当前位置:文档之家› 2019年高考物理第一轮复习知识点总结

2019年高考物理第一轮复习知识点总结

2019年高考物理第一轮复习知识点总结
2019年高考物理第一轮复习知识点总结

A B

2019年高考物理一轮复习知识点总结

Ⅰ。力的种类:(13个性质力) 这些性质力是受力分析不可少的“是受力分析的基础” 力的种类:(13个性质力) 有18条定律、2条定理

1重力: G = mg (g 随高度、纬度、不同星球上不同) 2弹力:F= Kx 3滑动摩擦力:F 滑= μN

4静摩擦力: O ≤ f 静≤ f m (由运动趋势和平衡方程去判断) 5浮力: F 浮= ρgV 排 6压力: F= PS = ρghs

7万有引力: F 引=G

2

2

1r m m

8库仑力: F=K

2

2

1r q q (真空中、点电荷)

9电场力: F 电=q E =q

d

u 10安培力:磁场对电流的作用力

F= BIL (B ⊥I) 方向:左手定则

11洛仑兹力:磁场对运动电荷的作用力

f=BqV (B ⊥V) 方向:左手定则

12分子力:分子间的引力和斥力同时存在,都随距离的增

大而减小,随距离的减小而增大,但斥力变化得快.

。 13核力:只有相邻的核子之间才有核力,是一种短程强力。

5种基本运动模型

1静止或作匀速直线运动(平衡态问题);

2匀变速直、曲线运动(以下均为非平衡态问题); 3类平抛运动; 4匀速圆周运动; 5振动。

1万有引力定律B 2胡克定律B 3滑动摩擦定律B 4牛顿第一定律B 5牛顿第二定律B 力学

6牛顿第三定律B 7动量守恒定律B 8机械能守恒定律B

9能的转化守恒定律. 10电荷守恒定律 11真空中的库仑定律

12欧姆定律

13电阻定律B 电学 14闭合电路的欧姆定律B 15法拉第电磁感应定律 16楞次定律B 17反射定律 18折射定律B 定理: ①动量定理B

②动能定理B 做功跟动能改变的关系

受力分析入手(即力的大小、方向、力的性质与特征,力的变化及做功情况等)。 再分析运动过程(即运动状态及形式,动量变化及能量变化等)。 最后分析做功过程及能量的转化过程;

然后选择适当的力学基本规律进行定性或定量的讨论。

强调:用能量的观点、整体的方法(对象整体,过程整体)、等效的方法(如等效重力)等解决 Ⅱ运动分类:(各种运动产生的力学和运动学条件及运动规律.............

)是高中物理的重点、难点 高考中常出现多种运动形式的组合 追及(直线和圆)和碰撞、平抛、竖直上抛、匀速圆周运动等 ①匀速直线运动 F 合=0 a=0 V 0≠0 ②匀变速直线运动:初速为零或初速不为零,

③匀变速直、曲线运动(决于F 合与V 0的方向关系) 但 F 合= 恒力

④只受重力作用下的几种运动:自由落体,竖直下抛,竖直上抛,平抛,斜抛等

⑤圆周运动:竖直平面内的圆周运动(最低点和最高点);匀速圆周运动(关键搞清楚是什么力提供作向心力)

⑥简谐运动;单摆运动; ⑦波动及共振;

⑧分子热运动;(与宏观的机械运动区别) ⑨类平抛运动;

⑩带电粒在电场力作用下的运动情况;带电粒子在f 洛作用下的匀速圆周运动

Ⅲ。物理解题的依据:

(1)力或定义的公式 (2) 各物理量的定义、公式

(3)各种运动规律的公式 (4)物理中的定理、定律及数学函数关系或几何关系 Ⅳ几类物理基础知识要点:

①凡是性质力要知:施力物体和受力物体;

②对于位移、速度、加速度、动量、动能要知参照物; ③状态量要搞清那一个时刻(或那个位置)的物理量;

④过程量要搞清那段时间或那个位侈或那个过程发生的;(如冲量、功等)

⑤加速度a 的正负含义:①不表示加减速;② a 的正负只表示与人为规定正方向比较的结果。 ⑥如何判断物体作直、曲线运动; ⑦如何判断加减速运动; ⑧如何判断超重、失重现象。

⑨如何判断分子力随分子距离的变化规律

⑩根据电荷的正负、电场线的顺逆(可判断电势的高低)?电荷的受力方向;再跟据移动方向?其做功情况?电势能的变化情况

V 。知识分类举要

1.力的合成与分解、物体的平衡 ?求F 1、F 2两个共点力的合力的公式:

F=

θCOS F F F F 212

2

212++

合力的方向与F 1成α角: tg α=

F F F 212sin cos θθ

+

注意:(1) 力的合成和分解都均遵从平行四边行定则。

(2) 两个力的合力范围: ? F 1-F 2 ? ≤ F ≤? F 1 +F 2 ? (3) 合力大小可以大于分力、也可以小于分力、也可以等于分力。 共点力作用下物体的平衡条件:静止或匀速直线运动的物体,所受合外力为零。 ∑F=0 或∑F x =0 ∑F y =0

推论:[1]非平行的三个力作用于物体而平衡,则这三个力一定共点。按比例可平移为一个封闭的矢量三角形

[2]几个共点力作用于物体而平衡,其中任意几个力的合力与剩余几个力(一个力)的合力一定等值反向 三力平衡:F 3=F 1 +F 2 摩擦力的公式:

(1 ) 滑动摩擦力: f= μN

说明 :a 、N 为接触面间的弹力,可以大于G ;也可以等于G;也可以小于G

b 、μ为滑动摩擦系数,只与接触面材料和粗糙程度有关,与接触面积大小、接触面相对运动快慢以及正压力N 无关.

(2 ) 静摩擦力: 由物体的平衡条件或牛顿第二定律求解,与正压力无关.

α F 2 F

F 1

θ

大小范围: O ≤ f 静≤ f m (f m 为最大静摩擦力与正压力有关)

说明:a 、摩擦力可以与运动方向相同,也可以与运动方向相反,还可以与运动方向成一定夹角。

b 、摩擦力可以作正功,也可以作负功,还可以不作功。

c 、摩擦力的方向与物体间相对运动的方向或相对运动趋势的方向相反。

d 、静止的物体可以受滑动摩擦力的作用,运动的物体也可以受静摩擦力的作用。

力的独立作用和运动的独立性 当物体受到几个力的作用时,每个力各自独立地使物体产生一个加速度,就象其它力不存在一样,这个性质叫做力的独立作用原理。 一个物体同时参与两个或两个以上的运动时,其中任何一个运动不因其它运动的存在而受影响,这叫运动的独立性原理。物体所做的合运动等于这些相互独立的分运动的叠加。 根据力的独立作用原理和运动的独立性原理,可以分解速度和加速度,在各个方向上建立牛顿第二定律的分量式,常常能解决一些较复杂的问题。

VI.几种典型的运动模型:追及和碰撞、平抛、竖直上抛、匀速圆周运动等及类似的运动 2.匀变速直线运动:

两个基本公式(规律): V t = V 0 + a t S = v o t +

12

a t 2

及几个重要推论: (1) 推论:V t 2

-V 02

= 2as (匀加速直线运动:a 为正值 匀减速直线运动:a 为正值) (2) A B 段中间时刻的即时速度: V t/ 2 =

V V t 02+=s

t

(若为匀变速运动)等于这段的平均速度 (3) AB 段位移中点的即时速度: V s/2 =

v v o t

2

2

2

+

V t/ 2 =V =V V t 02+=s t

=T S S N

N 21++= V N ≤ V s/2 = v v o t 22

2+

匀速:V t/2 =V s/2 ; 匀加速或匀减速直线运动:V t/2

(4) S 第t 秒 = S t -S (t-1)= (v o t +

12a t 2) -[v o ( t -1) +12a (t -1)2

]= V 0 + a (t -12

) (5) 初速为零的匀加速直线运动规律

①在1s 末 、2s 末、3s 末……ns 末的速度比为1:2:3……n ; ②在1s 、2s 、3s ……ns 内的位移之比为12:22:32

……n 2

③在第1s 内、第 2s 内、第3s 内……第ns 内的位移之比为1:3:5……(2n-1); ④从静止开始通过连续相等位移所用时间之比为1:()21-:32-)……(n n --1)

⑤通过连续相等位移末速度比为1:

2:3……n

(6)匀减速直线运动至停可等效认为反方向初速为零的匀加速直线运动.(先考虑减速至停的时间).“刹车陷井”

实验规律:

(7) 通过打点计时器在纸带上打点(或频闪照像法记录在底片上)来研究物体的运动规律:此方法称留迹法。

初速无论是否为零,只要是匀变速直线运动的质点,就具有下面两个很重要的特点:

在连续相邻相等时间间隔内的位移之差为一常数;?s = aT 2

(判断物体是否作匀变速运动的依据)。 中时刻的即时速度等于这段的平均速度 (运用V 可快速求位移)

??

????

???

??=-+=+=+==ax v v at t v x at v v v v v t v x t

t t 22122022000①

② ③ ④

⑴是判断物体是否作匀变速直线运动的方法。?s = aT 2

⑵求的方法 V N =V =

s t =T S S N

N 21++ 2T

s s t s 2v v v v n 1n t 0t/2+=

=+==+平

⑶求a 方法: ① ?s = a T 2

②3+N S 一N S =3 a T 2

③ S m 一S n =( m-n) a T 2

④画出图线根据各计数点的速度,图线的斜率等于a ;

识图方法:一轴、二线、三斜率、四面积、五截距、六交点

探究匀变速直线运动实验:

下图为打点计时器打下的纸带。选点迹清楚的一条,舍掉开始比较密集的点迹,从便于测量的地方取一个开始点O ,然后每5个点取一个计数点A 、B 、C 、D …。(或相邻两计数点间

有四个点未画出)测出相邻计数点间的距离s 1、s 2、s 3 …

利用打下的纸带可以:

⑴求任一计数点对应的即时速度v :如T

s s v c 23

2+=

(其中记数周期:T =5×0.02s=0.1s ) ⑵利用上图中任意相邻的两段位移求a :如2

23T s s a -= ⑶利用“逐差法”求a :()()23216549T

s s s s s s a ++-++=

⑷利用v -t 图象求a :求出A 、B 、C 、D 、E 、F 各点的即时速度,画出如图的v-t 图线,图线的斜率就是加速度a 。 注意: 点 a. 打点计时器打的点还是人为选取的计数点

距离 b. 纸带的记录方式,相邻记数间的距离还是各点距第一个记数点的距离。

纸带上选定的各点分别对应的米尺上的刻度值,

周期 c. 时间间隔与选计数点的方式有关

(50Hz,打点周期0.02s,常以打点的5个间隔作为一个记时单位)即区分打点周期和记数周

期。

d. 注意单位。一般为cm

试通过计算推导出的刹车距离s 的表达式:说明公路旁书写“严禁超载、超速及酒后驾车”以及“雨天路滑车辆减速行驶”的原理。

解:(1)、设在反应时间内,汽车匀速行驶的位移大小为1s ;刹车后汽车做匀减

速直线运动的位移大小为2s ,加速度大小为a 。由牛顿第二定律及运动学公式有:

????

??????????????><+=><=><+=><=4...............3...............22..........1..................

21220001s s s as v m mg F a t v s μ t/s

0 T 2T 3T 4T 5T 6T v/(ms -1)

B

C D s 1 s 2 s 3

A

由以上四式可得出:

>

<++

=5..........)(

220

00g m

F

v t v s μ

①超载(即m 增大),车的惯性大,由><5式,在其他物理量不变的情况下刹车距离就会增

长,遇紧急情况不能及时刹车、停车,危险性就会增加;

②同理超速(0v 增大)、酒后驾车(0t 变长)也会使刹车距离就越长,容易发生事故;

③雨天道路较滑,动摩擦因数μ将减小,由<五>式,在其他物理量不变的情况下刹车距离就越长,汽车较难停下来。

因此为了提醒司机朋友在公路上行车安全,在公路旁设置“严禁超载、超速及酒后驾车”以及“雨天路滑车辆减速行驶”的警示牌是非常有必要的。

思维方法篇

1.平均速度的求解及其方法应用

① 用定义式:t

s

??=

v

普遍适用于各种运动;② v =

V V t 02+只适用于加速度恒定的匀变速直线运动

2.巧选参考系求解运动学问题

3.追及和相遇或避免碰撞的问题的求解方法:

两个关系和一个条件:1两个关系:时间关系和位移关系;2一个条件:两者速度相等,往往是物体间能否追上,或两者距离最大、最小的临界条件,是分析判断的切入点。

关键:在于掌握两个物体的位置坐标及相对速度的特殊关系。

基本思路:分别对两个物体研究,画出运动过程示意图,列出方程,找出时间、速度、位移的关系。解出结果,必要时进行讨论。

追及条件:追者和被追者v 相等是能否追上、两者间的距离有极值、能否避免碰撞的临界条件。 讨论:

1.匀减速运动物体追匀速直线运动物体。

①两者v 相等时,S 追

③若位移相等时,V 追>V 被追则还有一次被追上的机会,其间速度相等时,两者距离有一个极大值

2.初速为零匀加速直线运动物体追同向匀速直线运动物体

①两者速度相等时有最大的间距 ②位移相等时即被追上

3.匀速圆周运动物体:同向转动:ωA t A =ωB t B +n 2π;反向转动:ωA t A +ωB t B =2π 4.利用运动的对称性解题 5.逆向思维法解题 6.应用运动学图象解题 7.用比例法解题

8.巧用匀变速直线运动的推论解题

①某段时间内的平均速度 = 这段时间中时刻的即时速度 ②连续相等时间间隔内的位移差为一个恒量 ③位移=平均速度?时间

解题常规方法:公式法(包括数学推导)、图象法、比例法、极值法、逆向转变法

3.竖直上抛运动:(速度和时间的对称)

分过程:上升过程匀减速直线运动,下落过程初速为0的匀加速直线运动. 全过程:是初速度为V 0加速度为-g 的匀减速直线运动。

(1)上升最大高度:H = V g o 2

2 (2)上升的时间:t= V g

o

(3)从抛出到落回原位置的时间:t =2

g V o

(4)上升、下落经过同一位置时的加速度相同,而速度等值反向 (5)上升、下落经过同一段位移的时间相等。 (6)匀变速运动适用全过程S = V o t -

12

g t 2 ; V t = V o -g t ; V t 2-V o 2

= -2gS (S 、V t

的正、负号的理解)

4.匀速圆周运动

线速度: V=

t s =2πR T =ωR=2πf R 角速度:ω=f T

t ππθ22==

向心加速度: a =v R R T R 22

2244===ωππ 2 f 2 R=v ?ω

向心力: F= ma = m v R m 2=ω 2

R= m 422πT

R =m42πn 2 R

追及(相遇)相距最近的问题:同向转动:ωA t A =ωB t B +n 2π;反向转动:ωA t A +ωB t B =2π 注意:(1)匀速圆周运动的物体的向心力就是物体所受的合外力,总是指向圆心. (2)卫星绕地球、行星绕太阳作匀速圆周运动的向心力由万有引力提供。

(3)氢原子核外电子绕原子核作匀速圆周运动的向心力由原子核对核外电子的库仑力提供。

5.平抛运动:匀速直线运动和初速度为零的匀加速直线运动的合运动

(1)运动特点:a 、只受重力;b 、初速度与重力垂直.尽管其速度大小和方向时刻在改变,但其运动

的加速度却恒为重力加速度g ,因而平抛运动是一个匀变速曲线运动。在任意相等时间内速度变化相等。

(2)平抛运动的处理方法:平抛运动可分解为水平方向的匀速直线运动和竖直方向的自由落体运动。

水平方向和竖直方向的两个分运动既具有独立性又具有等时性. (3)平抛运动的规律:

证明:做平抛运动的物体,任意时刻速度的反向延长线一定经过此时沿抛出方向水平总位移的中点。

证:平抛运动示意如图

设初速度为V 0,某时刻运动到A 点,位置坐标为(x,y ),所用时间为t. 此时速度与水平方向的夹角为β,速度的反向延长线与水平轴的交点为'

x , 位移与水平方向夹角为α.以物体的出发点为原点,沿水平和竖直方向建立坐标。

依平抛规律有:

速度: V x = V 0

V y =gt

2

2y x v v v += '

0x

y v gt v v tan x

x y

-==

=

β ① 位移: S x = V o t

2y gt 2

1

s =

22

y

x

s s s += 0

02

gt 21t gt tan 21v v x y ===α ② 由①②得: βαtan 2

1

tan =

即 )(21'x x y x y -= ③

所以: x x 2

1

'=

④ ④式说明:做平抛运动的物体,任意时刻速度的反向延长线一定经过此时沿抛出方向水总位移的中点。

“在竖直平面内的圆周,物体从顶点开始无初速地沿不同弦滑到圆周上所用时间都相等。”

一质点自倾角为α的斜面上方定点O 沿光滑斜槽OP 从静止开始下滑,如图所示。为了使质点在最短时间内从O 点到达斜面,则斜槽与竖直方面的夹角β等于多少?

7.牛顿第二定律:F 合 = ma (是矢量式) 或者 ∑F x = m a x ∑F y = m a y 理解:(1)矢量性 (2)瞬时性 (3)独立性 (4)同体性 (5)同系性 (6)同单位制

●力和运动的关系

①物体受合外力为零时,物体处于静止或匀速直线运动状态; ②物体所受合外力不为零时,产生加速度,物体做变速运动.

③若合外力恒定,则加速度大小、方向都保持不变,物体做匀变速运动,匀变速运动的轨迹可以是直线,也可以是曲线.

④物体所受恒力与速度方向处于同一直线时,物体做匀变速直线运动.

⑤根据力与速度同向或反向,可以进一步判定物体是做匀加速直线运动或匀减速直线运动; ⑥若物体所受恒力与速度方向成角度,物体做匀变速曲线运动.

⑦物体受到一个大小不变,方向始终与速度方向垂直的外力作用时,物体做匀速圆周运动.此时,外力仅改变速度的方向,不改变速度的大小.

⑧物体受到一个与位移方向相反的周期性外力作用时,物体做机械振动.

表1给出了几种典型的运动形式的力学和运动学特征.

综上所述:判断一个物体做什么运动,一看受什么样的力,二看初速度与合外力方向的关系.

322)(33R h R GT GT +==远近

ππρ力与运动的关系是基础,在此基础上,还要从功和能、冲量和动量的角度,进一步讨论运动规律.

8.万有引力及应用:与牛二及运动学公式

1思路和方法:①卫星或天体的运动看成匀速圆周运动, ② F 心=F 万 (类似原子模型)

2公式:G 2r

Mm =ma n ,又a n =r )T 2(r r v 22

2π=ω=, 则v=

r GM ,3r GM =ω,T=GM r 23π 3求中心天体的质量M 和密度ρ

由G 2r

Mm ==m 2

ωr =m r

)T 2(2π?M=

2

3

2GT r 4π (恒量=23

T

r ) ρ=233

3

3

43T GR r R M ππ=(当r=R 即近地卫星绕中心天体运行时)?ρ=2

G T 3π

=

(M=ρV 球=ρ

π3

4

r 3

) s 球面=4πr 2 s=πr 2 (光的垂直有效面接收,球体推进辐射) s 球冠

=2πRh

轨道上正常转: F 引=G 2r Mm = F 心= m a 心= m ωm R v =2 2

R= m 422πT R =m42πn 2 R 地面附近: G 2

R

Mm = mg ?GM=gR 2

(黄金代换式) mg = m R v 2?gR =v =v 第一宇宙

=7.9km/s

题目中常隐含:(地球表面重力加速度为g);这时可能要用到上式与其它方程联立来求解。

轨道上正常转: G 2r Mm = m R v 2 ? r

GM

v =

【讨论】(v 或E K )与r 关系,r 最小时为地球半径时,v 第一宇宙=7.9km/s (最大的运行速度、最小的发射速度); T 最小=84.8min=1.4h

①沿圆轨道运动的卫星的几个结论: v=

r

GM

,3

r GM =

ω,T=GM

r 23π

②理解近地卫星:来历、意义 万有引力≈重力=向心力、 r 最小时为地球半径、 最大的运行速度=v

第一宇宙

=7.9km/s (最小的发射速度);T 最小=84.8min=1.4h

③同步卫星几个一定:三颗可实现全球通讯(南北极仍有盲区)

轨道为赤道平面 T=24h=86400s 离地高h=3.56x104

km(为地球半径的5.6倍) V 同步=3.08km/s ﹤V 第一宇宙=7.9km/s ω=15o

/h (地理上时区) a =0.23m/s 2

④运行速度与发射速度、变轨速度的区别

⑤卫星的能量:r 增?v 减小(E K 减小

⑦卫星在轨道上正常运行时处于完全失重状态,与重力有关的实验不能进行

⑥应该熟记常识:地球公转周期1年, 自转周期1天=24小时=86400s, 地球表面半径6.4x103

km 表面重力加速度g=9.8 m/s 2

月球公转周期30天

力学助计图 有a v 会变化

结果

原因

原因

受力

●典型物理模型及方法

◆1.连接体模型:是指运动中几个物体或叠放在一起、或并排挤放在一起、或用细绳、细杆联系在一起

的物体组。解决这类问题的基本方法是整体法和隔离法。

整体法是指连接体内的物体间无相对运动时,可以把物体组作为整体,对整体用牛二定律列方程

隔离法是指在需要求连接体内各部分间的相互作用(如求相互间的压力或相互间的摩擦力等)时,把某物体从连接体中隔离出来进行分析的方法。

连接体的圆周运动:两球有相同的角速度;两球构成的系统机械能守恒(单个球机械能不守恒) 与运动方向和有无摩擦(μ相同)无关,及与两物体放置的方式都无关。

平面、斜面、竖直都一样。只要两物体保持相对静止

记住:N= 21

12

12

m F m F m m ++ (N 为两物体间相互作用力),

一起加速运动的物体的分子m 1F 2和m 2F 1两项的规律并能应用?F 2

12

m m m N

+=

讨论:①F 1≠0;F 2=0 122F=(m +m )a N=m a

N=

2

12

m F m m +

② F 1≠0;F 2≠0 N=

2112

12

m F m m m F ++

(2

0F

=就是上面的情况)

F=211221m m g)(m m g)(m m ++

F=122112

m (m )m (m gsin )m m g θ++

F=A B B 12

m (m )m F m m g ++

F 1>F 2 m 1>m 2 N 1

N 5对6=F M

m (m 为第6个以后的质量) 第12对13的作用力 N 12对13=F nm

12)m -(n

◆2.水流星模型(竖直平面内的圆周运动——是典型的变速圆周运动)

研究物体通过最高点和最低点的情况,并且经常出现临界状态。(圆周运动实例) ①火车转弯 ②汽车过拱桥、凹桥 3

③飞机做俯冲运动时,飞行员对座位的压力。

④物体在水平面内的圆周运动(汽车在水平公路转弯,水平转盘上的物体,绳拴着的物体在光滑水平面上绕绳的一端旋转)和物体在竖直平面内的圆周运动(翻滚过山车、水流星、杂技节目中的飞车走壁等)。 ⑤万有引力——卫星的运动、库仑力——电子绕核旋转、洛仑兹力——带电粒子在匀强磁场中的偏转、重力与弹力的合力——锥摆、(关健要搞清楚向心力怎样提供的)

(1)火车转弯:设火车弯道处内外轨高度差为h ,内外轨间距L ,转弯半径R 。由于外轨略高于内轨,使

得火车所受重力和支持力的合力F 合提供向心力。

m 2

m 1 F

m 1 m 2

为转弯时规定速度)(得由合002

0sin tan v L

Rgh v R v m L h

mg mg mg F ===≈=θθR g v ?=θtan 0

(是内外轨对火车都无摩擦力的临界条件)

①当火车行驶速率V 等于V 0时,F 合=F 向,内外轨道对轮缘都没有侧压力 ②当火车行驶V 大于V 0时,F 合

2

m

v

③当火车行驶速率V 小于V 0时,F 合>F 向,内轨道对轮缘有侧压力,F 合-N'=R

2m

v

即当火车转弯时行驶速率不等于V 0时,其向心力的变化可由内外轨道对轮缘侧压力自行调节,但调节程度不宜过大,以免损坏轨道。火车提速靠增大轨道半径或倾角来实现

(2)无支承的小球,在竖直平面内作圆周运动过最高点情况:

受力:由mg+T=mv 2

/L 知,小球速度越小,绳拉力或环压力T 越小,但T 的最小值只能为零,此时小球以重力提供作向心力. 结论:通过最高点时绳子(或轨道)对小球没有力的作用(可理解为恰好通过或恰好通不过的条件),此时只有重力提供作向心力. 注意讨论:绳系小球从最高点抛出做圆周还是平抛运动。 能过最高点条件:V ≥V 临(当V ≥V 临时,绳、轨道对球分别产生拉力、压力) 不能过最高点条件:V

m

2临

v ,临界速度V 临=

gR ;

可认为距此点2

R h = (或距圆的最低点)2

5R h =处落下的物体。

☆此时最低点需要的速度为V 低临=gR 5 ☆最低点拉力大于最高点拉力ΔF=6mg

② 最高点状态: mg+T 1=L

2m

高v (临界条件T 1=0, 临界速度V 临=

gR , V ≥V 临才能通过)

最低点状态: T 2- mg = L

2

m

低v 高到低过程机械能守恒:

mg2L m m 22

122

1+=高低v v T 2- T 1=6mg (g 可看为等效加速度)

② 半圆:过程mgR=

22

1mv 最低点T-mg=R 2

v m ?绳上拉力T=3mg ; 过低点的速度为V

=

gR 2

小球在与悬点等高处静止释放运动到最低点,最低点时的向心加速度a=2g ③与竖直方向成θ角下摆时,过低点的速度为V 低 =)cos 1(2θ-gR ,

此时绳子拉力T=mg(3-2cos θ)

(3)有支承的小球,在竖直平面作圆周运动过最高点情况:

①临界条件:杆和环对小球有支持力的作用知)

(由R

U m N mg 2

=- 当V=0时,N=mg (可理解为小球恰好转过或恰好转不过最高点)

╰ α

圆心。

增大而增大,方向指向随即拉力向下时,当④时,当③增大而减小,且向上且随时,支持力当②v N gR v N gR v N mg v N gR v )(0

0>

==>><<

作用

时,小球受到杆的拉力>,速度当小球运动到最高点时时,杆对小球无作用力,速度当小球运动到最高点时长短表示)

(力的大小用有向线段,但(支持)

时,受到杆的作用力,速度当小球运动到最高点时N gR v N gR v mg N N gR v 0

==

<<

恰好过最高点时,此时从高到低过程 mg2R=

22

1

mv

低点:T-mg=mv 2

/R ? T=5mg ;恰好过最高点时,此时最低点速度:V 低 =gR 2

注意物理圆与几何圆的最高点、最低点的区别: (以上规律适用于物理圆,但最高点,最低点, g 都应看成等效的情况)

2.解决匀速圆周运动问题的一般方法

(1)明确研究对象,必要时将它从转动系统中隔离出来。 (2)找出物体圆周运动的轨道平面,从中找出圆心和半径。 (3)分析物体受力情况,千万别臆想出一个向心力来。

(4)建立直角坐标系(以指向圆心方向为x 轴正方向)将力正交分解。 (5)??

???=∑===∑0222

2y x F R T

m R m R v m F )(建立方程组πω

3.离心运动

在向心力公式F n =mv 2

/R 中,F n 是物体所受合外力所能提供的向心力,mv 2

/R 是物体作圆周运动所需要的向心力。当提供的向心力等于所需要的向心力时,物体将作圆周运动;若提供的向心力消失或小于所需要的向心力时,物体将做逐渐远离圆心的运动,即离心运动。其中提供的向心力消失时,物体将沿切线飞去,离圆心越来越远;提供

的向心力小于所需要的向心力时,物体不会沿切线飞去,但沿切线和圆周之间的某条曲线运动,逐渐远离圆心。

◆3斜面模型(搞清物体对斜面压力为零的临界条件) 斜面固定:物体在斜面上情况由倾角和摩擦因素决定

μ=tg θ物体沿斜面匀速下滑或静止 μ> tg θ物体静止于斜面 μ< tg θ物体沿斜面加速下滑a=g(sin θ一μcos θ)

◆4.轻绳、杆模型

绳只能受拉力,杆能沿杆方向的拉、压、横向及任意方向的力。 如图:杆对球的作用力由运动情况决定只有θ=arctg(

g

a )时才沿杆方向

F

m ╰ α

最高点时杆对球的作用力;最低点时的速度?,杆的拉力? 若小球带电呢?

假设单B 下摆,最低点的速度V B =

R 2g ?mgR=2

2

1B

mv 整体下摆2mgR=mg

2R +'2

B '2A mv 2

1mv 21+ '

A '

B V 2V = ? 'A V =

gR 53 ; '

A '

B V 2V ==gR 25

6> V B

=R 2g

所以AB 杆对B 做正功,AB 杆对A 做负功

◆ .通过轻绳连接的物体

①在沿绳连接方向(可直可曲),具有共同的v 和a 。

特别注意:两物体不在沿绳连接方向运动时,先应把两物体的v 和a 在沿绳方向分解,求出两物体的v 和a 的关系式,

②被拉直瞬间,沿绳方向的速度突然消失,此瞬间过程存在能量的损失。 讨论:若作圆周运动最高点速度 V 0<

gR ,运动情况为先平抛,绳拉直时沿绳方向的速度消失

即是有能量损失,绳拉紧后沿圆周下落机械能守恒。而不能够整个过程用机械能守恒。 求水平初速及最低点时绳的拉力?

换为绳时:先自由落体,在绳瞬间拉紧(沿绳方向的速度消失)有能量损失(即v 1突然消失),再v 2下摆机械能守恒

例:摆球的质量为m ,从偏离水平方向30°的位置由静释放,设绳子为理想轻绳,求:

小球运动到最低点A 时绳子受到的拉力是多少?

◆5.超重失重模型 系统的重心在竖直方向上有向上或向下的加速度(或此方向的分量a y )

向上超重(加速向上或减速向下)F=m(g+a);向下失重(加速向下或减速上升)F=m(g-a)

难点:一个物体的运动导致系统重心的运动

1到2到3过程中 (1、3除外)超重状态

绳剪断后台称示数

铁木球的运动

系统重心向下加速

用同体积的水去补充

斜面对地面的压力? 地面对斜面摩擦力?

E

m L ·

a

图9

θ

S 1

S 2

0 F t t 或s

导致系统重心如何运动?

◆6.碰撞模型:

两个相当重要典型的物理模型,后面的动量守恒中专题讲解

◆7.子弹打击木块模型: ◆8.人船模型:

一个原来处于静止状态的系统,在系统内发生相对运动的过程中,

在此方向遵从①动量守恒方程:mv=MV ;ms=MS ;②位移关系方程 s+S=d ?s=

d M

m M

+ M/m=L m /L M 载人气球原静止于高h 的高空,气球质量为M,人的质量为m.若人沿绳梯滑至地面,则绳梯至少为多长?

◆9.弹簧振子模型:F=-Kx (X 、F 、a 、v 、A 、T 、f 、E K 、E P 等量的变化规律)水平型或竖直型 ◆10.单摆模型:T=2π

g l / (类单摆)利用单摆测重力加速度

◆11.波动模型:特点:传播的是振动形式和能量,介质中各质点只在平衡位置附近振动并不随波迁移。

①各质点都作受迫振动,

②起振方向与振源的起振方向相同, ③离源近的点先振动,

④没波传播方向上两点的起振时间差=波在这段距离内传播的时间 ⑤波源振几个周期波就向外传几个波长。

⑥波从一种介质传播到另一种介质,频率不改变, 波速v=s/t=λ/T=λf

波速与振动速度的区别 波动与振动的区别:波的传播方向?质点的振动方向(同侧法) 知波速和波形画经过Δt 后的波形(特殊点画法和去整留零法)

◆12.图象模形:识图方法: 一轴、二线、三斜率、四面积、五截距、六交点 明确:点、线、面积、斜率、截距、交点的含义 中学物理中重要的图象

⑴运动学中的s-t 图、v-t 图、振动图象x-t 图以及波动图象y-x 图等。

⑵电学中的电场线分布图、磁感线分布图、等势面分布图、交流电图象、电磁振荡i-t 图等。 ⑶实验中的图象:如验证牛顿第二定律时要用到a-F 图象、F-1/m 图象;用“伏安法 ”测电阻时要画I-U 图象;测电源电动势和内电阻时要画U-I 图;用单摆测重力加速度时要画的图等。

⑷在各类习题中出现的图象:如力学中的F-t 图、电磁振荡中的q-t 图、电学中的P-R 图、电磁感应中的Φ-t 图、E-t 图等。 ●模型法常常有下面三种情况

(1)“对象模型”:即把研究的对象的本身理想化. 用来代替由具体物质组成的、代表研究对象的实体系统,称为对象模型(也可称为概念模型),

实际物体在某种条件下的近似与抽象,如质点、光滑平面、理想气体、理想电表等;

常见的如“力学”中有质点、点电荷、轻绳或杆、轻质弹簧、单摆、弹簧振子、弹性体、绝热物质等; (2)条件模型:把研究对象所处的外部条件理想化.排除外部条件中干扰研究对象运动变化的次要因素,突出外部条件的本质特征或最主要的方面,从而建立的物理模型称为条件模型.

(3)过程模型:把具体过理过程纯粹化、理想化后抽象出来的一种物理过程,称过程模型

理想化了的物理现象或过程,如匀速直线运动、自由落体运动、竖直上抛运动、平抛运动、匀速圆周运动、简谐运动等。

20m

M

m

O R

有些题目所设物理模型是不清晰的,不宜直接处理,但只要抓住问题的主要因素,忽略次要因素,恰当的将复杂的对象或过程向隐含的理想化模型转化,就能使问题得以解决。

解决物理问题的一般方法可归纳为以下几个环节:

原始的物理模型可分为如下两类:

物理解题方法:如整体法、假设法、极限法、逆向思维法、物理模型法、等效法、物理图像法等.

● 知识分类举要

力的瞬时性(产生a )F=ma 、?运动状态发生变化?牛顿第二定律

1.力的三种效应:时间积累效应(冲量)I=Ft 、?动量发生变化?动量定理

空间积累效应(做功)w=Fs ?动能发生变化?动能定理

2.动量观点:动量(状态量):p=mv=

K

mE 2 冲量(过程量):I = F t

动量定理:内容:物体所受合外力的冲量等于它的动量的变化。

公式: F 合t = mv ’

一mv (解题时受力分析和正方向的规定是关键)

I=F 合t=F 1t 1+F 2t 2+---=?p=P 末-P 初=mv 末-mv 初

动量守恒定律:内容、守恒条件、不同的表达式及含义:'p p =;0p =?;21p -p ?=?

内容:相互作用的物体系统,如果不受外力,或它们所受的外力之和为零,它们的总动量保持不变。

(研究对象:相互作用的两个物体或多个物体所组成的系统) 守恒条件:①系统不受外力作用。 (理想化条件)

②系统受外力作用,但合外力为零。

③系统受外力作用,合外力也不为零,但合外力远小于物体间的相互作用力。 ④系统在某一个方向的合外力为零,在这个方向的动量守恒。 ⑤全过程的某一阶段系统受合外力为零,该阶段系统动量守恒,

即:原来连在一起的系统匀速或静止(受合外力为零),分开后整体在某阶段受合外力仍为零,可用动量守恒。 例:火车在某一恒定牵引力作用下拖着拖车匀速前进,拖车在脱勾后至停止运动前的过程中(受合外力为零)动量守恒

“动量守恒定律”、“动量定理”不仅适用于短时间的作用,也适用于长时间的作用。 不同的表达式及含义(各种表达式的中文含义):

P =P ′ 或 P 1+P 2=P 1′+P 2′ 或 m 1V 1+m 2V 2=m 1V 1′+m 2V 2′

(系统相互作用前的总动量P 等于相互作用后的总动量P ′)

ΔP =0 (系统总动量变化为0)

ΔP =-ΔP ' (两物体动量变化大小相等、方向相反)

如果相互作用的系统由两个物体构成,动量守恒的实际应用中的具体表达式为 m 1v 1+m 2v 2='

22'

11v m v m +; 0=m 1v 1+m 2v 2 m 1v 1+m 2v 2=(m 1+m 2)v 共

审视物理情景 构建物理模型 转化为数学问题 还原为物理结论 对象模型(质点、轻杆、轻绳、弹簧振子、单摆、理想气体、点电荷、理想电表、

理想变压器、匀强电场、匀强磁场、点光源、光线、原子模型等)

过程模型(匀速直线运动、匀变速直线运动、匀速圆周运动、平抛运动、简谐运

动、简谐波、弹性碰撞、自由落体运动、竖直上抛运动等) 物理模型

原来以动量(P)运动的物体,若其获得大小相等、方向相反的动量(-P),是导致物体静止或反向运动的临界条件。即:P+(-P)=0

注意理解四性:系统性、矢量性、同时性、相对性 系统性:研究对象是某个系统、研究的是某个过程 矢量性:对一维情况,先.

选定某一方向为正方向,速度方向与正方向相同的速度取正,反之取负, 再.

把矢量运算简化为代数运算。,引入正负号转化为代数运算。不注意正方向的设定,往往得出错误结果。一旦方向搞错,问题不得其解

相对性:所有速度必须是相对同一惯性参照系。

同时性:v 1、v 2是相互作用前同一时刻的速度,v 1'、v 2'是相互作用后同一时刻的速度。

解题步骤:选对象,划过程,受力分析.所选对象和过程符合什么规律?用何种形式列方程(先要规定正方向)求解并讨论结果。

动量定理说的是物体动量的变化量跟总冲量的矢量相等关系;

动量守恒定律说的是存在内部相互作用的物体系统在作用前后或作用过程中各物体动量的矢量和保持不变的关系。

◆7.碰撞模型和◆8子弹打击木块模型专题:

碰撞特点①动量守恒 ②碰后的动能不可能比碰前大 ③对追及碰撞,碰后后面物体的速度不可能大于前面物体的速度。

◆弹性碰撞: 弹性碰撞应同时满足:

?????'+'=+'+'=+)2(v m 21v m 2121v m 21)1(v m v m v m 2222112222112211221

1v m v m 2

'22

12'1222121'K 2'K 1K 2k 12m p

2m p 22m p E m 2E m 2E 2E m 22

1

2

1

+=++=+m p m ???

???

?++-='++-='211

12122212

21211m m v m 2)(v m m 2v )m m (v v m m v m 2

111'

2

v 211

21'1v

m m v m 2m m )v m m (0'2

2++-=

==

当v m

(这个结论最好背下来,以后经常要用到。)

讨论:①一动一静且二球质量相等时的弹性正碰:速度交换 ②大碰小一起向前;质量相等,速度交换;小碰大,向后返。

③原来以动量(P)运动的物体,若其获得等大反向的动量时,是导致物体静止或反向运动的临界条件。

◆“一动一静”弹性碰撞规律:即m 2v 2=0 ;2222

1v m =0 代入(1)、(2)式 解得:v 1'=

12121v m m m m +-(主动球速度下限) v 2'=12

11

v m m m 2+(被碰球速度上限)

讨论(1):

当m 1>m 2时,v 1'>0,v 2'>0 v 1′与v 1方向一致;当m 1>>m 2时,v 1'≈v 1,v 2'≈2v 1 (高射炮打蚊子) 当m 1=m 2时,v 1'=0,v 2'=v 1 即m 1与m 2交换速度

当m 10 v 2′与v 1同向;当m 1<

A.初速度v 1一定,当m 1>>m 2时,v 2'≈2v 1 B .初动量p 1一定,由p 2'=m 2v 2'=

1222

1

1

121121+=+m m v m m m v m m ,可见,当m 1

<

时,p 2

'≈2m 1v 1

=2p 1

C .初动能E K1一定,当m 1=m 2时,E K2'=E K1

◆完全非弹性碰撞应满足:

v m m v m v m '+=+)(212211 '=++v m v m v m m 112212

2

1221212

'212211)(21)(212121m m v v m m v m m v m v m E +-=

+-+=损 ◆一动一静的完全非弹性碰撞(子弹打击木块模型)是高中物理的重点。

特点:碰后有共同速度,或两者的距离最大(最小)或系统的势能最大等等多种说法.

v m m v m '+=+)(02111 2

111m m v m v +=

' (主动球速度上限,被碰球速度下限)

损E )(2

1

0212'21211++=+v m m v m 12

122112122121212

'21211E 21)()2()(2121E k m m m v m m m m m m v m m v m m v m +=+=+=+-=损

讨论:

①E 损 可用于克服相对运动时的摩擦力做功转化为内能

E 损=fd 相=μmg ·d 相

=20mv 21一'2

M)v (m 21+=M)

2(m mMv 2

0+? d 相

=M)f 2(m mMv 20+=M)

g(m 2mMv 2

0+μ ②也可转化为弹性势能;

③转化为电势能、电能发热等等;(通过电场力或安培力做功)

由上可讨论主动球、被碰球的速度取值范围

210121121m m v m v m m )v m -(m +??+主 2

1112101m m m 2m m v m +?

?+v v 被 “碰撞过程”中四个有用推论

推论一:弹性碰撞前、后,双方的相对速度大小相等,即: u 2-u 1=υ1-υ2 推论二:当质量相等的两物体发生弹性正碰时,速度互换。 推论三:完全非弹性碰撞碰后的速度相等

推论四:碰撞过程受(动量守恒)(能量不会增加)和(运动的合理性)三个条件的制约。 碰撞模型

其它的碰撞模型:

证明:完全非弹性碰撞过程中机械能损失最大。

v 0 A

B

A

B

v 0

v s

M

v

L 1

A

v 0

3x

x A O m

M 2 1 N

v

B

l

l

证明:碰撞过程中机械能损失表为:△E=

21m 1υ12+21m 2υ22―21m 1u 12―2

1m 2u 22

由动量守恒的表达式中得: u 2=

2

1

m (m 1υ1+m 2υ2-m 1u 1) 代入上式可将机械能的损失△E 表为u 1的函数为:

△E=-2

2112)(m m m m +u 12-222111)(m m m m υυ+u 1+[(21m 1υ12+21m 2υ22)-221m ( m 1υ1+m 2υ2)2]

这是一个二次项系数小于零的二次三项式,显然:当 u 1=u 2=2

12

211m m m m ++υυ时,

即当碰撞是完全非弹性碰撞时,系统机械能的损失达到最大值

△ E m =2

1m 1υ12+21m 2υ22 -22

1221121)

)(

(2

1

m m m m m m +++υυ 历年高考中涉及动量守量模型的计算题都有:(对照图表) 一质量为M 的长木板静止在光滑水平桌面上.一质量为m 的小滑块以水平速度v 0从长木板的一端开始在木板上滑动,直到离开木板.滑块刚离开木板时速度为V 0/3,若把此木板固定在水平面上,其它条件相同,求滑块离开木板时速度?

1996年全国广东(24题)

1995年全国广东(30题压轴题) 1997年全国广东(25题轴题12分)

1998年全国广东(25题轴题12分)

试在下述简化情况下由牛顿定律导出动量守恒定律的表达式:系统是两个质点,相互作用力是恒力,不受其他力,沿直线运动要求说明推导过程中每步的根据,以及式中各符号和最后结果中各项的意义。

质量为M 的小船以速度V 0行驶,船上有两个质量皆为m 的小孩a 和b ,分别静止站在船头和船尾. 现小孩a 沿水平方向以速率v (相对于静止水面)向前跃入水中,

1999年全国广东(20题12分) 2000年全国广东(22压轴题) 2001年广东河南(17题12分)

2002年广东(19题)

2003年广东(19、20题)

2004年广东(15、17题)

A

H O O B L P C

2

L

2005年广东(18题) 2006年广东(16、18题) 2007年广东(17题)

2008年广东( 19题、第20题 )

子弹打木块模型:物理学中最为典型的碰撞模型 (一定要掌握)

子弹击穿木块时,两者速度不相等;子弹未击穿木块时,两者速度相等.这两种情况的临界情况是:当子弹从木块一端到达另一端,相对木块运动的位移等于木块长度时,两者速度相

例题:设质量为m 的子弹以初速度v 0射向静止在光滑水平面上的质量为M 的木块,并留在木块中不再射出,

子弹钻入木块深度为d 。求木块对子弹的平均阻力的大小和该过程中木块前进的距离。

解析:子弹和木块最后共同运动,相当于完全非弹性碰撞。

从动量的角度看,子弹射入木块过程中系统动量守恒: ()v m M mv +=0

从能量的角度看,该过程系统损失的动能全部转化为系统的内能。设平均阻力大小为f ,设子弹、木块的位移大小分别为s 1、s 2,如图所示,显然有s 1-s 2=d

对子弹用动能定理:22

012

121mv mv s f -=? …………………………………①

对木块用动能定理:222

1

Mv s f =?…………………………………………② ①、②相减得:()()

2

22022121v m M Mm v m M mv d f +=+-=

? ………………③ ③式意义:f d 恰好等于系统动能的损失;根据能量守恒定律,系统动能的损失应该等于系统内能的增

加;可见

Q d f =?,即两物体由于相对运动而摩擦产生的热(机械能转化为内能),等于摩擦力大小与两

物体相对滑动的路程的乘积(由于摩擦力是耗散力,摩擦生热跟路径有关,所以这里应该用路程,而不是用位移)。

由上式不难求得平均阻力的大小:()d

m M Mmv f +=

22

至于木块前进的距离s 2,可以由以上②、③相比得出: d

m

M m

s +=

2A N B

C

R R

D P P L

L

E A

O B

P P v (

T 23456E

t

E

0 (

从牛顿运动定律和运动学公式出发,也可以得出同样的结论。试试推理。 由于子弹和木块都在恒力作用下做匀变速运动,位移与平均速度成正比:

()d m

M m s m m M v v s d v v v v v v s d s +=+==∴+=+=+2020022,,2/2/ 一般情况下m M

>>,所以s 2

<

这就为分阶段处理问题提供了依据。象这种运动物体与静止物体相互作用,动量守恒,最后共同运动的类型,

全过程动能的损失量可用公式:()2

2v m M Mm E k +=

?………………………④

当子弹速度很大时,可能射穿木块,这时末状态子弹和木块的速度大小不再相等,但穿透过程中系统动量仍然守恒,系统动能损失仍然是ΔE K = f d (这里的d 为木块的厚度),但由于末状态子弹和木块速度不相等,所以不能再用④式计算ΔE K 的大小。

做这类题目时一定要画好示意图,把各种数量关系和速度符号标在图上,以免列方程时带错数据。 以上所列举的人、船模型的前提是系统初动量为零。如果发生相互作用前系统就具有一定的动量,那就不能再用m 1v 1=m 2v 2这种形式列方程,而要利用(m 1+m 2)v 0= m 1v 1+ m 2v 2列式。

特别要注意各种能量间的相互转化

3.功与能观点:

求功方法 单位:J ev=1.9×10-19J 度=kwh=3.6×106J 1u=931.5Mev

⊙力学: ①W = Fs cos θ (适用于恒力功的计算)①理解正功、零功、负功②功是能量转化的量度

②W= P ·t (?p=

t w =t

FS

=Fv) 功率:P =

W t (在t 时间内力对物体做功的平均功率) P = F v

(F 为牵引力,不是合外力;V 为即时速度时,P 为即时功率.V 为平均速度时,P 为平均功率.P 一定时,F 与V 成正比)

动能: E K =m

2p mv 2122

= 重力势能E p = mgh (凡是势能与零势能面的选择有关)

③动能定理:外力对物体所做的总功等于物体动能的变化(增量)

公式: W 合= W 合=W 1+ W 2+…+W n = ?E k = E k2 一E k1 = 1212

2212

mV mV - ⑴W 合为外力所做功的代数和.(W 可以不同的性质力做功)

⑵外力既可以有几个外力同时作用,也可以是各外力先后作用或在不同过程中作用: ⑶既为物体所受合外力的功。

④功是能量转化的量度(最易忽视)主要形式有: 惯穿整个高中物理的主线

“功是能量转化的量度”这一基本概念含义理解。

⑴重力的功------量度------重力势能的变化

物体重力势能的增量由重力做的功来量度:W G = -ΔE P ,这就是势能定理。

与势能相关的力做功特点:如重力,弹力,分子力,电场力它们做功与路径无关,只与始末位置有关. 除重力和弹簧弹力做功外,其它力做功改变机械能; 这就是机械能定理。 只有重力做功时系统的机械能守恒。 ⑵电场力的功-----量度------电势能的变化 ⑶分子力的功-----量度------分子势能的变化

⑷合外力的功------量度-------动能的变化;这就是动能定理。

⑸摩擦力和空气阻力做功W =fd 路程?E 内能(发热)

⑹一对互为作用力反作用力的摩擦力做的总功,用来量度该过程系统由于摩擦而减小的机械能,

也就是系统增加的内能。f d=Q (d 为这两个物体间相对移动的路程)。

⊙热学: ΔE=Q+W (热力学第一定律)

⊙电学: W AB =qU AB =F 电d E =qEd E ? 动能(导致电势能改变)

W =QU =UIt =I 2

Rt =U 2

t/R Q =I 2

Rt

E=I(R+r)=u 外+u 内=u 外+Ir P 电源t =uIt+E 其它 P 电源=IE=I U +I 2Rt

⊙磁学:安培力功W =F 安d =BILd ?内能(发热) d R

V L B Ld R BLV B 2

2==

⊙光学:单个光子能量E =h γ 一束光能量E 总=Nh γ(N 为光子数目)

光电效应2

2

1m km

mv E =

=h γ-W 0 跃迁规律:h γ=E 末-E 初 辐射或吸收光子 ⊙原子:质能方程:E =mc 2

ΔE =Δmc 2

注意单位的转换换算

机械能守恒定律:机械能=动能+重力势能+弹性势能(条件:系统只有内部的重力或弹力做功).

守恒条件:(功角度)只有重力和弹簧的弹力做功;(能转化角度)只发生动能与势能之间的相互转化。

“只有重力做功” ≠“只受重力作用”。

在某过程中物体可以受其它力的作用,只要这些力不做功,或所做功的代数和为零,就可以认为是“只有重力做功”。

列式形式: E 1=E 2(先要确定零势面) P 减(或增)=E 增(或减) E A 减(或增)=E B 增(或减)

mgh 1 +121

2

12222mV mgh mV =+ 或者 ?E p 减 = ?E k 增

除重力和弹簧弹力做功外,其它力做功改变机械能;滑动摩擦力和空气阻力做功W =fd 路程?E 内能(发热)

4.功能关系:功是能量转化的量度。有两层含义:

(1)做功的过程就是能量转化的过程, (2)做功的多少决定了能转化的数量,即:功是能量转化的量度 强调:功是一种过程量,它和一段位移(一段时间)相对应;而能是一种状态量,它与一个时刻相对应。两者的单位是相同的(都是J),但不能说功就是能,也不能说“功变成了能”。

做功的过程是物体能量的转化过程,做了多少功,就有多少能量发生了变化,功是能量转化的量度. (1)动能定理

合外力对物体做的总功=物体动能的增量.即k k k E E E mv mv W ?=-=-=1221222

12

1合

(2)与势能相关力做功

?导致

与之相关的势能变化

重力 重力对物体所做的功=物体重力势能增量的负值.即W G =E P 1—E P 2= —ΔE P 重力做正功,重力势能减少;重力做负功,重力势能增加.

弹簧弹力

弹力对物体所做的功=物体弹性势能增量的负值.即W 弹力=E P 1—E P 2= —ΔE P 弹力做正功,弹性势能减少;弹力做负功,弹性势能增加.

分子力 分子力对分子所做的功=分子势能增量的负值 电场力

电场力对电荷所做的功=电荷电势能增量的负值

电场力做正功,电势能减少;电场力做负功,电势能增加。注意:电荷的正负及移动方向

(3)机械能变化原因 除重力(弹簧弹力)以外的的其它力对物体所做的功=物体机械能的增量即W F =E 2—E 1=ΔE

当除重力(或弹簧弹力)以外的力对物体所做的功为零时,即机械能守恒

(4)机械能守恒定律

在只有重力和弹簧的弹力做功的物体系内,动能和势能可以互相转化,但机械能的总量保持

不变.即 E K 2+E P 2 = E K 1+E P 1,2221212

121mgh mv mgh mv +=+ 或 ΔE K = —ΔE P

(5)静摩擦力做功的特点

(1)静摩擦力可以做正功,也可以做负功,还可以不做功;

(2)在静摩擦力做功的过程中,只有机械能的互相转移,而没有机械能与其他形式的能的转化,静摩擦力只起着传递机械能的作用;

2019年全国卷高考物理试题及答案

2019全国Ⅰ卷物理 2019全国Ⅱ卷物理 2019全国Ⅲ卷物理2019年高考全国卷Ⅰ物理试题

14.氢原子能级示意图如图所示。光子能景在eV~ eV的光为可见光。要使处于基态(n=1)的氢原子被激发后可辐射出可见光光子,最少应给氢原子提供的能量为 A.eV B.eV C.eV D.eV 15.如图,空间存在一方向水平向右的匀强磁场,两个带电小球P和Q用相同的绝缘细绳悬挂在水平天花板下,两细绳都恰好与天花板垂直,则 A.P和Q都带正电荷B.P和Q都带负电荷 C.P带正电荷,Q带负电荷 D.P带负电荷,Q带正电荷 16.最近,我国为“长征九号”研制的大推力新型火箭发动机联试成功,这标志着我国重型运载火箭的研发取得突破性进展。若某次实验中该发动机向后喷射的气体速度约为3 km/s,产生的推力约为×108 N,则它在1 s时间内喷射的气体质量约为

A .× 102 kg B .×103 kg C .×105 kg D .×106 kg 17.如图,等边三角形线框LMN 由三根相同的导体棒连接而成,固定于匀强磁场中,线框平 面与磁感应强度方向垂直,线框顶点M 、N 与直流电源两端相接,已如导体棒MN 受到的安培力大小为F ,则线框LMN 受到的安培力的大小为 A .2F B . C . D .0 18.如图,篮球架下的运动员原地垂直起跳扣篮,离地后重心上升的最大高度为H 。上升第 一个4H 所用的时间为t 1,第四个4 H 所用的时间为t 2。不计空气阻力,则21t t 满足 A .1<21t t <2 B .2<21t t <3 C .3<21t t <4 D .4<21 t t <5 19.如图,一粗糙斜面固定在地面上,斜面顶端装有一光滑定滑轮。一细绳跨过滑轮,其一 端悬挂物块N 。另一端与斜面上的物块M 相连,系统处于静止状态。现用水平向左的拉

高中物理重要知识点详细全总结(史上最全)

【精品文档,百度专属】完整的知识网络构建,让复习备考变得轻松简单! (注意:全篇带★需要牢记!) 高 中 物 理 重 要 知 识 点 总 结 (史上最全)

高中物理知识点总结 (注意:全篇带★需要牢记!) 一、力物体的平衡 1.力是物体对物体的作用,是物体发生形变和改变物体的运动状态(即产生加速度)的原因. 力是矢量。 2.重力(1)重力是由于地球对物体的吸引而产生的. [注意]重力是由于地球的吸引而产生,但不能说重力就是地球的吸引力,重力是万有引力的一个分力. 但在地球表面附近,可以认为重力近似等于万有引力 (2)重力的大小:地球表面G=mg,离地面高h处G/=mg/,其中g/=[R/(R+h)]2g (3)重力的方向:竖直向下(不一定指向地心)。 (4)重心:物体的各部分所受重力合力的作用点,物体的重心不一定在物体上. 3.弹力(1)产生原因:由于发生弹性形变的物体有恢复形变的趋势而产生的. (2)产生条件:①直接接触;②有弹性形变. (3)弹力的方向:与物体形变的方向相反,弹力的受力物体是引起形变的物体,施力物体是发生形变的物体.在点面接触的情况下,垂直于面; 在两个曲面接触(相当于点接触)的情况下,垂直于过接触点的公切面. ①绳的拉力方向总是沿着绳且指向绳收缩的方向,且一根轻绳上的张力大小处处相等. ②轻杆既可产生压力,又可产生拉力,且方向不一定沿杆. (4)弹力的大小:一般情况下应根据物体的运动状态,利用平衡条件或牛顿定律来求解.弹簧弹力可由胡克定律来求解. ★胡克定律:在弹性限度内,弹簧弹力的大小和弹簧的形变量成正比,即F=kx.k为弹簧的劲度系数,它只与弹簧本身因素有关,单位是N/m. 4.摩擦力 (1)产生的条件:①相互接触的物体间存在压力;③接触面不光滑;③接触的物体之间有相对运动(滑动摩擦力)或相对运动的趋势(静摩擦力),这三点缺一不可. (2)摩擦力的方向:沿接触面切线方向,与物体相对运动或相对运动趋势的方向相反,与物体运动的方向可以相同也可以相反. (3)判断静摩擦力方向的方法: ①假设法:首先假设两物体接触面光滑,这时若两物体不发生相对运动,则说明它们原来没有相对运动趋势,也没有静摩擦力;若两物体发生相对运动,则说明它们原来有相对运动趋势,并且原来相对运动趋势的方向跟假设接触面光滑时相对运动的方向相同.然后根据静

2019年高中物理知识点整理大全

2019年高中物理知识点整理大全 要想高考物理考的好,物理知识点的整理是很有必要的,下面是学习啦的小编为你们整理的文章,希望你们能够喜欢 2019年高中物理知识点整理大全 1.若三个力大小相等方向互成120°,则其合力为零。 2.几个互不平行的力作用在物体上,使物体处于平衡状态,则其中一部分力的合力必与其余部分力的合力等大反向。 3.在匀变速直线运动中,任意两个连续相等的时间内的位移之差都相等,即 Δx=aT2(可判断物体是否做匀变速直线运动),推广:xm-xn=(m-n) aT2。 4.在匀变速直线运动中,任意过程的平均速度等于该过程中点时刻的瞬时速度。即vt/2=v平均。 5.对于初速度为零的匀加速直线运动 (1)T末、2T末、3T末、…的瞬时速度之比为: v1:v2:v3:…:vn=1:2:3:…:n。 (2)T内、2T内、3T内、…的位移之比为: x1:x2:x3:…:xn=12:22:32:…:n2。 (3)第一个T内、第二个T内、第三个T内、…的位移之比为: xⅠ:xⅡ:xⅢ:…:xn=1:3:5:…:(2n-1)。 (4)通过连续相等的位移所用的时间之比: t1:t2:t3:…:tn=1:(21/2-1):(31/2-21/2):…:[n1/2-(n-1)1/2]。 6.物体做匀减速直线运动,末速度为零时,可以等效为初速度为零的反向的匀加速直线运动。 7.对于加速度恒定的匀减速直线运动对应的正向过程和反向过程的时间相等,对应的速度大小相等(如竖直上抛运动) 8.质量是惯性大小的唯一量度。惯性的大小与物体是否运动和怎样运动无关,与物体是否受力和怎样受力无关,惯性大小表现为改变物理运动状态的难易程度。 9.做平抛或类平抛运动的物体在任意相等的时间内速度的变化都相等,方向与加速度方向一致(即Δv=at)。 10.做平抛或类平抛运动的物体,末速度的反向延长线过水平位移的中点。

高中物理重要知识点详细全总结(史上最全)

完整的知识网络构建,让复习备考变得轻松简单! (注意:全篇带★需要牢记!) 物 理 重 要 知 识 点 总 结 (史上最全) 高中物理知识点总结 (注意:全篇带★需要牢记!) 一、力物体的平衡

1.力是物体对物体的作用,是物体发生形变和改变物体的运动状态(即产生加速度)的原因. 力是矢量。 2.重力(1)重力是因为地球对物体的吸引而产生的. [注意]重力是因为地球的吸引而产生,但不能说重力就是地球的吸引力,重力是万有引力的一个分力. 但在地球表面附近,能够认为重力近似等于万有引力 (2)重力的大小:地球表面G=mg,离地面高h处G/=mg/,其中g/=[R/(R+h)]2g (3)重力的方向:竖直向下(不一定指向地心)。 (4)重心:物体的各部分所受重力合力的作用点,物体的重心不一定在物体上. 3.弹力(1)产生原因:因为发生弹性形变的物体有恢复形变的趋势而产生的. (2)产生条件:①直接接触;②有弹性形变. (3)弹力的方向:与物体形变的方向相反,弹力的受力物体是引起形变的物体,施力物体是发生形变的物体.在点面接触的情况下,垂直于面; 在两个曲面接触(相当于点接触)的情况下,垂直于过接触点的公切面. ①绳的拉力方向总是沿着绳且指向绳收缩的方向,且一根轻绳上的张力大小处处相等. ②轻杆既可产生压力,又可产生拉力,且方向不一定沿杆. (4)弹力的大小:一般情况下应根据物体的运动状态,利用平衡条件或牛顿定律来求解.弹簧弹力可由胡克定律来求解. ★胡克定律:在弹性限度内,弹簧弹力的大小和弹簧的形变量成正比,即F=kx.k为弹簧的劲度系数,它只与弹簧本身因素相关,单位是N/m. 4.摩擦力 (1)产生的条件:①相互接触的物体间存有压力;③接触面不光滑;③接触的物体之间有相对运动(滑动摩擦力)或相对运动的趋势(静摩擦力),这三点缺一不可. (2)摩擦力的方向:沿接触面切线方向,与物体相对运动或相对运动趋势的方向相反,与物体运动的方向能够相同也能够相反. (3)判断静摩擦力方向的方法: ①假设法:首先假设两物体接触面光滑,这时若两物体不发生相对运动,则说明它们原来没有相对运动趋势,也没有静摩擦力;若两物体发生相对运动,则说明它们原来有相对运动趋势,并且原来相对运动趋势的方向跟假设接触面光滑时相对运动的方向相同.然后根据静摩擦力的方向跟物体相对运动趋势的方向相反确定静摩擦力方向. ②平衡法:根据二力平衡条件能够判断静摩擦力的方向. (4)大小:先判明是何种摩擦力,然后再根据各自的规律去分析求解. ①滑动摩擦力大小:利用公式f=μF N实行计算,其中F N是物体的正压力,不一

2019年高考物理试题答案解析(全国3卷)

2019年全国卷Ⅲ高考物理试题解析 1.楞次定律是下列哪个定律在电磁感应现象中的具体体现? A.电阻定律 B.库仑定律 C.欧姆定律 D.能量守恒定律 【答案】D 【解析】楞次定律指感应电流的磁场阻碍引起感应电流的原磁场的磁通量的变化,这种阻碍作用做功将其他形式的能转变为感应电流的电能,所以楞次定律的阻碍过程实质上就是能量转化的过程. 2.金星、地球和火星绕太阳的公转均可视为匀速圆周运动,它们的向心加速度大小分别为a 金、 a 地、a 火,它们沿轨道运行的速率分别为v 金、v 地、v 火。已知它们的轨道半径R 金a 地>a 火 B.a 火>a 地>a 金 C.v 地>v 火>v 金 D.v 火>v 地>v 金【答案】A【解析】AB.由万有引力提供向心力2Mm G ma R =可知轨道半径越小,向心加速度越大,故知A 项正确,B 错误; CD.由22Mm v G m R R =得v =可知轨道半径越小,运行速率越大,故C、D 都错误。3.用卡车运输质量为m 的匀质圆筒状工件,为使工件保持固定,将其置于两光滑斜面之间,如图所示。两斜面I、Ⅱ固定在车上,倾角分别为30°和60°。重力加速度为g 。当卡车沿平直公路匀速行驶时,圆筒对斜面I、Ⅱ压力的大小分别为F 1、F 2,则 A.12F F , B.12=F F ,

C.1213==22F mg F , D.1231=22 F mg F mg ,【答案】D【解析】对圆筒进行受力分析知圆筒处于三力平衡状态,由几何关系容易找出两斜面对圆筒支持力与重力的关系,由牛顿第三定律知斜面对圆筒的支持力与圆筒对斜面的压力大小相同。 4.从地面竖直向上抛出一物体,物体在运动过程中除受到重力外,还受到一大小不变、方向始终与运动方向相反的外力作用。距地面高度h 在3m 以内时,物体上升、下落过程中动能E k 随h 的变化如图所示。重力加速度取10m/s 2。该物体的质量为 A.2kg B.1.5kg C.1kg D.0.5kg 【答案】C 【解析】对上升过程,由动能定理,0()k k F mg h E E -+=-,得0()k k E E F mg h =-+,即F +mg =12N ;下落过程,()(6)k mg F h E --=,即8mg F k '-==N,联立两公式,得到m =1kg、F =2N。5.如图,在坐标系的第一和第二象限内存在磁感应强度大小分别为12 B 和B 、方向均垂直于纸面向外的匀强磁场。一质量为m 、电荷量为q (q >0)的粒子垂直于x 轴射入第二象限,随后垂直于y 轴进入第一象限,最后经过x 轴离开第一象限。粒子在磁场中运动的时间为 A.5π6m qB B.7π6m qB C.11π6m qB D.13π6m qB

高中物理知识点总结大全

高考总复习知识网络一览表物理

高中物理知识点总结大全 一、质点的运动(1)------直线运动 1)匀变速直线运动 1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as 3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at 5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t 7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则aF2) 2.互成角度力的合成: F=(F12+F22+2F1F2cosα)1/2(余弦定理)F1⊥F2时:F=(F12+F22)1/2 3.合力大小范围:|F1-F2|≤F≤|F1+F2| 4.力的正交分Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx) 注: (1)力(矢量)的合成与分解遵循平行四边形定则; (2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立; (3)除公式法外,也可用作图法求解,此时要选择标度,严格作图; (4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小; (5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算. 四、动力学(运动和力) 1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止 2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致} 3.牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动} 4.共点力的平衡F合=0,推广{正交分解法、三力汇交原理} 5.超重:FN>G,失重:FNr} 3.受迫振动频率特点:f=f驱动力 4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕 5.机械波、横波、纵波〔见第二册P2〕 6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定} 7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波) 8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大 9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同) 10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小〔见第二册P21〕} 注: (1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身;

2019年高考物理第一轮复习知识点总结

A B 2019年高考物理一轮复习知识点总结 Ⅰ。力的种类:(13个性质力) 这些性质力是受力分析不可少的“是受力分析的基础” 力的种类:(13个性质力) 有18条定律、2条定理 1重力: G = mg (g 随高度、纬度、不同星球上不同) 2弹力:F= Kx 3滑动摩擦力:F 滑= μN 4静摩擦力: O ≤ f 静≤ f m (由运动趋势和平衡方程去判断) 5浮力: F 浮= ρgV 排 6压力: F= PS = ρghs 7万有引力: F 引=G 22 1r m m 8库仑力: F=K 2 2 1r q q (真空中、点电荷) 9电场力: F 电=q E =q d u 10安培力:磁场对电流的作用力 F= BIL (B ⊥I) 方向:左手定则 11洛仑兹力:磁场对运动电荷的作用力 f=BqV (B ⊥V) 方向:左手定则 12分子力:分子间的引力和斥力同时存在,都随距离的增 大而减小,随距离的减小而增大,但斥力变化得快. 。 13核力:只有相邻的核子之间才有核力,是一种短程强 力。 5种基本运动模型 1静止或作匀速直线运动(平衡态问题); 2匀变速直、曲线运动(以下均为非平衡态问 题); 3类平抛运动; 4匀速圆周运动; 5振动。 1万有引力定律B 2胡克定律B 3滑动摩擦定律B 4牛顿第一定律B 5牛顿第二定律B 力学 6牛顿第三定律B 7动量守恒定律B 8机械能守恒定律B 9能的转化守恒定律. 10电荷守恒定律 11真空中的库仑定律 12欧姆定律 13电阻定律B 电学 14闭合电路的欧姆定律B 15法拉第电磁感应定律 16楞次定律B 17反射定律 18折射定律B 定理: ①动量定理B ②动能定理B 做功跟动能改变的关系

(完整版)2019年高考物理试题(全国1卷)lpf

2019年高考物理试题(全国1卷) 二、选择题:本题共8小题,每小题6分。在每小题给出的四个选项中,第14~18题只有一项 符合题目要求,第19~21题有多项符合题目要求。全部选对的得6分,选对但不全的得3分,有选错的得0分。 14.氢原子能级示意图如图所示。光子能量在1.63 eV~3.10 eV的光为可见光。要使处于基态(n=1)的氢原子被激发后可辐射出可见光光子,最少应给氢原子提供的能量为 A.12.09 eV B.10.20 eV C.1.89 eV D.1.5l eV 15.如图,空间存在一方向水平向右的匀强磁场,两个带电小球P和Q用相同的绝缘细绳悬挂在水平天花板下,两细绳都恰好与天花板垂直,则 A.P和Q都带正电荷B.P和Q都带负电荷 C.P带正电荷,Q带负电荷D.P带负电荷,Q带正电荷 16.最近,我国为“长征九号”研制的大推力新型火箭发动机联试成功,这标志着我国重型运载火箭的研发取得突破性进展。若某次实验中该发动机向后喷射的气体速度约为3 km/s,产生的推力约为4.8×106 N,则它在1 s时间内喷射的气体质量约为 A.1.6×102 kg B.1.6×103 kg C.1.6×105 kg D.1.6×106 kg

17.如图,等边三角形线框LMN 由三根相同的导体棒连接而成,固定于匀强磁场中,线框平面 与磁感应强度方向垂直,线框顶点M 、N 与直流电源两端相接,已如导体棒MN 受到的安培力大小为F ,则线框LMN 受到的安培力的大小为 A .2F B .1.5F C .0.5F D .0 18.如图,篮球架下的运动员原地垂直起跳扣篮,离地后重心上升的最大高度为H 。上升第一 个 4H 所用的时间为t 1,第四个4 H 所用的时间为t 2。不计空气阻力,则21t t 满足 A .1<21t t <2 B .2<21t t <3 C .3<21t t <4 D .4<2 1 t t <5 19.如图,一粗糙斜面固定在地面上,斜面顶端装有一光滑定滑轮。一细绳跨过滑轮,其一端 悬挂物块N 。另一端与斜面上的物块M 相连,系统处于静止状态。现用水平向左的拉力缓慢拉动N ,直至悬挂N 的细绳与竖直方向成45°。已知M 始终保持静止,则在此过程中

2020高考物理知识点总结.docx

2020 高考物理知识点总结 1.简谐振动 F=-kx{F: 回复力, k: 比例系数, x: 位移,负号表示 F 的方向与 x 始终反向 } 2.单摆周期 T=2π(l/g)1/2{l: 摆长 (m),g: 当地重力加速度值,成 立条件 : 摆角θ<100;l>>r } 3.受迫振动频率特点: f=f 驱动力 4.发生共振条件 :f 驱动力 =f 固, A=max,共振的防止和应用〔见第一册 P175〕 5.机械波、横波、纵波〔见第二册 P2〕 7.声波的波速 ( 在空气中 )0 ℃: 332m/s;20 ℃:344m/s;30 ℃:349m/s;( 声波是纵波 ) 8.波发生明显衍射 ( 波绕过障碍物或孔继续传播 ) 条件:障碍物或孔的尺寸比波长小,或者相差不大 9.波的干涉条件:两列波频率相同 ( 相差恒定、振幅相近、振动 方向相同 ) 10.多普勒效应 : 由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{ 相互接近,接收频率增大,反之,减小〔见第二册 P21〕} 注: (1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统 本身 ; (2)加强区是波峰与波峰或波谷与波谷相遇处,减弱区则是波峰 与波谷相遇处 ; (3)波只是传播了振动,介质本身不随波发生迁移 , 是传递能量的一种方式 ;

(4)干涉与衍射是波特有的 ; (5)振动图象与波动图象 ; 1) 常见的力 1.重力 G=mg(方向竖直向下, g=9.8m/s2 ≈10m/s2,作用点在 重心,适用于地球表面附近 ) 2.胡克定律 F=kx{ 方向沿恢复形变方向, k:劲度系数 (N/m) , x:形变量 (m)} 3.滑动摩擦力 F=μFN{与物体相对运动方向相反,μ:摩擦因数,FN:正压力 (N) } 4.静摩擦力 0≤f静≤ fm( 与物体相对运动趋势方向相反, fm 为 最大静摩擦力 ) 5.万有引力 F=Gm1m2/r2(G= 6.67×10-11N?m2/kg2, 方向在它们 的连线上 ) 6.静电力 F=kQ1Q2/r2(k=9.0 ×109N?m2/C2,方向在它们的连线上 ) 7.电场力 F=Eq(E:场强 N/C,q:电量 C,正电荷受的电场力与 场强方向相同 ) 8.安培力 F=BILsin θ( θ为 B 与 L 的夹角,当 L⊥B时:F=BIL , B//L 时:F=0) 9.洛仑兹力 f=qVBsin θ( θ为 B 与 V 的夹角,当 V⊥B时: f=qVB,V//B 时:f=0) 注: (1)劲度系数 k 由弹簧自身决定 ; (2)摩擦因数μ 与压力大小及接触面积大小无关,由接触面材 料特性与表面状况等决定 ; (3)fm 略大于μFN,一般视为 fm≈μ FN;

2019年高考高三物理波粒二象性、原子结构、原子核单元总结与测知识点分析(含解析)

2019年高考高三物理 波粒二象性、原子结构、原子核单元总结与测知识网络

学习重点和难点 1、光电效应现象的基本规律。在光电效应中(1)对光的强度的理解,(2)发生光电效应时光电流的强度为什么跟光电子的最大初动能无关,只与入射光的强度成正比,此处是难点之一; 2、玻尔模型中能级的跃迁及计算。在玻尔原子模型中能级的跃迁问题以及量子化的提出也是难点之一; 3、原子核的衰变问题以及核能的产生与计算是本部分重点。核能的计算与动量和能量的结合既是重点又是难点,要处理好。 知识要点知识梳理 知识点一——光的本性 1、光电效应 (1)产生条件:入射光频率大于被照射金属的极限频率 (2)入射光频率决定每个光子的能量决定光子逸出后最大初动能(3)入射光强度决定每秒逸出的光子数决定光电流的大小 (4)爱因斯坦光电效应方程 2、光的波粒二象性 光既有波动性,又具有粒子性,即光具有波粒二象性,这就是光的本性。 (1)大量光子的传播规律体现波动性;个别光子的行为体现为粒子性。 (2)频率越低,波长越长的光,波动性越显著;频率越高,波长越短的波,粒子性越显著。 (3)可以把光的波动性看作是表明大量光子运动规律的一种概率波。 知识点二——原子核式结构 1、α粒子散射 α粒子散射实验结果:α粒子穿过金箔后,绝大多数沿原方向前进,少数发生较大角度

偏转,极少数偏转角大于90°,有的甚至被弹回。 2、核式结构模型 原子中心有一个很小的核,叫原子核,原子的全部正电荷和几乎全部的质量都集中在原子核,带负电的电子在核外空间绕核旋转。原子半径大约为10-10m,核半径大约为10-15~10-14 m。 知识点三——氢原子跃迁 对氢原子跃迁的理解: 1、原子跃迁的条件 原子从低能级向高能级或从高能级向低能级跃迁时吸收或放出恰好等于发生跃迁时的两能级间的能级差的光子;当光子的能量大于或等于13.6eV时,也可以被氢原子吸收,使氢原子电离;当氢原子吸收的光子能量大于13.6eV时,氢原子电离后,电子具有一定的动能;原子还可吸收实物粒子的能量而被激发,由于实物粒子的动能可全部或部分地被氢原子吸收,所以只要实物粒子的能量大于或等于两能级的差值,均可使原子发生能级跃迁。 2、氢原子跃迁时发出不同频率光子的可能数 一群氢原子从第n能级向低能级跃迁时最多发出的光子数为种。 知识点四——原子核反应 1、天然放射现象 元素自发地放出射线的现象叫做天然放射现象。 (1)法国科学家贝克勒尔首先发现天然放射现象,揭示了人类研究原子核结构的序幕。 (2)原子序数大于或等于83的所有天然存在的元素都有放射性,原子序数小于83的天然存在的元素有些也具 有放射性。 2、原子核人工转变 用高能粒子轰击靶核,产生另一种新核的反应过程,即, 其中为靶核的符号,x为入射粒子,是新核,y是放射出粒子的符号。 发现质子的方程:(卢瑟福) 发现中子的方程:(查德威克) 发现正电子的方程:(约里奥·居里夫妇) 原子核的组成:质子和中子,统称为核子。 核反应方程遵循两个守恒关系,即核电荷数守恒和质量数守恒。 质子数=原子序数=核电荷数 质量数=质子数+中子数

2019高考物理一轮复习-物理学史

物理学史 一、力学: 伽利略(意大利物理学家) ①1638年,伽利略用观察——假设——数学推理的方法研究了抛体运动,论证重物体和轻物体下落一样快,并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即质量大的小球下落快是错误的)。 ②伽利略的理想斜面实验:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去。得出结论(力是改变物体运动的原因),推翻了亚里士多德的观点(力是维持物体运动的原因)。 评价:将实验与逻辑推理相结合,标志着物理学的开端。 (在伽利略研究力与运动的关系时,是在斜面实验的基础上,成功地设计了理想斜面实验,理想实验是实际实验的延伸,而不是实际的实验,是建立在实际事实基础上的合乎逻辑的科学推断。) 奥托··格里克(德国马德堡市长) ①马德堡半球实验:证明大气压的存在。 胡克(英国物理学家) ①提出胡克定律:只有在一定的条件下,弹簧的弹力才与弹簧的形变量成正比。 笛卡儿(法国物理学家)①根据伽利略的理想斜面实验,提出:如果没有其它原因,运动物体将继续以同一速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。 牛顿(英国物理学家) ①将伽利略的理想斜面实验的结论归纳为牛顿第一定律(即惯性定律)。 卡文迪许(英国物理学家) ①利用扭秤实验装置比较准确地测出了引力常量。(微小形变放大思想) 万有引力定律的应用 ①1846年,英国剑桥大学学生亚当斯和法国天文学家勒维烈(勒维耶)应用万有引力定律,计算并观测到海王星。1930年,美国天文学家汤博用同样的计算方法发现冥王星。 经典力学的局限性 ①20世纪初建立的量子力学和爱因斯坦提出的狭义相对论表明经典力学不适用于微观粒子和高速运动物体。 二、电磁学:

2019年高考物理考纲

2019年高考物理考试大纲 Ⅰ. 考核目标与要求 根据普通高等学校对新生思想道德素质和科学文化素质的要求,依据中华人民共和国教育部 2003 年颁布的《普通高中课程方案(实验)》和《普通高中物理课程标准(实验)》,确定高考理工类物理科考试内容。 高考物理试题着重考查考生的知识、能力和科学素养,注重理论联系实际,注意物理与科学技术、社会和经济发展的联系,注意物理知识在日常学习生活、生产劳动实践等方面的广泛应用,大力引导学生从“解题”向“解决问题”转变,以有利于高校选拔新生,有利于培养学生的综合能力和创新思维,有利于激发学生学习科学的兴趣,培养实事求是的态度,形成正确的价值观,促进“知识与技能”“过程与方法”“情感态度与价值观”三维课程培养目标的实现,促进学生德智体美劳全面发展。 高考物理在考查知识的同时注重考查能力,并把对能力的考查放在首要位置;通过考查知识及其运用来鉴别考生能力的高低,但不把某些知识与某种能力简单地对应起来。 目前,高考物理科要考查的能力主要包括以下几个方面: 1. 理解能力 理解物理概念、物理规律的确切含义,理解物理规律的适用条件以及它们在简单情况下的应用;能够清楚地认识概念和规律的表达形式(包括文字表述和数学表达);能够鉴别关于概念和规律的似是而非的说法;理解相关知识的区别和联系。 2. 推理能力 能够根据已知的知识和物理事实、条件,对物理问题进行逻辑推理和论证,得出正确的结论或做出正确的判断,并能把推理过程正确地表达出来。 3. 分析综合能力

能够独立地对所遇到的问题进行具体分析、研究,弄清其中的物理状态、物理过程和物理情境,找出起重要作用的因素及有关条件;能够把一个复杂问题分解为若干较简单的问题,找出它们之间的联系;能够提出解决问题的方法,运用物理知识综合解决所遇到的问题。 4. 应用数学处理物理问题的能力 能够根据具体问题列出物理量之间的关系式,进行推导和求解,并根据结果得出物理结论;能运用几何图形、函数图像进行表达和分析。 5. 实验能力 能独立地完成表 2、表 3 中所列的实验,能明确实验目的,能理解实验原理和方法,能控制实验条件,会使用仪器,会观察、分析实验现象,会记录、处理实验数据,并得出结论,能对结论进行分析和评价;能发现问题、提出问题,并制订解决方案;能运用已学过的物理理论、实验方法和实验仪器去处理问题,包括简单的设计性实验。 这五个方面的能力要求不是孤立的,在着重对某一种能力进行考查的同时,也不同程度地考查了与之相关的能力。并且,在应用某种能力处理或解决具体问题的过程中往往伴随着发现问题、提出问题的过程。因而高考对考生发现问题、提出问题并加以论证解决等探究能力的考查渗透在以上各种能力的考查中。 Ⅱ. 考试范围与要求 要考查的物理知识包括力学、热学、电磁学、光学、原子物理学、原子核物理学等部分。考虑到课程标准中物理知识的安排和高校录取新生的基本要求,考试大纲把考试内容分为必考内容和选考内容两类,必考内容有 5 个模块,选考内容有 2 个模块,具体模块及内容见表1。除必考内容外,考生还必须从 2 个选考模块中选择 1 个模块作为自己的考试内容。必考和选考的内容范围及要求分别见表 2 和表 3。考虑到大学理工类招生的基本要求,各省(自治区、直辖市)不得削减每个模块内的具体考试内容。

最新最全高中物理所有知识点总结(精华)

高考物理基本知识点总结 一. 教学内容: 知识点总结 1. 摩擦力方向:与相对运动方向相反,或与相对运动趋势方向相反 静摩擦力:0 注意:若到最高点速度从零开始增加,杆对球的作用力先减小后变大。 = 相同,,轮上边缘各点v 相同,v A =v B 3. 传动装置中,特点是:同轴上各点C A 4. 同步地球卫星特点是:①,② ①卫星的运行周期与地球的自转周期相同,角速度也相同; ②卫星轨道平面必定与地球赤道平面重合,卫星定点在赤道上空36000km 处,运行速度 3.1km/s。 m1m2 2 r F=G ,卡文迪许扭秤实验。 5. 万有引力定律:万有引力常量首先由什么实验测出: g' =GM/r 2 6. 重力加速度随高度变化关系: GM 说明:r为某位置到星体中心的距离。某星体表面的重力加速 度。 g 02 R

2 g' g R R ——某星体半径 h 为某位置到星体表面的距离 2 (R h) 7. 地球表面物体受重力加速度随纬度变化关系:在赤道上重力加速度较小,在两极,重力加速度较大。 2 2 GM r GM GMm mv r GMm mv r 2 2 2 g' = r r r 、v = 、 、 8. 人造地球卫星环绕运动的环绕速度、周期、向心加速度 = m ω 2R =m ( 2π /T ) 2 R GM r gR gR 2 = GM r =R ,为第一宇宙速度 v 1= = 当 r 增大, v 变小;当 应用:地球同步通讯卫星、知道宇宙速度的概念 9. 平抛运动特点: ①水平方向 ②竖直方向 ③合运动 ④应用:闪光照 ⑤建立空间关系即两个矢量三角形的分解:速度分解、位移分解 S ,求 v T gT 2 相位 v y 0 t x v 0 t v x v 0 1 2 2 y gt v y gt 1 4 2 2 2 2 4 2 2 S v 0 t g t v t v g t gt 2v 0 1 2 gt v 0 tg tg tg tg ⑥在任何两个时刻的速度变化量为△ v =g △ t ,△ p = mgt x 2 处,在电场中也有应用 ⑦v 的反向延长线交于 x 轴上的 10. 从倾角为 α的斜面 上 A 点以速度 v 0 平抛的小球,落到了斜面上的 B 点,求: S AB

2019年高考物理一轮复习试题

.精品文档. 2019年高考物理一轮复习试题 测量速度和加速度的方法 【纲要导引】 此专题作为力学实验的重要基础,高考中有时可以单独出题,16年和17年连续两年新课标1卷均考察打点计时器算速度和加速度问题;有时算出速度和加速度验证牛二或动能定理等。此专题是力学实验的核心基础,需要同学们熟练掌握。 【点拨练习】 考点一打点计时器 利用打点计时器测加速度时常考两种方法: (1)逐差法 纸带上存在污点导致点间距不全已知:(10年重庆) 点的间距全部已知直接用公式:,减少偶然误差的影响(奇数段时舍去距离最小偶然误差最大的间隔) (2)平均速度法 ,两边同时除以t,,做图,斜率二倍是加速度,纵轴截距是 开始计时点0的初速。

1. 【10年重庆】某同学用打点计时器测量做匀加速直线运动的物体的加速度,电频率f=50Hz在线带上打出的点中,选 出零点,每隔4个点取1个计数点,因保存不当,纸带被污染,如是22图1所示,A B、、D是依次排列的4个计数点,仅能读出其中3个计数点到零点的距离: =16.6=126.5=624.5 若无法再做实验,可由以上信息推知: ①相信两计数点的时间间隔为___________ S ②打点时物体的速度大小为_____________ /s(取2位有效数字) ③物体的加速度大小为__________ (用、、和f表示) 【答案】①0.1s②2.5③ 【解析】①打点计时器打出的纸带每隔4个点选择一个计数点,则相邻两计数点的时间间隔为T=0.1s . ②根据间的平均速度等于点的速度得v==2.5/s . ③利用逐差法:,两式相加得,由于,,所以就有了,化简即得答案。 2. 【15年江苏】(10分)某同学探究小磁铁在铜管中下落时受电磁阻尼作用的运

2019年高考理综物理全国1卷含答案

2019年普通高等学校招生全国统一考试 理科综合能力测试 注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。。 3.考试结束后,将本试卷和答题卡一并交回。 可能用到的相对原子质量:H 1 Li 7 C 12 N 14 O 16 Na 23 S 32 Cl 35.5 Ar 40 Fe 56 I 127 二、选择题:本题共8小题,每小题6分。在每小题给出的四个选项中,第14~18题只有一项符合题目要 求,第19~21题有多项符合题目要求。全部选对的得6分,选对但不全的得3分,有选错的得0分。14.氢原子能级示意图如图所示。光子能景在1.63 eV~3.10 eV的光为可见光。要使处于基态(n=1)的氢原子被激发后可辐射出可见光光子,最少应给氢原子提供的能量为 A.12.09 eV B.10.20 eV C.1.89 eV D.1.5l eV 15.如图,空间存在一方向水平向右的匀强磁场,两个带电小球P和Q用相同的绝缘细绳悬挂在水平天花板下,两细绳都恰好与天花板垂直,则

A .P 和Q 都带正电荷 B .P 和Q 都带负电荷 C .P 带正电荷,Q 带负电荷 D .P 带负电荷,Q 带正电荷 16.最近,我国为“长征九号”研制的大推力新型火箭发动机联试成功,这标志着我国重型运载火箭的研发 取得突破性进展。若某次实验中该发动机向后喷射的气体速度约为3 km/s ,产生的推力约为4.8×108 N ,则它在1 s 时间内喷射的气体质量约为 A .1.6×102 kg B .1.6×103 kg C .1.6×105 kg D .1.6×106 kg 17.如图,等边三角形线框LMN 由三根相同的导体棒连接而成,固定于匀强磁场中,线框平面与磁感应强 度方向垂直,线框顶点M 、N 与直流电源两端相接,已如导体棒MN 受到的安培力大小为F ,则线框LMN 受到的安培力的大小为 A .2F B .1.5F C .0.5F D .0 18.如图,篮球架下的运动员原地垂直起跳扣篮,离地后重心上升的最大高度为H 。上升第一个4 H 所用的时间为t 1,第四个4 H 所用的时间为t 2。不计空气阻力,则21t t 满足

最详细的高中物理知识点总结(最全版)

高中物理知识点总结(经典版)

第一章、力 一、力F:物体对物体的作用。 1、单位:牛(N) 2、力的三要素:大小、方向、作用点。 3、物体间力的作用是相互的。即作用力与反作用力,但它们不在同一物体上,不是平衡力。作用力与 反作用力是同性质的力,有同时性。 二、力的分类: 1、按按性质分:重力G、弹力N、摩擦力f 按效果分:压力、支持力、动力、阻力、向心力、回复力。 按研究对象分:外力、内力。 2、重力G:由于受地球吸引而产生,竖直向下。G=mg 重心的位置与物体的质量分布与形状有关。质量均匀、形状规则的物体重心在几何中心上,不一定在物体上。 弹力:由于接触形变而产生,与形变方向相反或垂直接触面。F=k×Δx 摩擦力f:阻碍相对运动的力,方向与相对运动方向相反。 滑动摩擦力:f=μN(N不是G,μ表示接触面的粗糙程度,只与材料有关,与重力、压力无关。) 相同条件下,滚动摩擦<滑动摩擦。 静摩擦力:用二力平衡来计算。 用一水平力推一静止的物体并使它匀速直线运动,推力F与摩擦力f的关系如图所示。 力的合成与分解:遵循平行四边形定则。以分力F1、F2为邻边作平行四边形,合力F的大小和方向可用这两个邻边之间的对角线表示。 |F1-F2|≤F合≤F1+F2 F合2=F12+F22+ 2F1F2cosQ 平动平衡:共点力使物体保持匀速直线运动状态或静止状态。 解题方法:先受力分析,然后根据题意建立坐标 系,将不在坐标系上的力分解。如受力在三个以 内,可用力的合成。 利用平衡力来解题。 F x合力=0 F y合力=0 注:已知一个合力的大小与方向,当一个分力的 方向确定,另一个分力与这个分力垂直是最小 值。 转动平衡:物体保持静止或匀速转动状态。 解题方法:先受力分析,然后作出对应力的力臂(最长力臂是指转轴到力的作用点的直线距离)。分析正、负力矩。 利用力矩来解题:M合力矩=FL合力矩=0 或M正力矩= M负力矩 第二章、直线运动

2020届高三高考物理大复习知识点总结强化练习卷:重力弹力摩擦力

重力弹力摩擦力 1.(2019·滨州二模)浙江乌镇一带的农民每到清明时节举办民俗活动,在一个巨型石臼上插入一根硕大的毛竹,表演者爬上竹梢表演各种惊险动作。如图所示,下列说法正确的是( ) A.在任何位置表演者静止时只受重力和弹力作用 B.在任何位置竹竿对表演者的作用力必定与竹竿垂直 C.表演者静止时,竹竿对其作用力必定竖直向上 D.表演者越靠近竹竿底部所受的摩擦力就越小 2.(2019·嘉兴一中期末)关于摩擦力,下列说法正确的是( ) A.运动的物体不可能受静摩擦力作用 B.物体受摩擦力作用时,一定受到弹力作用 C.手握瓶子,握得越紧越不容易滑落,因为静摩擦力增大 D.同一接触面上可能同时存在静摩擦力与滑动摩擦力 3.在研究弹簧弹力时,通常忽略弹簧本身的质量,把这样理想化的弹簧称为轻质弹簧或轻弹簧。弹簧测力计中的弹簧可以认为是轻质弹簧。下列说法中正确的有( ) A.轻弹簧两端所受的拉力大小一定相等 B.轻弹簧两端所受的拉力大小可能不等 C.弹簧测力计的示数等于弹簧测力计中弹簧某一端所受力的2倍 D.根据胡克定律,在弹性限度内,轻弹簧受到的拉力或压力与弹簧的长度成正比 4.(2019·甘肃诊断)在半球形光滑碗内,斜放一根筷子,如图所示,筷子与碗的接触点分别为A、B,则碗对筷子A、B两点处的作用力方向分别为( ) A.均竖直向上 B.均指向球心O C.A点处指向球心O,B点处竖直向上 D.A点处指向球心O,B点处垂直于筷子斜向上 5.(2019·北京西城区期末)如图所示,小明用大小为F的力水平向右推木箱,但没能推动。下列说法正确的是( )

A.地面对木箱的摩擦力方向向右 B.地面对木箱的摩擦力大小等于F C.地面对木箱的摩擦力大于F D.地面对木箱的最大静摩擦力一定等于F 6.(2019·上海虹口一模)物体A质量为1 kg,与水平地面间的动摩擦因数为0.2,其从t=0开始以初速度v0向右滑行。与此同时,A还受到一个水平向左、大小恒为1 N的作用力,能反映A所受摩擦力F f随时间变化的图象是(设向右为正方向)( ) 7.(2019·宁夏大学附属中学月考)如图所示为一轻质弹簧的长度和弹力大小的关系图象。根据图象判断,正确的结论是( ) A.弹簧的原长为6 cm B.弹簧的劲度系数为1 N/m C.可将图象中右侧的图线无限延长 D.该弹簧两端各加2 N拉力时,弹簧的长度为10 cm 8.(2019·宁波模拟)如图所示,A、B两个物块的重力分别是G A=3 N,G B=4 N,弹簧的重力不计,整个装置沿竖直方向处于静止状态,这时弹簧的弹力F=2 N,则天花板受到的拉力和地板受到的压力,有可能是( )

2019年高考物理专题复习:力学题专题

力学题的深入研究 最近辅导学生的过程中,发现几道力学题虽然不是特别难,但容易错,并且辅导书对这几道题或语焉不详,或似是而非,或浅尝辄止,本文对其深入研究,以飨读者。 【题1】(1)某同学利用图甲所示的实验装置,探究物块在水平桌面上的运动规律。物块在重物的牵引下开始运动,重物落地后,物块再运动一段距离停在桌面上(尚未到达滑轮处)。从纸带上便于测量的点开始,每5个点取1个计数点,相邻计数点间的距离如图1所示。打点计时器电源的频率为50Hz 。 ○ 1通过分析纸带数据,可判断物块在相邻计数点 和 之间某时刻开始减速。 ○ 2计数点5对应的速度大小为 m/s ,计数点6对应的速度大小为 m/s 。(保留三位有效数字)。 ○3物块减速运动过程中加速度的大小为a = m/s 2,若用a g 来计算物块与桌面间的动摩擦因数(g 为重力加速度),则计算结果比动摩擦因数的真实值 (填“偏大”或“偏小”)。 【原解析】一般的辅导书是这样解的: ①和②一起研究:根据T s s v n n n 21++=,其中s T 1.050 15=?=,得

1.0210)01.1100.9(25??+=-v =s m /00.1,1 .0210)28.1201.11(2 6??+=-v =s m /16.1, 1 .0210)06.1028.12(2 7??+=-v =s m /14.1,因为56v v >,67v v <,所以可判断物块在两相邻计数点6和7之间某时刻开始减速。 这样解是有错误的。其中5v 是正确的,6v 、7v 是错误的。因为公式T s s v n n n 21++=是匀变速运动的公式,而在6、7之间不是匀变速运动了。 第一问应该这样解析: ①物块在两相邻计数点6和7之间某时刻开始减速。 根据1到6之间的cm 00.2s =?,如果继续做匀加速运动的话,则6、7之间的距离应该为01.1300.201.11s 5667=+=?+=s s ,但图中cm s 28.1267=,所以是在6和7之间开始减速。 第二问应该这样解析: ②根据1到6之间的cm 00.2s =?,加速度s m s m T s a /00.2/1 .01000.222 2=?=?=- 所以s m aT v v /20.11.000.200.156=?+=+=。 因为s m T s s v /964.01 .0210)61.866.10(22 988=??+=+=- aT v v -=87=s m /16.11.0)2(964.0=?--。 ③ 首先求相邻两个相等时间间隔的位移差,从第7点开始依次为,cm s 99.161.860.101=-=?,cm s 01.260.661.82=-=?, cm s 00.260.460.63=-=?,求平均值cm s s s s 00.2)(3 1321=?+?+?=?,所以加速度222 2/.1 .01000.2s m T s a -?=?==2/00.2s m 根据ma =mg μ,得g a μ=这是加速度的理论值,实际上'ma f mg =+μ(此式中f 为纸带与打点计时器的摩擦力),得m f g a + =μ',这是加速度的理论值。因为a a >'所以g a =μ的测量值偏大。

相关主题
文本预览
相关文档 最新文档