当前位置:文档之家› 洞庭湖区50年来主要极端天气气候事件的变化特征

洞庭湖区50年来主要极端天气气候事件的变化特征

洞庭湖区50年来主要极端天气气候事件的变化特征
洞庭湖区50年来主要极端天气气候事件的变化特征

洞庭湖区50年来主要极端天气气候事件的变化特征

发表时间:2018-11-19T14:17:18.047Z 来源:《科技研究》2018年9期作者:彭杰彪冯俊妮刘钟中[导读] 突变检验结果显示,近55年极端冰冻事件下降趋势明显,极端干旱和高温事件变化无明显增多或减少的突变点,极端降水事件存在一个显著增多的突变点。

1.益阳市气象局湖南益阳 413000;

2.常德市气象局湖南常德 415000

摘要:利用洞庭湖区8个台站1960-2014年的逐日气象资料,在对资料进行质量控制的基础上,根据地方标准整理出冰冻、干旱、高温、降水4个极端天气气候事件逐年发生次数,分析其变化特征,发现近55年来洞庭湖区极端冰冻事件呈显著减少趋势,极端干旱事件无明显变化,极端高温事件和降水事件呈增多趋势,但未通过显著性检验。突变检验结果显示,近55年极端冰冻事件下降趋势明显,极端干旱和高温事件变化无明显增多或减少的突变点,极端降水事件存在一个显著增多的突变点。

关键词:极端天气气候事件;洞庭湖区;变化特征

1 资料及方法

所用资料为洞庭湖区南县、华容、岳阳、汉寿、沅江、湘阴、赫山、汨罗等8个台站1960-2014年的逐日气象资料,上述资料经过严格的三级质量控制。利用湖南地方标准定义的极端冰冻、干旱、高温和降水事件,构建洞庭湖主要极端天气气候事件的逐年站次序列。

采用的方法有线性趋势分析和Mann-Kendall法等对洞庭湖区主要极端天气气候事件的变化特征进行检测分析。

2 结果分析

2.1 极端冰冻事件的变化特征

由图1可以看出,1960-2014年洞庭湖区极端冰冻事件呈显著减少趋势,减少速率为0.7站次/10a,通过0.05信度的显著性检验。从年代际变化趋势来看,20年代80年代中期之前极端冰冻事件发生频次较多,80年代之后发生频次显著减少,1986-2014期间的29年,仅有4年出现了极端冰冻事件。突变检验的结果显示,极端冰冻事件的UF值整体呈不断下降的趋势,并于1993年开始低于a=0.05显著性水平临界值,说明近55年极端冰冻事件下降趋势明显(图2)。

极端天气应急预案

极端天气安全事故应急预案 1.事故类型和危害程度分析 极端天气危险源评估 极端天气停电:因暴风、雷电、暴雨、地震、冰凌、洪涝等自然极端,可能造成线路接地、短路或遭雷击接地、倒架、断线、短路引起全厂停电;其后果是影响公司的各生产系统。 暴风雪极端性天气 (1)一旦发生暴风雪,会造成公司及周边区域道路积雪,影响职工正常工作和日常生活,严重时将会使职工无法正常上、下班,影响公司正常生产秩序。 (2)一旦发生暴风雪,天气骤冷,会造成公司、生活区供暖温度相对较低,影响职工正常工作和日常生活。 (3)暴风雪极端天气停电:由于暴风、暴雪、冰凌等自然极端,可能造成线路接地、短路、倒架、断线引起线路两回路停电,若因电厂也由于暴风雪造成停发电,会造成全公司停电;其后果是影响公司的各生产系统,从而危及整个公司的安全。 强降雨天气水灾 夏季,由于雨水较多,公司内下水道排堵塞或排放不及时,管路不畅通等原因,可能导致水灾事故的发生。一旦发生水灾事故,会造成设备毁坏和公司财产损失,严重时会造成人员伤亡。 地震极端 地震极端可能导致厂房、设备设施倒塌损坏,公司财产损失,严重时会造成人员伤亡。 大雾(阴霾)极端

(1)大雾(阴霾)天气,影响交通安全,将会使职工无法正常上、下班,影响公司正常生产秩序。 (2)大雾(阴霾)天气,空气中湿度较大,容易使电气设备绝缘击穿,造成机电事故。 大风极端 (1)大风极端天气,影响交通安全,将会使职工无法正常上、下班,影响公司正常生产秩序。 (2)大风极端天气,风速较大时可能出现吹坏门窗,吹掀屋顶等情况,造成人员伤害和设备损失。 事故类型和危害程度分析 公司大面积停电,造成设备设施停转是生产安全的重大隐患,停电时间越长,造成的后果越严重。 道路交通受阻。一旦发生公司、生活区道路积雪、洪水,影响职工正常工作和日常生活,严重时将会使职工无法正常上、下班,造成公司停产。 暴风雪极端天气使公司、生活区温度大幅降低。一旦发生暴风雪,天气骤冷,会造成公司、生活区温度大幅降低,影响职工正常工作和日常生活。 地震极端严重时可能使公司厂房、设备倒塌损,大面积停电,人员伤亡,生产系统陷入瘫痪,造成严重后果。 强降雨会引起设备损失和人员伤害,影响生产的正常运行。 大雾(阴霾)天气会影响到道路交通安全,影响职工正常上下班,影响公司的正常生产。大雾(阴霾)天气湿度较大,容易使设备绝缘击穿,造成机电事故。 2、应急处置原则

中国南方暴雨日数的气候变化特征

Climate Change Research Letters 气候变化研究快报, 2015, 4(4), 228-236 Published Online October 2015 in Hans. https://www.doczj.com/doc/af10303495.html,/journal/ccrl https://www.doczj.com/doc/af10303495.html,/10.12677/ccrl.2015.44026 Climate Change Characteristics of Rainstorm Days in South China Shaoyong Chen1,2, Xiaofen Zhang2, Junrui Guo2, Yuzhen Guo2 1Institute of Arid Meteorology, China Meteorological Administration, Key Laboratory of Arid Climatic Changing and Reducing Disaster of Gansu, Key Laboratory of Arid Climatic Changing and Reducing Disaster of China Meteorological Administration, Lanzhou Gansu 2Meteorological Bureau of Baiyin, Baiyin Gansu Email: csy505@https://www.doczj.com/doc/af10303495.html, Received: Oct. 2nd, 2015; accepted: Oct. 23rd, 2015; published: Oct. 26th, 2015 Copyright ? 2015 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.doczj.com/doc/af10303495.html,/licenses/by/4.0/ Abstract Using the day by day precipitation data at 225 stations in the south area of China in the period of 1961-2010, with the trend analysis, Monte Carlo test method, the sliding T test, Mann-Kendall, etc., the spatial and temporal distribution characteristics of rainfall day and evolution rule above rainstorm in the south of China for 50 years are analyzed. Results show that the Southern China, the middle and lower reaches of Yangtze River and the Chengdu Plain are relatively more rains-torm areas. Rainstorm day trend is not significant in most areas; there is a slight increase in the east and a slight decrease in the west. But rainstorm days have significantly reduced in Chengdu Plain. There was a remarkable mutation in 1992. Rainstorm days of the Yangtze River have an ob-vious increasing trend. There was a remarkable mutation in 1986. As for seasonal distribution, it is the least in winter and most in summer. It is more in spring than in autumn. Winter rainstorm mainly occurs in southern China and it has a slight increasing trend; spring rainstorm mainly oc-curs in southern China, the middle and lower reaches of Yangtze River. It changes insignificantly. Rainstorm in summer is the most and has a significant increase trend. Among them, a slight in-crease is in southern China and an obvious increase is in the middle and lower reaches of Yangtze River. It reduces significantly in Chengdu Plain; in autumn. Rainstorm occurs mainly in southern Yunnan-southern China-western Zhejiang and other coastal areas, no clear trend; rainstorm days of south areas form a unimodal sequence. Chengdu Plain reaches its peak in August and the rest areas reach the peak in June. Rainstorm of Chengdu Plain mainly occurs in the period from July to August. It is concentrated in the period of May to June in the middle and lower reaches of Yangtze River. It is concentrated in the period of May to August in southern China. Under the background of global warming, rainstorm days in the south of China are response to climate change. Rainstorm increases in significant warming area and reduces in insignificant warming area.

华北降水及变化特征

第三章华北降水及变化特征 (2) 3.1 华北降水特征 (2) 3.1.1 年降水 (2) 3.1.2 降水年内分布 (3) 3.2 华北降水变化 (4) 3.2.1 年变化 (4) 3.2.2 季节变化 (5) 3.2.3 空间分布 (7) 3.3 小结与讨论 (11)

第三章华北地区降水量及其变化特征 在讨论城市化对华北降水序列影响之前,首先对华北降水及变化特征做一详细的分析,以便下文进一步的分析。 3.1降水量特征 本节讨论降水量变化特征所采用的资料为1971—2000年累年均值。 3.1.1 年与季降水量分布 华北地区年降水量在200—1000毫米之间,平均降水量为535.8毫米。南北差异较大,各地分布不均,从华北年降水量分布可以看出,年降水量基本由西北向东南递增。华北西北部内蒙古地区为少雨区,年降水量大多在400毫米以下;华北东南部的河南、山东以及安徽和江苏北部为多雨区,年降水量大多在600毫米以上。 图3.1 华北年降水量分布图(毫米) 图3.3为华北各季节降水量分布。可以看出,各季节分布趋势与年分布相似,依然是南多北少。春季,平均季降水量为83.3mm,内蒙地区季降水量在50mm 以下,区域中部大部分地区在50-100mm,南部部分在100mm以上。夏季,平均季降水量为332.4mm,西北部内蒙地区季降水量较少,在250mm以下,华北

西部陕西、山西季降水量也相对较少,在250-300mm,华北东部季降水量多于西部,东南部季降水量最多,在400mm以上。秋季,平均季降水量为102.6mm,分布同夏季相似,但大部分地区季降水量多于春季,100m线北移。冬季,平均季降水量为17.5mm,华北北部大部分地区在10mm以下,安徽和江苏北部一带季降水量超过50mm。 春季夏季 秋季冬季 图3.3 华北各季节降水量分布 3.1.2 降水年内分配 根据华北各气象站月降水资料,利用区域平均方法建立华北地区月降水量序列。华北降水以7月最多,8月次之;1月最少,12月次之。华北主要降水时段集中在夏季三个月,降水量达332.4毫米,占全年总降水量的62%;冬季各月降

极端天气应急预案(0001)

极端天气应急预案

极端天气安全事故应急预案 1.事故类型和危害程度分析 1.1极端天气危险源评估 1.1.1极端天气停电:因暴风、雷电、暴雨、地震、冰凌、洪涝等自然极端,可能造成线路接地、短路或遭雷击接地、倒架、断线、短路引起全厂停电;其后果是影响公司的各生产系统。 1.1.2暴风雪极端性天气 (1)一旦发生暴风雪,会造成公司及周边区域道路积雪,影响职工正常工作和日常生活,严重时将会使职工无法正常上、下班,影响公司正常生产秩序。 (2)一旦发生暴风雪,天气骤冷,会造成公司、生活区供暖温度相对较低,影响职工正常工作和日常生活。 (3)暴风雪极端天气停电:由于暴风、暴雪、冰凌等自然极端,可能造成线路接地、短路、倒架、断线引起线路两回路停电,若因电厂也由于暴风雪造成停发电,会造成全公司停电;其后果是影响公司的各生产系统,从而危及整个公司的安全。 1.1.3强降雨天气水灾 夏季,由于雨水较多,公司内下水道排堵塞或排放不及时,管路不畅通等原因,可能导致水灾事故的发生。一旦发生水灾事故,会造成设备毁坏和公司财产损失,严重时会造成人员伤亡。 1.1.4地震极端 地震极端可能导致厂房、设备设施倒塌损坏,公司财产损失,严重时会造成人员伤亡。 1.1.5大雾(阴霾)极端

(1)大雾(阴霾)天气,影响交通安全,将会使职工无法正常上、下班,影响公司正常生产秩序。 (2)大雾(阴霾)天气,空气中湿度较大,容易使电气设备绝缘击穿,造成机电事故。 1.1.6大风极端 (1)大风极端天气,影响交通安全,将会使职工无法正常上、下班,影响公司正常生产秩序。 (2)大风极端天气,风速较大时可能出现吹坏门窗,吹掀屋顶等情况,造成人员伤害和设备损失。 1.2事故类型和危害程度分析 1.2.1 公司大面积停电,造成设备设施停转是生产安全的重大隐患,停电时间越长,造成的后果越严重。 1.2.2道路交通受阻。一旦发生公司、生活区道路积雪、洪水,影响职工正常工作和日常生活,严重时将会使职工无法正常上、下班,造成公司停产。 1.2.3暴风雪极端天气使公司、生活区温度大幅降低。一旦发生暴风雪,天气骤冷,会造成公司、生活区温度大幅降低,影响职工正常工作和日常生活。 1.2.4地震极端严重时可能使公司厂房、设备倒塌损,大面积停电,人员伤亡,生产系统陷入瘫痪,造成严重后果。 1.2.5强降雨会引起设备损失和人员伤害,影响生产的正常运行。 1.2.6大雾(阴霾)天气会影响到道路交通安全,影响职工正常上下班,影响公司的正常生产。大雾(阴霾)天气湿度较大,容易使设备绝缘击穿,造成机电事故。 2、应急处置原则

极端降水事件变化趋势与突变特征数据分析

极端降水事件变化趋势与突变特征数据分析 摘要应用博州地区1958-2015年5-9月4个基本站逐日降水记录数据,采用百分位的方法确定了博州4个站极端降水量的阈值。并通过运用Mann—Kendall检验法和累计距平检验方法进行比较分析,得出各站夏季极端降水的突变特征。结果表明:博州地区极端降水量、频率、强度均呈增多趋势。通过检验分别确定了四个测站的突变点,极端降水频率与极端降水量呈较好的正相关。 关键词极端降水;突变;极端降水量 1 资料和研究方法 1.1 资料 资料来源于博州气象局整编的博乐市、温泉、精河、山口4个测站的5-9月逐日降水量数据集,时间段为1958-2015年。 1.2 研究方法 目前国际上在气候极值变化研究中最常用的是采用某个百分位值(一般取为9O )作为极端值的阈值,大于或等于这个阈值的值被认为是极值,该事件可以认为是极端事件。 本文主要讨论5-9月的降水情况。运用百分位法,确定端降水阈值。 数值等级内变量发生的频数,指变量在不大于该数值等级内的频数,即变量小于等于某上限值的发生频数。因此,若变量为日降水量,则当日降水量累积频率达到一定的概率分布(一般90%)时,可将此概率分布所对应的降水临界值定义为极端降水的阈值,并认为该日发生极端降水事件[2]。 2 极端降水的变化特征 2.1 降水阈值的空间分布 博州极端降水阈值分布在8.6~5.3mm/d之问,平均阈值为6.9mm/d。极端降水阈值西部偏大,东部偏小,温泉、博乐的阈值在平均值以上,山口、精河阈值偏小。 选取阈值最大的温泉和阈值最小的精河进行降水的频率的分析,分析得各站降水的频率都呈明显的递增趋势,主要分布在2mm以内,其中在0.1~1.1mm之间降水的次数最多,精河超过2mm降水的频率几乎都在10以下,温泉在20以下。

山西省降水变化特征分析

山西省降水变化特征分析 发表时间:2019-04-23T10:39:45.550Z 来源:《科技研究》2019年1期作者:靳泽辉1 卫玮2 杨飞鸿1 [导读] 本文选用山西省38个台站1958~2013年逐月降水量资料,对山西省降水时空变化特征进行分析。靳泽辉1 卫玮2 杨飞鸿1 (1山西省五台山气象站山西太原 030000 2陕西省气象台陕西西安 710014)摘要:本文选用山西省38个台站1958~2013年逐月降水量资料,对山西省降水时空变化特征进行分析。结果表明:近56年山西省四季降水量和年降水量变化趋势一致,均呈现出逐年减少的趋势,气候倾向率却有很大的差异;山西主要有三个多雨区,分别位于晋东南太行山区和中条山区、吕梁山区、五台山区。阳城年平均降水量最大,大同年平均降水量最小,两地之间的降水量相差40%左右;春季降水分 布同年平均降水量类似,夏季降水量具有明显的经向分布,东西部降水量较大,中部降水量小,秋季平均降水量从北到南逐渐增加,季降水量从北到南逐渐增加,分布特征基本与春季降水量类似。 关键词:山西省;降水量;变化特征 1、研究资料和方法 本文主要选用山西省境内38个台站1958~2013年逐月降水量数据,选用线性倾向估计发,对山西近56年的降水变化特征进行分析,利用T检验对降水信度检验。季节划分主要采用常规划分标准:春季3~5月,夏季6~8月,秋季为9~11月,冬季为12到次年2月份。 2、山西省降水时间分布特征 2.1四季降水量变化 如图1所示为山西省1958~2013年春、夏、秋、冬四季逐年降水量变化趋势图,从图中可以看出: 1958~2013年山西省春季降水量在28.0~158.5mm之间,其中年最大降水量出现在1964年,最小降水量出现在1962年,最大降水量将近是最小降水量的5.7倍,说明山西省春季降水量年际变化波动幅度较大。近56年山西省春季降水量呈现出逐年减少的趋势,气候倾向率为-1.1mm/10a,但是并未通过0.05的显著性水平检验;结合多项式拟合结果,山西省春季降水量年代际变化呈现出波动见效的趋势,其中20世纪60年代降水量偏多,进入到70年代逐渐减少,80年代的降水量偏多,90年代偏少,在21世纪之前山西省春季降水量有明显的增加趋势,而从21世纪往后降水量则逐渐下降。 1958~2013年山西省夏季降水量在153.3~425.6mm之间,其中夏季降水量最多的年份为1964年,最少年份为1962年,夏季最大降水量将近是最小降水量的2.8倍,说明夏季降水量年际变化波动幅度较大。近56年山西省夏季降水量呈现出逐年下降的趋势,气候倾向率为-9.8mm/10a,通过了0.05的显著性水平检验;结合多项式拟合结果,在20世纪60年代山西省夏季降水量呈现出剧烈波动变化,从70年代往后一直到21世纪之前,夏季降水量呈现出平稳的下降趋势,而从21世纪往后则呈现出明显的增加趋势。 1958~2013年山西省秋季降水量在40.9~211.9mm之间,降水量变化波动较为剧烈。近56年山西省秋季降水量呈现出逐年下降的趋势,气候倾向率为-3.4mm/10a,未通过0.05的显著性检验;结合多项式拟合结果,在20世纪60年和21世纪初,山西省秋季的降水量波动变化较为剧烈,从20世纪70年代到90年代降水量则呈现出平稳的下降趋势。 1958~2013年山西省冬季降水量在1.1~28.3mm之间,其中冬季降水量最大值出现在1990年,最小值则出现在1999年,冬季最大降水量是最小降水量的24.7倍,波动变化十分剧烈。近56年山西省冬季降水量呈现出小幅度增加的趋势,气候倾向率为-0.092mm/10a,未通过0.05的显著性水平检验。结合多项式拟合检验结果,山西省冬季降水量具有明显的年代际变化特征,其中20世纪60年代冬季的降水量偏少,70-80年代降水量明显增加,90年代降水量减少,由此不难看出在21世纪之前,山西省冬季降水量总体呈现出偏多的趋势,而从21世纪往后冬季降水量则逐渐减少。 2.2年降水量变化 1958~2013年山西省年平均降水量在382.8~637.1mm之间(图2),其中降水量最多的年份出现在1958年,降水量最少的年份则出现在1986年,两者之间相差254.3mm。近56年山西省年平均降水量呈现出逐年减少的趋势,气候倾向率为-12.6mm/10a,通过了0.05的显著性水平检验。结合多项式拟合结果,20世纪60年代前后山西省降水量下降趋势较为明显,从70年代往后一直到90年代降水量则呈现出平缓的下降趋势,而进入到21世纪以来,山西省降水量呈现出逐年增加的趋势。 图1 山西省1958~2013年春、夏、秋、冬四季逐年降水量变化趋势图

极端气候事件和气候突变事件的历史演变与未来预测

极端气候事件和气候突变事件的历史演变与未来预测 摘要:本文主要从史前全球环境的演变,结合世界古文明的衰落历史两个方面来阐述极端气候事件和气候突变事件的历史演变;从目前全球环境的现状对未来气候大势做一个预测。 极端天气气候事件是指天气(气候)的状态严重偏离其平均态,在统计意义上属于不易发生的事件。气候突变事件则是相对于“气候渐变”而言的,指的是短时间内气候系统在短暂时间内发生的突变。这两类事件有一个共同的特点,那就是均偏离气候的常态,在短时间内发生可能造成持续影响的事件。 关于史前的气候演变,人类无法从文献记载中得知,今天所得到的关于史前全球环境的信息多来自于对氧同位素、极低冰芯,植物孢粉,动物骨骼化石、湖泥等的考察与研究。 我国近年来的研究以距今8500年至3000年作为我国大暖期的起讫时间,主要的划分依据是参考了表现温度变化敏感而细致的敦德冰芯记录。全新世大暖期延续的时间长达5500年,分为四个阶段。 第一阶段,距今8500年前出现急剧升温现象,在不到200年的时间里上升了4.5摄氏度。因植被对气候影响的滞后性,未出现相应的变化,但今天西藏青海地区关于湖泥盐度降低等证据表明这一时期这一地区降水曾一度激增。延至8000年后,暖湿气候使植被分布出现重大变化,北方暖温带落叶阔叶林向北推移了3个纬度。此后不久即出现降温现象,距今7700年前后,中国黄河流域有三四百年的文化层变稀和缺失。距今7300年左右冰川推进,连南半球的新西兰和南美热带山地也有发现。如此高的温度变化率无论是对自然界还是人类社会均是一种灾难性的后果。 第二阶段,从距今7200年至6000年。这个阶段是大暖期中的稳定暖湿阶段,也是大暖期的鼎盛时期。对我国而言,除了个别地点如青海湖柴达木可能因高温蒸发旺盛而出现更为干燥的盐类沉积外,其它各地区都出现暖湿气候特征,植被生长空前繁茂,如现代为草原的青海湖出现了针叶阔叶混交林。良好的气候环境条件使人类生产、人口和居地迅速发展,形成了黄河流域的仰韶文化和长江下游地区的马家浜文化,此外在青藏高原的西北部也发现了三十多处细石器文化遗址,据推测也是这个阶段人类活动的遗迹,表明当时的生存环境条件要比现代好。 第三阶段,从距今6000年至5000年。这个阶段的气候波动剧烈,敦德冰芯记录显示存在三次明显的降温时间,表现为欧洲和北美东部一些喜温植物突然出现衰减,同时,南北半球各山区均出现了冰川的前进,从孢粉资料分析可以看出这个时期气候偏凉干。 第四阶段,从距今5000年至3000年,这一阶段前一千年气候波动和缓,是个亚稳定的温暖期。在中国,北方的龙山文化和长江下游的良渚文化蔚然兴起,古遗址的数量较以前有明显增加,距今4000年前后温度下降,暖湿植被特征一直延续到距今3000年左右才逐渐衰落,此时正是殷亡周兴之时,显著标志是野象从黄河流域南退。 在这一时期以后,世界的古代文明经历了一个共同衰落的过程,即使它们相

极端天气管理制度

极端天气管理制度 1 事故类型和危害程度分析 本风电厂位于沿海地区,当地异常雾雨雪及大风气象灾害都可能对企业的正常运行与人员、设备的安全构成威胁。 异常雾雨雪是指局部或大部分地区突降大雾、大雪、暴雨,严重危机机组安全运行,有重大设备损坏事故发生的可能。 异常大雾、大雪、大风的天气,已引起污闪事故及线路搭挂异物等,造成部分线路跳闸,发生线路停电事故。 异常暴雨天气,应加强对电缆沟、大坝的措施落实,防止造成重大道路损坏及设备进水等. 全站主要危险点: 大坝:暴雨时因大坝水位突增和暴雨冲刷堤坝,可能出现溃坝事故. 化学危险品库:严防在暴雨期间,化学危险品泄露,造成设备损坏和环境污染。 升压站:在雷雨天气和大风天气容易造成断线、瓷瓶断裂等事故. 电缆沟:在暴雨时有可能进水.

室外端子箱、控制箱:容易造成误动、拒动或短路。 2应急处置基本原则 为及时、有效、迅速的处理因暴雨造成内涝、外涝、溃坝等事故,因异常大雾、大雪天气引起的污闪事故,避免或降低因上述原因造成重大设备事故的损失,减少全站对电网造成重大经济损失和影响,建立事故情况下快速抢险和应急处理机制,保障企业职工生命及财产安全,维护正常的生产和工作秩序,特编制本预案。 本预案是按照“安全第一,预防为主"的方针,以“保人身、保电网、保设备"为原则. 3 组织机构及职责 3.1 应急组织体系 运行部经理是危急事件的第一责任人,班组和个人都有参与危急事件处理的责任和义务。 3。2 指挥机构及职责 组长:运行部经理 副组长:运行部副经理 成员:风电场各成员

下设以下小组:警戒疏散引导小组、技术咨询组、现场抢救小组、后勤保障小组、灾害调查善后处理小组. 3.2.1应急救援机构的职责: 3。2。1.1组长职责 事故发生后,赴事故现场进行现场指挥,批准现场应急方案,组织现场抢救。负责组织有关部室定期进行事故应急救援演练.在发生异常雾雨雪天气造成的事故时,接到事故报告后根据本预案规定程序,组织力量对现场进行事故处理,负责向公司领导汇报事故情况和事故处理进展情况. 3.2。1。2副组长 参与预案的审核和编制,提供必要的技术支持;分析事件产生的原因,制定预防方案,防止同类事件的重复发生 3。2.1.3班组职责 负责隔离带内事故发生区,对事故现场进行处理,防止事故进一步扩大,。负责发生事故后(原因、处理经过、人员伤亡情况及经济损失情况),调查报告的编写和上报工作。 3.2.2下设各小组职责:

应对极端天气应急预案

应对极端天气应急预案 为了加强学校安全工作,保障全校师生的安全,打造和谐校园,防范极端天气安全事故的发生,并能快速、及时、妥善的处理突发事件,切实有效降低极端天气安全事故的发生, 结合我校实际,特制订预案如下: 一、指导思想 以科学发展观重要思想为指导, 以国家《安全生产法》为依据,以维护广大师生员工的生命财产安全为目标, 积极开展各种应对大风、雨雪极端天气的预防应对工作, 确保学校各项教育教学工作的顺利开展。 二、极端天气范围:大风、雷电、雨雪(中大)、冰雹、大雾等。 三、工作原则 (一) 统一指挥,统一调度,分工负责,相互配合,快速高效; (二) 以防为主,防救结合;全面部署,保证重点; " (三) 调动社会各方面的积极力量参与事故救援工作; 四、组织机构 (一) 成立极端天气应急救援工作领导小组,领导小组成员如下: 组长:楚国峰(校长) (全面负责应对极端天气应急工作) 副组长:李彦廷赵娟肖旭清(副校长) (具体负责应对极端天气应急工作的信息传递、上报、宣传教育及相关知识的普及工作) 成员:肖继鑫、范启波、王德玲、孙红平、张超、卢静、各班主任 (二)实行灾情上报制度。 校长室及时与上级主管部门、气象部门沟通, 了解和发布预警信息。一旦发生灾情,在最短的时间内逐级上报,为指挥决策提供快捷、有效的支持。 [ 五、应急措施 (一) 领导小组主要职责: 1、组织实施极端天气应急救援方案;负责突发事故的抢险救援工作; 2、统一组织协调相关部门救援,统一调配救援人员; 3、根据预案实施过程中发生的变化和遇到的问题,及时对预案提出调整、修订和补充。

4、配合上级部门进行事故调查处理工作及善后工作, 将事故的原因及处理意见公布于众。 (三) 事故报告: 事故发生后,必须做到: 】 1、在第一时间立即将所发生的事故的情况报告上级主管部门, 并在24小时内写出事故报告, 报市教育局和政府。 2、事故发生后,迅速采取必要措施抢救人员和财产。 (四) 事故发生后的救援工作 1、领导小组应及时按救援预案组织实施相应的事故救援,并将事故救援情况报教育局。 2、事故发生初期,应积极采取自救措施,防止事故的扩大。 (五) 应急处理方案 1、当雾、雪、暴雨、大风、扬沙、沙尘暴、严寒、高温等极端天气发生和出现时,学校先组织有关人员对全校的校舍、电路电线进行安全检查。 2、如果极端天气警报为红色警报以上的,报主管部门同意后取消极端天气期间学校的师生活动。 。 3、加强极端天气期间学校的值班,每一时段均安排一名干部两位教师在校值班,发现问题及时向领导及教育局汇报,领导小组成员的通讯工具和值班电话保持24小时畅通。 (六) 学校及时掌握和处理因雨雪灾造成的安全隐患。 1、学校要针对极端天气制定学生安全应急预案,及时掌握暴风雪的预警信息。根据不同级别的预警信号, 适时做出正确的判断, 并通过学生向其家长通报。在暴风雪等极端天气影响学生正常上、下学通行情况下,经教育局同意,学校可以调整作息时间,采取停课、提前放学、延时放学、通知家长接送、教师护送等安全措施。根据灾情由校长来具体实施应急指挥工作。 2、在遇有天气突变、大风天、沙尘等极端天气条件下,及时同家长取得联系,务必在第一时间内做出正确判断, 并随之天气的变化及时做出调整。同时在最短的时间内上报教育局。 3、学校要加大对接送学生车辆管理教育,尤其做好极端天气来临前后路况的排查工作,预防交通事故的发生。

(完整版)降水特征

一天里,什么时候最爱下雨 原韦华 新闻背景 随着夏天的到来,雨水逐渐增多,北京的汛期也到了。 那么,在我国的不同地区,一天中什么时间最有可能降雨?不同时段的降雨又往往具有什么样的特征?细心的读者可能都有自己的生活体验,而科学工作者则给出了详细的统计和分析。 ()最早被提及的降水日变化现象是“巴山夜雨” 很多读者都有这样的体会,降水在一天之内不是均匀分布的,有些时间段特别容易下雨,而有些时间段很少有降雨,这就是降水的日变化。 最早被提及的降水日变化现象当属“巴山夜雨”,这早在唐朝的诗歌中就得到体现。最著名的恐怕要算是李商隐《夜雨寄北》中“何当共剪西窗烛,却话巴山夜雨时”描述的浪漫意境;白居易的《长恨歌》中也有叙述,“蜀江水碧蜀山青,圣主朝朝暮暮情;行宫见月伤心色,夜雨闻铃肠断声”。此外李白、王维以及其他朝代的诗句中也多有提及蜀中的夜雨特点。基于现代化的观测数据也证实,四川盆地乃至我国西南诸多地区均存在夜雨的降水特征,可见蜀中的夜雨自古已然,并不是现今才有的现象。 ()为何“忽如一夜春风来,千树万树梨花开” 此前由于观测资料的限制,对于降水日变化的研究相对较少。近年来,中国气象局的宇如聪研究员和他的研究团队全面揭示了我国大陆地区夏季降水的日变化特征,结果显示,在长江上游地区,夏季降水的日峰值通常出现在凌晨0时前后;长江中游地区,降水峰值则在清晨6点左右;长江下游地区,夏季降水的主峰值则集中在下午时段;整个长江流域的夏季降水峰值呈现自西向东滞后的现象。 华南和东北地区主要为午后的降水峰值。陆地上夏季的午后降水峰值较为常见,这通常是由于太阳辐射加热的日变化,致使午后温度较高,暖空气上升造成不稳定,导致降水的发生。陆地上的夜间降水峰值的成因较为复杂,目前还没有定论,可能有局地的山谷风的作用、低层风场的作用以及云层的辐射效应等等。 然而,在冬季,无论是我国的西部还是东部,雨、雪则常常在夜间降落,正如“忽如一夜春风来,千树万树梨花开”诗句中描绘的那样。

陇南近五十年气温和降水变化特征分析及影响

陇南近五十年气温和降水变化特征分析及影响 摘要: 利用1959~2008年陇南气温降水资料,利用直线回归方程、图表,分析陇南50年来的气温变化趋势。结果表明:年平均气温和春、夏、秋、冬四季气温变化均呈上升趋势;各季节变化幅度不同,冬季上升幅度最大,夏季最小;以80年代后期为界分为冷暖两个阶段。降水变化明显,全球气候变暖趋势越来越明显,随之而来的气象灾害增多,从而产生一系列社会和经济问题。陇南是农业地区,气候变化直接影响到农业生产和粮果安全,因此,研究气温降水变化趋势,对指导农业生产具有重要意义。 关键词: 陇南气温降水变化影响 现在讨论气候变化已经成了人们的热点问题,在全球气温变暖趋势越来越明显的大背景下,而在小地区也已经凸显。气温和降水的变化,将会影响到人类的生产生活,从而产生一系列的社会和经济问题。陇南是一个资源丰富,气候怡人的山区,主要以种植业为主,气候变化对农业生产影响很大。因此,研究气温降水变化特征,具有很重要的意义。 1.陇南气温变化特征 全区气候在横向分布上分北亚热带、暖温带、中温带三大类型,在纵向分布上,由于受山脉的走向、山势的高度、山坡的坡度和坡向等地形因素的影响,光、热、水、气和生物资源等农业诸要素,具有明显的垂直分布特点,耕作区垂直高差一般在50一120米左右。特别是气象条件的垂直差异极为明显,俗话说:“山上积雪皑皑,山下春暖花开”,“一眼看四季,十里不同天”。利用1959~2008年陇南气象站的资料,对陇南、四季季平均最高、最低气温变化趋势的空间分布状况和时间变化特征进行了分析。结果表明近50年来,我国平均最高气温的变化特征呈现北方增暖明显,年平均最低气温全国各地基本一致,呈明显的变暖趋势;无论是春季还是冬季,平均最低气温的增暖幅度明显大于平均最高气温的增幅;平均日较差多呈下降趋势,并在陇南东南部方地区尤为明显,各季平均日较差亦均呈下降趋势,并以冬季的下降幅度为最大;年平均最高气温和最低气温的变化在年代际变化上基本呈现较为一致的步伐,即50年来主要的变暖均是从20世纪80年代中期开始,均在90年代。 据统计2010年1月,陇南市各县(区)平均气温普遍偏高2-3℃,是陇南市有气

湖北谷城近49a降水变化特征分析(论文)

湖北谷城近49a降水变化特征分析 杨诗定 (谷城县气象局,谷城 441700) 摘要:利用谷城县1959~2007年降水观测资料,采用线性倾向估计、累积距平、移动平滑等方法对近49a 降水变化特征及变化趋势进行分析,得出近49a谷城年降水量呈缓慢增多趋势(4.3mm/10a),且有23a、21a 的周期变化。夏季降水量增多明显(30.6mm/10a),秋季降水量却呈减少趋势(-21.8mm/10a)。年降水量的增长主要源于夏季降水增长的贡献。同时,年降水增多、雨日减少、暴雨日增多,表明谷城地区强降水的危害有增多的趋势。 关键词:谷城;气候变化;降水 引言 气候变化是国际社会关注的焦点,也是气象科学研究的热点问题。相对于全球性的持续变暖趋势,降水量变化特征有更大的不确定性和区域特征,因此研究不同区域降水量的变化特征是当前全球气候变化研究的重要内容之一。IPPC第三次评估报告指出20世纪半球亚热带陆地地区每10年减少约0.3%,而大部分中高纬地区降水量每10年增加0.5~1.0%[1]。很多学者对我国和湖北省降水变化特征进行了深入研究,取得大量研究成果。如王英等[2]基于1951~2002年中国约730个气象台站观测数据对我国降水近50年变化进行研究表明,全国平均年降水量从60年代到90年代呈明显下降趋势,但在90年代后期出现回升,其中夏季和冬季降水量已达到50年代和60年代的水平。陈隆勋和翟盘茂等[3-4]对近40~50年我国降水研究指出:全国平均年降水量呈减少趋势,但西部降水量增长趋势明显,其中以西北地区为最,而西南一些地区有减少趋势。郑祚芳等[5]对湖北省近50年气候变化的研究结论是,降水量的变化趋势差异明显,年降水量有弱的增多趋势。冯明[6]对全省72 个台站来的降水资料进行分析后发现, 全省降水差异较大, 分布不均, 1980 年以来东部地区降水偏多, 西部地区则相反。覃军王海军[7]对湖北省1961年以来降水变化趋势分析,指出年降水量有增加趋势,其分布格局是东增西减,南增北减。 谷城县位于湖北省西北部山区,1959~2007年年平均降水量932毫米,降水变化对当地经济社会和人们生活影响巨大,降水的不均匀性(干旱、暴雨)造成的损失巨大。因此对降水变化的研究,揭示其变化特征,对于服务当地经济社会发展,增强防灾减灾主动性具有重大意义。本文将对该地区49年来降水变化进行分析,揭示其基本气候特征和变化趋势。 1 资料及分析方法 1.1 资料 本文选取谷城站(站址未迁移过)1959~2007 年人工观测降水资料,按年(1~12月)、汛期(5~9月)、春季(3~5 月)、夏季(6~8 月)、秋季(9~11 月)、冬季(12~次年2 月)组成序列。 1.2 方法 1.21 气候倾向率 降水的气候率采用一次线性方程表示,即: R i=a0+bt i,i=1,2,…,n。(1)式中R i为降水量,t i为时间,b×10为气候倾向率,表示降水量每10年的趋势变化率。

洞庭湖区50年来主要极端天气气候事件的变化特征

洞庭湖区50年来主要极端天气气候事件的变化特征 发表时间:2018-11-19T14:17:18.047Z 来源:《科技研究》2018年9期作者:彭杰彪冯俊妮刘钟中[导读] 突变检验结果显示,近55年极端冰冻事件下降趋势明显,极端干旱和高温事件变化无明显增多或减少的突变点,极端降水事件存在一个显著增多的突变点。 1.益阳市气象局湖南益阳 413000; 2.常德市气象局湖南常德 415000 摘要:利用洞庭湖区8个台站1960-2014年的逐日气象资料,在对资料进行质量控制的基础上,根据地方标准整理出冰冻、干旱、高温、降水4个极端天气气候事件逐年发生次数,分析其变化特征,发现近55年来洞庭湖区极端冰冻事件呈显著减少趋势,极端干旱事件无明显变化,极端高温事件和降水事件呈增多趋势,但未通过显著性检验。突变检验结果显示,近55年极端冰冻事件下降趋势明显,极端干旱和高温事件变化无明显增多或减少的突变点,极端降水事件存在一个显著增多的突变点。 关键词:极端天气气候事件;洞庭湖区;变化特征 1 资料及方法 所用资料为洞庭湖区南县、华容、岳阳、汉寿、沅江、湘阴、赫山、汨罗等8个台站1960-2014年的逐日气象资料,上述资料经过严格的三级质量控制。利用湖南地方标准定义的极端冰冻、干旱、高温和降水事件,构建洞庭湖主要极端天气气候事件的逐年站次序列。 采用的方法有线性趋势分析和Mann-Kendall法等对洞庭湖区主要极端天气气候事件的变化特征进行检测分析。 2 结果分析 2.1 极端冰冻事件的变化特征 由图1可以看出,1960-2014年洞庭湖区极端冰冻事件呈显著减少趋势,减少速率为0.7站次/10a,通过0.05信度的显著性检验。从年代际变化趋势来看,20年代80年代中期之前极端冰冻事件发生频次较多,80年代之后发生频次显著减少,1986-2014期间的29年,仅有4年出现了极端冰冻事件。突变检验的结果显示,极端冰冻事件的UF值整体呈不断下降的趋势,并于1993年开始低于a=0.05显著性水平临界值,说明近55年极端冰冻事件下降趋势明显(图2)。

全球气候变暖,极端天气事件增加

全球气候变暖,极端天气事件增加 秦为胜 全球气候变暖极易引发极端天气,2017年全球就出现了多个极端天气气候事件:大西 洋飓风接连重创美国和加勒比海岛国,2017年8月美国南部城市休斯敦遭受“哈维”飓风 带来严重洪涝灾害、史上最强飓风“厄玛”横扫美国等地,美国西岸遭受“地狱热浪”袭击,新德里遭遇严重大气污染,美国南加州托马斯野火为有史以来规模最大等,2018年年初美国、日本东部由于暴风雪带来的严寒冰冻天气,澳大利亚的酷暑等异常天气。虽然现在全球气候变化的趋势是变暖、气温升高,但是天气变化会存在波动,并不是平稳发展的。在某一个时段内,也会出现极冷极热的天气。因为气候变暖会导致大量的海水蒸发,大气中的水汽增多,大量的水汽遇到寒流就会转化成暴风雪,所以全球变暖更易导致极端天气气候事件频繁发生。气候变暖背景下,低层空气明显变暖,大气不稳定性增加,强对流天气增加,过去百年一遇或 几十年一遇的极端气象灾害事件出现的概率、时间、范围和地域发生了很大变化,气象灾害的发生更难以预测。 一、受“炸弹气旋”袭击、美国、日本东部再现电影《后天》冰河时代场景 2017年圣诞节开始至2018年年初,一场罕见的冬季“炸弹气旋风暴”肆虐北美大西洋沿岸,美国东北部地区连日来普遍遭受暴风雪的袭击,在美国东部沿海地区带去了严寒、降温、暴风雪天气。纽约等地迎来剧烈降温和大暴雪,美国东北部最高峰华盛顿山地区的气温降至零下38摄氏度,寒风刺骨。低温严寒天气已经造成美国全国范围内至少22人死亡,且有数千架次航班被取消。北美洲的严寒甚至把鲨鱼都冻死、冻僵的尸体被冲上海岸,尼亚加拉大瀑布冻出了壮观的冰瀑布,一些地方甚至被媒体惊呼“比火星还要冷”。 炸弹气旋本质是一个中心气压快速降低的强大低气压系统(温带气旋)在北美地区,炸弹气旋主要是由来自北方冷空气与来自大西洋上的暖湿空气相遇而形成的,它能快速吸收能量并带来寒冷的气温、降雪以及大风。根据美国气象系统的定义,如果在24小时内气压降低24百帕,约合标准大气压的2.37%的话,那么这个气象系统就可以称为炸弹气旋了,因

浙江省1971~2016年极端降水指数时空变化特征

Open Journal of Nature Science 自然科学, 2019, 7(4), 294-306 Published Online July 2019 in Hans. https://www.doczj.com/doc/af10303495.html,/journal/ojns https://https://www.doczj.com/doc/af10303495.html,/10.12677/ojns.2019.74040 Spacial-Temporal Variation of Extreme Precipitation Indices in Zhejiang Province from 1971 to 2016 Yangna Yin College of Atmospheric Science, Chengdu University of Information and Technology, CUIT, Chengdu Sichuan Received: Jul. 4th, 2019; accepted: Jul. 18th, 2019; published: Jul. 25th, 2019 Abstract Based on daily precipitation data sets of 22 meteorological stations from 1971 to 2016 of Zhejiang province, 11 extreme precipitation indices were analyzed to study the spacial-temporal variation of extreme precipitation in Zhejiang during 46 years. Methods including correlation analysis, li-near tendency estimation, Mann-Kendall test, moving t test, significance test and IDW were used. It is aimed to offer guidance for the diagnosis, prediction, decision and deployment of extreme precipitation in similar regions. The results were as follows: 1) The precipitation in Zhejiang is getting greater in amount and longer in time. 2) Only the PRCPTOT had the mutation year 1977. Except that CDD always declined, other indices had fluctuations from 1970s to 1980s. Even so, the strength is not strong enough to influence the total upward trend. 3) According to two rules for average spatial distribution: the decreasing from southwest to northeast and from southeast to northwest, the latitude and costal effect must take into consideration. 4) From the perspective of single station, the CDD decreased while wet indices mainly increased. Additionally, the changes were more significant where the rate were larger, which leaded to the intensive precipitation. 5) R10 mm, R20 mm, R50 mm and R95 contribute most to the increasing PRCPTOT. And latitude has good correlation with the indices. Keywords Extreme Precipitation Indices, Zhejiang Province, Spacial-Temporal Variation, Rainy Days, Rainy Strength 浙江省1971~2016年极端降水指数时空变化特征 尹扬娜 成都信息工程大学大气科学学院,四川成都 收稿日期:2019年7月4日;录用日期:2019年7月18日;发布日期:2019年7月25日

相关主题
文本预览
相关文档 最新文档