线路方向的辅桩,检查塔位桩的位置是否正确,如有偏差应重新钉立塔位桩。(直线塔及转角塔横线路方向桩确定) 初步分坑: 基础一般为矩形(正方形)基础。 目的:按设计要求确定降基的范围及深度。 不等高基础的根开一般分四个腿分别给出正侧面根开,分坑时候进行单腿分坑,按照具体情况选择以下3种分坑测量方法: 方法1:变通井字形分坑法 当铁塔有减腿设计时,基础各腿的半根开控制桩不重合,应采用变通井字形分坑法,分别对各腿单独钉桩控制,操作方法同普通井字发。 变通井字法:

在中心桩设站,以线路前进方向为零,度盘顺时针转(180°-Θ)/2,并在方向上定出与C、D腿的正面半根开距离相等的辅助桩位点,即OC1=C腿的正面半根开、OD1=D腿的正面半根开、反方向定出OA1、OB1,度盘顺时针转90°,定出与侧面半根开距离相等的OD2、0A2,同样倒镜定出OC2、OB2。在C1、C2、D1、D2、A1、A2、B1、B2上设仪器,以中心桩方向为零,根据转向角度关系定出C3、C4、D3、D4、A3、A4、B3、B4等辅助桩。然后根据各腿辅助桩位定出各塔腿中心点及基础尺寸位置。下图为不等高基础无位移转角塔。此种方法较复杂。仪器设站较多,容易出错,但能解决在中心桩看不到各塔腿中心的问题。 变通井字法 在以上所说变通的井字法中,距离为水平距离,在实际中,由于地形原因,采取的是钢尺距离,是斜距。 因此需要计算丈量的斜距。公式中S1为斜距,S为水平距离,h为两点之间的高差,可用经纬仪求得:S1=根号(s2+h2) h1=v1-i,h2=v2-i,h1-2=v1-v2

分析架空输电线路铁塔结构与基础设计

分析架空输电线路铁塔结构与基础设计 发表时间:2016-12-26T13:50:27.263Z 来源:《电力设备》2016年第21期作者:买生玉解媛媛 [导读] 对铁塔结构与基础结构进行科学的设计,才能保证输电线路的稳定性。 (国网宁夏电力设计有限公司宁夏银川 750002) 摘要:架空输电线路是电力系统的重要组成部分,由于架空线路的特殊性,铁塔结构设计的合理性和稳定性决定了线路结构的安全性,因此要根据架空线路的运行要求,对铁塔结构与基础结构进行科学的设计,才能保证输电线路的稳定性。 关键词:架空;输电线路;铁塔;结构;基础设计 作为我国当前电力供应的基础保障性设施,架空输电线路在电力供应系统中所发挥的作用是非常重要的。但结合我国电力行业实际情况来看,企业目前仍然是电力供应的主要对象,因此,在电力供应经济改善方面的需求仍然是非常明确的。在对架空输电线路铁塔的设计中,除需保障铁塔结构的安全、稳定以外,还需综合考虑设计的经济效益。在目前已发生的各类输电线路安全事故中,因铁塔结构设计不合理所致事故的比例是非常高的。因此,为提高架空输电线路运行安全性和稳定性,做好对铁塔结构与基础的设计、优化工作有着非常重要的意义与价值。 1 架空输电线路铁塔塔型设计 在有关架空输电线路铁塔内力的分析中,可将铁塔杆系节点作为铰接点。考虑到架空输电线路铁塔结构多在相对复杂的自然环境中运行,因此对铁塔塔型的规划必须兼顾技术和经济层面的合理性。根据架空输电线路工程导线型号、基本环境条件以及敷设路径情况选择基础塔型形式,基于铁塔所承受机械外负荷条件进行设计和计算,以确保铁塔结构稳定性、刚度、强度满足设计要求。除此以外,在架空输电线路铁塔塔型的选择设计上还应当考虑施工条件、施工技术以及运行便捷性等因素的影响。 根据底部宽度,可以将架空输电线路铁塔设置为窄基铁塔和宽基铁塔两种类型。其中,窄基铁塔底部宽度与塔体高度的比值在 1/14~1/12 的范围内,宽基铁塔底部宽度与塔体高度的比值则在 1/6 ~1/4 的范围内。对于窄基铁塔而言,由于铁塔底部宽度较小,因此主材所受作用力较大,适用于小挡距(使用挡距不足 100 m)铁塔的设计选型;对于宽基铁塔而言,由于铁塔底部宽度较大,因此主材所受力作用力较小,适用于大挡距(使用挡距在 100 m 及以上)铁塔的设计选型。 2 架空输电线路铁塔结构设计 对于宽基铁塔而言,根据导线回数的不同可以采取不同的结构布置方案。比如对于采用单导线回路的铁塔而言,结构布置上具有“上”字型特点;对于采用双导线回路的铁塔而言,结构布置上则具有鼓型特点。 对于窄基铁塔而言,根据横担以及支架的通用情况可以采取以下两种不同的结构布置方案:①将塔头区域布置为垂直段,口宽固定,塔身开始起坡,铁塔整体高度与底部宽度参数一致,不考虑回路数划分影响;横担具有通用性特点,可根据架空输电线路实际回路数选择相应的横担数量。②铁塔塔身与塔头均设置通用坡度,铁塔总高度与上口宽度和底部宽度完全一致;横担固定不通用,可划分为单导线回路和双导线回路两种形式。 3 架空输电线路铁塔基础优化 在对架空输电线路铁塔结构基础进行优化设计的过程中,必须遵循以下三点基本原则:①优化设计前期,应当对沿线工程水文条件、地质条件和气象条件进行详尽的调查。②制订科学的铁塔杆塔位置排定原则,即在线路敷设经过各类作物林区时不砍伐通道。如果垂直距离受到影响,则对个别部位进行剪枝或削顶处理。③做好对架空输电线路沿线主力杆塔造影的优化设计工作。具体而言,结构基础设计中可采取的优化措施有以下几点。 3.1 强化架空输电线路铁塔基础 输电线路杆塔基础常见类型包括钢管杆、水泥杆和直立式铁塔系列基础三类。其中,钢管杆基础可见非原状混凝土、非原状土台阶式和非原状土直柱式柔性这三类;水泥杆基础则可见非原状土无拉线盘和非原状土有拉线盘这两类;直立式铁塔系列基础在基础类型方面划分更细,共有 16 种类型。 在杆塔基础的选型中,如果混凝土浇筑难度较大,则可以优先选择金属式基础或预制装配式基础。如果涉及到电杆及拉线,则建议选择预制装配式基础。在基础设计过程中,以安全为前提,对架空输电线路铁塔基础受力性能进行分析。新基础计算的基本前提是铁塔基础所处区域地基基础承载力符合设计要求。但是,如果地基基础为淤泥质土或淤泥,则应当重新设计。在对架空输电线路铁塔基础进行优化设计的过程中,必须充分评价工程实践中的施工条件、杆塔形式以及沿线地质条件对铁塔结构稳定性的影响,在最大程度上确保架空输电线路铁塔结构的基础稳定性和位移允许性。 3.2 适当降低架空输电线路铁塔接地电阻 高压输电线路接地电阻的大小与线路耐雷水平呈反相关,因此,为有效提高高压输电线路整体耐雷水平,应在基础设计环节中结合各基杆塔土壤电阻率取值情况,有效控制杆塔接地电阻的大小。在基础设计的优化中,可采取的措施包括以下几种:①若架空输电线路铁塔杆塔所处区域周边允许水平放设,则应当采取水平外延接地的处理措施。这样,一方面能够使冲击性接地电阻得到控制,另一方面能够有效降低工频接地电阻。②可结合架空输电线路铁塔结构的基本情况,适当增加埋设深度接地极,遵循就地原则增加垂直接地极。③若杆塔所处区域地下地质条件特殊,影响土壤电阻率水平,则可在基础设计中适当增加木炭及酸、碱性物质,以改善土壤电阻率水平。④可合理敷设降阻剂,以起到合理控制杆塔接地电阻大小的效果。 3.3 优化输电线路基础路径和塔型搭配 城市紧凑型多回路钢管杆走廊或钢管塔走廊在技术上能满足输电线路的实际要求,且钢管杆造型美观,安装快捷,占地面积小,还与城市地势较为平坦、走廊宽度小、线路施工方便等特点相适应,因此得以迅速发展。对于架空输电线路而言,线路走廊宽度主要会受到风偏、安全距离和塔头尺寸三方面参数的影响。其中,安全距离的波动范围小,因此,控制架空输电线路走廊宽度的关键在于合理控制风偏和塔头参数。结合实践经验来看,为有效限制导线风偏,对塔头尺寸进行控制,可采取固定挂点的直线式杆塔和固定跳线的耐杆塔。同时,考虑到城市地区架空输电线路有大截面和多回路发展的趋势,因此在基础设计环节中,可适当增大绝缘子部件、避雷线、接地和金具

输电塔结构模型设计方案

“大鹏展翅”输电塔结构模型设计 理论方案 浙江省大学生结构设计竞赛组委会 二OO七年十月

目录序 (2) 1. 设计说明书 (4) 1.1 研究背景和意义 (4) 1.2 结构的构思和结构的选型 (4) 2. 方案图 (7) 2.1 模型三维图 (7) 2.2 模型三视图 (8) 2.3 主要构件图 (9) 2.4 支座与连接详图 (10) 3. 计算书 (11) 3.1 计算模型 (11) 3.2 荷载分析 (11) 3.3 内力分析 (12) 3.4 整体结构水平方向变形分析 (13) 3.5 材料的力学性能与粘结工艺 (13) 四研究中存在的问题及反思 (14)

序 输电塔作为这个电器的时代的支撑点,她需要耐人寻味的体态,轻盈的身躯,以及一副刚强的骨架。 一个构筑物第一时间传递给我们是视觉上的冲击,那就是外形。自身的重量是任何物体所必须克服的,轻盈的身躯将为基础减去相当的负担。承受再轻的重量,也必须有相应的骨架。面对高耸的输电塔更是如此。一副合理的骨架结构是承载能力的关键。短短10年时间内我国输电线路长度增加了一倍多。在电网建设的过程中,输电塔也得到了前所未有的发展,从早期的以木材为主要材料作为输电杆,到后来以钢筋水泥杆为主要材料作为输电塔,到现在的以钢材为主要材料作为输电塔;塔重从单基重量1-2吨,发展到现在最大单基塔重3980吨;塔高从几米发展到2004年10月建成投产的江阴段长江大跨越,塔高346.5米,是世界输电第一高塔。因而在此次我们主要考虑以下几个方面来来设计我们的结构:承载能力高、自重轻、结构稳定,合理、外形新颖、符合实际制作、使用时结构变形小。 满足以上各个方面,我们舍弃了传统的类似于筒体的桁架,采用了单刚片受扭的双刚片交叉结构。 她作为一个刚片受水平垃力,可以减少较多面上的短杆件的使用。自重轻,耗材少。外形更是完成了一个突破。同时长杆件的使用减少了结点的处理更符合实际制作的要求。更为了使结构为创新,经济,美观,使用,我们采用了双刚片X交叉的结构。就我们的理论分析,在结构的设计和制作的过程相结合尚在实际使用范畴之内,我们有必要做出大胆的假设,并付出实际的行动。在实践中把握真理。

鼓泡塔反应器综述

目录 1 鼓泡塔反应器简介 (1) 1.1 鼓泡塔的概念 (1) 1.2 鼓泡塔的结构 (1) 1.3 鼓泡塔类型 (2) 1.3.1空心式 (2) 1.3.2 多段式 (3) 1.3.3 循环式 (3) 1.4 鼓泡塔反应器的操作状态 (4) 2 鼓泡塔反应器的流体力学特性 (6) 2.1气泡直径 (6) 2.2含气率 (6) 2.3气液比相界面积 (7) 2.4鼓泡塔内的气体阻力ΔP (7) 2.5返混 (8) 3 鼓泡塔反应器的传质、传热特性 (9) 3.1鼓泡塔的传质 (9) 3.2鼓泡塔的传热 (9) 4 鼓泡塔反应器的数学模型 (11) 4.1 双流体模型 (11) 4.2 湍流模型 (11) 5 鼓泡塔反应器的工业应用实例 (13)

1 鼓泡塔反应器简介 1.1 鼓泡塔的概念 鼓泡塔是在塔体下部装上分布器,将气体分散在液体中进行传质、传热的一种塔式反应器。 优点:气相高度分散于液相中,具有大的液体持有量和相界接触面,传质和传热效率高,适用于缓慢化学反应和高度放热的情况; 结构简单,操作稳定,投资和维修费用低,被广泛应用于加氢、脱硫、烃类氧化、烃类卤化等工业过程。 缺点:液相有较大的返混,气相有较大的压降。 当高径比大时,气泡合并速度增加,使相际接触面积减小。 1.2 鼓泡塔的结构 图1.2 简单鼓泡塔

气体分布器:使气体分布均匀,强化传热、传质。是气液相鼓泡塔的关键设备之一,型式:多孔板,喷嘴,多孔等,为鼓泡塔主要结构之一,另一主要结构为塔体。 换热装置: 1、夹套式:热效应不大时。 2、蛇管式:热效应较大时。 3、外循环换热式:热效应较大时 塔体可安装夹套或其它型式换热器或设有扩大段、液滴捕集器等;塔内液体层中可放置填料;塔内可安置水平多孔隔板以提高气体分散程度和减少液体返混。 1.3 鼓泡塔类型 1.3.1空心式 图1.3.1 空心式鼓泡塔图1.3.2 多段式鼓泡塔空心式鼓泡塔如图1.3.1所示,塔内不含塔板和液体分布器,最适用于缓慢化学反应系统或伴有大量热效应的的反应系统。热效应较大时,可在塔内或塔外装备热交换单元。

图文解析架空输配电线路的杆塔的各种分类

图文解析架空输配电线路的杆塔的各种分类 杆塔(Pole and Tower)是支承架空输电线路导线和架空地线并使它们之间以及与大地之间保持一定距离的杆形 或塔形构筑物。世界各国线路杆塔采用钢结构、木结构和钢筋混凝土结构。通常对木和钢筋混凝土的杆形结构称为杆,塔形的钢结构和钢筋混凝土烟囱形结构称为塔。不带拉线的杆塔称为自立式杆塔,带拉线的杆塔称为拉线杆塔。中国缺少木材资源,不用木杆,而在应用离心原理制作的钢筋混凝土杆以及钢筋混凝土烟囱形跨越塔方面有较为突出的成就。输电线路杆塔分类方法较多,如按起受力性质分,按回路分,按起用途分、按其塔型式分,按起组立方式、按起材料、按输送电流及电压等级分等。下面简单介绍常用的几种分类法。01按其材料性质分类杆塔按其制造材料分钢筋混凝土杆、钢管杆、角钢塔、钢管塔。 1.1 钢筋混凝土杆钢筋混凝土杆有普通钢筋混凝土电杆和预应力混凝土电杆两种。电杆的截面形式有方形、八角形、工字形、环形或其他一些异型截面。最常采用的是环形截面和方形截面。电杆长度一般为4.5~15米。环形电杆有锥 形杆和等径杆两种,锥形杆的梢径一般为100~230毫米,锥度为1:75;等径杆的直径为300~550毫米;两者壁厚均为30~60毫米。1.2 钢管杆钢管杆主杆是有单根或多根

钢管构件组成的输电钢管结构的杆。钢管杆以其相对于常规角钢铁塔占地面积小、外形美观、结构简单、加工容易、施工方便、运行安全可靠、维护工作量少的特点,在城区的高压架空线路中得到了广泛的应用。1.3 角钢塔角钢塔是采用角钢型材制成的构件组成的格构式铁塔结构。角钢塔具有强度高、制造方便的优点。 1.4 钢管塔钢管塔是主材用钢管构件,斜材使用钢管或圆钢、型钢构件组成的格构式铁塔结构。 按起材料分还有木质电杆、复合材料杆塔及钢筋混凝土塔,因为我国木材稀缺,使用较少,这次步作过多介绍,混凝土建造的输电线塔也不较多,所以也不作过多介绍。木电杆 混凝土建造的输电线跨越塔 复合材料塔头塔02按其受力性质分类按其在输配电线路中杆塔的受力分类,一般分为悬垂型杆塔与耐张型杆塔。 2.1 悬垂型杆塔悬垂型杆塔是支承导线、架空地线的重力以及作用于它们上面的风力,而在施工和正常运行时不承受线条张力的杆塔。导线和架空地线在悬垂型杆塔处不开断,且被定位于导线和架空地线呈直线的线段中。悬垂型杆塔的作用仅是线路中悬挂导线和架空地线的支承结构。悬垂型杆塔又分悬垂型直线杆塔与悬垂型转角杆塔。悬垂型直线塔 悬垂型转角塔 2.2 耐张型杆塔耐张型杆塔除支承导线和架空地线的重力

铁塔基础施工方案

铁塔基础施工方案 1、线路复测 (1)对所使用的经纬仪、钢卷尺、标尺等测量工具,须在有效使用期内,并且必须进行校正,符合精度要求方可使用,经纬仪最小读数不大于1′。依据设计平断面图及杆塔明细表,核对现场桩位是否与设计图纸提供的数椐相符(档距、高差、转角、跨越等)。 (2)各施工段复测时应向相邻段延伸2-3个桩位,并互相协调,直至线路贯通并与设计图纸相符,对遗失桩应按要求进行补钉,复测完成后,应及时填写复测记录和复测分坑关键工序把关卡中的复测记录项目。 2、基础分坑 (1)本工程根据塔位的具体地形配置了不同长度的接腿,因此在基础施工分坑时,必须核实塔位中心桩及地形是否正确,各塔位的A、B、C、D四个塔腿与中心桩的高差是否符合《铁塔及基础明细表》中所标注的数据。 (2)分坑放样时,以基础中心桩为准,以基坑底与中心桩高差控制各个洞深。同时考虑基础浇制成型后基础表面露出地面高度满足设计要求,不能形成凹进地面现象。校核基础保护范围及基础高低腿是否符合设计要求,如有不够时应及时通知项目部及设计。 (3)铁塔基础施工应保留原设计中心桩,以便恢复中心桩和作

为施工质量检查用,施工过程中无法保留的塔位中心桩,挖除前必须在平基影响范围以外的前、后、左、右方向钉出牢固的辅助桩,将塔位中心桩引出,并作好记录。铁塔及明细表及分坑浇制资料中所有高差均为相对中心桩而言,即中心桩处地面标高为±0.00m。 3、土石方工程 (1)开挖前必须核对铁塔及基础明细表上数据是否与分坑资料上一致。检查塔位桩,控制桩是否完好,转角方向、中心桩位置、上拔下压基础布置是否正确。各种基础型式开挖尺寸和深度详见分坑浇制图。 (2)基础开挖时,如遇地质条件与设计不符(基础埋深不够、边坡保护不够、等),或有溶洞、岩石裂缝、墓穴、滑坡等,应及时通知项目部,以便报监理及设计单位处理。 (3)基坑开挖不得超深,一般情况下基坑不要一次挖到设计埋深,应预留200mm,在浇制混凝土时才挖至设计深度,如出现基坑超深不得用土回填,超深部分必须采取铺石灌浆处理,严禁在浮土上浇上浇制基础。 (4)基础土石方开挖时,须结合现场实际情况慎重进行,不可贸然开方;对于降基量较小的基础,可与基坑开挖同时完成。在施工基面的开凿过程中,凡超过2米高的后边坡均须采取分级放坡,严禁形成直陡坡。 (5)挖完后必须用经纬仪、塔尺,按基础坑深值进行操平、找

鼓泡塔设计-反应器设计

目录 一、项目简介 (1) 二、反应器选择 (1) 2.1 工艺流程 (1) 2.2 鼓泡塔介绍 (2) 2.2.1 鼓泡塔反应器的分类 (2) 2.2.2 鼓泡塔反应器的特点与结构 (4) 2.2.3 鼓泡塔中的传质 (6) 2.2.4 鼓泡塔中的传热 (6) 三、初步设计 (6) 3.1 PX氧化宏观动力学 (6) 3.1.1宏观反应动力学 (6) 3.1.2 PX氧化反应宏观动力学 (7) 3.1.3 氧化反应机理 (8) 3.2反应段模型的建立[7] (11) 3.2.1 模型作如下假设: (11) 3.2.2模型方程 (11) 3.2.4 质量衡算 (13) 3.2.5 热量衡算 (14) 3.2.6 参数估算 (14) 3.2.7 模型的求解 (17) 3.3 影响PX氧化反应的工艺条件 (18) 四、总结 (19) 五、参考文献 (20)

对二甲苯氧化过程中的鼓泡塔设计 一、项目简介 精对苯二甲酸(PTA)是生产聚酯的主要原料,PTA生产历史可以一直追溯到上世纪二十年代,继英国帝国化学工业公司(ICI)和美国杜邦公司(Dupont)开始生产高性能聚酯纤维开始,聚酯工业的发展极大的刺激了主要原料PTA生产技术的变革。PTA合成方法曾先后采用:硝酸氯化法,Dupont公司开发的以钴为催化剂的空气氧化法,Witten公司开发的酯化氧化法(DMT),以及具有划时代意义的1958年由Mid-Century公司发的MC氧化工艺。如今,工业上主要采用Co-Mn-Br为催化剂由对二甲苯(PX)经空气氧化制得[1]。主要工艺有Amoco、三井和Dupont三大公司的专利技术。三种工艺的基本流程大致相同,均采用Amoco-MC高温氧化法[2]。 对二甲苯(PX)氧化制对苯二甲酸(TA)是聚酯工业的一个重要生产过程,同时也是一个液相催化氧化过程。工业氧化反应在185 ~ 224 ℃、1 ~2 MPa 下进行,采用Co-Mn-Br 三元复合催化剂,醋酸为溶剂,空气为氧化剂,反应物PX 经过一系列自由基反应步骤顺序生成醇、醛、酸,并最终转化为固体产物TA。PX 氧化涉及多种反应物和自由基之间的相互作用、催化剂-反应物-溶剂之间的协同作用、化学吸收与反应结晶过程的耦合作用,机理十分复杂。 二、反应器选择 2.1 工艺流程 选用的对二甲苯(PX)液相空气氧化反应流程如图1.1所示。原料PX和循环回收的溶剂醋酸和催化剂以及补充的新鲜醋酸和催化剂充分混合后进入反应器。在一定温度和压力条件下,料液中的对二甲苯与空气接触发生氧化反应,生成对苯二甲酸(TA)。TA在反应液中溶解度很小,因此反应器内是气、液、固三相并存。反应生成的TA固体由溶剂醋酸夹带在浆料中从反应器底部排出。气相的主要成分为移出反应热的蒸发溶剂醋酸、水和反应尾气,经过反应器顶部的脱水塔之后水富集,塔顶冷凝液部分采出,部分回流至脱水塔顶部。[3] PX氧化鼓泡塔反应器带脱水段,反应器构型为直筒鼓泡式,无强力搅拌,顶部设有脱水塔。压缩空气从反应器底部通人,鼓泡产生搅动促进气液传质与混

架空输电线路铁塔结构与基础设计

架空输电线路铁塔结构与基础设计 发表时间:2019-09-18T16:59:35.737Z 来源:《电力设备》2019年第7期作者:侯少龙 [导读] 摘要:在我国现代经济社会发展水平不断提升的背景下,电力系统在设计与运行过程中所依赖的基础条件也发生了相应的改变。 (国网乌鲁木齐供电公司新疆维吾尔自治区乌鲁木齐新市区 830000) 摘要:在我国现代经济社会发展水平不断提升的背景下,电力系统在设计与运行过程中所依赖的基础条件也发生了相应的改变。作为我国当前电力供应的基础保障性设施,架空输电线路在电力供应系统中所发挥的作用是非常重要的。但结合我国电力行业实际情况来看,企业目前仍然是电力供应的主要对象,因此,在电力供应经济改善方面的需求仍然是非常明确的。在对架空输电线路铁塔的设计中,除需保障铁塔结构的安全、稳定以外,还需综合考虑设计的经济效益。在目前已发生的各类输电线路安全事故中,因铁塔结构设计不合理所致事故的比例是非常高的。因此,为提高架空输电线路运行安全性和稳定性,做好对铁塔结构与基础的设计、优化工作有着非常重要的意义与价值。 关键词:架空输电线路;铁塔设计;优化 一、架空输电线路铁塔塔型设计 在对架空输电线路铁塔进行内力分析时,可以将铁塔杆系节点看作成铰接点,进而进行有效的内力分析。由于架空输电线路铁塔的工作环境一般较为复杂,为了确保铁塔能够顺利的进行有效的工作,要对铁塔的塔型进行技术经济分析,优选最适宜的塔型。架空输电线路铁塔塔型的选择要充分考虑输电线的导线型号、铁塔的工作环境以及线路的敷设路径等因素,根据铁塔所承受的机械外负荷条件进行塔型的计算和设计工作,进而确保铁塔结构的刚度、强度、稳定性等满足实际工作的要求。 根据铁塔底部宽度的不同,可以将架空输电线路的铁塔分为:窄基铁塔和宽基铁塔两种类型。其中,窄基铁塔的底部宽度与塔体的高度之比介于1/14~1/12之间,而宽基铁塔的底部宽度相对较大,其比值介于1/6~1/4之间。窄基铁塔的底部宽度相对较小,在同样的塔高条件下,其主材所承受的各种作用力相对较大,为了确保塔体的安全性,对主材的要求相对较高,该种类型的铁塔设计主要用于档距较小的铁塔之中,其挡距要小于100m;而宽基铁塔其底部宽度较大,能够将铁塔的作用力进行有效的分解,其主材所受到的作用力相对较小,该种类型的铁塔设计主要用于档距较大的铁塔之中,其档距不小于100m。 二、架空输电线路铁塔结构设计 不同类型的铁塔其架空输电线路的结构设计不尽相同,其具体的结构设计如下: 2.1窄基铁塔的结构设计 依据横担以及铁塔支架的通用程度可以采用以下两种类型的结构布置方案:(1)可以将窄基铁塔的塔头区域设置为垂直的形式,对口宽进行固定,塔身开始逐渐起坡,其铁塔的整体高度与底部的宽度参数设置一致,不考虑输电线路回路数量划分的影响;铁塔横担具有良好的通用性,铁塔中所设置的横担数量要根据架空输电线路中实际的回路数量进行有针对性的设计。(2)铁塔塔身与塔头均按照要求设置一定的通用坡度,铁塔的总高度与铁塔的上口和底部宽度保持一致;横担设置成固定形式不进行通用设计,根据导线的数量可以分为单导线回路和 双导线回路两种不同的形式。 2.2宽基铁塔的结构设计 根据铁塔中导线回路数量的不同可以采取不同类型的结构设计方案。其中,对于使用单导线回路的铁塔,其结构布置具有“上”字型的特点;对于使用双导线回路的铁塔,其结构布置上具有鼓型的特点。 三、架空输电线路铁塔基础设计的技术优化措施 3.1加强铁塔的基础 在输电线路铁塔结构设计中,杆塔基础分类三类合计三十三种:①水泥杆基础:分为非原状土无拉线盘基础和非原状土有拉线盘基础两种;②钢管杆基础:分为非原状土台阶式基础、非原状土直柱式柔性基础和非原状土素混凝土基础三种;分为原状土掏挖式基础、原状土套筒式基础、原状土卡盘式基础和原状土复合沉井基础四种;及原状土灌注桩长桩单桩基础、原状土灌注桩长桩多桩承台基础、原状土灌注桩短桩抗倾覆基础、原状土灌注桩短桩位移基础、原状土灌注桩美国算法基础、原状土灌注桩钢管短桩位移基础和原状土灌注桩钢管短桩抗倾覆基础十一种;小计十四种;③直立式铁塔系列基础:非原状土刚性台阶式基础、非原状土直柱式柔性基础、非原状土斜柱式柔性基础、非原状土素混凝土(回填土)基础、非原状土联合式基础和非原状土窄基塔独立式刚性台阶式基础六种;及原状土素混凝土(原状土)基础、原状土灌注桩长桩-单桩带连梁基础、原状土灌注桩长桩-多桩带承台基础、原状土灌注桩短桩抗倾覆基础、原状土灌注桩短桩位移基础、原状土掏挖式基础、原状土岩石基础、原状土复合沉井基础、原状土窄基塔独立式长桩单桩灌注桩基础和原状土窄基塔独立式长桩多桩带承台基础十种;小计十六种。 对于运输或浇制混凝土有困难的地区,可采用预制装配式基础或金属基础;对电杆及拉线宜采用预制装配式基础。设计方案中还要正确分析铁塔基础受力,应首先保证安全,针对轴心受压基础、轴心受拉基础,分别选取不同的K值。对于新基础计算的前提条件是地基承载力满足设计要求,若地质属淤泥或淤泥质土,则必须进行重新设计。总之,基础型式应综合沿线地质、施工条件和杆塔型式并综合考虑基础稳定、承载力、不均匀沉降、基础位移、采空区、基础上拔土重度、上拔角、倾覆、冻土和洪泛区等诸多因数。 3.2降低杆塔的接地电阻 高压送电线路的接地电阻与耐雷水平成反比,根据各基杆塔的土壤电阻率的情况,尽可能地降低杆塔的接地电阻,这是提高耐雷水平的基础,也是最经济、有效的手段。即:①杆塔所在地若有水平放设的条件,可水平外延接地,这样不但可降低工频接地电阻,还可有效地降低冲击接地电阻。②增加埋设深度接地极,就近增加垂直接地极的运用。③合理敷设降阻剂。④增加盐、酸、碱、盐及木炭等物质。如地下较深处的土壤电阻率较低,可用竖井式或深埋式接地极。 3.3优选路径和塔型的最佳搭配 城市紧凑型多回路钢管杆走廊、或钢管塔走廊,它在技术上能满足输电线路的实际要求,且钢管杆造型美观,安装快捷,占地面积省,还与城市地势较为平坦,走廊宽度小,线路施工方便等特点相适应,故得以迅速发展。输电线路的走廊宽度由塔头尺寸、风偏、安全距离三部分组成。减少线路走廊宽度的关键在于控制塔头尺寸和风偏。采用固定挂点的直线杆塔以及固定跳线的耐杆塔,是减少塔头尺寸

终端转角塔基础计算

转角、终端杆塔基础设计计算 计算时间:2012-05-21 设 计 院:湖南电力工程咨询有限公司 工 程:新建35KV 输电线路 计 算 者: 计算依据 ——《电力工程高压送电线路设计手册》,第二版; ——中华人民共和国电力行业标准DL/T 5219-2005《架空送电线路基础设计技术规定》; ——《架空送电线路勘测设计》,邢春茂; ——《架空输电线路设计》,孟遂民; 1 地质条件: 土壤类型:粉土 中实 物理特性:土重度γs =16kN/m 3 、上拔角α=20°、等代内摩阻角β=30°、土压力参数m=48kN/m 3 、土侧压力系数ξ=0.6、土重法临界深度系数2.5。 2 杆塔参数: 杆塔类型:转角、终端、大跨越塔 基础附加分项系数γf =1.6 电杆根部直径d=0.82m 杆塔基础埋深h t =2.8m 反弯点至地面距离H 0 =3m 3.“未命名”工况计算 (1) 基础负荷: 拉线盘上拔力T=0kN 反弯点处水平力S 0 =0kN 电杆下压力F=0kN (2) 拉线盘设计 ① 计算参数:拉线盘的埋置深度h tL = 3m 、拉线拉力与水平地面的夹角ω=60°、拉线盘上平面与垂面的夹角ω1 =90°。 ② 拉线盘规格:钢筋混凝土材料、长l=0.6m 、宽b=0.3m 、厚t=0.2m 、小底长l 1 =0.3m 、自)(6.0土重法临重法临界深h l b c +?==1.35m 当h tL ≤h c 时 抗拔土体积:

??? ???+++=αtan 34αtan )ωsin (ωsin 22L L 11L t t t t h h l b bl h V =1.57158m 3 最大上拔力:ω sin γγV T f s t max f Q += =18.7129kN T max >T ,上拔稳定。 ④ 强度验算: 拉线盘弯矩: ) 2(63) 25.05.0(=e A P = M 12 1211101-1l l l l bl bl bl T ---=0kN·m 3 )25.0(e A P M 12202-2b bl bl T = ==0kN·m 对钢筋混凝土材料,计算截面有效高度h 0 =0.18m 、钢筋抗拉强度设计值f y =210N/mm 2 、混凝土轴心抗压强度设计值f c =9.6N/mm 2 、短边钢筋截面面积〔A sb 〕=201.062mm 2 、长边钢筋截面面积〔A sl 〕=314.159mm 2 。 1-1截面的纵向受拉钢筋面积: b f M h h x c 1 12 002-- -= y f x h M )2 (A 01 1sb -= -=0mm 2 〔A sb 〕>A sb 截面1-1强度满足。 2-2截面的纵向受拉钢筋面积: l f M h h x c 2 22 002-- -= y f x h M )2 (A 02 2sl -= -=0mm 2 〔A sl 〕>A sl 截面2-2强度满足。

高压电塔电力判断方法

直线杆塔上悬垂绝缘子串绝缘子个数10(2)、35(3)、60(5)、110(7)、220(13)、330(19)、500(24)380 伏:电杆,10 米以下;普通瓷珠;导线:护套线、祼体导线。10 千伏:电杆,10-15 米;单瓷珠;导线:祼体导线。35 千伏:电杆:15 米;三瓷蝶或单节横向磁棒;导线:祼体导线。110 千伏:电杆:15-18 米;七瓷蝶或双节横向磁棒;导线:祼体导线。220 千伏:电杆:16-24 米门字形双杆或铁塔;十一瓷蝶;导线:祼体。500 千伏:24 米以上铁塔;导线:祼体。单看线是看不出的,高压电在塔座和变压器有标示。高压电一般为11.110.500 千伏。(1)酒杯型塔。塔型呈酒杯状,该塔上架设两根避雷线,三相导线排列在一个水平面上,通常用于110kV 及以上电压等级送电线路中,特别适用于重冰区或多雷区。 (2)猫头型塔。塔型呈猫头状,该塔上架设两根避雷线,导线呈等腰三角形布置,它也是llOkV 及以上电压等级送电线路常用塔型,能节省线路走廊,其经济技术指标较酒杯型塔稍差。 (3)干字型塔。铁塔形状如“干”字,塔上架设两根避雷笺,导线基本呈等腰三角形布置,此种塔型受力情况清晰直接,有较好的经济技术指标,通常是220kV 及以上电压等级送电线路常用的塔型,主要用作耐张塔及转角塔。信息来源:https://www.doczj.com/doc/af198684.html, (4)拉线“V”型塔:塔型呈“V”形状,常用于220kV及以上电压等级的送电线路。塔上架设两根避雷线,导线呈水平排列,该种塔型具有施工方便,耗钢量低于其他门型拉线塔等优点,但它占地面积(指拉线)较大,在河网及大面积耕地区使用受到一定限制。

输电线路杆塔结构设计

浅谈输电线路杆塔结构设计 摘要:文章综述了我国高压输电线路铁塔结构设计方面的一些经验、看法和常被忽略的问题。对我国输电线路杆塔结构在荷载取值、结构优化、新材料应用等方面的研究进展加以介绍,并且根据研究现状和社会经济发展需求,提出今后研究需要进一步加强的内容。 关键词:输电线路;杆塔型;结构设计 abstract: this paper reviews some experience of the design of tower structure for hv transmission lines in china’s views and often overlooked problem. to introduce the research progress on load, structure optimization, the application of new materials and other aspects of china’s power transmission lines, and according to the current research status and the demand of social and economic development, puts forward the future research needs to further strengthen the content. key words: transmission line tower type; structural design; 中图分类号:tb482.2文献标识码:a文章编码: 引言 输电线路杆塔是支承架空输电线路导线和地线并使它们之间以

转角铁塔基础计算书

SDJ-90°转角塔基础计算书 1 设计条件 1.1 受力条件: 上拔力: kN T 83.634=。 上拔时垂直线路方向的水平力:kN V x 34.66=。 上拔时顺线路方向的水平力: kN V y 78.43=。 下压力: kN N 99.735=。 下压时垂直线路方向的水平力:kN V x 32.73=。 下压时顺线路方向的水平力: kN V y 76.50=。 1.2 地质条件 地基承载力设计值:kPa f 160=。 地下水位: m h 3.0-=。 地基土的计算容重:3/15m kN =γ。 计算上拔角: 010=α。 计算内摩擦角: 015=β。 地基土的凝聚力: k P a c 10=。 2 计算过程 2.1 基础尺寸选择及校核: 由于当地开挖后出现流沙现象,上拔腿和下压腿做相同的尺寸,底面宽度取为5m ,放阶尺寸为500mm ,放阶为4阶,基柱尺寸为1m ×1m ,基柱出地面高度为400mm 。 容许上拔力校核:

322229.144.015.0)234(m V =?+?++= 302202015.54)10tan 9.13 410tan 9.1525(9.1m V =??+???+?= ()()kN V Q con f f 695258.015.023*******=??+?+++=?=γ ()()kN T kN K Q K V V f 83.6346995 .16955.2159.1415.5421 0=>=+?-=+?-γ 满足要求。 容许下压力校核: 基础底面正上方土及钢筋混凝土基础的重力为: () kN G 5.1371159.144.256952=?-?+= 基础顶面作用的弯矩为: m kN M x ?=?=968.1754.232.73 m kN M y ?=?=824.1214.276.50 基础底面的抵抗矩为: 33167.456 1m W W y x =?== 基础底面最大作用应力为: kPa W M W M A G N y y X x 765.155167 .4824.121167.4968.175255.137199.735max =+++=+++=σ f < 满足要求。 2.2 配筋计算: 上拔腿的计算: 控制截面的弯矩为: m kN M x ?=?=656.588.032.73

直柱大板式基础施工方案

大唐青岛海西250MW风电场220kV送出线路工程 板式基础施工方案 葛洲坝集团电力有限责任公司 大唐青岛海西250MW风电场220kV送出线路工程施工项目部 2016年9月

目录 1 工程简介 (1) 2 板式基础施工工艺流程及施工方法 (1) 2.1 施工工艺流程. (1) 2.2 施工方法. (2) 3 人员组织. (16) 4 材料与设备. (16) 5 质量控制. (18) 5.1 质量标准. (18) 5.2 质量要求. (18) 6 安全措施. (20) 6.1 安全标准. (20) 6.2 安全措施. (20) 7 环保措施. (21)

1 工程简介 本工程为大唐青岛海西250MW风电场220kV送出线路工程,是从青岛大唐海西风电场220KV升压站至琅琊500kV,220kV出线间隔全线双线单路单回路架设,线路全长7.66km,其中架空线路7.3km,电缆0.36km。架空线路选用LGJ-400/35 型钢芯铝绞线,地线采用24 芯OPGW复合式光缆,电缆选用YJLW03-Z128/220KV-1×2500mm2单芯铜芯交联聚乙烯绝缘铅护套 电力电缆。架空全线采用角钢铁塔,共使26 基用铁塔(含 1 号双回路终端塔)。 2 板式基础施工工艺流程及施工方法 2.1 施工工艺流程 本施工方法施工工艺流程见图2-1。 图2-1 基础施工工艺流程图

2.2 施工方法 2.2.1 施工准备 (1)施工前应做好施工图纸会检,并根据施工图会检编制相关施工技术资料。 (2)做好基础施工原材料的取样、检验、见证取样及配合比试验工作。 (3)施工前做好施工人员的配备,做好施工人员的安全、质量培训工作以及做好电工、测工、机械操作手的操作证的复评工作。 (4)施工前应做好施工工器具的配备工作,施工工器具的数量及安全性应满足施工需要。 (5)施工前核对基础根开及地脚螺栓间距,与铁塔加工图有关尺寸确认统一无误后, 方可施工。 2.2.2 基坑分坑 2.2.2.1 基础分坑技术准备 (1)技术人员应仔细阅图,做到熟悉各个施工图纸,掌握各种数据间的关系。 (2)应编写基础分坑数据控制卡(基础施工卡片),其内容应包括与基础分坑有关的 所有数据资料,以便提高基础分坑效率与质量。 (3)应对线路进行复测,符合设计及规范要求后方可开始基础分坑。 2.2.2.2 基础分坑要点 (1)基础分坑应由培训合格有资格的测工担任,无证人员不得从事基坑分坑作业。 (2)基础分坑前,应对各级技术人员进行分坑技术及分坑方法培训和交底,使施工人 员熟练掌握基础分坑计算方法和检验方法。 2.2.2.3 基础分坑方法 由于板式基础可为全方位不等高基础,在分坑时宜采用单腿分坑。 图2-2、图2-3 中:O为基础中心;O’为位移后基础中心;A、B、C、D分别为基础立柱 中心;A’、B’、C’、D’分别为基础底板中心;L 为基础立柱中心至基础底板中心水平距离,mm;FE1、FE2为转角塔二等分线桩;FA1~FA8、FB1~FB8 FC1~FC8、FD1~FD8分别为基础 底板及立柱中心正桩。若为直柱板式基础,L 值为0,A与A’,B与B’,C与C’,D与D’位值重合。 2.2.2.4 分坑步骤

相关主题
文本预览
相关文档 最新文档