当前位置:文档之家› 集成运算放大器构成的基本运算电路教案

集成运算放大器构成的基本运算电路教案

集成运算放大器构成的基本运算电路教案
集成运算放大器构成的基本运算电路教案

集成运算放大器构成的基本运算电路

陈炳晓

一、教学目标

1、掌握虚断,虚短的含义

2、掌握反相比例运算放大器的电路结构及运算关系。

3、初步会使用集成运放

二、重点,难点

重点:反相比例运算放大器的特点。

难点:应用运放在线性区的两条重要结论,推导运算关系。

三、教学设计

回顾:1、集成运算放大器的电路结构。

2、理想运放工作在线性区两个重要的结论。

u+ = u_

i+ = i_ =0

师:学习集成运算放大器的目的在于认识其外型和性能特点,在此基础上了解其应用,运算放大器的内部电路很复杂,但是我们在学习过程中可以始终把它作为一个电路元件看,看成是一个有两个输入端,一个输出端的三端放大器,现探讨一些基本应用电路。导入课题。如图

R2

一、电路结构(看懂电路图)

引导学生指出该电路结构特点。

(1)、输入方式:

(2)、反馈方式:

(3)、R2为平衡电阻:

(4)、电路功能名称:

二、运算关系(会分析和使用集成运放)

运算关系的推导,这是是本节课的难点。从电路结构可知集成运放是工作在线性区。 设想: 首先引导学生根据理想运放的两个重要的结论,得出N 点为虚地,即V N =0;

其次简化电路图(如下图);

最后根据有关电路定律(欧姆定律、电位与电压的关系)得出结果。

1:运算关系: V o = -i V R Rf 1

学生讨论:V o 与Vi 的线性范围。

2:电路仿真:验证结果,增加形象化和趣味性。

3:闭环电压放大倍数: A VF = - 1

R Rf 思考:上式说明了什么?

(4):小结推导思路。

三、练习

1、如右图所示电路中,已知R2=3k,R3=6k, Vcc=12V,

V Z1= 5V , 求Vo 的值。 R 1 R F V N =0 V Z1

R2

集成运放组成的运算电路 习题解答

第7章 集成运放组成的运算电路 本章教学基本要求 本章介绍了集成运放的比例、加减、积分、微分、对数、指数和乘法等模拟运算电路及其应用电路以及集成运放在实际应用中的几个问题。表为本章的教学基本要求。 表 第7章教学内容与要求 学完本章后应能运用虚短和虚断概念分析各种运算电路,掌握比例、求和、积分电路的工作原理和输出与输入的函数关系,理解微分电路、对数运算电路、模拟乘法器的工作原理和输出与输入的函数关系,并能根据需要合理选择上述有关电路。 本章主要知识点 1. 集成运放线性应用和非线性应用的特点 由于实际集成运放与理想集成运放比较接近,因此在分析、计算应用电路时,用理想集成运放代替实际集成运放所带来的误差并不严重,在一般工程计算中是允许的。本章中凡未特别说明,均将集成运放视为理想集成运放。 集成运放的应用划分为两大类:线性应用和非线性应用。 (1) 线性应用及其特点 集成运放工作在线性区必须引入深度负反馈或是兼有正反馈而以负反馈为主,此时其输出量与净输入量成线性关系,但是整个应用电路的输出和输入也可能是非线性关系。 集成运放工作在线性区时,它的输出信号o U 和输入信号(同相输入端+U 和反相输入端-U 之差)满足式(7-1) )(od o -+-=U U A U (7-1) 在理想情况下,集成运放工作于线性区满足虚短和虚断。虚短:是指运放两个输入端之间的电压几乎等于零;虚断:是指运放两个输入端的电流几乎等于零。即 虚短:0≈-+-U U 或 +-≈U U 虚断:0≈=+-I I

(2) 非线性应用及其特点 非线性应用中集成运放工作在非线性区,电路为开环或正反馈状态,集成运放的输出量与净输入量成非线性关系)(od o +--≠U U A U 。输入端有很微小的变化量时,输出电压为正饱和电压或负饱和电压值(饱和电压接近正、负电源电压),+-=U U 为两种状态的转折点。即 当+->U U 时,OL o U U = 当+-

集成运放教案

本章要求:1.了解集成运算放大电路的组成与特点。 2.熟悉运算放大器的图形符号和工作特点。 3.掌握运算放大器闭环和开环状态下的分析方法。 4.熟悉单门限比较器、双门限比较器的组成和工作原理。本章重点:集成运放的符号、特点及其分析方法。 本章难点:集成运放的线性和非线性应用。 教学时数:4学时 教学方法:自学+多媒体教学 集成运算放大器简介 一、集成运算放大器的组成 1、输入级:输入电阻高,能减小零点漂移和抑制干扰信号,都采用带恒流源的差放。 2、中间级:要求电压放大倍数高。常采用带恒流源的共发射极放大电路构成。 3、输出级:与负载相接,要求输出电阻低,带负载能力强,一般由互补对称电路或射极输出器构成。 4、偏置电路:向集成运放内部各级电路提供即合适又稳定的静态工作点电流,一般由各种电流源电路构成。 二、集成运放电路的图形符号及外形 三、集成运放的理想化条件 1、开环电压放大倍数趋于无穷,A uo 。 2、差模输入电阻趋于无穷, r id 。 3、开环输出电阻趋于0, r o 0 。 4、共模抑制比趋于无穷, K CMR 。 三、理想运放的两个重要结论 1、虚短----净输入电压u p-u N=0,即u p=u N 。教学方法说明 导入新课: 利用多媒体演示实际生产生活中集成运算放大器的外形和应用实例。 在讲集成运放的符号时,注意提醒学生旧的或国外的其他画法,如三角形画法。注意讲清符号中各个部分的含义。 对于理想运放

2、虚断----两个输入端的输入电流为零,即i p=i N=0。小结: 1、集成运算放大电路的组成及各部分电路的作用。 2、集成运算放大电路的图形符号及含义。 3、集成运算放大电路的理想化条件。 4、虚断和虚短。 布置作业:看书 集成运放的线性应用 一、比例运算电路 1、反相比例运算的“虚断”和“虚短”,要说清物理含义,阐明来龙去脉。

运算放大器组成的各种实用电路

运算放大器组成的电路五花八门,令人眼花瞭乱,是模拟电路中学习的重点。在分析它的工作原理时倘没有抓住核心,往往令人头大。为此本人特搜罗天下运放电路之应用,来个“庖丁解牛”,希望各位从事电路板维修的同行,看完后有所斩获。 遍观所有模拟电子技朮的书籍和课程,在介绍运算放大器电路的时候,无非是先给电路来个定性,比如这是一个同向放大器,然后去推导它的输出与输入的关系,然后得出Vo=(1+Rf)Vi,那是一个反向放大器,然后得出Vo=-Rf*Vi……最后学生往往得出这样一个印象:记住公式就可以了!如果我们将电路稍稍变换一下,他们就找不着北了!偶曾经面试过至少100个以上的大专以上学历的电子专业应聘者,结果能将我给出的运算放大器电路分析得一点不错的没有超过10个人!其它专业毕业的更是可想而知了。 今天,芯片级维修教各位战无不胜的两招,这两招在所有运放电路的教材里都写得明白,就是“虚短”和“虚断”,不过要把它运用得出神入化,就要有较深厚的功底了。 虚短和虚断的概念 由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80 dB以上。而运放的输出电压是有限的,一般在 10 V~14 V。因此运放的差模输入电压不足1 mV,两输入端近似等电位,相当于“短路”。开环电压放大倍数越大,两输入端的电位越接近相等。 “虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。显然不能将两输入端真正短路。 由于运放的差模输入电阻很大,一般通用型运算放大器的输入电阻都在1MΩ以上。因此流入运放输入端的电流往往不足1uA,远小于输入端外电路的电流。故通常可把运放的两输入端视为开路,且输入电阻越大,两输入端越接近开路。“虚断”是指在分析运放处于线性状态时,可以把两输入端视为等效开路,这一特性称为虚假开路,简称虚断。显然不能将两输入端真正断路。 在分析运放电路工作原理时,首先请各位暂时忘掉什么同向放大、反向放大,什么加法器、减法器,什么差动输入……暂时忘掉那些输入输出关系的公式……这些东东只会干扰你,让你更糊涂﹔也请各位暂时不要理会输入偏置电流、共模抑制比、失调电压等电路参数,这是设计者要考虑的事情。我们理解的就是理想放大器(其实在维修中和大多数设计过程中,把实际放大器当做理想放大器来分析也不会有问题)。 好了,让我们抓过两把“板斧”------“虚短”和“虚断”,开始“庖丁解牛”了。 (原文件名:1.jpg)

集成运放的基本组成部分

集成运放的基本组成部分 偏置电路 偏置电路的作用是向各放大级提供合适的偏置电流,确定各级静态工作点。各个放大级对偏置电流的要求各不相同。对于输入级,通常要求提供一个比较小(一般为微安级)的偏置电流,而且应该非常稳定,以便提高集成运放的输入电阻,降低输入偏置电流、输入失调 电流及其温漂等等。 在集成运放中,常用的偏置电路有以下几种: 镜像电流源也称为电流镜(Current Mirror),在集成运放中应用十分广泛,它的电路如下图所示。 电源VCC通过电阻R和VT1,产生一个基准电流IREF,由图可 得 然后在VT2的集电极得到相应的IC2,作为提供给某个放大级的偏置电流。由于UBE1=UBE2,而VT1和VT2是做在同一硅片上两个相邻的三极管,它们的工艺、结构和参数都比较一致,因此可以认 为 由于输出恒流IC2和基准电流IREF相等,它们之间如同是镜像的关系,所以这种恒流源电路称为镜像电流源。

镜像电流源的优点是结构简单,而且具有一定的温度补偿作用。 二、比例电流源 在镜像电流源的基础上,在VT1、VT2的发射极分别入两个电阻R1和R2,即可组成比例电流源,如下图所示。 由于VT1、VT2是做在同一硅片上的两个相邻的三极管,因此可 以认为UBE1≈IE2R2,则 IE1R1≈IE2R2 如果两管的基极电流可以忽略,由上式可得可见两个三极管的集电极电流之比近似与发射极电阻的阻值成 反比,故称为比例电流源。 以上两种电流源的共同缺点是,当直流电源VCC变化时,输出电流IC2几乎按同样的规律活动,因此不适用于直流电源在大范围内变化的集成运放。此外,若输入级要求微安级的偏置电流,则所有电阻将达兆欧级,在集成电路中无法实现。 差分放大输入级 集成运放的输入对于它的许多指标诸如电阻、共模输入电压、差模输入电压和共模抑制比等等,起着决定性的作用,因此是提高集成 运放质量的关键。

集成运放组成的基本运算电路 实验报告

实验报告 课程名称: 电路与模拟电子技术实验 指导老师: 张冶沁 成绩:__________________ 实验名称: 基本运算电路设计 实验类型: 电路实验 同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1.掌握集成运放组成的比例、加法和积分等基本运算电路的设计。 2.掌握基本运算电路的调试方法。 3.学习集成运算放大器的实际应用。 二、实验内容和原理 1.实现反相加法运算电路 2.实现反相减法运算电路 3.用积分电路将方波转换为三角波 4.同相比例运算电路的电压传输特性(选做) 5.查看积分电路的输出轨迹(选做) 三、主要仪器设备 HY3003D-3型可调式直流稳压稳流电源 示波器、信号发生器、万用表 实验箱LM358运放模块 四、操作方法和实验步骤 1.两个信号的反相加法运算 1) 按设计的运算电路进行连接。 2) 静态测试:将输入接地,测试直流输出电压。保证零输入时电路为零输出。 3) 调出0.2V 三角波和0.5V 方波,送示波器验证。 4) V S1输入0.2V 三角波,V S2输入0.5V 方波,用示波器双踪观察输入和输出波形,确认电路功能正确。记录示波器波形(坐标对齐,注明幅值)。 2. 减法器(差分放大电路) 减法器电路,为了消除输入偏置电流以及输入共模成分的影响,要求R1=R2、RF=R3。

1) 按设计的运算电路进行连接。 2) 静态测试:输入接地,保证零输入时为零输出。 3) V S1和V S2输入正弦波(频率和幅值),用示波器观察输入和输出波形,确认电路功能正确。 4) 用示波器测量输入和输出信号幅值,记到表格中。 3.用积分电路转换方波为三角波 电路中电阻R2的接入是为了抑制由I IO、V IO所造成的积分漂移,从而稳定运放的输出零点。 在t<<τ2(τ2=R2C)的条件下,若V S为常数,则V O与t将近似成线性关系。因此,当V S为方波信号并满足T P<<τ2时(T P为方波半个周期时间),则V O将转变为三角波,且方波的周期越小,三角波的线性越好,但三角波的幅度将随之减小。 1) 连接积分电路,加入方波信号(幅度?)。 2) 选择频率,使T P <<τ2,用示波器观察输出和输入波形,记录线性情况和幅度。 3) 改变方波频率,使T P ≈τ2,观察并记录输出波形的线性情况和幅度的变化。 4) 改变方波频率,使T P >>τ2,观察并记录输出波形的线性情况和幅度的变化。 4.同相比例运算电压传输特性 同相比例运算电路同反相加法运算电路,其特点是输入电阻比较大,电阻R’的接入同样是为了消除平均偏置电流的影响,故要求R’=R1//R F。 1) 连接同相比例运算电路。 2) 静态测试:输入接地,保证零输入时为零输出。 3) 加入正弦波,用示波器观察输入和输出波形,验证电路功能。 4) 用示波器测出电压传输特性:示波器选择XY显示模式,选择适合的按钮设置。 5) 适当增大输入信号,使示波器显示整个电压传输特性曲线(即包含线性放大区和饱和区)。

集成运算放大器介绍教案

集成运算放大器介绍教 案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

解:分析:电路由第一级的减法运算电路和第二级的加法运算电路组合而成。可分步一步一步求解,先求出o1u ,然后将o1u 看成是第二级的一个输入,即加法运算中的一个输入电压,套用公式: V u u R R u i i 1))2.0(3.0(50100)(121F1o1=--=-= V u R R u R R u o i 6)125 1004.020100()(15F234F2o =+-=+-= (题后感:要先考虑各个量之间的关系,选择合适的公式代入计算。) 四、课后练习 1、作业 同步练习:P41 第1、2、3题 (教学要求:老师提前将习题册题目完成,以备学生来询问及作业批改) 2、课后思考题(提高练习,可以部分学生思考,思考题可放在小黑板上) 求图示电路中u o 与ui 的关系。 R 3 ∞ - + Δ + u o u i 1 R 4 ∞ + - Δ + u o1 R 3 u i 2 ∞ - + Δ + R 1 R 2 R 2 R 4 u o2 A 1 A 2 A 3 附:解答过程(备学生课后来询问解答) 解:电路由两级放大电路组成。第一级由运放A 1、A 2组成,它们都是同相输入,输入电阻很高,并且由于电路结构对称,可抑制零点漂移。根据运放工作在线性区的两条分析依据可知: ) (2o2o12 11 21212 22111u u R R R u u u u u u u u u u i i i i -+= -=-====--+-+- 故: )(212112o2 o1i i u u R R u u -??? ? ??+=- 第二级是由运放A 3构成的差动放大电路,其输出电压为: )(21)(21123 41o 2o 34o i i u u R R R R u u R R u -???? ? ?+-=-= 巩 固 理 论 知 识 讲 解

第5章运算放大电路答案

习题答案 5.1 在题图5.1所示的电路中,已知晶体管V 1、V 2的特性相同,V U on BE 7.0,20)(==β。求 1CQ I 、1CEQ U 、2CQ I 和2CEQ U 。 解:由图5.1可知: BQ CQ BQ )on (BE CC I I R R I U U 213 1 1+=--即 11CQ11.01.4 2.7k 20I -7V .0-V 10CQ CQ I I k +=Ω Ω ? 由上式可解得1CQ I mA 2≈ 2CQ I mA I CQ 21== 而 1CEQ U =0.98V 4.1V 0.2)(2-V 1031=?+=+-R )I I (U BQ CQ CC 2CEQ U =5V 2.5V 2-V 1042=?=-R I U CQ CC 5.2 电路如题图5.2所示,试求各支路电流值。设各晶体管701.U ,)on (BE =>>βV 。 U CC (10V) V 1 R 3 题图5.1

解:图5.2是具有基极补偿的多电流源电路。先求参考电流R I , ()815 17 0266..I R =+?---=(mA ) 则 8.15==R I I (mA ) 9.0105 3== R I I (mA ) 5.425 4==R I I (mA ) 5.3 差放电路如题图5.3所示。设各管特性一致,V U on BE 7.0)(=。试问当R 为何值时,可满足图中所要求的电流关系? 解: 53010 7 0643..I I C C =-==(mA ) 则 I 56V 题图 5.2 R U o 题图5.3

2702 1 476521.I I I I I I C C C C C C == ==== mA 即 2707 065.R .I C =-= (mA ) 所以 61927 07 06...R =-= (k Ω) 5.4 对称差动放大电路如题图5.1所示。已知晶体管1T 和2T 的50=β,并设 U BE (on )=0.7V,r bb ’=0,r ce =。 (1)求V 1和V 2的静态集电极电流I CQ 、U CQ 和晶体管的输入电阻r b’e 。 (2)求双端输出时的差模电压增益A ud ,差模输入电阻R id 和差模输出电阻R od 。 (3)若R L 接V 2集电极的一端改接地时,求差模电压增益A ud (单),共模电压增益A uc 和共模抑制比K CMR ,任一输入端输入的共模输入电阻R ic ,任一输出端呈现的共模输出电阻R oc 。 (4) 确定电路最大输入共模电压围。 解:(1)因为电路对称,所以 mA ...R R .U I I I B E EE EE Q C Q C 52050 21527 062270221=+?-=+?-== = + V 1 V 2 + U CC u i1 u i2R C 5.1k ΩR L U o 5.1kΩ R C 5.1k Ω R E 5.1k Ω -6V R B 2k Ω 题图5.1 R B 2k Ω + - R L /2 + 2U od /2 + U id /2 R C R B V 1 (b) + U ic R C R B V 1 (c) 2R EE + U

集成运算放大器 习题参考答案

第8章集成运算放大器习题参考答案 一、填空题: 1. 理想运放同相输入端和反相输入端的“虚短”指的是同相输入端与反相输入端两点电位相等,在没有短接的情况下出现相当于短接时的现象。 2. 将放大器输出信号的全部或部分通过某种方式回送到输入端,这部分信号叫做反馈信号。使放大器净输入信号减小,放大倍数也减小的反馈,称为负反馈;使放大器净输入信号增加,放大倍数也增加的反馈,称为正反馈。放大电路中常用的负反馈类型有并联电压负反馈、串联电压负反馈、并联电流负反馈和串联电流负反馈。 3. 若要集成运放工作在线性区,则必须在电路中引入负反馈;若要集成运放工作在非线性区,则必须在电路中引入开环或者正反馈。集成运放工作在线性区的特点是输入电流等于零和输出电阻等于零;工作在非线性区的特点:一是输出电压只具有高电平、低电平两种稳定状态和净输入电流等于零;在运算放大器电路中,集成运放工作在线性区,电压比较器集成运放工作在非线性区。 4. 集成运放有两个输入端,称为同相输入端和反相输入端,相应有同相输入、反相输入和双端输入三种输入方式。 5. 放大电路为稳定静态工作点,应该引入直流负反馈;为提高电路的输入电阻,应该引入串联负反馈;为了稳定输出电压,应该引入电压负反馈。 6. 理想运算放大器工作在线性区时有两个重要特点:一是差模输入电压相同,称为“虚短”;二是输入电流为零,称为“虚断”。 二、判断题: 1. 放大电路一般采用的反馈形式为负反馈。(对) 5. 电压比较器的输出电压只有两种数值。(对) 6. 集成运放未接反馈电路时的电压放大倍数称为开环电压放大倍数。(对) 7. “虚短”就是两点并不真正短接,但具有相等的电位。(对) 8. “虚地”是指该点与接地点等电位。(对) 三、选择题:(每小题2分,共16分) 1. 理想运算放大器的开环放大倍数A U0为(A),输入电阻为(A),输出电阻为(B)。 A、∞; B、0; C、不定。 2. 集成运算放大器能处理(C)。 A、直流信号; B、交流信号; C、交流信号和直流信号。 3. 为使电路输入电阻高、输出电阻低,应引入(A)。 A、电压串联负反馈; B、电压并联负反馈; C、电流串联负反馈; D电流并联负反馈。 4. 在由运放组成的电路中,运放工作在非线性状态的电路是(D)。 A、反相放大器; B、差值放大器; C、有源滤波器; D、电压比较器。

集成运算放大器电路分析及应用(完整电子教案)

集成运算放大器电路分析及应用(完整电子教案) 3.1 集成运算放大器认识与基本应用 在太阳能充放电保护电路中要利用集成运算放大器LM317实现电路电压检测,并通过三极管开关电路实现电路的控制。首先来看下集成运算放大器的工作原理。 【项目任务】 测试如下图所示,分别测量该电路的输出情况,并分析电压放大倍数。 R1 15kΩ R3 15kΩ R4 10kΩ V2 4 V XFG1 1 VCC 5V U1A LM358AD 3 2 4 8 1 VCC 3 5 2 4 R1 15kΩR2 15kΩ R3 15kΩ R4 10kΩ V2 4 V XFG1 1 VCC 5V U1A LM358AD 3 2 4 8 1 VCC 3 5 2 4 函数信号发生器函数信号发生器 (a)无反馈电阻(b)有反馈电阻 图3.1集成运算符放大器LM358测试电路(multisim) 【信息单】 集成运放的实物如图3.2 所示。 图3.2 集成运算放大 1.集成运放的组成及其符号 各种集成运算放大器的基本结构相似,主要都是由输入级、中间级和输出级以及偏置电路组成,如图3.3所示。输入级一般由可以抑制零点漂移的差动放大电路组成;中间级的作用是获得较大的电压放大倍数,可以由共射极电路承担;输出级要求有较强的带负载能力,一般采用射极跟随器;偏置电路的作用是为各级电路供给合理的偏置电流。

图3.3集成运算放大电路的结构组成 集成运放的图形和文字符号如图 3.4 所示。 图3.4 集成运放的图形和文字符号 其中“-”称为反相输入端,即当信号在该端进入时, 输出相位与输入相位相反; 而“+”称为同相输入端,输出相位与输入信号相位相同。 2.集成运放的基本技术指标 集成运放的基本技术指标如下。 ⑴输入失调电压 U OS 实际的集成运放难以做到差动输入级完全对称,当输入电压为零时,输出电压并不为零。规定在室温(25℃)及标准电源电压下,为了使输出电压为零,需在集成运放的两输入端额外附加补偿电压,称之为输入失调电压U OS ,U OS 越小越好,一般约为 0.5~5mV 。 ⑵开环差模电压放大倍数 A od 集成运放在开环时(无外加反馈时),输出电压与输入差模信号的电压之比称为开环差模电压放大倍数A od 。它是决定运放运算精度的重要因素,常用分贝(dB)表示,目前最高值可达 140dB(即开环电压放大倍数达 107 )。 ⑶共模抑制比 K CMRR K CMRR 是差模电压放大倍数与共模电压放大倍数之比,即od CMRR oc A K =A ,其含义与差动放大器中所定义的 K CMRR 相同,高质量的运放 K CMRR 可达160d B 。 ⑷差模输入电阻 r id r id 是集成运放在开环时输入电压变化量与由它引起的输入电流的变化量之比,即从输入端看进去的动态电阻,一般为M Ω数量级,以场效应晶体管为输入级的r id 可达104M Ω。分析集成运放应用电路时,把集成运放看成理想运算放大器可以使分析简化。实际集成运 放绝大部分接近理想运放。对于理想运放,A od 、K CMRR 、r id 均趋于无穷大。 ⑸开环输出电阻 r o r o 是集成运放开环时从输出端向里看进去的等效电阻。其值越小,说明运放的带负载能力越强。理想集成运放r o 趋于零。 其他参数包括输入失调电流I OS 、输入偏置电流 I B 、输入失调电压温漂 d UOS /d T 和输入失调电流温漂 d IOS /d T 、最大共模输入电压 U Icmax 、最大差模输入电压 U Idmax 等,可通过器件

集成运算放大器的外特性及参数

集成运算放大器的外特性及参数 1. 理想集成运算放大器 所谓理想运放就是将各项技术指标理想化的集成运放,即认为: 开环差模电压放大倍数 Od A =∞; 差模输入电阻 id R =∞; 输出电阻 O R =0; 共模抑制比 CMR K =∞; 输入偏置电流 id I =0; 上限频率 H f =∞ 。 2. 集成运算放大器的电压传输特性 我们称集成运放输出电压O U 与其输入电压id U 之间的关系曲线为电压传输特性,集成运放的电压传输特性如图2-15(a )所示。 (a) (b) 图2-15 集成运放的电压传输特性 (a) 集成运放的电压传输特性 (b) 理想集成运放的电压传输特性 在id U 很小的范围内为线性区,id od O U A U =,输出电压的最大值为OM U ±,当

od OM A | |U U >||id 时,输出信号O U 不再跟随id U 线性变化,进入饱和工作区(非线性区) 。由于集成运放的开环差模电压放大倍数Od A 非常高,一般为104 ~107 ,即80~140dB ,所以它的线性区非常窄,图2-15(b )为理性运算放大器的电压传输特性。如果输出电压最大值 V U O M 13±=±。Od A =5×105,那么只有当输入信号|id U |<26μV 时,电路才会工作 在线性区。否则输出级就将工作在正向饱和或负向饱和状态,输出电压O U 不是OM U +就是 OM U -。其饱和值OM U ±接近正、负电源电压值。 3. 集成运算放大器的参数 集成运算放大器的性能可以用各种参数来表示,了解这些参数有助于正确选择和使用各种不同类型的集成运放。常用的典型集成运算放大器的参数详见表2-1。 表2-1典型集成运算放大器的参数表

常用运算放大器电路 (全集)

常用运算放大器电路(全集) 下面是[常用运算放大器电路(全集)]的电路图 常用OP电路类型如下: 1. Inverter Amp. 反相位放大电路: 放大倍数为Av = R2 / R1但是需考虑规格之Gain-Bandwidth数值。R3 = R4 提供1 / 2 电源偏压 C3 为电源去耦合滤波 C1, C2 输入及输出端隔直流 此时输出端信号相位与输入端相反 2. Non-inverter Amp. 同相位放大电路: 放大倍数为Av=R2 / R1 R3 = R4提供1 / 2电源偏压 C1, C2, C3 为隔直流

此时输出端信号相位与输入端相同 3. Voltage follower 缓冲放大电路: O/P输出端电位与I/P输入端电位相同 单双电源皆可工作 4. Comparator比较器电路: I/P 电压高于Ref时O/P输出端为Logic低电位 I/P 电压低于Ref时O/P输出端为Logic高电位 R2 = 100 * R1 用以消除Hysteresis状态, 即为强化O/P输出端, Logic高低电位差距,以提高比较器的灵敏度. (R1=10 K, R2=1 M) 单双电源皆可工作 5. Square-wave oscillator 方块波震荡电路: R2 = R3 = R4 = 100 K R1 = 100 K, C1 = 0.01 uF

Freq = 1 /(2π* R1 * C1) 6. Pulse generator脉波产生器电路: R2 = R3 = R4 = 100 K R1 = 30 K, C1 = 0.01 uF, R5 = 150 K O/P输出端On Cycle = 1 /(2π* R5 * C1) O/P输出端Off Cycle =1 /(2π* R1 * C1) 7. Active low-pass filter 主动低通滤波器电路: R1 = R2 = 16 K R3 = R4 = 100 K C1 = C2 = 0.01 uF 放大倍数Av = R4 / (R3+R4) Freq = 1 KHz 8. Active band-pass filter 主动带通滤波器电路:

集成运算放大器教案

集成运算放大器教案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第五章集成运算放大器 第一节直流放大器 教学目的:1、了解直流放大器的概念。 2、掌握直流放大器存在的问题。 3、掌握解决直流放大器零点漂移的问题。 4、掌握差动放大器的工作原理。 教学重点:1、直流放大器存在的问题。 2、差动放大器抑制零漂的工作原理。 教学难点:1、差动放大器抑制零漂的工作原理。 教学方法与手段:1、教师讲授与学生练习相结合。 2、板书与多媒体课件相结合。 课时计划:3课时 一、集成运算放大器 集成运算放大器——高增益的直接耦合的集成的多级放大器。 集成电路的工艺特点: (1)元器件具有良好的一致性和同向偏差,因而特别有利于实现需要对称结构的电路。 (2)集成电路的芯片面积小,集成度高,所以功耗很小,在毫瓦以下。 (3)不易制造大电阻。需要大电阻时,往往使用有源负载。 (4)只能制作几十pF以下的小电容。因此,集成放大器都采用直接耦合方式。如需大电容,只有外接。 81

82 (5)不能制造电感,如需电感,也只能外接。 直流放大器:用来放大缓慢变化的信号或某个直流量的变化的放大电路,称为直流放大器。 二、 流放大器存在的两个问题 1、 前后级静态工作点相互影响的问题。 解决的方法是:在后级发射极加电阻、在后级发射极加二极管、用PNP 型管与NPN 型管互补构成。 2、 存在零点漂移。 零点漂移:输入ui=0时,,输出有缓慢变化的电压产生。 产生零漂的原因:由温度变化引起的。当温度变化使第一级放大器的静态工作点发生微小变化时,这种变化量会被后面的电路逐级放大,最终在输出端产生较大的电压漂移。因而零点漂移也叫温漂。 零漂的衡量方法:将输出漂移电压按电压增益折算到输入端计算。 3. 减小零漂的措施 用非线性元件进行温度补偿 采用差动放大电路 三、 差动放大器 u o t u u i1 i2

集成运放构成的三角波方波发生器

集成运放构成的三角波方波发生器 一、实验目的 1.理解三角波方波发生器的设计思路,搭接出最简单的电路,获得固定频率、幅度的三角波、方波输出。 2.理解独立可调的设计思路,搭接出频率、占空比、三角波幅度、三角波直流偏移、方波幅度、方波直流偏移均独立可调的电路,调整范围不限。 3.理解分块调试的方法,进一步增强故障排查能力。 二、实验思路 利用集成运放构成的比较器和电容的充放电,可以实现集成运放的周期性翻转,进而在输出端产生一个方波。这个电路如图2.3.1所示,它的工作原理请参阅相关教科书。注意在这个电路中,给电容的充电是恒压充电,随着电容电压的升高,其充电电流越来越小,电容电压上升也越来越缓慢。理论分析可知,电容上电压的变化,是一个负指数曲线。因此,这个电路只能实现方波发生。但是,我们注意到,这个负指数曲线在工作过程中是不停地正向充电、反向放电,已经和三角波有些类似。如果能够使得电容上充电电流固定,则其电压的上升或者下降将是线性的,就可以在电容端获得一个三角波。 我们可以立即联想到这样一个事实:当积分器的输入是固定电压,则其输出是线性上升或者下降的。因此,将图2.3.1中的RC充电电路去掉,用一个积分器替代,并考虑到极性,再增加一级反相电路,就可以实现三角波的产生,如图2.3.2所示。 图2.3.2电路使用了3个集成运放。电路设计者认为,A3并不是必须的,因为它仅仅完成了1倍的反相放大,这个功能完全可以利用A1的输入端极性进行巧妙设计来实现。为了节省1个运放,设计者给出了新的电路,如图2.3.3所示,它仅使用2个运放。

图2.3.3所示电路的工作原理,请参阅相关教科书。图中稳压管DZ和电阻R3组成稳压电路,目的是克服运放输出的不对称。 本实验在实现上述基本电路的基础上,还提出了新的要求。有下列6个量:三角波和方波共有的频率、共有的占空比、三角波的幅度、方波的幅度、三角波的直流偏移、方波的直流偏移,其中每个量都由一个独立的电位器控制,当调节某个量时,其它5个量不能发生变化。这就是独立可调的要求。 本实验将给出一个独立可调的三角波方波发生器电路,要求学生在认真分析的基础上,用运放、电阻、电容、稳压管等元器件,自己实现搭接。然后在搭接好的电路上,观察、调节、记录,体会其中的设计思想。 三、实验原理 图2.3.4是可以满足设计要求的最终电路。其中A1、A2、A3及其附属电路,完成三角波、方波的发生,并且实现频率和占空比的可调。A4、A5及其附属电路,实现三角波和方波的幅度、直流偏移可调。 图2.3.4电路与图2.3.3电路有3点主要的区别。第一、用R13、RW2、DZ1、DZ2组成一个双向电阻值不同的电路,取代图2.3.3中的积分器电阻R,使得积分器工作过程中,正向充电和反向放电的时间常数不一致,三角波上升斜率和下降斜率大小不同,造成方波的占空比不同。需要注意的是,由于用一个电位器调节,无论在什么位置,积分器的正向时间常数和反向时间常数的和,是一个常数,就造成单纯调节RW2,只改变占空比而不会改变频率。第二、在稳压管输出和积分器之间,加入A3构成的反相放大器,可以通过RW1调节积分器输入电压大小,进而改变积分器输出电压变化斜率,造成波形发生的频率变化。这样,uo1产生方波,uo2产生三角波。这两个波形的频

新标准下LM324集成运算放大器的制作教案

《新标准下的LM324集成运算放大器原理图符号的制作》教案 学时:2课时刘金娟【教学目标】 知识和技能目标: 1.会建立多组件原理图库; 2.能够绘制LM324集成运算放大器的原理图符号。 过程和方法目标: 1. 通过对LM324集成运算放大器原理图符号的绘制掌握绘制多部件元器件原理图符号的方法; 2. 通过原理图的绘制提高元器件符号的制作与应用。 情感和态度目标: 1.养成善于观察和总结的良好习惯; 2.通过小组的检查培养团结协作精神。 【教学重点】 1. LM324集成运算放大器原理图符号用新符号绘制; 2. 多部件元器件符号的制作方法。 【教学难点】 多部件元器件符号的制作方法及应用。 【教学过程】 1.原理图的绘制。 绘制下述电路原理图。 第一节课让学生绘制上述电路原理图。

经过上节课原理图的绘制,大家可能会发现几个问题:1.任务书中的电位器需要自己进行绘制,元件库中没有相同的元器件;2.从元件库中搜索到的LM324与任务书中的LM324符号不一致。 2.对比从库中搜索到的LM324和任务书中的LM324。 教师讲解:这两个符号表示的都是LM324集成运放,之所以不同是因为一个是以前的老标准,一个是新标准下的图形符号。 引导学生对比这两个符号,找出其共同点和不同点。 相同点:都有5个引脚。不同点:形状不同;图形中的标注不同。 新标准下的图形符号中,“三角形”表示放大器,三角所指方向为信号传输方向,“无穷大”表示该放大器的开环电压放大倍数。注:开环电压放大倍数为无穷大是理想集成运算放大器的特性。分析完之后,就是绘制新标准下的LM324的原理图符号,由此引出本节课的课题。 3.新标准下的LM324集成运算放大器原理图符号的制作(重点)。 (1)电位器与LM324集成运算放大器构成的对比 前面已经讲解过电位器的制作过程,将LM324与电位器进行对比,找到构成他们的基本要素和构成部分。由此得出单部件元器件与多部件元器件的概念。

运算放大器应用电路的设计与制作(1)

运算放大器应用电路的设计与制作 (一) 运算放大器 1.原理 运算放大器是目前应用最广泛的一种器件,当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。 运算放大器一般由4个部分组成,偏置电路,输入级,中间级,输出级。 图1运算放大器的特性曲线 图2运算放大器输入输出端图示 图1是运算放大器的特性曲线,一般用到的只是曲线中的线性部分。如图2所示。U -对应的端子为“-”,当输入U -单独加于该端子时,输出电压与输入电压U -反相,故称它为反相输入端。U +对应的端子为“+”,当输入U +单独由该端加入时,输出电压与U +同相,故称它为同相输入端。 输出:U 0= A(U +-U -) ; A 称为运算放大器的开环增益(开环电压放大倍数)。 在实际运用经常将运放理想化,这是由于一般说来,运放的输入电阻很大,开环增益也很大,输出电阻很小,可以将之视为理想化的,这样就能得到:开环电压增益A ud =∞;输入阻抗r i =∞;输出阻抗r o =0;带宽f BW =∞;失调与漂移均为零等理想化参数。 2.理想运放在线性应用时的两个重要特性 输出电压U O 与输入电压之间满足关系式:U O =A ud (U +-U -),由于A ud =∞,而U O 为有限值,因此,U +-U -≈0。即U +≈U -,称为“虚短”。

由于r i =∞,故流进运放两个输入端的电流可视为零,即I IB =0,称为“虚断”,这说明运放对其前级吸取电流极小。 上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。 3. 运算放大器的应用 (1)比例电路 所谓的比例电路就是将输入信号按比例放大的电路,比例电路又分为反向比例电路、同相比例电路、差动比例电路。 (a) 反向比例电路 反向比例电路如图3所示,输入信号加入反相输入端: 图3反向比例电路电路图 对于理想运放,该电路的输出电压与输入电压之间的关系为: 为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻 R ’=R 1 // R F 。 输出电压U 0与输入电压U i 称比例关系,方向相反,改变比例系数,即改变两个电阻的阻值就可以改变输出电压的值。反向比例电路对于输入信号的负载能力有一定的要求。 (b) 同向比例电路 同向比例电路如图4所示,跟反向比例电路本质上差不多,除了同向接地的一段是反向输入端: i 1 f O U R R U - =

集成运放组成的基本运算电路实验报告

实验报告课程名称:电路与电子技术实验指导老师: 成绩: 实验名称:集成运放组成的基本运算电路实验实验类型:同组学生:一、实验目的和要求(必填)二、实验容和原理(必填) 三、主要仪器设备(必填)四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1.研究集成运放组成的比例、加法和积分等基本运算电路的功能; 2.掌握集成运算放大电路的三种输入方式。 3.了解集成运算放大器在实际应用时应考虑的一些问题; 4.理解在放大电路中引入负反馈的方法和负反馈对放大电路各项性能指标的影响; 5.学会用集成运算放大器实现波形变换 二、实验容和原理 1.实现两个信号的反相加法运算 2.输入正弦波,示波器观察输入和输出波形,毫伏表测量有效值 3.实现单一信号同相比例运算(选做) 4.输入正弦波,示波器观察输入和输出波形,毫伏表测量有效值,测量闭环传输特性:Vo = f (Vs) 5.实现两个信号的减法(差分)运算 6.输入正弦波,示波器观察输入和输出波形,毫伏表测量有效值 7.实现积分运算(选做) 8.设置输出初态电压等于零;输入接固定直流电压,断开K2,进入积分;用示波器观察输出变化(如何设轴,Y轴和触发方式) 9.波形转换—方波转换成三角波 10.设:Tp为方波半个周期时间;τ=R2C 11.在T p<<τ、T p ≈τ、T p>>τ三种情况下加入方波信号,用示波器观察输出和输入波形,记录线性 三、主要仪器设备 1.集成运算电路实验板;通用运算放大器μA741、电阻电容等元器件; 2.MS8200G型数字多用表;XJ4318型双踪示波器;XJ1631数字函数信号发生器;DF2172B型交流电压表; 型可调式直流稳压稳流电源。

集成运放组成的运算电路典型例题

第六章集成运放组成的运算电路 运算电路 例6-1例6-2例6-3例6-4例6-5例6-6例6-7例6-8例6-9 例6-10例6-11 乘法器电路 例6-12例6-13例6-14 非理想运放电路分析 例6-15 【例6-1】试用你所学过的基本电路将一个正弦波电压转换成二倍频的三角波电压。要求用方框图说明转换思路,并在各方框内分别写出电路的名称。 【相关知识】 波形变换,各种运算电路。 【解题思路】 利用集成运放所组成的各种基本电路可以实现多种波形变换;例如,利用积分运算电路可将方波变为三角波,利用微分运算电路可将三角波变为方波,利用乘方运算电路可将正弦波实现二倍频,利用电压比较器可将正弦波变为方波。 【解题过程】 先通过乘方运算电路实现正弦波的二倍频,再经过零比较器变为方波,最后经积分运算电路变为三角波,方框图如图(a)所示。

【其它解题方法】 先通过零比较器将正弦波变为方波,再经积分运算电路变为三角波,最后经绝对值运算电路(精密整流电路)实现二倍频,方框图如图(b)所示。 实际上,还可以有其它方案,如比较器采用滞回比较器等。 【例6-2】电路如图(a)所示。设为A理想的运算放大器,稳压管DZ的稳定电压等于5V。 (1)若输入信号的波形如图(b)所示,试画出输出电压的波形。 (2)试说明本电路中稳压管的作用。 图(a) 图(b) 【相关知识】

反相输入比例器、稳压管、运放。 【解题思路】 (1)当稳压管截止时,电路为反相比例器。 (2)当稳压管导通后,输出电压被限制在稳压管的稳定电压。 【解题过程】 (1)当时,稳压管截止,电路的电压增益 故输出电压 当时,稳压管导通,电路的输出电压被限制在,即。根据以上分析,可画出的波形如图(c)所示。 图(c) (2)由以上的分析可知,当输入信号较小时,电路能线性放大;当输入信号较大时稳压管起限幅的作用。

运算放大器基本电路

一:比例运算电路定义:将输入信号按比例放大的电路,称为比例运算电路。分类:反向比例电路、同相比例电路、差动比例电路。(按输入信号加入不同的输入端分)比例放大电路是集成运算放大电路的三种主要放大形式(1)反向比例电路输入信号加入反相输入端,电路如图(1)所示:输出特性:因为:,所以:从上式我们可以看出:Uo与Ui是比例关系,改变比例系数,即可改变Uo的数值。负号表示输出电压与输入电压极性相反。反向比例电路的特点: 一:比例运算电路 定义:将输入信号按比例放大的电路,称为比例运算电路。 分类:反向比例电路、同相比例电路、差动比例电路。(按输入信号加入不同的输入端分) 比例放大电路是集成运算放大电路的三种主要放大形式 (1)反向比例电路输入信号加入反相输入端,电路如图(1)所示: 输出特性:因为:, 所以: 从上式我们可以看出:Uo与Ui是比例关系,改变比例系数,即可改变Uo的数值。负号表示输出电压与输入电压极性相反。 反向比例电路的特点: (1)反向比例电路由于存在"虚地",因此它的共模输入电压为零.即:它对集成运放的共模抑制比要求低 (2)输入电阻低:r i=R1.因此对输入信号的负载能力有一定的要求. (2)同相比例电路 输入信号加入同相输入端,电路如图(2)所示: 输出特性:因为:(虚短但不是虚地);;

所以: 改变R f/R1即可改变Uo的值,输入、输出电压的极性相同 同相比例电路的特点: (1)输入电阻高;(2)由于(电路的共模输入信号高),因此集成运放的共模抑制比要求高 (3)差动比例电路 输入信号分别加之反相输入端和同相输入端,电路图如图(3)所示: 它的输出电压为: 由此我们可以看出它实际完成的是:对输入两信号的差运算。二:和、差电路 (1)反相求和电路 它的电路图如图(1)所示:(输入端的个数可根据需要进行调整)其中电阻R'为: 它的输出电压与输入电压的关系为: 它可以模拟方程:。它的特点与反相比例电路相同。它可十

相关主题
文本预览
相关文档 最新文档