当前位置:文档之家› 1.4.1正弦,余弦函数的图像 (2)

1.4.1正弦,余弦函数的图像 (2)

1.4.1正弦,余弦函数的图像 (2)
1.4.1正弦,余弦函数的图像 (2)

1. 4.1 正弦函数、余弦函数的图象

班级姓名

【教学目标】

1、通过本节学习,理解正弦函数、余弦函数图象的画法.

2、通过三角函数图象的三种画法:描点法、几何法、五点法,体会用“五点法”

作图给我们学习带来的好处,并会熟练地画出一些较简单的函数图象.

【教学重点】正弦函数、余弦函数的图象.

【教学难点】将单位圆中的正弦线通过平移转化为正弦函数图象上的点;正弦函数与余弦函数图象间的关系.

【教学过程】

一、预习提案(阅读教材第30—33页内容,完成以下问题:)

1、借助单位圆中的正弦线在下图中画出正弦函数y=sinx, x∈[0,2π]的图象。

y

x

o

说明:使用三角函数线作图象时,将单位圆分的份数越多,图象越准确。在作

函数图象时,自变量要采用弧度制,确保图象规范。

3、 观察图象(正弦曲线),说明正弦函数图象的特点:

①由于正弦函数y=sinx 中的x 可以取一切实数,所以正弦函数图象向两侧 。

②正弦函数y=sinx 图象总在直线 和 之间运动。

4、观察正弦函数y=sinx, x ∈[0,2π]的图象,找到起关键作用的五个点:

, , , ,

5、用“五点作图法”画出∈[-π,π]的图象。

6、①函数?(x+1)的图象相对于函数?(x )的图象是如何变化的? ②函数y=sin (x+

2π)的图象相对于正弦函数y=sinx 的图象是如何变化的?

③由诱导公式知:sin (x+2π)= ,所以函数y=sin (x+2π)= ④请画出y=cosx 的图象(余弦曲线)

7、观察余弦函数y=cosx, x ∈[0,2π]的图象,找到起关键作用的五个点:

, , , ,

二、新课讲解

例1、用“五点作图法”作出y=x sin , x ∈[0,2π]的图象;并通过猜想画出y=x sin 在整个定义域内的图象。

练习:用“五点作图法”作出y=x cos , x ∈[0,2π]的图象;并通过猜想画出y=x cos 在整个定义域内的图象。

例2、用“五点作图法”作出下列函数的简图;(1)y=1+sinx, x ∈[0,2π];(2)y=2cos(2x-

3

π)

练习:用“五点作图法”作出下列函数的简图;(1)y=-cosx, x ∈[0,2π];(2)y=2sin(x-

3

π)+1

三、课堂小结 1、会用“五点法”作图熟练地画出一些较简单的函数图象.

2、关键点是指图象的最高点,最低点及与x轴的交点。

四、作业布置习题1.4 A组第1题

正弦函数余弦函数的图像(附答案)

正弦函数、余弦函数的图象 [学习目标] 1.了解利用单位圆中的正弦线画正弦曲线的方法.2.掌握“五点法”画正弦曲线和余弦曲线的步骤和方法,能用“五点法”作出简单的正弦、余弦曲线.3.理解正弦曲线与余弦曲线之间的联系. 知识点一 正弦曲线 正弦函数y =sin x (x ∈R )的图象叫正弦曲线. 利用几何法作正弦函数y =sin x ,x ∈[0,2π]的图象的过程如下: ①作直角坐标系,并在直角坐标系y 轴的左侧画单位圆,如图所示. ②把单位圆分成12等份(等份越多,画出的图象越精确).过单位圆上的各分点作x 轴的垂线,可以得到对应于0,π6,π3,π 2,…,2π等角的正弦线. ③找横坐标:把x 轴上从0到2π(2π≈6.28)这一段分成12等份. ④平移:把角x 的正弦线向右平移,使它的起点与x 轴上的点x 重合. ⑤连线:用光滑的曲线将这些正弦线的终点依次从左到右连接起来,即得y =sin x ,x ∈[0,2π]的图象. 在精度要求不太高时,y =sin x ,x ∈[0,2π]可以通过找出(0,0),(π2,1),(π,0),(3π 2,-1), (2π,0)五个关键点,再用光滑曲线将它们连接起来,就可得正弦函数的简图. 思考 在所给的坐标系中如何画出y =sin x ,x ∈[0,2π]的图象?如何得到y =sin x ,x ∈R 的图象? 答案 y =sin x ,x ∈[0,2π]的图象(借助五点法得)如下: 只要将函数y =sin x ,x ∈[0,2π)的图象向左、向右平行移动(每次2π个单位长度),就可以得到正弦函数y =sin x ,x ∈R 的图象. 知识点二 余弦曲线 余弦函数y =cos x (x ∈R )的图象叫余弦曲线.

正弦函数、余弦函数的图像

正弦函数、余弦函数的图像 撰稿:游斌 修订:高一备课组 学生姓名:__________第___小组 一、学习目标,心中有数: 1、了解用正弦线作正弦函数的图像的方法;能通过适当的图形变换由正弦函数的图像得到余 弦函数的图像; 2、掌握用“五点法”作正弦函数、余弦函数的简图; 3、能用“五点法。”作正弦型和余弦型函数的简图。 二.自主学习,体验成功: (一)、知识梳理 形成体系 1、多媒体演示利用正弦线作正弦函数在[]π2,0上的图像 2、怎样可以得到R x x y ∈=,sin 的图像? 因为终边相同的角有相同的三角函数值,所以函数 []0,)1(2,2,sin ≠∈+∈=k Z k k k x x y 且ππ的图像与函数[]π2,0,sin ∈=x x y 的图像的形状完全一致,于是我们只要将函数[]π2,0,sin ∈=x x y 的图像向左、向右平行移动(每次π2单位长度),就可以得到R x x y ∈=,sin 的图像,正弦函数的图像叫做正弦曲线。 3、因为)2 sin( cos x x +=π ,而)2 sin( x y +=π 的图像可以由x y sin =的图像向左平移 2 π 得到,

所以x y cos =的图像也可以由x y sin =的图像向左平移 2 π 得到。 余弦函数的图像叫做余弦曲线。 4、观察正弦函数在[]π2,0上的图像,其中起关键作用的点有哪些?利用这些关键点作出正弦函数x y sin =在[]π2,0上的简图。 (1)列表: (2)在直角坐标系中描点、并用平滑曲线连接起来。 这种作图方法叫做“五点法”。 (二)、课前热身 自我检测 画出下列函数的简图: (1)x y sin 1+=,[]π2,0∈x (2)x y cos -=,[]π2,0∈x x y o

教案正弦型函数的图像和性质

教案 正弦型函数的图像和性质 1.,,A ω?的物理意义 当sin()y A x ω?=+,[0,)x ∈+∞(其中0A >,0ω>)表示一个振动量时,A 表示这个量振动时离开平衡位置的最大距离,通常称为这个振动的振幅,往复振动一次需要的时间2T π ω = 称为这个振动的周期,单位时间内往复振动的次数12f T ω π = = ,称为振动的频率。x ω?+称为相位,0x =时的相位?称为初相。 2.图象的变换 例 : 画出函数3sin(2)3 y x π =+的简图。 解:函数的周期为22 T π π= =,先画出它在长度为一个周期内的闭区间上的简图,再 函数3sin(2)3 y x π =+ 的图象可看作由下面的方法得到的: ①sin y x =图象上所有点向左平移 3 π 个单位,得到sin()3y x π=+的图象上;②再把 图象上所点的横坐标缩短到原来的12,得到sin(2)3 y x π =+的图象;③再把图象上所有点 的纵坐标伸长到原来的3倍,得到3sin(2)3 y x π =+的图象。 x y O π 3 π- 6 π- 53 π 2π sin(3 y x π =+ sin(2)3 y x π =+ sin y x = 3sin(23 y x π =+

一般地,函数sin()y A x ω?=+,x R ∈的图象(其中0A >,0ω>)的图象,可看作由下面的方法得到: ①把正弦曲线上所有点向左(当0?>时)或向右(当0?<时)平行移动||?个单位长度; ②再把所得各点横坐标缩短(当1ω>时)或伸长(当01ω<<时)到原来的 1 ω 倍(纵坐标不变); ③再把所得各点的纵坐标伸长(当1A >时)或缩短(当01A <<时)到原来的A 倍(横坐标不变)。 即先作相位变换,再作周期变换,再作振幅变换。 问题:以上步骤能否变换次序? ∵3sin(2)3sin 2()36y x x π π=+ =+,所以,函数3sin(2)3 y x π =+的图象还可看作 由下面的方法得到的: ①sin y x =图象上所点的横坐标缩短到原来的 1 2 ,得到函数sin 2y x =的图象; ②再把函数sin 2y x =图象上所有点向左平移6 π 个单位,得到函数sin 2()6y x π=+的 图象; ③再把函数sin2()6y x π =+的图象上所有点的纵坐标伸长到原来的3倍,得到3sin 2() 6 y x π=+的图象。 3.实际应用 例1:已知函数sin()y A x ω?=+(0A >,0ω>)一个周期内的函数图象,如下图 所示,求函数的一个解析式。 又∵0A > ,∴A = 由图知 52632 T πππ=-= ∴2T π πω ==,∴2ω=, 又∵157()23612 πππ+=, ∴图象上最高点为7( 12 π , ∴7)12π?=?+,即7sin()16π?+=,可取23 π?=-, 所以,函数的一个解析式为2)3 y x π =-. 2.由已知条件求解析式 例2: 已知函数cos()y A x ω?=+(0A >,0ω>,0?π<<) 的最小值是5-, 图x 3 3 π 56 π 3 O

必修4正弦函数和余弦函数的图像与性质

必修4正弦函数和余弦函数的图像与性质 例1 用五点法做出下列函数的图像 11(1)2sin ,[0,2];(2)cos(),[,]666 y x x y x x ππππ=-∈=+∈- 例2 求下列函数的定义域和值域 (1)lgsin ;(2)y x y == 练:求函数sin ()log (12cos )x f x x =+的定义域。 例3 已知函数()y f x =的定义域是1 [0,]4 ,求下列函数的定义域 221(1)(cos );(2)(sin )2 f x f x - 例4 求下列函数的最大值与最小值 22(1)2sin();(2)2cos 5sin 4;42(3)3cos 4cos 1,[,]33 y x y x x y x x π ππ=--=+-=-+∈

例5 设1 sin sin 3x y +=,求2sin cos M x y =-的最小值和最大值 例6 求下列函数的值域 2cos 2sin cos (1);(2)2cos 11sin x x x y y x x ==++ 例7已知a 是实数,则函数f (x )=1+asinax 的图象不可能是( ) A . B . C . D . 例8 求下列函数的周期。 (1)|sin ||cos |;(2)cos |2|(3)cos()6y x x y x y x π =+==-- 例9 判断函数7())2f x x π =+的奇偶性 例10 判断函数()lg(sin f x x =+的奇偶性

例11求函数1sin 2 x y π-=的单调区间 提升训练题 1.下列四个函数的图像中关于y 轴对称的是( ) .sin ;.cos ;.1sin ;.cos()2 A y x B y x C y x D y x π ==-=-=- 2.函数sin 2x y =的单调增区间是( ) 3.[2,2]();.[2,2]()2222 .[2,2]();.[2,2]()A k k k Z B k k k Z C k k k Z D k k k Z π πππππππππππππ- +∈++∈-∈+∈ 3.下列函数中是奇函数的是( ) .|sin |;.sin(||);.sin ||;.sin ||A y x B y x C y x D y x x =-=-== 4.sin()3y x π =-的单调减区间是( ) 55.[,]();[2,2]()666677.[,]();.[2,2]();6666A k k k Z B k k k Z C k k k Z D k k k Z ππππππππππππππππ-+ ∈-+∈--∈--∈ 5.函数2cos 3cos 2y x =-+的最小值为______________________ 6.函数|sin |2x y =的最小正周期____________________ 7.cos1,cos2,cos3的大小关系____________________ 8.函数3cos 1cos 2 x y x += +的值域是____________________

正弦函数的图像和性质

1 定义编辑数学术语 正弦函数是三角函数的一种. 定义与定理 定义:对于任意一个实数x 都对应着唯一的角(弧度制中等于这个实数) ,而这个角又对应 着唯一确定的正弦值Sin X ,这样,对于任意一个实数X都有唯一确定的值Sin X与它对应, 按照这个对应法则所建立的函数,表示为f(x)=sin X ,叫做正弦函数。 正弦函数的定理:在一个三角形中,各边和它所对角的正弦的比相等,即a/Sin A=b/Sin B=c/Sin C 在直角三角形ABC中,/ C=90 ,y为一条直角边,r为斜边,X为另一条直角边(在坐标 系中,以此为底),贝U Sin A=y∕r,r= √( x^2+y^2) 2 性质 编辑图像 图像是波形图像(由单位圆投影到坐标系得出) ,叫做正弦曲线(Sine curve) 正弦函数X∈& 定义域 实数集R 值域 [-1,1] (正弦函数有界性的体现) 最值和零点 ①最大值:当X=2k ∏+ ( ∏/2) , k ∈Z 时,y(max)=1 ②最小值:当X=2k ∏+ (3∏/2), k∈Z 时,y(min)=-1 零值点:( kπ ,0) ,k∈Z 对称性 既是轴对称图形,又是中心对称图形。 1) 对称轴:关于直线X= ( π /2) +kπ , k∈Z 对称 2) 中心对称:关于点(k ∏ , 0), k∈Z对称 周期性最小正周期:y=SinX T=2 π 奇偶性 奇函数(其图象关于原点对称) 单调性 在[-∏∕2+2k ∏ , ∏∕2+2k ∏], k∈Z 上是单调递增. 在[∏∕2+2k ∏ , 3∏∕2+2k ∏], k ∈Z 上是单调递减. 3 正弦型函数及其性质 编辑 正弦型函数解析式:y=Asin (ω x+ φ )+h

正弦函数余弦函数的图像(附)

正弦函数、余弦函数的图象 [学习目标] 1.了解利用单位圆中的正弦线画正弦曲线的方法.2.掌握“五点法”画正弦曲线和余弦曲线的步骤和方法,能用“五点法”作出简单的正弦、余弦曲线.3.理解正弦曲线与余弦曲线之间的联系. 知识点一 正弦曲线 正弦函数y =sin x (x ∈R )的图象叫正弦曲线. 利用几何法作正弦函数y =sin x ,x ∈[0,2π]的图象的过程如下: ①作直角坐标系,并在直角坐标系y 轴的左侧画单位圆,如图所示. ②把单位圆分成12等份(等份越多,画出的图象越精确).过单位圆上的各分点作x 轴的垂线,可以得到对应于0,π6,π3,π 2,…,2π等角的正弦线. ③找横坐标:把x 轴上从0到2π(2π≈6.28)这一段分成12等份. ④平移:把角x 的正弦线向右平移,使它的起点与x 轴上的点x 重合. ⑤连线:用光滑的曲线将这些正弦线的终点依次从左到右连接起来,即得y =sin x ,x ∈[0,2π]的图象. 在精度要求不太高时,y =sin x ,x ∈[0,2π]可以通过找出(0,0),(π2,1),(π,0),(3π 2,-1), (2π,0)五个关键点,再用光滑曲线将它们连接起来,就可得正弦函数的简图. 思考 在所给的坐标系中如何画出y =sin x ,x ∈[0,2π]的图象?如何得到y =sin x ,x ∈R 的图象?

答案 y =sin x ,x ∈[0,2π]的图象(借助五点法得)如下: 只要将函数y =sin x ,x ∈[0,2π)的图象向左、向右平行移动(每次2π个单位长度),就可以得到正弦函数y =sin x ,x ∈R 的图象. 知识点二 余弦曲线 余弦函数y =cos x (x ∈R )的图象叫余弦曲线. 根据诱导公式sin ????x +π2=cos x ,x ∈R .只需把正弦函数y =sin x ,x ∈R 的图象向左平移π2个单位长度即可得到余弦函数图象(如图). 要画出y =cos x ,x ∈[0,2π]的图象,可以通过描出(0,1),????π2,0,(π,-1),????3 2π,0,(2π,1)五个关键点,再用光滑曲线将它们连接起来,就可以得到余弦函数y =cos x ,x ∈[0,2π]的图象. 思考 在下面所给的坐标系中如何画出y =cos x ,x ∈[0,2π]的图象? 答案

正弦型函数教案

正弦型函数y=Asin(ψx+φ)的图象变换教学设计 一、教学目标: 1、知识与技能目标: 能借助计算机课件,通过探索、观察参数A、ω、φ对函数图象的影响,并能概括出三角函数图象各种变换的实质和内在规律;会用图象变换画出函数y=Asin(ωx+φ)的图象。 2、过程与方法目标: 通过对探索过程的体验,培养学生的观察能力和探索问题的能力,数形结合的思想;领会从特殊到一般,从具体到抽象的思维方法,从而达到从感性认识到理性认识的飞跃。 3、情感、态度价值观目标: 通过学习过程培养学生探索与协作的精神,提高合作学习的意识。 二、教学重点:考察参数ω、φ、A对函数图象的影响,理解由y=sinx的图象到y=Asin(ωx+φ)的图象变化过程。这个内容是三角函数的基本知识进行综合和应用问题接轨的一个重要模型。学生学习了函数y=Asin(ωx+φ)的图象,为后面高中物理研究《单摆运动》、《简谐运动》、《机械波》等知识提供了数学模型。所以,该内容在教材中具有非常重要的意义,是连接理论知识和实际问题的一个桥梁。 三、教学难点:对y=Asin(ωx+φ)的图象的影响规律的发现与概括是本节课的难点。因为相对来说,、A对图象的影响较直观,ω的变化引起图象伸缩变化,学生第一次接触这 种图象变化,不会观察,造成认知的难点,在教学中,抓住“对图象的影响”的教学,使学生学会观察图象,经历研究方法,理解图象变化的实质,是克服这一难点的关键。 学情分析: 本节课在高一第二学段,对于高中常用的数学思想方法和研究问题的方法已经有初步的了解,并且逐步适应高中的学习方式和教师的教学方式,喜欢小组探究学习,喜欢独立思考,探究未知内容,学习欲望迫切。关于函数图象的变换,学生在学习第一模块时,接触过函数图象的平移,有“左加右减”,“上加下减”这样一些粗略的关于图象平移的认识,但对于本节内容学生要理解并掌握三个参数对函数图象的影响,还要研究三个参数对函数图象的综合影响,且方法不唯一,知识密度较大,理解掌握起来难度较大。 教学内容分析:

正弦、余弦函数的图象

1.3.2 三角函数的图象与性质 第1课时 正弦、余弦函数的图象 正弦曲线、余弦曲线 (1)正弦曲线、余弦曲线 正弦函数y =sin x (x ∈R )和余弦函数y =cos x (x ∈R )的图象分别叫正弦曲线和余弦曲线(如图). (2)“五点法”画图 画正弦函数y =sin x ,x ∈[0,2π]的图象,五个关键点是(0,0),? ???? π2,1,(π, 0),? ?? ?? 3π2,-1,(2π,0). 画余弦函数y =cos x ,x ∈[0,2π]的图象,五个关键点是(0,1),? ???? π2,0,(π, -1),? ?? ?? 3π2,0,(2π,1).

(3)正弦、余弦曲线的联系 依据诱导公式cos x =sin ? ???? x +π2,要得到y =cos x 的图象,只需把y =sin x 的 图象向左平移π 2个单位长度即可. 思考:作正、余弦函数的图象时,函数自变量能用角度 制吗? [提示] 作图象时,函数自变量要用弧度制,自变量与函数值均为实数,因此在x 轴、y 轴上可以统一单位,这样作出的图象正规便于应用. 1.思考辨析 (1)正弦曲线的图象向左右无限延展.( ) (2)y =sin x 与y =cos x 的图象形状相同,只是位置不同.( ) (3)函数y =cos x 的图象与y 轴只有一个交点.( ) [答案] (1)√ (2)√ (3)√ 2.用“五点法”作y =2sin 2x 的图象时,首先描出的五个点的横坐标是________. [答案] 0,π4,π2,3π 4,π 3.不等式cos x <0,x ∈[0,2π]的解集为________. [答案] ? ?? ?? π2,3π2 利用“五点法”作简图 【例1】 用“五点法”作出下列函数的图象. (1)y =sin x -1,x ∈[0,2π]; (2)y =2+cos x ,x ∈[0,2π]; (3)y =-1-cos x ,x ∈[0,2π]. 思路点拨:先分别取出相应函数在[0,2π]上的五个关键点,再描点连线.

正弦型函数图像高考题

正弦型函数历年高考题 1 一、选择题 1、(2005)函数y=sinx 的图象向左平移 6 π 后得到的图像的解析式是( ) A 、y=sinx+6π B 、y=sinx-6π C 、y=sin(x+6π) D 、y=sin(x-6 π ) 2、(2007)函数y=sin2x 的图象向左平移6 π 后得到的图像的解析式是( ) A 、y=sin(2x+6π) B 、y=sin(2x-6π) C 、y=sin(2x-3π) D 、y=sin(2x+3 π ) 3、 (2009)如图是函数y=2sin(x ω?+) (其中ω>0,?< 2 π ),则ω、?正确的是( A ω=2,?=6π B ω=2,?=3 π C ω=1,?=6π D ω=1,?=3 π 5、(2011)把y=sinx 的图像向左或向右平移π/2个单位,得到的函数是( ) A y=sinx B y=-cosx C cos y x = D y=sinx 或 y=-cosx 6、(2012)函数)4 2sin(2π + =x y 的图像,可由函数x y 2sin 2=的图像( )而得到。 A. 向左平移 4π个单位 B. 向右平移4π 个单位 C. 向左平移8π个单位 D.向右平移8π 个单位 二、填空题 7、(2003)函数sin 24y x π? ? =+ ?? ? 的图象向右平移 8 π 单位,所得图象的函数解析式是 。 2、(2004)函数sin 22 x x y =的最小正周期为 ,值域为 。 3、(2007)函数y=sinxcosx 的最小正周期是 ,最小值是 。 8、(2012)正弦型函数)sin(?ω+=x A y )0,0(>>?A 在一个最小正周期内的图像中,最高点为 )2,9(π,最低点是)2,9 4(-π ,则ω=___________. 9、(2014)把正弦函数sin 2y x =的图像向_________________个单位,可以得到正弦函数 sin 24y x π? ?=+ ?? ?的图像

正弦、余弦函数图像

1.4.1 正弦函数、余弦函数的图像 (一) 给定任意一个角,其正弦值、余弦值均存在,且满足唯一性,即角与正弦、余弦值之间可以建立一一对应关系,符合函数的要求。 形如y =Asin(ωx +φ)(ω≠0)的函数称为正弦函数; 形如y =Acos ωx +φ (ω≠0)的函数称为余弦函数; 其中y =sinx 、y =cosx 是正弦函数与余弦函的基本形式:所有的正弦函数、余弦函数,通过“换元”思想,都可以转化为y =sinx 与 y=cosx 的形式,故二者是研究正弦函数与余弦函数的基石。 (二) 在诱导公式的帮助下,我们可以将任意一个角的三角函数值转化为求某一个锐角的三角函数,再以有序实数对(角,三角函数)的形式在坐标系内描点,从而得到三角函数的图象;除了基础的描点法,我们也可以利用三角函数线,得到函数的图象。 (三) 0到2π,是任意角的冰山一角;0到2π一段上的函数图象,也仅仅是三角函数图象的一部分.另一方面,当角的终边旋转一周后继续旋转,角的大小在逐渐变化的同时,角的正弦线“玩接力”样依次重复出现,可以预见,2π到4π,4π到6π,6π到8π,…,是0到2π一段上函数图象的“复制”与“粘贴”,每一段的首尾相接,便是函数图象的“真身”。 (四) 正弦函数、余弦函数的图象告诉我们: ①从自变量x 的角度看,函数图象可沿着x x 轴上任何一个故正弦函数、R ; ②从因变量y 的角度看,正弦函数、余弦y =1与y =?1两条互相[?1,1],好比正弦函数、余弦函数为一个“加工厂”,投入的角多大多小,产成品----“函数值”只能在[?1,1]; ③正弦函数、余弦函数的图象可以看作某一部分(如图中的阴影部分)的重复拼接,故画函数图象时,可以以此为单元。 (五) 基于正弦函数、余弦函数图象的特征,有了重复单元,就有了整个正弦函数、余弦函数的图象;在画函数图象时,重复单元的绘

正弦型函数的图像

正弦型函数的图像 案场各岗位服务流程 销售大厅服务岗: 1、销售大厅服务岗岗位职责: 1)为来访客户提供全程的休息区域及饮品; 2)保持销售区域台面整洁; 3)及时补足销售大厅物资,如糖果或杂志等; 4)收集客户意见、建议及现场问题点; 2、销售大厅服务岗工作及服务流程 阶段工作及服务流程 班前阶段1)自检仪容仪表以饱满的精神面貌进入工作区域 2)检查使用工具及销售大厅物资情况,异常情况及时登记并报告上级。 班中工作程序服务 流程 行为 规范 迎接 指引 递阅 资料 上饮品 (糕点) 添加茶水 工作 要求 1)眼神关注客人,当客人距3米距离 时,应主动跨出自己的位置迎宾,然后 侯客迎询问客户送客户

注意事项 15度鞠躬微笑问候:“您好!欢迎光临!”2)在客人前方1-2米距离领位,指引请客人向休息区,在客人入座后问客人对座位是否满意:“您好!请问坐这儿可以吗?”得到同意后为客人拉椅入座“好的,请入座!” 3)若客人无置业顾问陪同,可询问:请问您有专属的置业顾问吗?,为客人取阅项目资料,并礼貌的告知请客人稍等,置业顾问会很快过来介绍,同时请置业顾问关注该客人; 4)问候的起始语应为“先生-小姐-女士早上好,这里是XX销售中心,这边请”5)问候时间段为8:30-11:30 早上好11:30-14:30 中午好 14:30-18:00下午好 6)关注客人物品,如物品较多,则主动询问是否需要帮助(如拾到物品须两名人员在场方能打开,提示客人注意贵重物品); 7)在满座位的情况下,须先向客人致歉,在请其到沙盘区进行观摩稍作等

待; 阶段工作及服务流程 班中工作程序工作 要求 注意 事项 饮料(糕点服务) 1)在所有饮料(糕点)服务中必须使用 托盘; 2)所有饮料服务均已“对不起,打扰一 下,请问您需要什么饮品”为起始; 3)服务方向:从客人的右面服务; 4)当客人的饮料杯中只剩三分之一时, 必须询问客人是否需要再添一杯,在二 次服务中特别注意瓶口绝对不可以与 客人使用的杯子接触; 5)在客人再次需要饮料时必须更换杯 子; 下班程 序1)检查使用的工具及销售案场物资情况,异常情况及时记录并报告上级领导; 2)填写物资领用申请表并整理客户意见;3)参加班后总结会; 4)积极配合销售人员的接待工作,如果下班时间已经到,必须待客人离开后下班;

正弦函数余弦函数图像教案及反思

1.4.1 正弦函数、余弦函数的图象 教材分析 三角函数是基本初等函数之一,是描述周期现象的重要数学模型,是函数大家庭的一员。除了基本初等函数的共性外,三角函数也有其个性的特征,如图像、周期性、单调性等,所以本节内容有着承上启下的作用;另外,学习完三角函数的定义之后,必然要研究其性质,而研究函数的性质最常用、最形象直观的方法就是作出其图像,再通过图像研究其性质。 由于正弦线、余弦线已经从“形”的角度描述了三角函数,因此利用单位圆中的三角函数线画正弦函数图象是一个自然的想法.当然,我们还可以通过三角函数的定义、三角函数值之间的内在联系性等来作图,从画出的图形中观察得出五个关键点,得到“五点法”画正弦函数、余弦函数的简图. 教学目标 1.通过简谐振动实验演示,让学生对函数图像有一些直观的感知,形成正弦曲线的初步认识,进而探索正弦曲线准确的作法,养成善于发现、善于探究的良好习惯.学会遇到新问题时善于调动所学过的知识,较好地运用新旧知识之间的联系,提高分析问题、解决问题的能力. 2.通过本节学习,理解正弦函数、余弦函数图象的画法.借助图象变换,了解函数之间的内在联系.通过三角函数图象的三种画法:描点法、几何法、五点法,体会用“五点法”作图给我们学习带来的好处,并会熟练地画出一些较简单的函数图象. 3.通过本节的学习,让学生体会数学中的图形美,体验善于动手操作、合作探究的学习方法带来的成功愉悦.渗透由抽象到具体的思想,加深数形结合思想的认识,理解动与静的辩证关系,树立科学的辩证唯物主义观. 重点难点 教学重点:正弦函数、余弦函数的图象. 教学难点:将单位圆中的正弦线通过平移转化为正弦函数图象上的点;正弦函数与余弦函数图象间的关系. 教学用具:多媒体教学、几何画板软件、ppt控件 教学过程 导入新课 1.(复习导入)首先复习相关准备知识:三角函数、三角函数线。遇到一个新的函数,非常自然的是画出它的图象,观察图象的形状,看看有什么特殊点,并借助图象研究它的性质,如:值域、单调性、奇偶性、最大值与最小值等.我们也很自然的想知道y=sinx与y=cosx的图象是怎样的呢?回忆我们是如何画出它们图象的(列表描点法:列表、描点、连线)? 2.(物理实验导入)视频观看“简谐运动”实验.得到一条曲线,它就是简谐运动的图象.物理中把简谐运动的图象叫做“正弦曲线”或“余弦曲线”.有了上述实验,你对正弦函数、余弦函数的图象是否有了一个直观的印象?画函数的图象,最基本的方法是我们以前熟知的列表描点法,但不够精确.下面我们利用正弦线画出比较精确的正弦函数图象. 推进新课 新知探究 提出问题 问题①:作正弦函数图象的各点的纵坐标都是查三角函数表得到的数值,由于对一般角的三角函数值都是近似值,不易描出对应点的精确位置.我们如何得到任意角的三角函数值并用线段长(或用有向线段数值)表示x角的三角函数值?怎样得到函数图象上点的两个坐标的准确数据呢?简单地说,就是如何得到y=sinx,x∈[0,2π]的精确图象呢? 问题②:如何得到y=sinx,x∈R时的图象? 对问题①,第一步,可以想象把单位圆圆周剪开并12等分,再把x轴上从0到2π这一段分

正弦函数y=sinx的图象和性质

【本讲教育信息】 一. 教学内容: 1.3.1 正弦函数的图象和性质 二. 教学目的 1、掌握用几何法绘制正弦函数y sin x,x R =∈的图象的方法;掌握用五点法画正弦函数的简图的方法及意义; 2、掌握正弦函数y sin x,x R =∈的性质及应用; 3、掌握正弦型函数y Asin(x ),x R =ω+?∈的图象(特别是用五点法画函数 y Asin(x ),x R =ω+?∈的图象)、性质及应用。 三. 教学重点、难点 重点: 1、用五点法画函数y Asin(x ),x R =ω+?∈的简图; 2、函数y Asin(x ),x R =ω+?∈的性质及应用; 3、函数y sin x,x R =∈与y Asin(x ),x R =ω+?∈的图象的关系。 难点: 1、正弦函数y sin x,x R =∈的周期性和单调性的理解; 2、函数y sin x,x R =∈与y Asin(x ),x R =ω+?∈的图象的关系。 四. 知识分析 1、正弦函数图象的几何作法 采用弧度制, x 、y 均为实数,步骤如下: (1)在 x 轴上任取一点 O 1 ,以 O l 为圆心作单位圆; (2)从这个圆与 x 轴交点 A 起把圆分成 12 等份; (3)过圆上各点作x 轴的垂线,可得对应于0、6π、3π 、L 、2π的正弦线; (4)相应的再把 x 轴上从原点 O 开始,把这0~2π这段分成 12 等份; (5)把角的正弦线平移,使正弦线的起点与 x 轴上对应的点重合; (6)用光滑曲线把这些正弦线的终点连结起来。 2、五点法作图 描点法在要求不太高的情况下,可用五点法作出,y sin x,x [0,2]=∈π的图象上有五

《正弦函数、余弦函数的图像》教案设计

正弦函数、余弦函数的图像 一、内容和内容解析: 本节课是高中新教材《数学》必修4§1.4《正弦函数、余弦函数的图象和性质》的第一节,是学生在已掌握了一些基本函数的图象及其画法的基础上,进一步研究三角函数图象的画法。.为今后学习正弦型函数y=Asin (ωx+φ)的图象及运用数形结合思想研究正、余弦函数的性质打下坚实的知识基础.因此,本节课的内容是至关重要的,它对知识的掌握起到了承上启下的作用。 二、教学目标 (1)了解如何利用正弦线画出正弦函数的图像,并在此基础上由诱导公式画出余弦函数的图像。 (2)掌握“五点法”画正弦函数、余弦函数的简图。 (3)探究利用“五点法”画与正弦函数、余弦函数有关的某些简单函数在长度为一个周期的闭区间上的简图。 (4)体验利用图象变换作图的方法,体会数形结合的思想。 三、教学支持条件分析: 1.资料的收集 “简谐运动”的实验装置. 2.课件的制作 采用flash软件辅助设计“简谐运动”动画,用flash软件或“几何画板”制作正弦函数图像的几何画法过程. 3.活动的准备: 利用多媒体、实物教具等手段可帮助学生更直观地认识正、余弦函数曲线,以及它们之间的图像变换,并且通过教师的讲解法、谈话法、发现法、启发式教学法,使学生通过一定的观察、思考、分析以及动手操作,更有利学生的自主探索,使学生在学习活动中获得成功感,整堂课在师生的合作学习氛围中进行数学思维,使学生更好的发现数学规律。 四、教学过程 课题导入: 以前,我们已经学习过一次函数、二次函数、反比例函数、指数函数、对数函数等,对于各种函数,我们都可以通过它的图像研究它的一些相关性质,那么,我们今天学习的正、余弦函数的图像是什么样子的呢? 探索新知: 1、情景设置:

正弦函数、余弦函数的图像(附答案)

正弦函数、余弦函数的图像(附答案) 海黄和紫檀哪个更有价值 怕上当受骗,我们教你如何鉴别小叶紫檀的真伪!点击访问:木缘鸿官网 北京十里河古玩市场,美不胜收的各类手串让记者美不胜收。“黄花梨和紫檀是数一数二的好料,市场认可度又高,所以我们这里专注做这两种木料的手 串。”端木轩的尚女士向记者引见说。 海黄紫檀领风骚 手串是源于串珠与手镯的串饰品,今天曾经演化为集装饰、把玩、鉴赏于一体的特征珍藏品。 怕上当受骗,我们教你如何鉴别小叶紫檀的真伪!点击访问:木缘鸿官网 “目前珍藏、把玩木质手串的人越来越多,特别是海黄和印度小叶檀最受藏家追捧,有人把黄花梨材质的手串叫做腕中黄金。”纵观海南黄花梨近十年的价钱行情,不难置信尚女士所言非虚。 一位从事黄花梨买卖多年的店主夏先生通知记者,在他的记忆中,2000年左右黄花梨上等老料的价钱仅为60元/公斤,2002年大量收购时,价

格也仅为2万元/吨左右,而往常,普通价钱坚持在7000-8000元/公斤,好点的1公斤料就能过万。“你看这10年间海南黄花梨价钱涨了百余倍,都说 水涨船高,这海黄手串的价钱自然也是一路飙升。” “这串最低卖8000元,能够说是我们这里海黄、小叶檀里的一级品了,普通这种带鬼脸的海黄就是这个价位。”檀梨总汇的李女士说着取出手串 让记者感受一下,托盘里一串直径2.5m m的海南黄花梨手串熠熠生辉,亦真亦幻的自然纹路令人入迷。当问到这里最贵的海黄手串的价钱时,李女士和记者打起了“太极”,几经追问才通知记者,“有10万左右的,普通不拿出来”。 同海南黄花梨并排摆放的是印度小叶檀手串,价位从一串三四百元到几千元不等。李女士引见说,目前市场上印度小叶檀原料售价在1700元/公斤左 右,带金星的老料售价更高,固然印度小叶檀手串的整体售价不如海黄手串高,但近年来有的也翻了数十倍,随着老料越来越少,未来印度小叶檀的升值空间很大。 “和海黄手串比起来,印度小叶檀的价钱相对低一些,普通买家能消费得起。”正说着店里迎来一位老顾客,这位顾客通知记者,受经济条件所限,他是先从1000元以内的小叶檀手串玩起,再一步一步升级的。“我这算是以藏养藏吧,往常手里面也有上万元的了。”

正弦函数和余弦函数图像与性质

6.1正弦函数和余弦函数的图像与性质 一、复习引入 1、复习 (1)函数的概念 在某个变化过程中有两个变量x 、y ,若对于x 在某个实数集合D 内的每一个确定的值,按照某个对应法则f ,y 都有唯一确定的实数值与它对应,则y 就是x 的函数,记作 ()x f y =,D x ∈。 (2)三角函数线 设任意角α的顶点在原点O ,始边与x 轴的非负半轴重合,终边与单位圆相交于点(,)P x y ,过P 作x 轴的垂线,垂足为M ;过点(1,0)A 作单位圆的切线,设它与角α的终边(当α在第一、四象限角时)或其反向延长线(当α为第二、三象限角时)相交于T . 规定:当OM 与x 轴同向时为正值,当OM 与x 轴反向时为负值; 当MP 与y 轴同向时为正值,当MP 与y 轴反向时为负值; 当AT 与y 轴同向时为正值,当AT 与y 轴反向时为负值; 根据上面规定,则,OM x MP y ==, 由正弦、余弦、正切三角比的定义有: sin 1 y y y MP r α====; cos 1 x x x OM r α====; tan y MP AT AT x OM OA α= ===; 这几条与单位圆有关的有向线段,,MP OM AT 叫做角α的正弦线、余弦线、正切线。 二、讲授新课 【问题驱动1】——结合我们刚学过的三角比,就以正弦(或余弦)为例,对于每一个给定 的角和它的正弦值(或余弦值)之间是否也存在一种函数关系?若存在,请对这种函数关系下一个定义;若不存在,请说明理由. 1、正弦函数、余弦函数的定义 (1)正弦函数:R x x y ∈=,sin ; (2)余弦函数:R x x y ∈=,cos 【问题驱动2】——如何作出正弦函数R x x y ∈=,sin 、余弦函数R x x y ∈=,cos 的函数 图象? 2、正弦函数R x x y ∈=,sin 的图像 ( 1 ) [] π2,0,sin ∈=x x y 的图像

1.4.1正弦,余弦函数的图像 (2)

1. 4.1 正弦函数、余弦函数的图象 班级姓名 【教学目标】 1、通过本节学习,理解正弦函数、余弦函数图象的画法. 2、通过三角函数图象的三种画法:描点法、几何法、五点法,体会用“五点法” 作图给我们学习带来的好处,并会熟练地画出一些较简单的函数图象. 【教学重点】正弦函数、余弦函数的图象. 【教学难点】将单位圆中的正弦线通过平移转化为正弦函数图象上的点;正弦函数与余弦函数图象间的关系. 【教学过程】 一、预习提案(阅读教材第30—33页内容,完成以下问题:) 1、借助单位圆中的正弦线在下图中画出正弦函数y=sinx, x∈[0,2π]的图象。 y x o

说明:使用三角函数线作图象时,将单位圆分的份数越多,图象越准确。在作 函数图象时,自变量要采用弧度制,确保图象规范。 3、 观察图象(正弦曲线),说明正弦函数图象的特点: ①由于正弦函数y=sinx 中的x 可以取一切实数,所以正弦函数图象向两侧 。 ②正弦函数y=sinx 图象总在直线 和 之间运动。 4、观察正弦函数y=sinx, x ∈[0,2π]的图象,找到起关键作用的五个点: , , , , 5、用“五点作图法”画出∈[-π,π]的图象。

6、①函数?(x+1)的图象相对于函数?(x )的图象是如何变化的? ②函数y=sin (x+ 2π)的图象相对于正弦函数y=sinx 的图象是如何变化的? ③由诱导公式知:sin (x+2π)= ,所以函数y=sin (x+2π)= ④请画出y=cosx 的图象(余弦曲线) 7、观察余弦函数y=cosx, x ∈[0,2π]的图象,找到起关键作用的五个点: , , , ,

正弦函数和余弦函数的图像与性质

6.1正弦函数和余弦函数的图像与性质 一、复习引入 1、复习 (1)函数的概念 在某个变化过程中有两个变量x 、y ,若对于x 在某个实数集合D 内的每一个确定的值,按照某个对应法则f ,y 都有唯一确定的实数值与它对应,则y 就是x 的函数,记作()x f y =,D x ∈。 (2)三角函数线 设任意角α的顶点在原点O ,始边与x 轴的非负半轴重合,终边与单位圆相交于点(,)P x y ,过P 作x 轴的垂线,垂足为M ;过点(1,0)A 作单位圆的切线,设它与角α的终边(当α在第一、四象限角时)或其反向延长线(当α为第二、三象限角时)相交于T . 规定:当OM 与x 轴同向时为正值,当OM 与x 轴反向时为负值; 当MP 与y 轴同向时为正值,当MP 与y 轴反向时为负值; 当AT 与y 轴同向时为正值,当AT 与y 轴反向时为负值; 根据上面规定,则,OM x MP y ==, 由正弦、余弦、正切三角比的定义有: sin 1 y y y MP r α====; cos 1 x x x OM r α====; tan y MP AT AT x OM OA α= ===; 这几条与单位圆有关的有向线段,,MP OM AT 叫做角α的正弦线、余弦线、正切线。 二、讲授新课 【问题驱动1】——结合我们刚学过的三角比,就以正弦(或余弦)为例,对于每一个给定 的角和它的正弦值(或余弦值)之间是否也存在一种函数关系?若存在,请对这种函数关系下一个定义;若不存在,请说明理由. 1、正弦函数、余弦函数的定义 (1)正弦函数:R x x y ∈=,sin ; (2)余弦函数:R x x y ∈=,cos 【问题驱动2】——如何作出正弦函数R x x y ∈=,sin 、余弦函数R x x y ∈=,cos 的函数图 象? 2、正弦函数R x x y ∈=,sin 的图像 (1)[]π2,0,sin ∈=x x y 的图像 【方案1】——几何描点法 步骤1:等分、作正弦线——将单位圆等分,作三角函数线(正弦线)得三角函数值; 步骤2:描点——平移定点,即描点()x x sin ,; 步骤3:连线——用光滑的曲线顺次连结各个点 小结:几何描点法作图精确,但过程比较繁。

正弦型函数的图像和性质(教学设计)

正弦型函数的图像和性质教学设计 教学目标:使学生掌握正弦型函数的图像及其性质,掌握图像 的变化规律。 重点:掌握正弦型函数的图像及其性质,掌握图像的变化规律。 难点:正弦型函数图像的变化规律。 1.,,A ω?的物理意义 当sin()y A x ω?=+,[0,)x ∈+∞(其中0A >,0ω>)表示一个振动量时, A 表示这个量振动时离开平衡位置的最大距离,通常称为这个振动的振幅,往复振 动一次需要的时间2T π ω =称为这个振动的周期,单位时间内往复振动的次数 12f T ω π == ,称为振动的频率。x ω?+称为相位,0x =时的相位?称为初相。 2.图象的变换 例 : 画出函数3sin(2)3 y x π =+的简图。 解:函数的周期为22 T π π= =, 先画出它在长度为一个周期内的闭区间上的简x 6 π- 12π 3π 712π 56 π 23 x π + 0 2 π π 32 π 2π 3sin(2)3 x π + 3 0 3- 0 x y O π 3 π- 6 π- 53 π 2π sin()3 y x π =+ sin(2)3 y x π =+ sin y x = 3sin(2)3 y x π =+

函数3sin(2)3 y x π =+ 的图象可看作由下面的方法得到的: ①sin y x =图象上所有点向左平移 3 π 个单位,得到sin()3y x π=+的图象上; ②再把图象上所点的横坐标缩短到原来的1 2 ,得到sin(2)3y x π=+的图象;③再把 图象上所有点的纵坐标伸长到原来的3倍,得到3sin(2)3 y x π =+的图象。 一般地,函数sin()y A x ω?=+,x R ∈的图象(其中0A >,0ω>)的图 象,可看作由下面的方法得到: ①把正弦曲线上所有点向左(当0?>时)或向右(当0?<时)平行移动||?个单位长度; ②再把所得各点横坐标缩短(当1ω>时)或伸长(当01ω<<时)到原来的 1 ω 倍(纵坐标不变); ③再把所得各点的纵坐标伸长(当1A >时)或缩短(当01A <<时)到原来的A 倍(横坐标不变)。 即先作相位变换,再作周期变换,再作振幅变换。 问题:以上步骤能否变换次序? ∵3sin(2)3sin 2()36y x x π π=+ =+,所以,函数3sin(2)3 y x π =+的图象还 可看作由下面的方法得到的: ①sin y x =图象上所点的横坐标缩短到原来的 1 2 ,得到函数sin 2y x =的图象; ②再把函数sin 2y x =图象上所有点向左平移 6 π 个单位,得到函数sin 2()6 y x π =+的图象; ③再把函数sin 2()6 y x π=+的图象上所有点的纵坐标伸长到原来的3倍,得到 3sin 2()6 y x π =+的图象。 3.实际应用 例1:已知函数sin()y A x ω?=+(0A >,0ω>)一个周期内的函数图象,

正弦函数的图象和性质教案

正弦函数的图像和性质 作课人 邵荣良 教学目标: 1、 知识与技能目标 通过研究正弦函数图像及其画法, 理解并掌握正弦函数的性质,运用其性质解决相关问题 2、 过程与方法目标 通过主动思考,主动发现,亲历知识的形成过程,使学生对正弦函数的性质有深刻的理解, 培养学生的观察、分析、归纳和表达能力以及数形结合和化归转化的数学思想方法 3、 情感态度与价值观 用联系的观点看待问题,善于类比联想,直观想象,对数形结合有进一步认识,激发学习数学的兴趣,养成良好的数学品质。 教学重点: 正弦函数的性质 教学难点: 正弦函数性质的理解与应用 授课类型:新授课 课时安排:1课时 教 具:多媒体、实物投影仪 教学过程: 一、复习引入: 1. 正弦线:设任意角α的终边与单位圆相交于点P(x ,y),过P 作x 轴的垂线,垂足为M ,则有 MP r y ==αsin ,向线段MP 叫做角α的正弦线, 2.用单位圆中的正弦线作正弦函数y=sinx ,x ∈[0,2π]的图象(几何法):

把y=sinx ,x ∈[0,2π]的图象,沿着x 轴向右和向左连续地平行移动,每次移动的距离为2π,就得到y=sinx ,x ∈R 叫做正弦曲线 3.用五点法作正弦函数的简图(描点法): 正弦函数y=sinx ,x ∈[0,2π]的图象中,五个关键点是: (0,0) (2 π ,1) (π,0) (2 3π,-1) (2π,0) 二、讲解新课: (1)定义域: 正弦函数的定义域是实数集R [或(-∞,+∞)], (2)值域 因为正弦线的长度小于或等于单位圆的半径的长度, 所以|sin x |≤1, 即 -1≤sin x ≤1, 也就是说,正弦函数的值域是[-1,1 其中正弦函数y = sin x ,x ∈R ①当且仅当x =2π +2k π,k ∈Z 时,取得最大值1 ②当且仅当x =-2 π +2k π,k ∈Z 时,取得最小值-1 (3)周期性 由sin(x +2k π)=sin x ,知: 一般地,对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有f (x +T )=f (x ),那么函数f (x )就叫做周期函数,非零常数T 叫做这个函数的 由此可知,2π,4π,……,-2π,-4π,……2k π(k ∈Z 且k ≠0) 对于一个周期函数f (x ),如果在它所有的周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期 注意:

相关主题
文本预览
相关文档 最新文档