当前位置:文档之家› 聚氨酯泡沫塑料的阻燃

聚氨酯泡沫塑料的阻燃

聚氨酯泡沫塑料的阻燃

聚氨酯泡沫塑料是一种广泛应用于建筑、交通工具、电子电器、包装等领域的材料。与传统的聚苯乙烯泡沫塑料相比,聚氨酯泡沫塑料具有更高的强度和较好的防潮、防水性能。但是,聚氨酯泡沫塑料的阻燃性能却较差,易引起火灾事故。因此,在提高聚氨酯泡沫塑料的阻燃性能方面,进行了大量的研究。

聚氨酯泡沫塑料的阻燃机理

聚氨酯泡沫塑料的基础材料是聚异氰酸酯(Polyisocyanurate)。在生产过程中,需要将异氰酸酯与多元醇反应,生成聚氨酯多元醇(Polyurethane)。在加入膨胀剂后,聚氨酯多元醇开始氧化聚合反应,生成大量水和二氧化碳,从而形成泡沫结构。

然而,聚氨酯泡沫塑料在长时间高温的条件下,易引发燃烧。由于聚氨酯泡沫塑料中含有大量的烃类有机物,燃烧后会产生大量有害气体,从而对环境和人体健康造成极大的危害。因此,提高聚氨酯泡沫塑料的阻燃性能,对于减少火灾事故和保护环境具有极其重要的意义。

提高聚氨酯泡沫塑料的阻燃性能的方法

1.添加阻燃剂

在聚氨酯泡沫塑料的生产过程中,可以添加阻燃剂。阻燃剂是一种可以减少燃烧或延缓燃烧的添加剂。在实验室的测试中,添加阻燃剂确实能够显著提高聚氨酯泡沫塑料的阻燃性能。然而,阻燃剂的添加量过大会影响泡沫的物理性能,从而降低泡沫的强度和密度,使其难以正常使用。因此,在实际应用中,需要选择合适的阻燃剂,准确控制添加量。

2.添加无机材料

另一种提高聚氨酯泡沫塑料的阻燃性能的方法是添加无机材料,如纳米氧化铝、纳米钛白粉等。这些无机材料能够单独或者与阻燃剂共同作用,产生化学反应,从而减缓聚氨酯泡沫塑料燃烧的速度。添加无机材料能够显著提高聚氨酯泡沫塑料的阻燃性能,且不会对泡沫的物理性能产生不利影响。

3.改变聚氨酯的结构

改变聚氨酯的结构也是提高聚氨酯泡沫塑料阻燃性能的一种方法。例如,通过选择合适的异氰酸酯和多元醇,可以得到不同结构的聚氨酯,从而影响其燃烧机理和热分解性能。同时,也可以通过改变材料的配方、工艺等方法来调整其物理性能和化学性能,从而提高其阻燃性能。

结论

聚氨酯泡沫塑料是一种广泛应用的材料,但其阻燃性能却较差。在实际应用中,为了减少火灾事故和保护环境,需要采取措施来提高其阻燃性能。添加阻燃剂、添加无机材料和改变聚氨酯的结构等方法可以有效提高聚氨酯泡沫塑料的阻燃性能,但需要在合适的添加量和条件下进行。在今后的发展中,还需

要加强对聚氨酯泡沫塑料阻燃机理的研究,为其改进和应用提供更加科学的支持。

聚氨酯的燃烧和阻燃

聚氨酯的燃烧和阻燃 聚氨酯材料是由碳—碳键为基本结构组成的有机高分子聚合物,属于可燃物质。用聚氨酯材料生产的各类产品与制品,在人们的社会活动中随处可见。由于它们处在各种各样的环境之中,引发火灾的几率较高。由各种引火源引发聚氨酯材料的燃烧以及伴随燃烧产生的烟雾毒性,已成为消防安全密切关注的重点之一,对有关聚氨酯产品及生产制定了日益严格的阻燃标准和法规。 同时,聚氨酯产品的生产所使用的大量原料多属于有机化合物和聚合物,也同属于可燃物之列,而在生产中使用的许多原料助剂,如有机溶剂及其配置的涂料、脱模剂等,因闪点、着火点较低,都存在不同程度的燃烧隐患;此外,在大型软质聚氨酯块泡的生产中,由于使用高水量配方生产低密度泡沫体产生的热量多而泡沫体的散热性差,因此在贮存过程中,由泡沫体产生自燃而引发的火灾也曾有发生。 由聚氨酯泡沫体等燃烧产生的火灾危害,不仅来源于燃烧本身产生的大量热辐射而引发的火焰的蔓延和扩大,同时还来源于燃烧时产生的烟雾和分解释放出来的诸多有毒气体。许多火灾报告指出:由燃烧烟雾和有毒气体造成人员伤亡的比例远远高于真正燃烧本身造成的伤亡人数。因此,为保证生产过程和使用过程中的防火安全,必须系统地研究该类产品的燃烧机理、检测方法以及阻燃办法,制定产品的生产、使用安全标准和法规。下面,洛阳天江化工新材料有限公司将就聚氨酯泡沫的燃烧机理以及阻燃方法这两方面为大家进行简单介绍。 一、燃烧机理 在聚氨酯产品中,由于聚氨酯泡沫塑料的质量轻、体积大且传热系数低、最易发生燃烧,因此将它作为燃烧行为的研究对象最具有代表性。 一般物质的燃烧行为基本可分为三个阶段:第一个阶段为物质引燃和火焰蔓延的初期阶段;第二个阶段为物质的完全燃烧的发展阶段;第三个阶段则为火焰衰减、燃烧熄灭的最终阶段。洛阳天江化工新材料有限公司在这里告诉大家,物质引燃的难易程度是物质燃烧行为的第一表征,它与物质本身的化学结构、组成、传导能力、热分解温度以及反应所产生的气体和液滴的助燃程度等因素有关。此外,还有一点需要注意的是,不同的物质有不同的闪点和着火点,闪点和着火点越低的物质越容易燃烧。

阻燃聚氨酯软质泡沫塑料研究

阻燃聚氨酯软质泡沫塑料研究 摘要: 阻燃聚氨酯软质泡沫塑料是一种具有良好绝缘性能和抗压能力的材料,广泛应用于建筑、汽车和航空等领域。然而,由于其易燃性,安全性成为 其应用的主要限制因素。因此,本研究旨在通过添加阻燃剂提高聚氨酯软 质泡沫塑料的阻燃性能。实验结果表明,添加阻燃剂可以有效提高聚氨酯 软质泡沫塑料的热稳定性,并显著减少其燃烧速率和烟雾产生。此外,通 过变化阻燃剂的种类和添加量,可以调节聚氨酯软质泡沫塑料的阻燃性能。本研究的发现对于开发更安全、可持续的聚氨酯软质泡沫塑料具有重要意义。 关键词:阻燃剂,聚氨酯,软质泡沫塑料,热稳定性,燃烧 引言: 聚氨酯软质泡沫塑料作为一种重要的建筑和包装材料,具有轻质、隔热、隔音、抗压和吸震等优点,在现代社会得到广泛应用。然而,由于其 易燃性,聚氨酯软质泡沫塑料的应用受到了限制。因此,提高聚氨酯软质 泡沫塑料的阻燃性能成为了当前的研究热点。 阻燃剂是一种可以减少材料燃烧性能的添加剂。通过添加适量的阻燃 剂可以改善聚氨酯软质泡沫塑料的燃烧性能,减少其燃烧速率和烟雾产生。目前,常用的阻燃剂包括卤素化合物、氮磷系化合物和无机化合物等。然而,由于卤素化合物的环境和毒性问题,寻找更安全、可持续的阻燃剂成 为了当前的研究方向。 方法:

本研究采用溶胀法制备了阻燃聚氨酯软质泡沫塑料。首先,将聚氨酯原料溶解在有机溶剂中,然后加入不同种类和添加量的阻燃剂,并进行搅拌。最后,将混合溶液倒入模具中,进行凝固和固化,得到阻燃聚氨酯软质泡沫塑料。 结果与讨论: 实验结果表明,添加阻燃剂可以显著提高聚氨酯软质泡沫塑料的热稳定性。热重分析结果显示,添加阻燃剂后,聚氨酯软质泡沫塑料的失重温度明显增加,热分解速率显著降低。这是因为阻燃剂可以吸收热量,形成惰性气体,从而减缓材料的热分解过程。 火焰测试结果显示,添加阻燃剂后,聚氨酯软质泡沫塑料的燃烧速率明显减小。同时,添加阻燃剂可以减少燃烧时产生的烟雾和有害气体。这是由于阻燃剂可以抑制燃烧反应,减少燃烧产物的生成。 结论: 本研究通过添加阻燃剂改善了聚氨酯软质泡沫塑料的阻燃性能。实验结果表明,添加阻燃剂可以提高材料的热稳定性,减少燃烧速率和烟雾产生。通过调节阻燃剂的种类和添加量,可以进一步改善聚氨酯软质泡沫塑料的阻燃性能。这对于开发更安全、可持续的聚氨酯软质泡沫塑料具有重要意义。

聚氨酯阻燃等级

引用标准 下列标准包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 GB/T 2406—93 塑料燃烧性能试验方法氧指数法 GB/T 2408—80 塑料燃烧性能试验方法水平燃烧法. GB/T 4609—84 塑料燃烧性能试验方法垂直燃烧法 GB/T 5454—85 纺织织物燃烧性能测定氧指数法 GB/T 5455—85 纺织织物阻燃性能测定垂直法 GB/T 5464—85 建筑材料不燃性试验方法 GB/T 8332—87 泡沫塑料燃烧性能试验方法水平燃烧法 GB/T 8333—87 硬泡沫塑料燃烧性能试验方法垂直燃烧法 GB/T 8625—88 建筑材料难燃性试验方法 GB/T 8626—88 建筑材料可燃性试验方法 GB/T 8627—88 建筑材料燃烧或分解的烟密度试验方法 GB/T 8629—88 纺织品试验时采用的家庭洗涤及干燥程序 GB/T 11785—89 铺地材料临界辐射通量的测定辐射热源法 GB/T14402—93 建筑材料燃烧热值试验方法 GB/T 14403—93 建筑材料燃烧释放热量试验方法 3 建筑材料燃烧性能的级别和名称 建筑材料燃烧性能的级别和名称见表1。 4 不燃类材料(A级) 4.1 A级匀质材料 按GB/T 5464进行测试,其燃烧性能应达到: a)炉内平均温升不超过50℃; b)试样平均持续燃烧时间不超过20s; c)试样平均质量损失率不超过50%。 4.2 A级复合(夹芯)材料 达到下述各项要求的材料,其燃烧性能定为A级。 a)按GB/T 8625进行测试,每组试件的平均剩余长度≥35 cm(其中任一试件的剩余长度>20cm),且每次测试的平均烟气温度峰值≤125℃,试件背面无任何燃烧现象; b)按GB/T 8627进行测试,其烟密度等级(SDR)≤15; c)按GB/T 14402和GB/T 14403进行测试,其材料热值≤4.2MJ/kg,且试件单位面积的热释放量≤16.8MJ/m2; d)材料燃烧烟气毒性的全不致死浓度LCo≥25mg/L。 5 可燃类材料(B级) 5.1 B1级材料 达到下述各项要求的材料,其燃烧性能定为B1级。 a)按GB/T 8626进行测试,其燃烧性能应达到GB/T 8626所规定的指标,且不允许有燃烧滴落物引燃滤纸的现象; b)按GB/T 8625进行测试,每组试件的平均剩余长度≥15 cm(其中任一试件的剩余长度>0cm),且每次测试的平均烟气温度峰值≤200℃; c)按GB/T 8627进行测试,其烟密度等级(SDR)≤75。 5.2 B2级材料 按GB/T 8626进行测试,其燃烧性能应达到GB/T 8626所规定的指标,且不允许有燃烧滴落物引燃滤纸的现象。

聚氨酯泡沫阻燃

聚氨酯泡沫塑料的阻燃 阻燃原理 一般,通过添加阻燃剂提高泡沫塑料的阻燃性,以延缓燃烧、阻烟甚至使着火部位自熄。也可采用含阻燃元素的多元醇(即反应型阻燃剂)为泡沫原料。阻燃剂必须具有以下一种或数种功能:能在着火温度或接近着火温度下吸热分解成不可燃物质;能与泡沫燃烧产物反应生成不易燃物质;可分解出能终止泡沫自由基氧化反应的物质。 在聚氨酯泡沫中,含磷阻燃剂主要在凝聚相发挥作用,磷化物可以消耗泡沫塑料燃烧时分解出的可燃气体,使其转化成不易燃烧的炭化物,泡沫体中磷(P)含量达1.5%左右时即可获得较佳的阻燃效果。 含卤素阻燃剂主要在气相中发挥作用,卤素是泡沫塑料燃烧反应的链终止剂,在塑料燃烧时生成卤化氢而抑制燃烧反应。据有关资料,为使泡沫获得较满意的阻燃性能,泡沫体中溴(Br)质量分数应达12%~14%,或氯(Cl)质量分数达18%~20%。当磷-卤联用时,由于存在一定的协同效应,故0.5%P+(4%~5%)Br或1%P+(8%~12%)Cl即可使聚氨酯泡沫具有自熄性。 典型的磷-氮阻燃体系可由聚磷酸铵和三聚氰胺等组成,在泡沫受热初期,阻燃剂分解产生磷酸等,它与多羟基化合物形成具有阻燃作用的磷酸酯并释放水蒸气;在高温下泡沫中的阻燃剂气化产生不燃性气体,使熔融的泡沫炭化形成疏松的多孔性阻燃层。 氢氧化铝中含有大量的结晶水(质量分数可高达34%),结晶水在泡沫塑料生产过程中很稳定,但在泡沫塑料燃烧温度时将快速分解,吸收燃烧热,并在火源和泡沫间形成不燃性的屏障,从而起到阻燃作用。同时,它也是一种烟气抑制剂。 添加阻燃剂制备阻燃泡沫塑料 人们发现,含磷、氮、卤素、锑、铝、硼等元素的塑料制品具有较好的阻燃性能。一般可通过在制备聚氨酯泡沫塑料时在发泡配方中添加阻燃剂,使聚氨酯泡沫塑料具有一定的阻燃性能。选择阻燃剂,除了要考虑它对制品的阻燃效果(包括长期阻燃效果、遇火时的烟雾性等),还需考虑加入阻燃剂对发泡工艺的影响,以及对制品物性的影响。 一用于聚氨酯的阻燃剂有非反应性添加型阻燃剂及反应型阻燃剂两类。 A 添加非反应性阻燃剂 聚氨酯泡沫的阻燃剂以液态阻燃剂为主。液体阻燃剂主要是含磷、氯、溴元素的有机化合物,如三(2-氯丙基)磷酸酯(TCPP)、三(2-氯乙基)磷酸酯(TCEP)、三(二氯丙基)磷酸酯(TDCPP)、四(2-氯乙基)亚乙基二磷酸酯、甲基膦酸二甲酯(DMMP)、多溴二苯醚,等等。固态阻燃剂如三聚氰胺、三氧化锑、氢氧化铝、硼酸盐、聚磷酸铵、三(2,3-二溴丙基)异三聚氰胺酯等也用于聚氨酯泡沫塑料的阻燃。 B添加液态有机阻燃剂 在聚氨酯泡沫塑料中应用最早而且成本经济的品种是TCEP。它容易迁移和挥发,阻燃持久性较差。为了减少挥发损失,可选用多氯化(多)磷酸酯和高分子量的齐聚磷酸酯,如三(二氯丙基)磷酸酯和卤代双磷酸酯。在硬泡配方中加入20%以内的三(2,3-二氯丙基)磷酸酯,可使硬泡的氧指数达26;添加15%该阻燃剂可使软泡的阻燃性能达到UL94 HF-1或ASTM D1692阻燃要求。 卤代双磷酸酯是聚氨酯泡沫塑料常用的液态低挥发阻燃剂,耐水解性和热稳定性较好,尤其适用于聚氨酯软泡的阻燃。典型的产品有:四(2-氯乙基)二亚乙基醚二磷酸酯,含磷12%、氯27%,日本进口产品牌号CR505;四(2-氯乙基)亚乙基二磷酸酯,含磷13%、氯30.5%,美国进口产品牌号Thermolin101。其它产品如四(1,3-二氯-2-丙基)-2,2-二(氯甲基)-1,3-亚丙基二磷酸酯、四(1,3-二氯-2-丙基)-亚乙基二磷酸酯、四(2,3-二溴丙基)-1,2-亚乙基二磷酸

聚氨酯材料的阻燃技术研究

聚氨酯材料的阻燃技术研究 摘要:作为高分子材料——聚氨酯,其在工业、农业、建筑、军事等领域广泛应用,其材料的阻燃性能受到社会各界的广泛关注。接下来,本文将深入探究聚氨酯材料的阻燃技术,旨在为一线工作提供理论指导。 与其他高分子材料相同,没有经过处理的聚氨酯,能在空气中燃烧,其极限氧指数为18.随聚氨酯材料的广泛应用,其火灾发生事故也较为频繁,聚氨酯材料的阻燃技术与安全性能越来越重要。 1.聚氨酯阻燃类型分析 现阶段,聚氨酯材料广泛应用,全球各大公司积极发展聚氨酯材料,各种新产品纷纷涌现。聚氨酯材料制备,具有良好的耐寒、耐热、隔油等性能,是保温、防震中不可或缺的原材料,在家电业、汽车工业中广泛应用。 1.1.现阶段,高分子材料主要通过以下方式获得阻燃性能 1.1.1.抑制降解与氧化技术 1.1. 2.催化阻燃技术 1.1.3.消烟技术 1.1.4.冷却降温技术 1.1.5.接枝与交联改性 1.1.6.隔热碳化技术 1.2.聚氨酯阻燃方式可分为三种类型 1.2.1.在聚氨酯合成过程中,添加磷、溴、氯等元素,这种叫作添加型阻燃剂。 1.2.2.在有机多元醇或原料异氰酸酯上添加磷、溴、氯等元素,进一步获得本体阻燃泡沫,这种叫作反应型阻燃剂。 1.2.3.在聚氨酯材料中,积极加入耐热高基团,进一步提升材料阻燃性能。 2.聚氨酯阻燃机理探究 与其他塑料阻燃原理相似,聚氨酯材料通过使用阻燃剂,能有效提升自身分

子的耐燃性能,进一步阻止其燃烧或者减缓其燃烧速度。如果使用阻燃剂,在塑料与火接触时,不会快速燃烧,一旦离开火源,就能迅速熄灭。 从整体上说,阻燃剂的作用机理非常复杂。但是,从根本上来说,阻燃剂就是通过某种方式达到阻止或切断燃烧的目的。本文从以下方面探究阻燃剂作用机理: 2.1.阻燃剂产物自身的脱水功效,使有机物进一步炭化,进而生成单质碳,在炭黑皮膜的影响下,很难引起火焰燃烧,起到阻燃效果。 2.2.阻燃剂分解,进一步在树脂表面覆盖一层保护膜,将空气隔离,产生阻燃效果。 2.3.阻燃剂分解成为HO,如果自由基连锁被切断,就会达到熄火目的。通过加入某些化学元素,能改变材料的分解速率。阻燃剂能进一步分解成为各种游离基,游离基会与分解物发生化学作用,降低燃烧能量。 2.4.阻燃剂能够分散或吸收燃烧热,进而减低聚合物自身温度,有效缓解燃烧与分解。 2.5.阻燃剂能够分解出氮气、氨气、二氧化然、氯化氢、水等不可燃气体,将燃烧区域的氧气与可燃性其他浓度冲淡,进而达到阻燃效果,其中,氮气的阻燃效果最好。 2.6.协同作用,大量实践证实,某些材料如果单独使用,其阻燃效果不理想。然是,多种材料协同运用,就会大幅度提升其阻燃效果。在含氮与含磷体系中,也会发生氮磷协同作用,进一步提升阻燃效果。从根本上来说,使用阻燃就就是通过中断热交换方式、凝聚相或气相阻燃方式实现的,上述方式共同组合成为一种复杂的阻燃过程。 3.聚氨酯材料的阻燃技术 3.1.添加型阻燃 添加型阻燃剂是通过直接添加阻燃剂这种物理方式,在聚氨酯基体中分散。一般将阻燃剂分为无机与有机两种,无机添加剂主要包括硼酸盐、磷酸铵、氢氧化铝等,有机添加剂主要包括氯化石蜡、磷酸酯等。无机阻燃剂具有高效、低烟、无毒等特性,对环境影响比较小。这种阻燃剂多为固体阻燃剂。我国现阶段88%的阻燃剂含卤,对于无机阻燃剂的应用比较小。这主要是因为,与固态阻燃剂相比,液体阻燃剂对聚氨酯性能影响比较小。在添加型阻燃剂应用过程中,不可避免的存在一定问题。在高分子基体中,阻燃剂的界面性、相容性等问题。同时,阻燃剂的应用量,也会影响材料性能。阻燃剂的用量以及种类不同,其对于聚氨酯材料密度与阻燃性影响也不相同。现阶段市场上应用最广泛的还是卤化或者含磷添加剂,这种添加剂虽然阻燃效果好、价格低廉,但是,在实际使用过程中,

聚氨酯泡沫火灾危险性及防火对策完整版

聚氨酯泡沫火灾危险性 及防火对策 集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]

聚氨酯泡沫火灾危险性及防火对策 一、火灾危险性 “聚氨酯”全称为聚氨基甲酸酯,用这种材料做成的具有优越的绝缘、保温和隔音性能。聚氨酯,俗名海绵(以下简称聚氨酯泡沫),是生产、生活中广泛利用的畅销制品。聚氨酯泡沫成品是多孔性的固体,导热性极差,容易造成热量积聚。硬质的闪点为310℃,自燃温度为416℃,每燃烧1千摩尔泡沫可放出3073.53KJ的热量。未经阻燃处理的成品,氧指数为20左右;经阻燃处理的在23~27之间,个别也可达30左右。在200℃时发生热降解,放出CO和醇类等低分子物。 对于软质聚氨酯泡沫,根据火险参数差热分析的测定结果,其初始分解温度为260℃以上,激烈分解温度为280℃,自燃温度在330℃以上,极易造成自燃和分解性燃烧。燃烧后,会分解产生氰化氢、一氧化碳等剧毒性气体,使人吸入后几秒钟就中毒身亡,且燃烧产生大量烟气,降低空间能见度,使人失去逃生能力。 二、火灾特性 聚氨酯泡沫火灾与其他可燃固体火灾相比,存在有不同的独特个性。主要表现在: 1、易产生阴燃 实验证明,某些标准规格的聚氨酯泡沫,即使在单独存放的情况下,也可发生阴燃。软质聚氨酯泡沫在静止空气中,产生阴燃的最高温度不超过400℃,而且阴燃的时间能持续数个小时。硬质聚氨酯泡沫的阴燃只发生在表面上,阴燃的最高温度约500℃左右。 2、燃烧速度极快,火焰温度高 在实验中采用150×50×15mm规格的聚氨酯泡沫试样测定,燃烧速度为1.5~2.0mm/s;燃烧中辐射热极强,经测试火焰温度高达2000℃左右,热值为28~23MJ/kg,根据消防部队战斗经验表明,500公斤聚氨酯泡沫堆积引燃后,战斗还未展开、水枪还没出水就全部燃尽了,可见其燃烧的猛烈程度。 分析认为,聚氨酯泡沫燃烧速度快、温度高,主要是因为聚氨酯泡沫在温度作用下,具有急剧分解的特性。分解出的多种小分子可燃气体,当其温度达到燃点,浓度达到燃烧极限时,就会发生爆燃性的全面猛烈燃烧,使燃烧进入“轰燃”状态。 3、烟雾大,毒性强

聚氨酯泡沫塑料的阻燃

聚氨酯泡沫塑料的阻燃 聚氨酯泡沫塑料是一种广泛应用于建筑、交通工具、电子电器、包装等领域的材料。与传统的聚苯乙烯泡沫塑料相比,聚氨酯泡沫塑料具有更高的强度和较好的防潮、防水性能。但是,聚氨酯泡沫塑料的阻燃性能却较差,易引起火灾事故。因此,在提高聚氨酯泡沫塑料的阻燃性能方面,进行了大量的研究。 聚氨酯泡沫塑料的阻燃机理 聚氨酯泡沫塑料的基础材料是聚异氰酸酯(Polyisocyanurate)。在生产过程中,需要将异氰酸酯与多元醇反应,生成聚氨酯多元醇(Polyurethane)。在加入膨胀剂后,聚氨酯多元醇开始氧化聚合反应,生成大量水和二氧化碳,从而形成泡沫结构。 然而,聚氨酯泡沫塑料在长时间高温的条件下,易引发燃烧。由于聚氨酯泡沫塑料中含有大量的烃类有机物,燃烧后会产生大量有害气体,从而对环境和人体健康造成极大的危害。因此,提高聚氨酯泡沫塑料的阻燃性能,对于减少火灾事故和保护环境具有极其重要的意义。 提高聚氨酯泡沫塑料的阻燃性能的方法 1.添加阻燃剂

在聚氨酯泡沫塑料的生产过程中,可以添加阻燃剂。阻燃剂是一种可以减少燃烧或延缓燃烧的添加剂。在实验室的测试中,添加阻燃剂确实能够显著提高聚氨酯泡沫塑料的阻燃性能。然而,阻燃剂的添加量过大会影响泡沫的物理性能,从而降低泡沫的强度和密度,使其难以正常使用。因此,在实际应用中,需要选择合适的阻燃剂,准确控制添加量。 2.添加无机材料 另一种提高聚氨酯泡沫塑料的阻燃性能的方法是添加无机材料,如纳米氧化铝、纳米钛白粉等。这些无机材料能够单独或者与阻燃剂共同作用,产生化学反应,从而减缓聚氨酯泡沫塑料燃烧的速度。添加无机材料能够显著提高聚氨酯泡沫塑料的阻燃性能,且不会对泡沫的物理性能产生不利影响。 3.改变聚氨酯的结构 改变聚氨酯的结构也是提高聚氨酯泡沫塑料阻燃性能的一种方法。例如,通过选择合适的异氰酸酯和多元醇,可以得到不同结构的聚氨酯,从而影响其燃烧机理和热分解性能。同时,也可以通过改变材料的配方、工艺等方法来调整其物理性能和化学性能,从而提高其阻燃性能。 结论 聚氨酯泡沫塑料是一种广泛应用的材料,但其阻燃性能却较差。在实际应用中,为了减少火灾事故和保护环境,需要采取措施来提高其阻燃性能。添加阻燃剂、添加无机材料和改变聚氨酯的结构等方法可以有效提高聚氨酯泡沫塑料的阻燃性能,但需要在合适的添加量和条件下进行。在今后的发展中,还需

阻燃聚氨酯软质泡沫塑料研究

阻燃聚氨酯软质泡沫塑料研究 介绍了国内外聚氨酯软质泡沫塑料的阻燃情况,阐述了聚氨酯的阻燃原理及方法,展望了其发展方向。 标签:阻燃;聚氨酯;泡沫塑料 近年来,聚氨酯工业发展很快。这是因为聚氨酯(PU)材料的性能优良,其软质泡沫塑料具有质轻、柔软、绝缘、透气、无毒、回弹性好、压缩变形小、耐湿、耐老化、耐油、耐有机溶剂、隔音、保温等多种优良特性,因此,广泛用于交通运输、建筑、装饰、工业设备、管道保温、轻工业、民用家具等领域,其用量约占整个聚氨酯材料产量的85%。 与其他有机高分子材料一样,聚氨酯是一种可燃性聚合物,特别是软质泡沫塑料,由于密度小、比表面积较大、绝热性好,其燃烧问题尤为突出。我国聚氨酯软质泡沫应用范围越来越广,且在民航,交通运输、高层建筑、地下矿井、管道保温等方面对其提出了阻燃要求。随着科学技术的不断进步以及人们对火灾防范意识的逐渐增强,软质聚氨酯泡沫的阻燃问题,将会受到越来越多的重视。 1 国内外研究概况 由于PU软质泡沫塑料本身结构特殊,极易燃烧,燃烧时热释放量大,容易发生滴落现象;在生产过程中对发泡工艺条件要求高,添加阻燃剂往往会引起泡沫塌泡、开裂、粉化或回弹性等物理性能大幅度下降,丧失了本身所具有的优良性能。所以,PU软质泡沫塑料属于阻燃难度很大的品种。虽然国内外已对PU 软质泡沫塑料的阻燃性能进行了大量研究,但至今阻燃水平尚未达到满意的结果,因此,目前国内外均在进一步对它进行阻燃研究。 1.1 国外的研究概况 PU软质泡沫塑料的火灾危险性早已引起很多国家的关注,对PU软质泡沫塑料都已提出了阻燃的要求,美国制定并颁布了FMVSS2302标准和家具燃烧试验标准CAL117,限制非阻燃泡沫塑料的生产和使用,到1978年,使用的泡沫几乎都为阻燃型产品。英国要求用于家具和床垫的泡沫塑料都必须阻燃,1988年底宣布禁止非阻燃的普通泡沫塑料和高回弹泡沫塑料用于家具制品。日本运输省81号文件对于客车的座、卧垫材规定都必须使用阻燃制品,要求氧指数26.5。国外PU软质泡沫塑料阻燃技术受到了较为普遍的重视。过去的研究工作主要偏重于添加法阻燃技术,开发的阻燃PU软质泡沫塑料应用于各种领域。但由于受发泡工艺的限制,阻燃剂的添加量有限,生产的阻燃PU软质泡沫塑料阻燃级别不高,一般为自熄型产品,氧指数为26,很少见到有PU软质泡沫塑料氧指数高于26的报道。近年来PU软质泡沫塑料阻燃水平已有较大提高,正在由过去的自熄型向难燃型(氧指数为30)迈进。例如美国联合碳化物公司研究的高回弹PU软质泡沫塑料阻燃性能不仅符合美国通用标准FM2VSS2302,而且符合英国

聚氨酯硬泡阻燃标准

聚氨酯硬泡阻燃标准 [摘要]:聚氨酯硬泡大很多应用场合都是阻燃要求的,20年来中国相应的材料阻燃标准在不断修订,并逐步与国际标准接轨。通过对以往研究工作的总结,本文就聚氨酯硬泡在实施《建筑材料燃烧性能分级方法》(GB8624-2006)后应向什么方向发展,提出了几点建议。 [关键词]:阻燃标准;聚氨酯硬泡;阻燃方向 1聚氨酯硬泡20余年执行的相关阻燃标准 1.1《建筑材料燃烧性能分级方法》(GB8624-1997)对于PU硬泡B1等级的严格要求 近20年来,我国聚氨酯工业发展很快。由于该产品具有非常低的导热系数及透水蒸汽性,质轻、比强度高,加之其与纸、金属、木材、水泥板、砖墙塑料板、沥青毡等具有很强的粘接性,不需另加其它粘合剂等优点,已为众多的工业及民用部门所采用。但是,聚氨酯与其它有机高分子材料一样是一种可燃性较强的聚合物。硬质聚氨酯泡沫塑料的密度小,绝热性能好,与外界的暴露面比其它材料大,因此更容易燃烧。随着聚氨酯泡沫塑料的广泛运用,其材料的耐燃、防火等问题已成为迫切需要解决的重要课题。在我国,由于不慎引燃聚氨酯泡沫塑料而导致火灾的事件时有发生,给聚氨酯泡沫的应用带来了一些负面影响。在国外许多专家甚至认为这个问题是硬质聚氨酯泡沫塑料今后能否 继续发展的关键之一。因此硬质聚氨酯泡沫塑料的耐燃性、安全性,已成为能否用于建筑材料的重要技术指标。许多国家的建筑立法机构都制定了一系列难燃法规,与此同时又相应的制定了一系列对聚氨酯泡沫塑料燃烧性能的测试方法。 我国从1980年开始制定了4项塑料燃烧性能试验方法的国家标准,即氧指数法(GB2406-1980)、炽热棒法(GB2407-1980)、水平燃烧法(GB2408-1980)、垂直燃烧法(GB2409-1980),特别是氧指数法(GB2406-1980)是我国适用于硬质聚氨酯泡沫塑料燃烧性试验的第1个国家标准。1984年上海市公安局颁布了《关于生产、销售、使用高分子建筑材料的管理规定》,其中明确指出:硬质聚氨酯泡沫塑料使用在建筑上,氧指数不得小于26%。相当多的省市部门及公安消防机构参照此规定陆续颁布了各地方和部门的法规。研制氧指数大于26%的硬质聚氨酯泡沫塑料,也引起了国内相关研究部门的普遍重视。国家科委在“六五”、“七五”期间将硬质聚氨酯泡沫塑料氧指数大于26%的指标列为国家攻关课题,并在“七五”攻关成功。这对安全使用硬质聚氨酯泡沫塑料,减少和消除火灾事故,起到了积极的作用。但随着我国科学技术不断提高,生产、使用硬质聚氨酯泡沫塑料的有关单位和公安消防部门的工作人员逐渐认识到,其是一种有机高分子材料,即使氧指数达到26%或者更高,并非意味着在火中不燃烧。高氧指数可通过提高阻燃剂的含量来达到,而大量阻燃剂的使用却又带来了烟雾大、毒性大的弊端。随着我国聚氨酯泡沫塑料工业的发展,要求全面地了解泡沫塑料的燃烧性能,科学地确定阻燃性能的综合评价指标,真实地反映在实际火灾中材料的燃烧行为,已提到议事日程上来。最初以自熄性和氧指数作为评价材料燃烧难易程度的指标,已远远不够,还必须考虑到着火后,火焰传播扩散速度指标、产生烟雾大小及毒性情况。 为此我国颁布了国家标准——建筑物隔热用硬质聚氨酯泡沫塑料(GB10800-1989),并于1990年开始实施规定的水平燃烧法和垂直燃烧法测定聚氨酯泡沫塑料的阻燃性,即用火焰传播性来衡量材料的阻燃性。

聚氨酯泡沫

不同辐照强度下阻燃聚氨酯泡沫的燃烧行为 随着硬质聚氨酯泡沫材料在建筑保温、装饰材料的广泛应用,由其引发的建筑灾也在逐年增加,造成了重大生命财产损失,其火灾危险性研究已引起整个社会的广泛关注。锥形量热仪,已广泛应用于材料引燃特性、燃烧热释放速率、烟气生成量等火灾危险性参数的测试,锥形量热-傅里叶红外光谱联用仪(CC-FT-IR)兼具二者的优点,实现了对材料的热危险性和烟气危险性的综合性研究和分析。以三(1-氯-2-丙基)磷酸酯(TCPP)为阻燃剂和以二氯一氟乙烷(HCFC-141b)为发泡剂来制备阻燃硬质聚氨酯泡沫材料(FRPU)是目前中国市场上普遍采用的技术,本文利用CC-FT-IR对FRPU在不同辐照强度下的燃烧行为及燃烧烟气中的有毒气体进行了研究。利用英国FTT锥形量热仪在辐照强度分别为25kW/m2、35 kW/m2、50 kW/m2和75 kW/m2条件下,按ISO 5660-1标准进行测试,样品尺寸为100 mm ×100mm×48 mm。通过芬兰Gasmet傅里叶红外光谱仪分析燃烧烟气中的有毒气体,按ISO19702标准进行测试,取样速率4 L/min,取样气路及样品仓温度为180 ℃。 热释放速率(HRR)是评价材料火灾特性的一个重要指标,峰值热释放速率(PHRR)常作为表征材料火灾危险性的最重要参数之一[7]。Fig.1为PU和FRPU 在不同辐照强度下的HRR曲线图,数据总结在Tab.1。ab.1中质量损失率(mass loss)的数据表明,PU和FR-PU在燃烧时会形成炭层,而炭层有一定阻碍传质和传热的作用,可以延缓炭层下的基材分解和燃烧速率,因此从Fig.1中可以看到,PU 和FRPU的HRR曲线在点燃后很快达到峰值,到达峰值后很快下降并在一段时间内缓慢下降至变为直线。TCPP的添加能有效降低FRPU的热释放速率,在辐照强度35 kW/m2下FRPU的PHRR值为181 kW/m2,约为PU的63%,FRPU的总热释放量从未阻燃的25.9MJ/m2下降至17.2MJ/m2。随着辐照强度的增大,FRPU的PHRR值由131 kW/m2增大到260 kW/m2,到达HRR峰值的时间(TTPHRR)从35 s缩短至20 s,总热释放量(THR)的值由8.0MJ/m2增大到39.7MJ/m2。以上的这些结果均说明TCPP的添加可以有效降低FRPU的火灾热危险性,FRPU的火灾热危险性随辐照强度的增大而增大。 火灾统计研究表明,火灾中70%~75%以上的丧生人员是由火灾烟气造成的,其中大部分是吸入烟尘及有毒气体昏迷后而致死的,因此材料潜在的火灾烟气危险研

聚氨酯泡沫火灾危险性及防火对策

聚氨酯泡沫火灾危险性及防火对策 一、火灾危险性 “聚氨酯”全称为聚氨基甲酸酯,用这种材料做成的具有优越的绝缘、保温和隔音性能。聚氨酯,俗名海绵(以下简称聚氨酯泡沫),是生产、生活中广泛利用的畅销制品。聚氨酯泡沫成品是多孔性的固体,导热性极差,容易造成热量积聚。硬质的闪点为310℃,自燃温度为416℃,每燃烧1千摩尔泡沫可放出的热量。未经阻燃处理的成品,氧指数为20左右;经阻燃处理的在23~27之间,个别也可达30左右。在200℃时发生热降解,放出CO 和醇类等低分子物。 对于软质聚氨酯泡沫,根据火险参数差热分析的测定结果,其初始分解温度为260℃以上,激烈分解温度为280℃,自燃温度在330℃以上,极易造成自燃和分解性燃烧。燃烧后,会分解产生氰化氢、一氧化碳等剧毒性气体,使人吸入后几秒钟就中毒身亡,且燃烧产生大量烟气,降低空间能见度,使人失去逃生能力。 二、火灾特性 聚氨酯泡沫火灾与其他可燃固体火灾相比,存在有不同的独特个性。主要表现在: 1、易产生阴燃 实验证明,某些标准规格的聚氨酯泡沫,即使在单独存放的情况下,也可发生阴燃。软质聚氨酯泡沫在静止空气中,产生阴燃的最高温度不超过400℃,而且阴燃的时间能持续数个小时。硬质聚氨酯泡沫的阴燃只发生在表面上,阴燃的最高温度约500℃左右。 2、燃烧速度极快,火焰温度高

在实验中采用150×50×15mm规格的聚氨酯泡沫试样测定,燃烧速度为~2.0mm/s;燃烧中辐射热极强,经测试火焰温度高达2000℃左右,热值为28~23MJ/kg,根据消防部队战斗经验表明,500公斤聚氨酯泡沫堆积引燃后,战斗还未展开、水枪还没出水就全部燃尽了,可见其燃烧的猛烈程度。 分析认为,聚氨酯泡沫燃烧速度快、温度高,主要是因为聚氨酯泡沫在温度作用下,具有急剧分解的特性。分解出的多种小分子可燃气体,当其温度达到燃点,浓度达到燃烧极限时,就会发生爆燃性的全面猛烈燃烧,使燃烧进入“轰燃”状态。 3、烟雾大,毒性强 聚氨酯泡沫燃烧时放出大量的黑色浓烟。这是由于其烟雾中既含有分解产物又含有燃烧产物。而且,聚(文章来源环球聚氨酯网)氨酯泡沫在高温下可同时产生脱氢和凝聚效应。脱氢形成的炭微粒和含氢数量少的化合物微粒与燃烧产物互相混杂;高温热解生成的醇、醛等低聚物或小分子物凝聚的液滴也混在烟雾中,因此,烟雾大、成份复杂。 聚氨酯泡沫的燃烧产物很多,主要有CO、CO2、H2O、NO、NO2、NH3和HCN等。其中HCN毒性很大。实验测得,燃烧1g聚氨酯泡沫,可产生、等,烟雾和毒性给安全疏散和灭火战斗带来了极大的危险和困难,增加了火灾危害。 三、防火对策 1、应把好质量关,严格实施操作控制。 应在使用前按照要求标准分析化验,特别是聚醚多元醇的含水量及可燃性低分子成分指标要从严控制。操作中,要严格按照规定的投料配比、顺序、混合时间及聚合温度等工艺条件操作。尤其要把握住甲苯二异腈酸酯和水的配比,以及活性的添加量,适时调整搅拌型式或转速,保证混添均匀。

聚氨酯泡沫塑料的阻燃

聚氨酯泡沫塑料的阻燃 概述 聚氨酯泡沫塑料是一种常用的塑料材料,由于其良好的绝缘性能和 轻质化特点,被广泛应用于建筑、交通、电子等领域。然而,聚氨酯 泡沫塑料在火灾中容易引发火灾蔓延,因此需要进行阻燃处理,以提 高其安全性能。本文将介绍聚氨酯泡沫塑料的阻燃机制和常见的阻燃 材料及方法。 阻燃机制 聚氨酯泡沫塑料的阻燃机制是通过在其结构中引入阻燃剂,阻碍火 焰的传播和热量的释放。常见的阻燃剂包括无机阻燃剂和有机阻燃剂。

无机阻燃剂 无机阻燃剂是指由无机化合物制成的阻燃剂,具有耐高温、低毒性 等特点。常见的无机阻燃剂包括氢氧化铝、氧化镁等。这些无机阻燃 剂通过吸热、隔热、氧化等作用,减缓聚氨酯泡沫塑料的燃烧速度, 达到阻燃的效果。 有机阻燃剂 有机阻燃剂是指由含有卤素、磷等元素的有机化合物制成的阻燃剂,具有良好的阻燃性能。常见的有机阻燃剂包括溴系阻燃剂、磷系阻燃 剂等。这些有机阻燃剂通过分解生成惰性气体、抑制燃烧反应等方式,阻断聚氨酯泡沫塑料的燃烧过程。

阻燃材料及方法 防火涂料 防火涂料是一种常见的阻燃材料,可以在聚氨酯泡沫塑料表面形成一层防火涂层,减缓燃烧速度。这种防火涂料通常采用含有阻燃剂的涂料,通过涂覆形成阻燃层,具有良好的阻燃效果。 阻燃添加剂 阻燃添加剂是一种直接添加到聚氨酯泡沫塑料中的阻燃材料,可以提高整体的阻燃性能。常见的阻燃添加剂包括阻燃剂粉末、阻燃剂颗粒等,通过均匀分散在聚氨酯泡沫塑料中,起到阻燃的作用。 阻燃改性 阻燃改性是通过改变聚氨酯泡沫塑料的分子结构,引入阻燃元素或改变配方比例,提高其阻燃性能。可通过增加阻燃剂的含量或加入阻燃改性剂等方式进行。

PU燃烧性能

聚氨酯硬泡保温材料阻燃技术 聚氨酯硬质泡沫板材以具有容重强度高、吸水率小、低温或高温尺寸稳定性好、使用寿命长、绝热性能优异等特点,广泛应用于石油、化工、建筑、包装、冷藏、军工、航天、航空、交通运输、工业造型设计等诸方面作结构材料和绝热材料。随着人们对聚氨酯研究越来越深,聚氨酯的优异性能逐渐得到了认识和使用。然而聚氨酯硬泡材料在生产、施工和使用中的火灾事故屡有发生,给人们的生命和财产造成了严重危害。本文笔者以2003年青岛“4·5”火灾和2004 年青岛丰旭实业有限公司青州分公司“4·22”火灾为例,分析聚氨酯泡沫材料(简称PU)在生产、施工和使用中存在的火灾危险性,给出聚氨酯泡沫材料的阻燃方法和在生产、施工和使用中的火灾防范措施。 一、聚氨酯硬泡材料推广使用趋势 在我国改革开放,社会文明日新月异的背景下,中国经济发展取得举世瞩目的成就,但这种令世人瞩目的快速增长有2 /3是在对生态环境透支的基础上实现的。在中国消耗的能源中,建材及建筑耗能占47. 3%。经济发展离不开资源的支撑,资源的承载能力也制约着经济的发展,因此,建设部决定在全国全面推广新型建筑节能技术,到2020年,我国住宅和公共建筑建设的资源消耗水平要接近或达到现阶段中等发达国家的水平。建设部科学技术司梁俊强处长明确表示:“发展节能省地型住宅和公共建筑是建筑业、建材业可持续发展必然要求,提高各级 政府与民众对建筑节能的认识十分必要。推广聚氨酯在建筑中的应用,将有助于缓解日益紧张的能源状况,推动绿色产业的深入发展,国家也将在立法和政策上支持建筑节能材料的生产和应用。”聚氨酯硬泡材料(简称PU硬泡)是目前国际上性能最好的保温材料,原料方面,中国是拥有生产异氰氨酯这一高新技术自主知识产权的五个国家之一。硬质聚氨酯具有重量轻、导热系数低、耐热性好、耐老化、容易与其它基材黏结、燃烧不产生溶滴等其它材料不可比拟的优异性能,广泛用作建筑物的屋顶、墙体、天花板、地板、门窗等的保温隔热材料。聚氨酯可以根据不同物性要求灵活设计出各种高分子结构,而且还可以现场加工成型,推广聚氨酯材料作为我国建筑保温材料的替代品,是我国实现建筑节能的一个重要途径。聚氨酯作一种塑料,而塑料都是可燃的,在一定条件下,燃烧还相当迅速猛烈,这给人类的生命和财产安全带来了极大的危险性。目前有关聚氨酯硬泡材料的行业规范、规程均尚未面世,聚氨酯硬泡材料在生产、施工和使用中的火灾事故屡有发生,对聚氨酯硬泡材料替代传统建筑保温材料的应用技术进行探讨具有十分重要的意义。 二、聚氨酯泡沫材料的成分、燃烧特性和火灾分析 (一)聚氨酯泡沫材料的成分 聚氨酯是一种高分子材料,其主要特征是分子链中含有多个重复的“氨基甲酸酯”基团。聚氨酯全称是聚胺基甲酸酯,是由二元或多元异氰酸酯与二元或多元羟基化合物作用而成的高分子化合物。以聚酯树脂或聚醚树脂为主要原料与甲苯二异氰酸脂(TD I)或二苯基甲烷二异氰酸脂(MD I)或聚次甲基聚苯基异氰酸脂( PAP I)按一定比例加入发泡剂、催化剂等,在适宜的温度下,经混合搅拌进行发泡所成的泡沫材料即为聚氨酯泡沫材料。 (二)聚氨酯泡沫材料的燃烧性能 聚氨酯泡沫材料的燃烧性能,可以用氧指数来表示。氧指数在26%以上的可以认为具有难燃性,在平常空气中燃烧,比较安全。氧指数越大,越难燃烧;反之,氧指数越小,越易燃烧。实验表明,聚氨酯泡沫材料,其氧指数为25. 4%,且离开火焰后继续燃烧。聚氨酯泡沫材料的原料都是低闪点有机高分子化合物,燃烧产生大量的一氧化碳、氰化氢等剧毒气体和有毒烟雾,极易造成人员伤亡。为了减少火灾,应对其进行阻燃处理,以提高其难燃性。 (三)聚氨酯硬泡材料的火灾分析

聚氨酯发泡材料的阻燃改性与保温性能研究进展

聚氨酯发泡材料的阻燃改性与保温性能 研究进展 Summary:聚氨酯泡沫材料具有良好的保温性能,同时还具有耐磨、抗低温以及绝缘等特点,因此获得了非常广泛的发展,但是由于其阻燃效果较差,制约了其进一步发展,因此研究人员对聚氨酯发泡材料阻燃改性进行了大量的研究,基于此本文对聚氨酯发泡材料的阻燃改性与保温性能研究进展进行了探讨。Keys:聚氨酯;发泡塑料;阻燃改性;保温性能 1 聚氨酯材料的新能 聚氨酯材料时一种应用个非常广泛的合成材料,其是通过多元异氰酸酯和多元羟基化合物逐步反应加成而成的,在实际生产过程中,通过改变官能团的数量和类型等方式,可以获得不同形式和性能的聚氨酯材料。聚氨酯材料性能非常出色,其具有耐磨、抗低温、绝缘以及不易溶解等特点,同时其还具有发泡性以及高弹性等。聚氨酯硬质泡沫体是一种应用广泛的材料,其不仅质量

轻,而且导热率低,具有良好的保稳性能和防水性能,这种材料的导热系数为0.018~0.023 W/( m·K),在众多保温材料中其导热系数是最低的,此外器在吸水性、耐冷热性能等方面都非常出色,具有较长的使用寿命,因此聚氨酯泡沫常被应用于保温墙体的使用中,但是聚氨酯泡沫作为保温墙体材料时有一个致命的缺陷,就是其非常容易燃烧,导致其防火性能比较差,这极大的限制了其实际应用。相关报道表明,央视文化中心、北京大学体育馆等地发生的火灾事故,起因都是聚氨酯泡沫材料被引燃导致的,造成了比较大的经济损失和人员伤亡,因此通过对聚氨酯材料进行改性,提高其阻燃性能获得了人们广泛的关注。 为了提高聚氨酯塑料的阻燃能力,通常采用引入阻燃组分的方式来对其进行改性,引入组分组分的方式主要有两类,分别是结构型阻燃技术和添加型阻燃技术,其中前者是通过添加异氰尿酸酯和碳化二亚胺等结构型阻燃剂来提高聚氨酯材料的阻燃性能,后者则是加入添加型阻燃剂,这种阻燃剂通过分散到聚氨酯泡沫中来阻止其进行燃烧。 2 聚氨酯泡沫材料所用阻燃剂的主要类别 为了提升聚氨酯泡沫材料的阻燃性能,会通过加入阻燃剂对其进行改性,当前常用的阻燃剂类型有磷系阻燃剂、氮系阻燃剂、硼系阻燃剂、膨胀型阻燃剂以及填充型阻燃剂等几种,下面对这些方面的研究进展进行探讨: 2.1 磷系阻燃剂 磷系阻燃剂主要有两类,分别是无机型和有机型,其中前者主要包括红磷以及磷酸盐等,后者则包括磷酸酯以及有机盐等物质。当前,研究人员在磷系阻燃剂方面进行了很多的研究,张立强等在聚氨酯发泡材料制作过程中加入了

相关主题
文本预览
相关文档 最新文档