当前位置:文档之家› 变压器保护分析论文

变压器保护分析论文

变压器保护分析论文
变压器保护分析论文

华北电力大学(北京)

成人高等教育毕业论文题目:大型变压器保护分析

专业电力工程及自动化

函授站点安徽电气工程职业技术学院班级:2010级

姓名:陈泽林

学号:110320575

指导老师:文老师

二0一二年八月十日

大型变压器保护分析

摘要

电力变压器是电力系统中的重要设备,其安全运行关系到整个电力系统能否连续稳定地工作。而随着电力系统的发展,特别是现代新材料、新工艺的发展,变压器容量不断增大,对变压器保护的快速性和可靠性也提出了更高的要求。

作为电力系统重要设备之一的变压器,其主保护仍然是传统的差动保护。差动保护作为变压器的电气量主保护,其性能决定着变压器保护的性能,本文对现有的应用于变压器的差动保护做了介绍。如何区分励磁涌流和内部故障是变压器保护的重要研究内容,由于变压器的特殊性,变压器保护动作正确率不高,拒动、误动事件时有发生的事实说明,我们迫切需要研究新的变压器保护方法和解决一些存在的问题。

近年,随着技术的发展,微机保护成为主要的保护。本文对现有的变压器保护方法进行了详尽的原理分析分析,后又通对RCS-978成套保护系统的工作原理,了解了微机保护在变压器保护中的重要作用,以及变压器保护未来的发展。文中主要设计了220KV变电站中变压器的保护回路、各主要参数的整定,以及对RCS-978保护装置的操作进行了设置。

关键词变压器保护;微机保护;保护回路

2

1绪论

1.1 课题背景

在电力系统中广泛使用变压器来升压或者降压。变压器是电力系统不可或缺的重要电气设备。利用电磁感应原理把一种电压的交流电能转变成频率相同的另一种电压的交流电能,在电力系统中,需要用变压器将电压升级进行远距离传输,以降低线路损耗,当电能到达用户区后,再采用不同等级的变压器将电能降压使用,因此,变压器的正常运行对保持系统的稳定与安全有着特殊的意义。它的故障将对供电可靠性和系统安全运行带来严重的影响,同时大容量的变压器也是非常重要的设备。因此,应根据变压器的容量等级和重要程度,装设性能良好、动作可靠的继电保护装置。

将微型计算机技术应用于变压器保护是提高变压器保护水平的一个重要途径。采用微机保护技术构成的变压器保护系统,较现有的模拟式保护具有更加完善的功能,提高了电力系统安全运行水平[1]。

论文中也以RCS-978E型微机保护装置为案例,具体说明微机保护与以往的保护区别及各自的保护方式。

1.2电力变压器保护综述

1.2.1变压器的故障

电力变压器是电力系统中大量使用的重要电气设备,他的故障给供电可靠性和系统的正常运行带来严重的后果,同时大容量变压器也是非常贵重的元件,因此,必须根据变压器的容量和重要程度装设性能良好的、动作可靠的保护元件。

电力变压器的故障分为内部和外部两种故障。内部故障指变压器油箱里面发生的各种故障,主要靠瓦斯和差动保护动作切除变压器;外部故障指油箱外部绝缘套管及其引出线上发生的各种故障,一般情况下由差动保护动作切除变压器。速动保护(瓦斯和差动)无延时动作切除故障变压器,设备是否损坏主要取决于变压器的动稳定性。而在变压器各侧母线及其相连间隔的引出设备故障时,若故障设备未配保护(如低压侧母线保护)或保护拒动时,则只能靠变压器后备保护动作跳开相应开关使变压器脱离故障。因后备保护带延时动作,所以变压器必然要承受一定时间段内的区外故障造成的过电流,在此时间段内变压器是否损坏主要取决于变压器的热稳定性。因此,变压器后备保护的定值整定与变压器自身的热稳定要求之间存在着必然的联系[2]。

1.2.2电力变压器的异常工作状态

变压器处于不正常运行状态时,继电器应根据其严重程度,发出警告信号,使运行人员及时发现并采取相应措施,以保安全运行。变压器不正常工作状态主要有:1.由于外部短路引起的过电流;2.由于电动机自起动或并联工作的变压器被断开及尖峰负荷等与原因引起的过负荷;3.外部接地短路引起的中性点过电

1

压;4.油箱漏油引起的油面降低或冷却系统故障引起的温度升高;5.大容量变压器在过电压或低频等异常运行工况下导致变压器过励磁,引起铁芯和其他金属构件过热。

1.2.3电力变压器的保护方式

根据变压器的故障和异常工作状态,其通常装设的保护装置如下:

1.瓦斯保护

对变压器油箱内部的各种故障及油面的降低应装设瓦斯保护。容量为800KV A及以上的油浸式变压器,对于容量为400KV A及以上的车间内油浸式变压器,匀应装设瓦斯保护。当油箱内部故障产生轻微瓦斯或油面下降时,保护装置应瞬间动作于信号;当产生大量瓦斯时,瓦斯保护宜动作于断开变压器各电源侧断路器。对于高压侧未装设断路器的线路-变压器组,未采取使瓦斯保护能切除变压器内部故障的技术措施时,瓦斯保护可仅动作于信号。

2.纵差保护或电流速断保护

容量在10000KV A及以上的变压器应装设纵差保护,用以反应变压器内部绕组、绝缘套管及引出线相间短路、中性点直接接地电网侧绕组和引出线的接地短路以及绕组匝间短路。

3.过流保护

变压器的过流保护用作外部短路及变压器内部短路的后备保护。

4.零序过流保护

变压器中性点直接接地或经放电间隙接地时,应补充装设零序过流保护。用以提高保护在单相接地时的灵敏度。零序过流保护主要用作外部电网接地短路的后备保护。

5.过负荷保护

变压器过负荷时,应利用过负荷保护发出信号,在无人值班的变电所内可将其作用于跳闸或自动切除一部分负荷[3]。

1.3电力变压器保护研究现状

随着计算机硬件的迅速发展,微机保护硬件也在不断发展。微机保护的硬件已由第一代单CPU硬件结构和第二代多单片机的多CPU硬件结构发展到以高性能单片机结构的第三代硬件结构,其具有电路简单的特点,抗干扰的性能进一步加强,并完善了通信功能,为实现变电站自动化提供了方便。近年来,数字信号处理技术开始广泛应用于微机保护领域。DSP的特点是计算能力强、精度高、总线速度快,将数字信号处理应用于微机继电保护,极大地缩短了数字滤波、滤序和傅立叶变换算法的计算时间,可以完成数据采集、信号处理的功能和传统的继电保护功能。差动保护为变压器主保护的主要形式,长期以来受到保护工作者的关注。1931年, R. E. Cordray提出比率差动的变压器保护,标志着差动保护作为变压器主保护时代的到来。1958年R. L. Sharp和WE. GlassBurn提出了利用二次谐波鉴别变压器励磁涌流的新方法,并在模拟式保护中加以实现[4]。目前国内外生产变压器继电保护装置的厂家很多,就主保护而言,国外保护装置基本是以二次谐波制动

2

为主的比率差动保护,而国内则以二次谐波制动和间断角两种原理为主导,以波形对称原理为补充的格局正在形成。

1.4继电保护的发展

1.4.1计算机化

随着计算机硬件的迅猛发展,微机保护硬件也在不断发展。南京电力自动化研究院目前在研究32位保护硬件系统。天津大学一开始即研制以16位多CPU 为基础的微机线路保护。采用32位微机芯片并非只着眼于精度,因为精度受A/D 转换器分辨率的限制,超过16位时在转换速度和成本方面都是难以接受的;更重要的是32位微机芯片具有很高的集成度,很高的工作频率和计算速度,很大的寻址空间,丰富的指令系统和较多的输入输出口。CPU的寄存器、数据总线、地址总线都是32位的,具有存储器管理功能、存储器保护功能和任务转换功能,并将高速缓存(Cache)和浮点数部件都集成在CPU内。

电力系统对微机保护的要求不断提高,除了保护的基本功能外,还应具有大容量故障信息和数据的长期存放空间,快速的数据处理功能,强大的通信能力,与其它保护、控制装置和调度联网以共享全系统数据、信息和网络资源的能力,高级语言编程等。这就要求微机保护装置具有相当于一台PC机的功能。现在,同微机保护装置大小相似的工控机的功能、速度、存储容量大大超过了当年的小型机,因此,用成套工控机做成继电保护的时机已经成熟,这将是微机保护的发展方向之一。继电保护装置的微机化是不可逆转的发展趋势。

1.4.2网络化

计算机网络作为信息和数据通信工具已成为信息时代的技术支柱。它深刻影响着各个工业领域,也为各个工业领域提供了强有力的通信手段。到目前为止,除了差动保护和纵联保护外,所有继电保护装置都只能反应保护安装处的电气量。继电保护的作用也只限于切除故障元件,缩小事故影响范围。这主要是由于缺乏强有力的数据通信手段。因继电保护的作用不只限于切除故障元件和限制事故影响范围,还要保证全系统的安全稳定运行,这就要求每个保护单元都能共享全系统的运行和故障信息的数据,各个保护单元与重合闸装置在分析这些信息和数据的基础上协调动作,确保系统的安全稳定运行。显然,实现这种系统保护的基本条件是将全系统各主要设备的保护装置用计算机网络联接起来,亦即实现微机保护装置的网络化。

对于某些保护装置实现计算机联网,也能提高保护的可靠性。天津大学1993年针对未来三峡水电站500kV超高压多回路母线提出了一种分布式母线保护的原理,初步研制成功了这种装置。其原理是将传统的集中式母线保护分散成若干个母线保护单元,分散装设在各回路保护屏上,各保护单元用计算机网络联接起来,每个保护单元只输入本回路的电流量,将其转换成数字量后,通过计算机网络传送给其它所有回路的保护单元,各保护单元根据本回路的电流量和从计算机网络上获得的其它所有回路的电流量,进行母线差动保护的计算,如果计算结果

3

证明是母线内部故障则只跳开本回路断路器,将故障的母线隔离。在母线区外故障时,各保护单元都计算为外部故障均不动作。这种用计算机网络有较高的可靠性。微机保护装置网络化可大大提高保护性能和可靠性,这是微机保护发展的必然趋势。

1.4.3保护、控制、测量、数据通信一体化

在实现继电保护的计算机化和网络化的条件下,保护装置是电力系统计算机网络上的一个智能终端。它可从网上获取电力系统运行和故障的信息和数据,也可将它所获得的被保护元件的信息和数据传送给网络控制中心或任何一终端。因此,每个微机保护装置实现保护、控制、测量、数据通信一体化。

目前,为了测量、保护和控制的需要,室外变电站的所有设备,如变压器、线路等的二次电压、电流都必须用控制电缆引到主控室。所敷设的大量控制电缆不但要大量投资,而且使二次回路非常复杂。但是如果将上述的保护、控制、测量、数据通信一体化的计算机装置,就地安装在室外变电站的被保护设备旁,将被保护设备的电压、电流量在此装置内转换成数字量后,通过计算机网络送到主控室,则可免除大量的控制电缆。如果用光纤作为网络的传输介质,还可免除电磁干扰。现在光电流互感器(OTA)和光电压互感器(OTV)已在研究试验阶段,将来必然在电力系统中得到应用。在采用OTA和OTV的情况下,保护装置应放在距OTA和OTV最近的地方,亦即应放在被保护设备附近。OTA和OTV的光信号输入到此一体化装置中并转换成电信号后,一方面用作保护的计算判断;另一方面作为测量量,通过网络送到主控室。从主控室通过网络可将对被保护设备的操作控制命令送到此一体化装置,由此一体化装置执行断路器的操作。

1.4.4智能化

近年来,人工智能技术如神经网络、遗传算法、进化规划、模糊逻辑等在电力系统各个领域都得到了应用,在继电保护领域应用的研究也已开始。神经网络是一种非线性映射的方法,很多难以列出方程式或难以求解的复杂的非线性问题,应用神经网络方法则可迎刃而解。例如在输电线两侧系统电势角度摆开情况下发生经过渡电阻的短路就是一非线性问题,距离保护很难正确做出故障位置的判别,从而造成误动或拒动;如果用神经网络方法,经过大量故障样本的训练,只要样本集中充分考虑了各种情况,则在发生任何故障时都可正确判别。其它如遗传算法、进化规划等也都有其独特的求解复杂问题的能力。将这些人工智能方法适当结合可使求解速度更快。可以预见,人工智能技术在继电保护领域必会得到应用,以解决用常规方法难以解决的问题。

4

2电力变压器保护的原理分析

2.1.瓦斯保护

2.1.1保护的工作原理

瓦斯保护是反应变压器油箱内部气体的数量和流动的速度而动作的保护,保护变压器油箱内部各种短路故障,特别是对绕组的相间和匝间短路。由于短路点电弧的作用,将使变压器和其他绝缘材料分解,产生气体。气体从油箱经连通管流向油枕,利用气体数量及流速构成瓦斯保护。如图2-1所示:

图2-1 瓦斯保护的原理接线图

图2-1上面的触点表示“轻瓦斯保护”,动作后经延时发出报警信号。下面的触点表示“瓦斯保护”,动作后启动变压器保护的总出口继电器,使断路器跳闸。当油箱内部发生严重事故时,由于油流不稳定,可能造成弹簧触点的抖动,此时为使断路器能可靠跳闸,应选用具有电流自保持线圈的出口中间继电器KM,动作后由断路器的辅助触点来解除出口回路的自保持。此外,为防止变压器换油或进行试验时引起重瓦斯保护误动作跳闸,可利用切换片XB将跳闸回路切换到信号回路。

2.1.2瓦斯保护的缺点

不能反应变压器油箱外套管及联接战线上的故障,因此,不能作为防御变压器内部事故的唯一保护。由于构造问题,在运行中正确动作率还不高。挡板式瓦斯继电器也存在当变压器油面严重下降,需要跳闸时,动作不快的缺点。

2.1.3瓦斯保护的优点

灵敏度高、结构简单,并能反应变压器油面内部各种类型的故障。特别是当

5

绕组短路匝数很少时,故障点的循环电流虽然很大,可能造成严重的过热,但反应在外部电流的变化却很小,各种反应电流量的保护都难以动作,因此瓦斯保护对保护这种故障有特殊的优越性。

2.2电流速断保护

2.2.1保护的工作原理

变压器的电流速断保护是反应于大电流增大而瞬间动作的保护。装于变压器的电源测,对于变压器用引出线上各种形式的短路电流进行保护。为证明选择性,速断保护只能保护变压器的一部分,一般能保护变压器的原绕组,它适合用于容量在10MV A以下小容量的变压器,当电流保护时限大于0.5S时,可在电源侧装设电流速断保护,其接线原理如图2-2所示:

图2-2电流速断保护接线图

2.2.2电流速断保护的特点

电流速断保护的优点是接线简单、动作迅速。但作为变压器内部故障的保护时存在以下缺点:

1.当系统容量不大时,保护区伸不到变压器的内部,即保护区很短,灵敏度达不到要求。

2.在无电源的一侧,从套管到断路器的一段故障要靠过电流保护跳闸,这样切除故障很慢,对系统安全运行影响很大。

3.对于并列运行的变压器负荷侧故障时,将由过电流保护无选择性的切除所有变压器。

6

7

2.3纵联差动保护

2.3.1变压器差动保护基本原理

电力变压器可能发生的内部故障包括:各侧绕组的相间短路故障,中性点直接接地的变压器的单相接地短路,绕组的匝间短路等。变压器内部的各种短路都将产生电弧,引起主绝缘烧毁,绝缘油分解,内部油压增大,有可能引起油箱爆炸起火。因此,对变压器内部故障应尽快切除。

纵差动保护是变压器的电气主保护,由于变压器在电力系统中占有重要地位,纵差动保护必须满足如下要求:

1.能反应保护区内各种相间和接地短路故障。

2.动作速度快,一般动作时间不能大于 30ms 。

3.在变压器空载合闸或外部故障切除后电压恢复期间产生励磁涌流时不应

误动作。

4.在变压器过励磁时,纵差动保护不应该动作。

5.发生外部故障时电流互感器饱和应可靠不动作。

6.保护区内故障时,电流互感器饱和,纵差动保护不应拒动或延时动作。

7.保护区内发生短路故障,在短路电流中含有谐波分量时,纵差动保护不应拒动或延时动作。

按照反应电流和电压量变化构成的保护装置,测量元件限于装设在被保护元件的一侧,无法区别保护范围末端和相邻范围始端的故障。为了保证动作的选择性,在整定动作参数是必须与相邻元件的保护相配合,一般采用缩短保护区或延长动作时限的方法获得选择性。差动保护的原理接线图如图2-3所示。

图2-3差动保护接线图

变压器差动保护是按照循环电流原理构成的,图为差动保护的单相原理接线图。双绕组变压器,在其两侧装设电流互感器当两侧电流互感器的同极性端子在同一方向,差动继电器的工作线圈并联在电流互感器的二次端子上。由于变压器

8

高压侧和低压侧的额定电流不同,因此必须适当选择两侧电流互感器的变化,使得在正常工作时和外部故障时两侧的二次电流相等,流过差动继电器线圈的电流在理论上等于零。即:

B n I I =''21 (2-2) 所以两侧的CT 变比应不同,且应使 即:B l l l l n I I n n n I n I =''='='212

12211 或 (2-3) 按相实现的纵差动保护,其电流互感器变比的选择原则是两侧CT 变比的比值等于变压器的变比。

2.3.2变压器差动保护不平衡电流分析

1.稳态情况下不平衡电流

变压器在正常运行时纵差保护回路中不平衡电流主要是由电流互感器、变压器接线引起:

(1)由电流互感器计算变比与实际变比不同而产生。正常运行时变压器各侧电流的大小是不相等的。为了满足正常运行或外部短路时流入继电器差动回路的电流为零,则应使高、低压两侧流入继电器的电流相等,即高、低侧电流互感器变比的比值应等于变压器的变比。但是,实际上由于电流互感器的变比都是根据产品目录选取的标准变比,而变压器的变比是一定的,因此上述条件是不能得到满足的,因而会产生不平衡电流。

(2)由变压器两侧电流相位不同而产生。变压器常常采用两侧电流的相位相差30°的接线方式(对双绕组变压器而言)。此时,如果两侧的电流互感器仍采用通常的接线方式(即均采用Y形接线方式),则二次电流由于相位不同,也会在纵差保护回路产生不平衡电流。

(3)由变压器两侧电流互感器型号不同而产生。电流互感器是一个带铁心的元件,在变换电流的过程中,需要一定的励磁电流,所以一次电流和二次电流的关系如式(2-4):

()TA c n I I I 112-= (2-4)

当变压器两侧电流互感器的型号不同时,它们的饱和特性、励磁电流等也就不同,即使两侧电流互感器的变比符合要求,流入差动继电器的差电流为,如式(2-5):

()()Δ212111????---=T A H c Y T A H c j n I I n I I I (2-5) 差电流也不会为零,即在正常运行或外部短路时,会有不平衡电流流入差动继电器[5]。

2.暂态情况下的不平衡电流

(1)由变压器励磁涌流产生

正常运行情况下,铁芯未饱和,相对导磁率很大,变压器绕组的励磁电感也很大,因而励磁电流很小,一般不超过额定电流的3%~5%。当投入空载变压器

或外部故障切除后的电压回复时,一旦铁芯饱和后,想对导磁率接近于1,变压器绕组的电感降低,相应出现数值很大的励磁电流,称为励磁涌流,其值可能达到变压器额定电流的6~8倍。励磁涌流具有如下特征:①励磁涌流数值很大,最大可达变压器额定电流的6~8倍;②励磁涌流包含有很大成分的非周期分量,波形呈尖顶波形且偏于时间轴的一侧;③励磁涌流包含有大量的高次谐波,而以二次谐波为主;④励磁涌流相邻波形是不连续的,因而波形之间出现了间断角。由于励磁涌流的存在,使变压器差动回路产生很大的不平衡电流,常常导致纵差保护的误动作,给变压器纵差保护的实现带来困难。

(2)由变压器外部故障暂态穿越性短路电流产生

纵差保护是瞬动保护,它是在一次系统短路暂态过程中发出跳闸脉冲。因此,必须考虑外部故障暂态过程的不平衡电流对它的影响。在变压器外部故障的暂态过程中,一次系统的短路电流含有非周期分量,它对时间的变化率很小,很难变换到二次侧,而主要成为互感器的励磁电流,从而使互感器的铁心更加饱和。本来按10%误差曲线选择的电流互感器在变压器稳态外部短路时,就会处于饱和状态,再加上非周期分量的作用,则铁心将严重饱和。因而,电流互感器的二次电流的误差更大,暂态过程中的不平衡电流也将更大。

2.3.3变压器纵差保护中不平衡电流的克服方法

从上面的分析可知,构成纵差保护时,如不采取适当的措施,流入差动继电器的不平衡电流将很大,按躲开变压器外部故障时出现的最大不平衡电流整定的纵差保护定值也将很大,保护的灵敏度会很低。若再考虑励磁涌流的影响,保护将无法工作。因此,如何克服不平衡电流,并消除它对保护的影响,提高保护的灵敏度,就成为纵差保护的中心问题。

1.由电流互感器变比产生的不平衡电流的克服方法

对于由电流互感器计算变比与实际变比不同而产生的不平衡电流可采用2种方法来克服:一是采用自耦变流器进行补偿。通常在变压器一侧电流互感器(对三绕组变压器应在两侧)装设自耦变流器,将LH输出端接到变流器的输入端,当改变自耦变流器的变比时,可以使变流器的输出电流等于未装设变流器的LH 的二次电流,从而使流入差动继电器的电流为零或接近为零。二是利用中间变流器的平衡线圈进行磁补偿。通常在中间变流器的铁心上绕有主线圈即差动线圈,接入差动电流,另外还绕一个平衡线圈和一个二次线圈,接入二次电流较小的一侧。适当选择平衡线圈的匝数,使平衡线圈产生的磁势能完全抵消差动线圈产生的磁势,则在二次线圈里就不会感应电势,因而差动继电器中也没有电流流过。采用这种方法时,按公式计算出的平衡线圈的匝数一般不是整数,但实际上平衡线圈只能按整数进行选择,因此还会有一残余的不平衡电流存在,这在进行纵差保护定值整定计算时应该予以考虑。

目前微机继电保护已被广泛应用,对于变压器纵差保护中由电流互感器计算变比与实际变比不同而产生的不平衡电流可以通过软件补偿,也可采用在模数变换(VFC)板上直接调整变压器各侧电流的硬件调整平衡系数的方法,把各侧的额定电流都调整到保护装置的额定工作电流(5A或1A),这类似于整流型保护

9

调整平衡绕组的方法[6]。

2.由变压器两侧电流相位不同而产生的不平衡电流的克服方法

对于由变压器两侧电流相位不同而产生的不平衡电流可以通过改变LH接线方式的方法(也称相位补偿法)来克服。对于变压器Y形接线侧,其LH采用△形接线,而变压器△形接线侧,其LH采用Y形接线,则两侧LH二次侧输出电流相位刚好同相。但当LH采用上述连接方式后,在LH接成△形侧的差动一臂中,电流又增大了3倍,此时为保证在正常运行及外部故障情况下差动回路中没有电流,就必须将该侧LH的变比扩大3倍,以减小二次电流,使之与另一侧的电流相等。接线图如图

2-4

10

11

差动臂中的222B A A I I I -和 同相位了,但A2B2A2I 3I -I =。为使正常运

行或区外故障时,0=j I ,则应使ΔA2A2I I 3 = 故此时选择LH 变比的条件如式(2-7):

B TAH TAH n n n =123 (2-7)

在采用微机保护的变压器中,变压器各侧LH 均可接成Y 形,因相位不同而产生的不平衡电流可以通过软件进行相位校正。

3.由电流互感器型号不同和由变压器带负荷调整分接头而产生的不平衡电流的克服方法

该不平衡电流均可在变压器纵差保护定值整定计算中予以考虑。在稳态情况下,为整定变压器纵差保护所采用的最大不平衡电流可如式(2-8)确定:

()TAH d za tx op n I f U k I /ΔΔ%10max max ??++= (2-8)

tx k 为LH 的同型系数,当LH 型号相同时取0.5,不同时取1.0;U Δ为变压器带负荷调压引起的相对误差,一般采用变压器调压范围的一半;za f Δ为平衡线圈整定匝数与计算匝数不等而产生的相对误差。

2.3.4实施纵差动保护遇到的问题

实施变压器纵差动保护,除应满足继电保护的要求外,应解决几个问题。

1.正确识别励磁涌流和内部短路故障时的短路电流。变压器空载合闸或外部短路故障切除电压突然恢复时,变压器有很大的励磁电流即励磁涌流流过,因该励磁涌流仅在变压器的一侧流通,故流入差动回路。变压器内部短路故障时,差动回路通过的是很大的短路电流,应正确识别励磁涌流和短路电流。

2.应解决好区外短路故障时差动回路中的不平衡电流和保护灵敏度间的矛盾。区外短路故障时,由于纵差动保护各侧电流互感器变比不匹配、调压变压器分接头的改变、电流互感器误差特别是暂态误差的影响,差动回路中流过数值不小的不平衡电流,为保证纵差动保护不动作,动作电流应高于区外短路故障的最大不平衡电流,这势必要影响内部短路故障时保护的灵敏度。作为纵差动保护,既要保证区外短路故障差动回路流过最大不平衡电流时不误动,又要在内部短路故障时保证一定的灵敏度。

3.

电流互感器饱和不应影响纵差动保护的正确动作。特别是在保护区外短路

12

故障时,一侧电流互感器的饱和导致差动回路电流增大,若不采取措施,很容易使差动保护误动作。此外,变压器内部短路故障时一侧电流流出以及内部短路故障时二次谐波[7]。

2.4过电流保护

变压器相间短路的保护既是变压器主保护的后备保护,又是相邻母线或线路的后备保护。根据变压器容量大小和系统短路电流的大小,变压器相间短路的后备保护可采用过电流保护、低电压起动的过电流保护和复合电压起动的过电流保护等。

2.4.1不带低电压起动的过电流保护

过电流宜用于降压变压器,过电流保护采用三相式接线,且保护应该装设在电源侧。不带低电压起动的过电流保护的原理接线图如图2-5:

图 2-5 变压器过电流保护单相原理接线图

保护的动作电流op I 应按躲过变压器可能出现的最大负荷电流max ?L I 来整定,如式(2-9):

max ?=L re

rel op I K K I (2-9) rel K —可靠系数,一般为1.2~1.3;

re K —为返回系数。 2.4.2低电压起动的过电流保护

对于升压变压器或容量较大的降压变压器,当过电流保护另名都不够时,可

以考虑并列变压器跳闸或电动机自起动等因素引起的最大可能的负荷电流,而可以按躲过变压器的额定电流来整定。这样可以降低过电流保护的整定值,从而提高保护的灵敏度。

对升压变压器,如果低电压继电器只接在一侧电压上则当另一侧发生短路时,往往不能满足灵敏度的要求。为此,可采用两套低电压继电器,分别接在变压器的高、低压侧。

当采用低电压起动的过流保护时,其动作电流按躲开变压器的额定电流整定。低电压及电器的动作电压应小于正常运行情况下的最小工作电压。双侧电源的变压器或多台并列运行的变压器,一般均采用低电压起动的过流保护或复合电压起动的过流保护。

2.5零序电流保护

在大电流接地的系统中,一般在变压器上装设接地保护。作为便宜变压器本身主保护的后备保护和相邻元件接地短路的后备保护。

当系统接地短路时,零序电流的大小和分布是与系统中变压器中性点接地的数目和位置有关。对于有一台变压器的升压变电站,变压器都采用中性点接地运行方式。对于若干台变压器并联运行的变电站,则采用一部分变压器中性点接地运行,而另一部分变压器中性点不接地运行。

2.5.1中性点直接接地变压器的零序电流保护

图2-6为中性点直接接地双绕组变压器的零序电流保护原理接线图。保护用电流互感器接于中性点引出线上。其额定电压可选择低一级,其变比根据接地短路电流的热稳定和动态稳定条件来选择。

图2-6 中性点直接接地零序电流保护原理接线图

保护灵敏系数按后备保护范围末端接地短路校验,灵敏系数不小于1.2。保

13

14

护动作时限应比引出线零序电流后备段的最大动作时限大一个阶梯时限t ?。

为了缩小接地故障的影响范围及提高后备保护动作的快速性 ,通常配置为两段式零序电流保护,每段各带两级时限。零序I 段作为变压器及母线的接地故障后备保护,其动作电流以与引出线零序电流保护I 段在灵敏系数上配合整定,以较短延时(通常为0.5S )作用于断开母联断路器或分段断路器;以较长延时(0.5+t ?)作用与断开变压器的断路器。零序∏段作为引出线接地故障的后备保护,其动作电流按上式选择,第一级延时与引出线零序后备段动作延时配合,第二级延时比第一级延时长一个阶梯时限t ?。

L op b c op I K K I ?=00 (2-13) 式(2-13)中 0op I —变压器零序过电流保护的动作电流;

c K —配合系数,取1.1~1.2; b K —零序电流分支系数;

0.op L I —引出线零序电流保护后备段的动作电流。

2.5.2中性点可能接地或不接地变压器的保护

当变电站部分变压器中性点接地运行时,如图(2-6)所示,当两台变压器并列运行时,其中T1中性点接地运行,T2中性点不接地运行。当线路上发生单相接地时,有零序电流流过QF1、QF3、QF4和QF5的四套零序过电流保护。按选择性要求应满足t 1>t 3,即应由QF3和QF4的两套保护动作于QF3和QF4跳闸。

若因某种原因造成QF3拒绝跳闸,则应由QF1的保护动作跳闸。当QF1和QF4跳闸后,系统成为中性点不接地系统,而且T2仍带着接地故障继续运行。

T2的中性点对地电压将升高为相电压,两非接地相的对地电压将升高3倍,如果在接地故障点出现间歇性电弧过电压,则对变压器T2的绝缘危害更大。如果T2为全绝缘变压器,可利用在其中性点不接地运行时出现的零序电压,实现零序过电压保护,作用于断开QF2。如果T2是分级绝缘变压器,则不允许上述出现情况,必须在切除T1之前,先将T2切除。

图 2-7 中性点接地运行图

因此,中性点有两种运行方式的变压器,需要装设两套相互配合的接地保护装置:零序过电流保护-用于中性点接地运行方式;零序过电压保护-用于中性点不接地运行方式。并且还要按下面的原则进行保护:对于分级绝缘变压器应先切除中性点不接地运行的变压器,后切除中性点接地运行的变压器;对于全绝缘变压器

应先切除中性点接地运行变压器,后切除中性点不接地运行变压器。

1.分级绝缘变压器

图2-8为分级绝缘变压器的零序过电流和零序过电压保护原理接线图。当系统发生接地故障时,中性点不接地运行变压器的TAN无零序电流,装置中的KA 不动作,零序过电流保护动作,KV因有零序电压3U0而动作。这时,与之并列运行的中性点接地运行变压器的零序过电流保护则因TAN有零序电流,KA动作并经其时间继电器1KT的瞬时闭合常开接地将正电源加到小母线WB上。此正电源经中性点不接地运行变压器的KV接点和KA的常闭接点使KT2起动零序过电压保护。在主保护拒绝动作的情况下,经过较短时限使KCO动作,先动作于中性点不接地运行变压器的两侧断路器跳闸。与之并列运行的中性点接地运行变压器的KV虽然也已动作,但由于KA已处于动作状态,其常闭接点已断开,故小母线上的正电源不能使KT2动作,其零序过电压保护不能起动,要等到整定时限较长的KT1延时接点闭合时,才动作于中性点接地运行变压器的两侧断路器跳闸。

图2-8 分级绝缘变压器的接地保护原理图

2.全绝缘变压器

图2-9为全绝缘变压器的零序过电流和零序过电压保护原理图。当发生接地故障时,中性点接地运行变压器的零序过电流保护和零序过电压保护都会起动。因KT1的整定时限较短,故在主保护拒绝动作的情况下先动作于中性点接地运行变压器的两侧断路器跳闸。与之并列运行的中性点不接地运行变压器,则只有零序过电压保护动作,其零序过电流保护并不起动作。因KT2的整定时限较长,故后切除中性点不接地运行变压器的两侧短路器。

15

16

图2-9 全绝缘变压器的接地保护装置原理接线图

2.6过负荷保护

当变压器过负荷电流三相对称,过负荷保护装置只采用一个电流继电器,经过较长的延时后发出信号。对于三绕组变压器,三侧都装有过负荷启动元件;对于双绕组变压器,过负荷保护应装设在电源侧。其原理如图2-10所示。

图2-10 变压器过负荷保护接线图

3微机保护

3.1 RCS-978系列变压器成套保护装置

RCS-978系列数字式变压器保护适用于220kV及以上电压等级,需要提供双套主保护、双套后备保护的各种接线方式的变压器。

RCS-978装置中可提供一台变压器所需要的全部电量保护,主保护和后备保护可共用同一TA。这些保护包括:稳态比率差动、差动速断、工频变化量比率差动、零序比率差动/分侧比率差动、复合电压闭锁方向过流、零序方向过流、零序过压。后备保护可以根据需要灵活配置于各侧。另外还包括以下异常告警功能:过负荷报警、起动冷却器、过载闭锁有载调压、零序电压报警、差流异常报警、零序差流异常报警、差动回路TA断线、TA异常报警和TV异常报警。

3.1性能特征

1.高性能的硬件,实时计算

采用32位微处理器+双DSP的硬件结构,三个CPU并行工作,32位微处理器负责出口逻辑,两个DSP负责保护运算。高性能的硬件保证了装置在每一个采样间隔对所有继电器进行实时计算。

2.独立的起动元件启动+保护动作出口跳闸方式,杜绝保护装置硬件故障起的误动。

3.强电磁兼容性整体面板、全封闭机箱,强弱电严格分开,取消传统背配方式,同时在软件设计上也采取相应的抗干扰措施,装置的抗干扰能力大大提高,对外的电磁辐射也满足相关标准。

4.双主、双后备保护的配置原则

真正实现一台装置完成所有的主保护后备保护功能。

5.程序模块化

模块化的程序使保护配置灵活,功能调整方便。可选择的励磁涌流判别原理,提供了二次谐波原理和波形识别原理两种方法识别励磁涌流,可经整定选择使用任一种原理,或同时使用两种原理。高灵敏度的工频变化量差动保护利用工频故障分量构成的工频变化量比率差动保护,不受负荷电流影响,灵敏度高,抗TA 饱和能力强。可靠的差动回路TA异常判断功能结合电压量对差回路的异常情况进行判别,可以判断出TA多相断线,多侧断线,短路等复杂情况。整定,留有可以配置的备用接点,方便特殊应用。

6.汉化界面显示、报告、定值等相关的内容均为简体汉字。

7.完善的事件记录功能

可记录32次故障及动作时序,8次故障波形,32次开关量变位及自检结果。

9.丰富的PC机辅助软件

基于Windows 9X/Me/2000/NT的PC机软件,使装置更易于应用。

17

18

3.2保护工作原理

主程序按固定的采样周期接受采样中断进入采样程序,在采样程序中进行模拟量采集与滤波,开关量的采集、装置硬件自检、外部异常情况检查和起动判据的计算,根据是否满足起动条件而进入正常运行程序或故障计算程序。硬件自检内容包括RAM 、E 2PROM 、跳闸出口三极管等。正常运行程序进行装置的自检,装置不正常时发告警信号,信号分两种,一种是运行异常告警,这时不闭锁装置,提醒运行人员进行相应处理;另一种为闭锁告警信号,告警同时将装置闭锁,保护退出。故障计算程序中进行各种保护的算法计算,跳闸逻辑判断。

3.2.1稳态比率差动保护

由于变比和联接组的不同,电力变压器在运行时,各侧电流大小及相位也不同。在构成继电器前必须消除这些影响。现在的数字式变压器保护装置,都利用数字的方法对变比与相移进行补偿。以下的说明的前提均为已消除了变压器各侧幅值和相位的差异。

稳态比例差动保护用来区分差流是由于内部故障还是不平衡输出(特别是外部故障时)引起。

RCS-978 采用了的稳态比率差动动作方程,如式(3-1),(3-2):

[][][]??????

???????==+++->++->+>∑∑==m i i d m i i r c d q d e e b e r d c d q d e e r b d c d q d

r d I I I I I I I K I I I I I I I K I I I I 11

11211.05.5675.01.05.02.0 (3-1) []???>+->e

r e e r d I I I I I I 8.02.18.06.0 (3-2) 其中e I 为变压器额定电流,cdqd I 为稳态比率差动起动定值,d I 为差动电流,r I 为制动电流,1b K 为比率制动系数整定值,推荐整定为0.5。

稳态比率差动保护按相判别,满足以上条件时动作。式(3-1)所描述的比率差动保护经过TA 饱和判别,TA 断线判别(可选择),励磁涌流判别后出口。它可以保证灵敏度。同时由于TA 饱和判据的引入,区外故障引起的TA 饱和不会造成误动。式(3-2)所描述的比率差动保护只经过TA 断线判别(可选择),励磁涌流判别即可出口。它利用其比率制动特性抗区外故障时TA 的暂态和稳态饱和,而在区内故障TA 饱和时能可靠正确动作。

变压器故障检测系统毕业论文

变压器故障检测系统 摘要 大型电力变压器是电力系统中重要的和昂贵的设备之一,其运行状态直接影响系统的安全性。目前,电力系统的检修体制正由定期检修向状态检修转变,而状态检修是以了解设备的运行状态为基础的。要了解设备状态,就需要对设备信息进行分析诊断。本文的工作就是在这一背景下开展的,其意义在于为电力变压器的检修提供技术支持。本文是从变压器的故障原因、类型以及分析入手,介绍了现今国外主要研究的基于变压器油中气体的故障诊断方法。 在系统的硬件部分,本文以ATmega8单片机为核心,将采集来的电压、电流、温度和气体等模拟量信号经过A/D转换器转换为数字量信号后送入单片机系统中进行处理,通过处理的结果来判断变压器是否含有故障以及故障的类型等。同时本系统也设置了电流保护、差动保护和气体保护等继电保护来防止因短路故障或不正常运行状态照成变压器的损坏,提高供电可靠性。在系统的软件部分,本文运用C语言编写软件程序,使之能够识别并处理从传感器传来的电信号,然后通过人机交互界面显示出来,近而使人能够很轻易判断故障类型。 关键词:变压器故障油气体分析单片机继电保护

Transformer malfunction detection system Abstract In the electrical power system, the large-scale power transformer is one of the important and expensive equipment, it’s running status direct influence system security. At present, the electrical power system overhaul system is transforming by the preventive maintenance to the condition overhaul, but the condition overhaul is take understands the equipment the running status as the foundation.Must understand the equipment condition, needs to carry on the analysis diagnosis to the equipment information. This article work is develops under this background, its significance lies in for the power transformer condition overhaul provides the technical support.This article is from the transformer breakdown reason, the type and the analysis obtains, introduced the nowadays domestic and foreign main research based on the transformer oil in the gas breakdown diagnosis method. Are partial in the system hardware, this article take the ATmega8 MCU as a core, use the gather simulation signal likes voltage, electric current, temperature, gas and so on, to transform after ADC for the digital quantity, and then signal sends in the MCU system to process,

变压器保护毕业设计论文

摘要 变压器作为联系不同电压等级网络的设备,是电力系统中非常重要的元件。变压器的安全运行关系到整个电力系统供电的可靠性。随着变压器电压等级和容量的提高,变压器本身也越来越贵重。因此变压器保护显得尤为重要,如何能够快速准确的切除变压器故障,使损失降低到最小,同时又要保证有足够的可靠性,就成了变压器保护的主要问题。 本文就此问题对当前变压器出现的各种故障及相应的保护原理进行了简要分析,并在此基础上对变压器保护装置进行了简单设计。该设计的硬件部分以ATmega16为系统的核心,通过对温度、电压及电流进行数据采集并送入信号处理电路,从而准确地得到控制系统可以识别的数字信号。 该设计的软件部分介绍了三种A VR单片机的应用软件,并对系统的主要流程作出了说明,讲述了单片机如何对处理得到的数字信号进行监视、判断处理,及时对各种保护装置发出声光报警或跳闸信号,进而更好地提高变压器运行的安全性和可靠性,确实做好变压器保护工作。 关键字:变压器保护微机保护单片机差动保护

Applications of Single chip in Transformer Protection Abstract As the equipment contacts various voltage grade networks, the transformer is one of the important elements in the electrical power system. The transformer running whether in security has relation to the reliability of whole electrical power system. With transformer voltage grade and capacity increase year after year, the transformer more and more expensive. Thus transformer protects bulk more important. In order to reduce the losses to the minimum and ensure there is sufficient reliability, how to clear the transformer faults quickly and accurately becomes the main problem of transformer protection. On this issue, the paper gives a brief analysis to the faults of transformer and the corresponding protection principle. And on the basis of this, carry out a simple design of transformer protective device. The design of hardware takes ATmega16 as the core, collecting the temperature, voltage and current and sending to signal processing circuit to obtain the digital signal that control system can identify accurately. The design of software introduces three kinds of application software and shows the main flow chart of the system, explains how the SCM to monitor and judge the digital signals had handled, send sound and light alarm or tripping signal to the protective device promptly, which serves to improve the operation of the transformer safely and reliability better, really do a good job on transformer protection. Keywords:transformer protection microcomputer-based protection SCM differential protection

【毕业设计】基于PLC的变频调速电梯控制系统设计与实现

1. 基于C8051F单片机直流电动机反馈控制系统的设计与研究 2. 基于单片机的嵌入式Web服务器的研究 3. MOTOROLA单片机MC68HC(8)05PV8/A内嵌EEPROM的工艺和制程方法及对良率的影响研究 4. 基于模糊控制的电阻钎焊单片机温度控制系统的研制 5. 基于MCS-51系列单片机的通用控制模块的研究 6. 基于单片机实现的供暖系统最佳启停自校正(STR)调节器 7. 单片机控制的二级倒立摆系统的研究 8. 基于增强型51系列单片机的TCP/IP协议栈的实现 9. 基于单片机的蓄电池自动监测系统 10. 基于32位嵌入式单片机系统的图像采集与处理技术的研究 11. 基于单片机的作物营养诊断专家系统的研究 12. 基于单片机的交流伺服电机运动控制系统研究与开发 13. 基于单片机的泵管内壁硬度测试仪的研制 14. 基于单片机的自动找平控制系统研究 15. 基于C8051F040单片机的嵌入式系统开发 16. 基于单片机的液压动力系统状态监测仪开发 17. 模糊Smith智能控制方法的研究及其单片机实现 18. 一种基于单片机的轴快流CO〈,2〉激光器的手持控制面板的研制 19. 基于双单片机冲床数控系统的研究 20. 基于CYGNAL单片机的在线间歇式浊度仪的研制 21. 基于单片机的喷油泵试验台控制器的研制 22. 基于单片机的软起动器的研究和设计 23. 基于单片机控制的高速快走丝电火花线切割机床短循环走丝方式研究 24. 基于单片机的机电产品控制系统开发 25. 基于PIC单片机的智能手机充电器 26. 基于单片机的实时内核设计及其应用研究 27. 基于单片机的远程抄表系统的设计与研究 28. 基于单片机的烟气二氧化硫浓度检测仪的研制 29. 基于微型光谱仪的单片机系统 30. 单片机系统软件构件开发的技术研究 31. 基于单片机的液体点滴速度自动检测仪的研制 32. 基于单片机系统的多功能温度测量仪的研制 33. 基于PIC单片机的电能采集终端的设计和应用 34. 基于单片机的光纤光栅解调仪的研制 35. 气压式线性摩擦焊机单片机控制系统的研制 36. 基于单片机的数字磁通门传感器 37. 基于单片机的旋转变压器-数字转换器的研究 38. 基于单片机的光纤Bragg光栅解调系统的研究 39. 单片机控制的便携式多功能乳腺治疗仪的研制 40. 基于C8051F020单片机的多生理信号检测仪 41. 基于单片机的电机运动控制系统设计 42. Pico专用单片机核的可测性设计研究 43. 基于MCS-51单片机的热量计 44. 基于双单片机的智能遥测微型气象站 45. MCS-51单片机构建机器人的实践研究 46. 基于单片机的轮轨力检测 47. 基于单片机的GPS定位仪的研究与实现 48. 基于单片机的电液伺服控制系统 49. 用于单片机系统的MMC卡文件系统研制 50. 基于单片机的时控和计数系统性能优化的研究 51. 基于单片机和CPLD的粗光栅位移测量系统研究 52. 单片机控制的后备式方波UPS 53. 提升高职学生单片机应用能力的探究 54. 基于单片机控制的自动低频减载装置研究 55. 基于单片机控制的水下焊接电源的研究 56. 基于单片机的多通道数据采集系统 57. 基于uPSD3234单片机的氚表面污染测量仪的研制 58. 基于单片机的红外测油仪的研究 59. 96系列单片机仿真器研究与设计 60. 基于单片机的单晶金刚石刀具刃磨设备的数控改造 61. 基于单片机的温度智能控制系统的设计与实现 62. 基于MSP430单片机的电梯门机控制器的研制 63. 基于单片机的气体测漏仪的研究 64. 基于三菱M16C/6N系列单片机的CAN/USB协议转换器 65. 基于单片机和DSP的变压器油色谱在线监测技术研究 66. 基于单片机的膛壁温度报警系统设计 67. 基于AVR单片机的低压无功补偿控制器的设计 68. 基于单片机船舶电力推进电机监测系统 69. 基于单片机网络的振动信号的采集系统 70. 基于单片机的大容量数据存储技术的应用研究 71. 基于单片机的叠图机研究与教学方法实践 72. 基于单片机嵌入式Web服务器技术的研究及实现 73. 基于AT89S52单片机的通用数据采集系统 74. 基于单片机的多道脉冲幅度分析仪研究 75. 机器人旋转电弧传感角焊缝跟踪单片机控制系统 76. 基于单片机的控制系统在PLC虚拟教学实验中的应用研究 77. 基于单片机系统的网络通信研究与应用 78. 基于PIC16F877单片机的莫尔斯码自动译码系统设计与研究 79. 基于单片机的模糊控制器在工业电阻炉上的应用研究 80. 基于双单片机冲床数控系统的研究与开发 81. 基于Cygnal单片机的μC/OS-Ⅱ的研究 82. 基于单片机的一体化智能差示扫描量热仪系统研究 83. 基于TCP/IP协议的单片机与Internet互联的研究与实现 84. 变频调速液压电梯单片机控制器的研究 85. 基于单片机γ-免疫计数器自动换样功能的研究与实现 86. 基于单片机的倒立摆控制系统设计与实现 87. 单片机嵌入式以太网防盗报警系统 88. 基于51单片机的嵌入式Internet系统的设计与实现 89. 单片机监测系统在挤压机上的应用 90. MSP430单片机在智能水表系统上的研究与应用 91. 基于单片机的嵌入式系统中TCP/IP协议栈的实现与应用 92. 单片机在高楼恒压供水系统中的应用 93. 基于ATmega16单片机的流量控制器的开发 94. 基于MSP430单片机的远程抄表系统及智能网络水表的设计 95. 基于MSP430单片机具有数据存储与回放功能的嵌入式电子血压计的设计 96. 基于单片机的氨分解率检测系统的研究与开发 97. 锅炉的单片机控制系统 98. 基于单片机控制的电磁振动式播种控制系统的设计 99. 基于单片机技术的WDR-01型聚氨酯导热系数测试仪的研制 100. 一种RISC结构8位单片机的设计与实现 101. 基于单片机的公寓用电智能管理系统设计 102. 基于单片机的温度测控系统在温室大棚中的设计与实现 103. 基于MSP430单片机的数字化超声电源的研制 104. 基于ADμC841单片机的防爆软起动综合控制器的研究 105. 基于单片机控制的井下低爆综合保护系统的设计 106. 基于单片机的空调器故障诊断系统的设计研究 107. 单片机实现的寻呼机编码器 108. 单片机实现的鲁棒MRACS及其在液压系统中的应用研究 109. 自适应控制的单片机实现方法及基上隅角瓦斯积聚处理中的应用研究 110. 基于单片机的锅炉智能控制器的设计与研究 111. 超精密机床床身隔振的单片机主动控制 112. P IC单片机在空调中的应用 113. 单片机控制力矩加载控制系统的研究 项目论证,项目可行性研究报告,可行性研究报告,项目推广,项目研究报告,项目设计,项目建议书,项目可研报告,本文档支持完整下载,支持任意编辑!选择我们,选择成功! 项目论证,项目可行性研究报告,可行性研究报告,项目推广,项目研究报告,项目设计,项目建议书,项目可研报告,本文档支持完整下载,支持任意编辑!选择我们,选择成功! 单片机论文,毕业设计,毕业论文,单片机设计,硕士论文,研究生论文,单片机研究论文,单片机设计论文,优秀毕业论文,毕业论文设计,毕业过关论文,毕业设计,毕业设计说明,毕业论文,单片机论文,基于单片机论文,毕业论文终稿,毕业论文初稿,本文档支持完整下载,支持任意编辑!本文档全网独一无二,放心使用,下载这篇文档,定会成功! 目录 摘要 ....................................................................................................................... I Abstract ................................................................................................................ II 第1章绪论 (1) 1.1课题的研究背景 (1) 1.2电梯的国内外发展状况 (2) 1.3PLC在电梯控制中的应用以及发展前景 (3)

电力变压器保护设计大学毕设论文

错误!未找到引用源。 毕业设计 设计题目电力变压器保护设计 系(部)电力工程系 学科专业供用电技术 班级 姓名 学号 指导教师 二〇一四年四月二十三日

新疆工程学院毕业设计任务书 学生姓名杨志超专业班级供用电技术11-3班设计题目电力变压器保护设计 接受任务日期2014-3.1 完成任务日期2014-4.26 指导教师张尧指导教师单位新疆工程学院 设计目标利用计算机控制技术实现对电力变压器的保护,了解三相电力系统电力变压器的保护方法,并分析电力变压器微机保护的特点,设计出保护装置的总原理图及模拟信号到数字信号的转换过程。 设计要求2014年3月1日选题 2014年3月2日--16日查找资料与搜集数据2014年3月17日--4月14日设计报告 2014年4月15日--4月26日修改报告 教 师 指导 过程记录2014年3月1日讲解各报告大纲分组 2014年3月14日解答各组所遇到的问题 2014年3月27日学生教师会面查看进度 2014年4月12日查看所有人员报告,并提出修改建议。2014年4月26日答辩 参考资料【1】贺家李宋从距.电力系统继电保护原理.第三版【2】刘介才.工厂供电设计指导. 【3】刘笙.电气工程基础. 【4】何仰赞翁增银.电力系统分析.第三版

新疆工程学院毕业设计成绩表 学生姓名杨志超专业班级供用电技术11-3班设计题目电力变压器保护设计 考核项目考核内容 满 分 评 分 一、指导教师评分 1、工作态度与纪律10 2、基本理论、基本知识、基本技能和外文水平10 3、独立工作能力、分析和解决问题能力10 4、完成任务的情况与水平(论文与实物硬件质量)10 指导教师签字:年月日 二、评阅教师评分 1、论文质量(正确性、条理性、创造性和实用性)15 2、成果技术水平(理论分析、计算、实验和实物性能)15 评阅教师签字:年月日 三、答辩小组评分 1、完成任务书所规定的内容和要求 5 2、论文与实物的质量 5 3、课题设计内容的讲述10 4、回答问题的正确性10 答辩组长签字:年月日 四、答辩小组成绩评定: 负责人签字:年月日五、答辩委员会意见: 答辩委员会主任签字:年月日

毕业设计变压器外文翻译

摘要 XF 110KV变电所是地区重要变电所,是电力系统110KV电压等级的重要部分。其设计分为电气一次部分和电气二次部分设计。 一次部分由说明书,计算书与电气工程图组成,说明书和计算书包括变电所总体分析;负荷分析与主变选择;电气主接线设计;短路电流计算;电气设备选择;配电装置选择;变电所总平设计及防雷保护设计。 二次部分由说明书,计算书与电气工程图组成。说明书和计算书包括整体概述;线路保护的整定计算;主变压器的保护整定计算;电容器的保护整定计算;母线保护和所用变保护设计。 计算书和电气工程图为附录部分。其中一次部分电气AutoCAD制图六张;二次部分为四张手工制图。 本变电所设计为毕业设计课题,以巩固大学所学知识。通过本次设计,使我对电气工程及其自动化专业的主干课程有一个较为全面,系统的掌握,增强了理论联系实际的能力,提高了工程意识,锻炼了我独立分析和解决电力工程设计问题的能力,为未来的实际工作奠定了必要的基础。 关键词: Ⅰ、变电所Ⅱ、变压器Ⅲ、继电保护

Abstract XF county 110KV substation is an important station in this distract, which is one of the extremely necessary parts of the 110KV network in electric power system. The design of the substation can be separated in two parts: primary part and secondary part of the electric design. The first part consists of specifications, computation book and Electrical engineering drawings about the design. The specifications has several parts which are General analysis of the station, Load analysis, The selection of the main transformer, Layout of configuration, Computation of short circuit; Select of electric devices, Power distribution devices, General design of substation plane and the design of thunderbolt protection. The second part also consists of specifications, computation book and electrical drawings about the design。Specifications and computation book include following section: General, The evaluation and calculate of line protection, Transformer protection, capacitor protection, Bus protection and Self-using transformer protection. Computation book, Electrical engineering drawings and catalogue of drawings are attached in the end。There are nine drawings total, in which four are prepared by hand, others are prepared by computer in which installed the software electrical AutoCAD. From other view, it also can be classified as first part and second part. This is a design of substation for graduation design test. It can strengthen our specified knowledge. Key-words: Ⅰsubstation Ⅱtransformer Ⅲ Relay protection

变压器毕业设计

编6 关于配电变压器常见问题对策研究 分院名称: 专业: 班级: 学生姓名: 校内指导教师: 企业指导教师:

目录 摘要 (4) 一、绪论 (4) 1、电压互感器的分类 (4) 2、电压互感器预防性试验项目 (4) 二、电磁型电压互感器的预防性试验 (4) (一)绝缘电阻试验 (5) 1、绝缘电阻的试验目的 (5) 2、绝缘电阻的试验设备 (5) 3、绝缘电阻的试验方法 (5) 4、绝缘电阻的试验结果 (6) 5、绝缘电阻的试验结果分析 (6) (二)介质损失角正切值测量 (6) 1、介质损失角正切值测量的试验目的 (6) 2、介质损失角正切值测量的试验设备 (6) 3、介质损失角正切值测量的试验方法及试验结果 (6) 4、介质损失角正切值测量的试验结果分析 (7) (三)直流电阻试验 (9) 1、直流电阻试验的试验目的 (9) 2、直流电阻试验的试验设备 (9) 3、直流电阻试验的试验方法及试验结果 (9) 4、直流电阻试验结果分析 (10) (四)伏安特性试验 (10) 1、伏安特性试验的试验目的 (10) 2、伏安特性试验的试验设备 (10) 3、伏安特性试验的试验方法 (10) 4、伏安特性试验的试验结果 (10) 5、伏安特性试验的试验结果分析 (10) (五) 极性和变比试验 (11) 1、极性和变比试验的试验目的 (11)

2、极性和变比试验的试验设备 (11) 3、极性和变比试验的试验方法 (11) 4、极性和变比试验的试验结果 (12) 5、极性和变比试验的试验结果分析 (12) (六) 互感器交流耐压试验 (12) 1、互感器交流耐压试验的试验目的 (12) 2、互感器交流耐压试验的试验方法及结果判断 (12) 三、电容式电压互感器 (12) 1、电容分压器介损正切值测量的试验接线 (12) 2、电容分压器介损正切值测量的试验结果 (13) 3、电容分压器介损正切值测量的试验结果分析 (13) 总结 (14) 致谢 (14) 参考文献 (15)

变压器继电保护

1.摘要 继电保护在电力的生产、输送及使用过程中都起到了至关重要的作用,为保证供电的可靠性做出了极大的贡献。其中对变压器的保护是重要的一部分,在电力的传输中变压器是至关重要的设备,完成电压等级的变换。对变压器的保护是电力系统继电保护的重要组成部分。 继电保护是保障电力设备安全和防止及限制电力系统长时间大面积停电的最基本、最重要、最有效的技术手段。继电保护装置一旦不能正确动作,就会扩大事故,酿成严重后果。因此,加强继电保护的设计和整定计算,是保证电网安全稳定运行的重要工作。实现继电保护功能的设备称为继电保护装置。本次设计是对某三绕组变压器继电保护的设计,气体保护和总差动保护组成了变压器的主保护,过电流保护是变压器的后备保护,另外还涉及了零序电流保护。设计的任务主要包括了六大部分,分别为运行方式的选择、短路电流计算、继电保护距离保护的整定计算和校验、继电保护零序电流保护的整定计算和校验、对所选择的保护装置进行综合评价。电网继电保护和安全自动装置应符合可靠性、安全性、灵敏性、速动性的要求。要结合具体条件和要求,从装置的选型、配置、整定、实验等方面采取综合措施,突出重点,统筹兼顾,妥善处理,以达到保证电网安全经济运行的目的。 关键词:继电保护变压器短路电流整定计算

2.设计基本资料 已知两台变压器均为三绕组、油浸式、强迫风冷、分级绝缘,其参数:MVA S N 5.31=,电压:kV 11/%5.225.38/%5.24110?±?±,接线:)1211//(//011--?y Y d y Y N 。短路 电压:5.10(%)=HM U ;6(%);17(%),==ML L H U U 。两台变压器同时运行,110kV 侧的中性点只有一台接地;若只有一台运行,则运行变压器中性点必须接地,其余参数如图所示。(图中的L1的参数改为L1=20km ) 电气主接线图 图2.1 电气主接线图 当电力系统发生故障或异常工况时,在可能实现的最短时间和最小区域内,自动将故障设备从系统中切除,或发出信号由值班人员消除异常工况根源,以减轻或避免设备的损坏和对相邻地区供电的影响。 ~

电力变压器论文

电力变压器论文 集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]

福建电力职业技术学院 毕业论文 题目:浅谈变压器抗短路能力 提高的方法 专业:发电厂及电力系统 年级:2015级大专函授 学生姓名:王贵元 学号: 指导教师:黄朵 成人教育中心 2017年7月21日 目录 8 浅谈变压器抗短路能力提高的方法 摘要

2015年3月7日,石狮鸿山消防中队接到群众报警,称位于石狮锦尚工业区附近一室外变压器突然着火。接到报警后,该中队立即出动2辆消防车赶赴现场扑救,十几分钟后火灾被扑灭。目前,起火原因正在进一步调查中。2017年2月14日凌晨03时16分许,莆田荔城拱辰中队接到报警称:在荔城区拱辰街道幸福小区对面变压器着火,中队接到警后迅速赶赴现场。经侦查和询问得知变压器已断电,指挥员迅速下令警戒一组拉好警戒,防止无关人员进入;灭火一组利用干粉灭火器进行火势控制;灭火二组从大力车单干线出一把水枪对明火进行扑灭。为了防止复燃,消防官兵们又利用火钩、锄头等工具进行残火、余火的消灭。电力变压器是传输、分配电能的枢纽,是电力网的核心元件,其可靠运行不仅关系到广大用户的电能质量,也关系到整个系统的安全程度。电力变压器的可靠性由其健康状况决定,不仅取决于设计制造、结构材料,也与检修维护密切相关。本文就电力系统中变压器抗短路能力的提高的问题进行了探讨。 关键词:电力变压器短路电流策略 1 电力变压器概述 电子电力变压器主要是采用电力电子技术实现的,其实现过程所示。其基本原理为在原方将工频信号通过电力电子电路转化为高频信号,即升频,然后通过中间高频隔离变压器耦合到副方,再还原成工频信号,即降频。通过采用适当的控制方案来控制电力电子装置的工作,从而将一种频率、电压、波形的电能变换为另一种频率、电压、波形的电能。由于中间隔离变压器的体积取决于铁芯材质的饱和磁通密度以及铁芯和绕组的最大允许温升,而饱和磁通密度与工作频率成反比,这样提高其工作频率就可提高铁芯的利用率,从而减小变压器的体积并提高其整体效率。 2 变压器短路实验的分析 中国正在构建安全可靠、经济高效的电网,未来将形成由四个同步电网(“三华”电网、东北电网、西北电网和南方电网)异步联接构成的全国互联电网。特别是全国互

电力变压器保护毕业设计

毕业设计 设计题目电力变压器保护设计系(部)电力工程系 学科专业供用电技术 班级 姓名 学号 指导教师 二〇一六年四月二十三日

工程学院毕业设计任务书

工程学院毕业设计成绩表

摘要 电力变压器是电力系统中不可缺少的重要设备,他的故障给供电可靠性和系统的正常运行带来严重的后果,同时大容量变压器也是非常贵重的元件,因此,必须根据变压器的容量和重要程度装设性能良好的、动作可靠的保护元件。 本文是笔者在阅读了大量专业资料、咨询了很多的专家和老师的前提下,按照指导老师所给的原始资料,通过系统的原理分析、精确的整定计算。做出的一套电力变压器保护方案。 关键词电力系统故障,变压器,继电保护,整定计算

ABSTRACT The transformer is the essential equipment in the electrical power system.Its breakdown might bring the serious influence to the power supply reliability and the system safely operation.At the same time the large capacity power transformer is the extremely precious equipment.Therefore.We must install the reliable relay protection installment according to the transformer capacity rankand the important degree. The article is about the relay protection of the transformer.I had consulted many experts and teachers before I finished the article.At the same time the massive specialized materials was consulted by me. It is not diffcult to understand the logical organiztion of the article for readers.And the article will bring the usful help to the comrades who is working as a electrical engineer. Keywords Power System Fault Condition, Power Transformer, Relay

变压器保护差动保护毕业设计

变压器保护差动保护毕业 设计 Prepared on 22 November 2020

目录

变压器主保护——差动保护设计 第一章:变压器保护概述 随着电力系统的出现,继电保护技术就相伴而生。与当代新兴科学技术相比,电力系统继电保护是相当古老了,然而电力系统继电保护作为一门综合性科学又总是充满青春活力,处于蓬勃发展中。之所以如此,是因为它特别注重理论与实践并重,与基础理论、新理论、新技术的发展紧密联系在一起,同时也与电力系统的运行和发展息息相关。电力系统自身的发展是促进继电保护发展的内因,是继电保护发展的源泉和动力,而相关新理论、新技术、新材料的发展是促进继电保护发展的外因,是电力系统继电保护发展的客观条件和技术基础。 国内外变压器差动保护研究发展现状 随着超高压、远距离输电在电力系统中的应用越来越广泛,大容量变压器的应用日益增多,对变压器保护的可靠性、快速性提出了更高的要求。电力变压器在空载合闸投入电网或外部故障切除后电压恢复时会产生数值很大的励磁涌流,同时波形严重畸变,容易造成差动保护误动作,直接影响到变压器保护的可靠性。差动保护一直是电力变压器的主保护,其理论根据是基尔霍夫电流定律,对于纯电路设备,差动保护无懈可击。但是对于变压器而言,由于内部磁路的联系,本质上不再满足基尔霍夫电流定律,变压器励磁电流成了差动保护不平衡电流的一种来源。 当前变压器差动保护的主要矛盾仍然集中在励磁涌流和内部故障电流的鉴别上。近十多年来,国内外许多学者致力于变压器继电保护的研究,提出了不少判别励磁涌流的新原理和新方法。 课题内容及意义 根据以上的分析及对目前应解决问题的研究,得到本课题所作研究的目的:运用小波原理,探求新的励磁涌流与内部故障判别方法。其意义在于通过研究新判据,尝试以小波分析方案完善目前的励磁涌流判据,提高差动保护的可靠性。 设计电站的原始资料(地区电网系统接线图) 第二章:变压器的继电保护介绍

某电力变压器继电保护设计(继电保护)

1 继电保护相关理论知识 1.1 继电保护的概述 研究电力系统故障和危及安全运行的异常工况,以探讨其对策的反事故自动化措施。因在其发展过程中曾主要用有触点的继电器来保护电力系统及其元件(发电机、变压器、输电线路等),使之免遭损害,所以沿称继电保护。 1.2.1 继电保护的任务 当电力系统发生故障或异常工况时,在可能实现的最短时间和最小区域内,自动将故障设备从系统中切除,或发出信号由值班人员消除异常工况根源,以减轻或避免设备的损坏和对相邻地区供电的影响。 1.2.2继电保护基本原理和保护装置的组成 继电保护装置的作用是起到反事故的自动装置的作用,必须正确地区分“正常”与“不正常”运行状态、被保护元件的“外部故障”与“内部故障”,以实现继电保护的功能。因此,通过检测各种状态下被保护元件所反映的各种物理量的变化并予以鉴别。依据反映的物理量的不同,保护装置可以构成下述各种原理的保护:(1)反映电气量的保护 电力系统发生故障时,通常伴有电流增大、电压降低以及电流与电压的比值(阻抗)和它们之间的相位角改变等现象。因此,在被保护元件的一端装没的种种变换器可以检测、比较并鉴别出发生故障时这些基本参数与正常运行时的差别.就可以构成各种不同原理的继电保护装置。 例如:反映电流增大构成过电流保护; 反映电压降低(或升高)构成低电压(或过电压)保护; 反映电流与电压间的相位角变化构成方向保护; 反映电压与电流的比值的变化构成距离保护。 除此以外.还可根据在被保护元件内部和外部短路时,被保护元件两端电流相位或功率方向的差别,分别构成差动保护、高频保护等。 同理,由于序分量保护灵敏度高,也得到广泛应用。 新出现的反映故障分量、突变量以及自适应原理的保护也在应用中。

(完整版)22万变电站主变压器保护设计毕业设计

以下文档格式全部为word格式,下载后您可以任意修改编辑。 宜宾职业技术学院 毕业论文(设计) 基于单片机的受控正弦信号发生器设计系部自动控制工程系 专业名称发电厂及其电力系统 班级电力1091 班 姓名刘超 学号 指导教师王瑞2011年9月1日

22万变电站主变压器保护 摘要:变压器是电力系统的重要组成部分。它的正常与否直接关系到电力系统的安全和经济运行。本次设计是变压器继电保护的初步设计。根据短路计算的结果,选择了短路器,隔离开关,母线电气设备。 为了保护变压器内部和引出线套管的故障,选择了纵联差动保护作为变压器的主保护。影响差动保护可靠性是电路中由于各种原因产生的不平衡电流。通过计算,选择躲过外部短路时产生的最大不平衡电流作为纵联差动保护的动作电流。本设计还选择了瓦斯保护作为变压器油箱内发生故障时的主保护。定时限过电流保护作为变压器纵联差动保护的后备保护。本设计要保护的变压器是处在中性点直接接地的电力系统中,所以采用零序过电流作为变压器接地的后备保护。在本次设计中,我还选择了过负荷保护作为变压器的后备保护并对以上保护进行了整定。目录 第1章绪论........................................................2 1.1 变压器保护的历史及现状.......................................2 1.2变压器保护的发展趋势..........................................3 第2章220KV主变压器微机型保护的双重化的探讨.......................4 2.1变压器保护双重化的意义........................................5 2.2双主双后主变压器保护电流回路接入方式..........................6

电气工程专业毕业设计论文-基于ATmega16单片机变压器保护装置设计

大学 毕业设计 题目基于ATmega16单片机变压器保护装置设计专业 班级 学生 学号 指导教师 二〇一四年五月五日

摘要 变压器作为联系不同电压等级网络的设备,是电力系统中非常重要的元件。变压器的安全运行关系到整个电力系统供电的可靠性。随着变压器电压等级和容量的提高,变压器本身也越来越贵重。因此变压器保护显得尤为重要,如何能够快速准确的切除变压器故障,使损失降低到最小,同时又要保证有足够的可靠性,就成了变压器保护的主要问题。 本文就此问题对当前变压器出现的各种故障及相应的保护原理进行了简要分析,并在此基础上对变压器保护装置进行了简单设计。该设计的硬件部分以ATmega16为系统的核心,通过对温度、电压及电流进行数据采集并送入信号处理电路,从而准确地得到控制系统可以识别的数字信号。 该设计的软件部分介绍了三种A VR单片机的应用软件,并对系统的主要流程作出了说明,讲述了单片机如何对处理得到的数字信号进行监视、判断处理,及时对各种保护装置发出声光报警或跳闸信号,进而更好地提高变压器运行的安全性和可靠性,确实做好变压器保护工作。 关键字:变压器保护微机保护单片机差动保护 I

Applications of Single chip in Transformer Protection Abstract As the equipment contacts various voltage grade networks, the transformer is one of the important elements in the electrical power system. The transformer running whether in security has relation to the reliability of whole electrical power system. With transformer voltage grade and capacity increase year after year, the transformer more and more expensive. Thus transformer protects bulk more important. In order to reduce the losses to the minimum and ensure there is sufficient reliability, how to clear the transformer faults quickly and accurately becomes the main problem of transformer protection. On this issue, the paper gives a brief analysis to the faults of transformer and the corresponding protection principle. And on the basis of this, carry out a simple design of transformer protective device. The design of hardware takes ATmega16 as the core, collecting the temperature, voltage and current and sending to signal processing circuit to obtain the digital signal that control system can identify accurately. The design of software introduces three kinds of application software and shows the main flow chart of the system, explains how the SCM to monitor and judge the digital signals had handled, send sound and light alarm or tripping signal to the protective device promptly, which serves to improve the operation of the transformer safely and reliability better, really do a good job on transformer protection. Keywords:transformer protection microcomputer-based protection SCM differential protection II

相关主题
文本预览
相关文档 最新文档