当前位置:文档之家› 差错控制编码

差错控制编码

差错控制编码
差错控制编码

差错控制编码的设计与仿真

学生:陈琪,长江大学文理学院

指导教师:黄金平,长江大学电信学院

一、题目来源

来源于通信过程中所遇到的实际的问题

二、研究目的和意义

通信系统必须具备发现(即检测)差错的能力,并采取措施纠正之,使差错控制在所能允许的尽可能小的范围内,这就是差错控制过程,也是数据链路层的主要功能之一。

接收方通过对差错编码(奇偶校验码或CRC码)的检查,可以判定一帧在传输过程中是否发生了差错。一旦发现差错,一般可以采用反馈重发的方法来纠正。这就要求接受方收完一帧后,向发送方反柜一个接收是否正确的信息,使发送方据此做出是否需要重新发送的决定。发送方仅当收到接收方以正确接收的反馈信号后才能认为该帧已经正确发送完毕,否则需要重发直至正确为止。

物理信道的突发噪声可能完全“淹没”一帧,即使得整个数据帧或反馈信息帧丢失,这将导致发送方永远收不到接受方发来的信息,从而使传输过程停滞。为了避免出现这种情况,通常引入计时器(Timer)来限定接收方发回方反柜消息的时间间隔,当发送方发送一帧的同时也启动计时器,若在限定时间间隔内未能收到接收方的反柜信息,即计时器超时(Timeout),则可认为传出的帧以出错或丢失,就要重新发送。由于同一帧数据可能被重复发送多次,就可能引起接收方多次收到同一帧并将其递交给网络层的危险。为了防止防止发生这种危险,可以采用对发送的帧编号的方法,即赋予每帧一个序号,从而使接收方能从该序号来区分是新发送来的帧还是已经接受但又重发来的帧,以此来确定要不要将接收到的帧递交给网络层。数据链路层通过使用计数器和序号来保证每帧最终都能被正确地递交给目标网络层一次。

三、阅读的主要参考文献及资料名称

参考资料:

[1] 青松等,《数字通信系统的System View仿真与实验分析》,北京:北京航空航天大学出版社,2005

[2] 曹志刚,《现代通信原理》,北京:清华大学出版社,2002

[3] 吴伯修等,《信息论与编码》,北京:高等教育出版社,2003

[4] 康华光,《数字电子技术》,武汉:高等教育出版社,2005

[5] 晏坚,《差错控制编码》,北京:机械工业出版社,2005

[6] 樊昌信,曹丽娜,《通信原理》,长沙:国防工业出版社,2006

[7] 陈光军,《数据通信技术与应用》,北京:北京邮电大学出版社,2005

[8] 周贤伟,《差错控制编码与安全》,长沙:国防工业出版社,2006

四.国内外现状和发展趋势与研究的主攻方向

差错控制随着差错控制编码理论的完善和数字电路技术的飞速发展,信道编码已经成功地应用于各种通信系统中,并且在计算机、磁记录与各种存储器中也得到日益广泛的应用。差错控制编码的基本实现方法是在发送端将被传输的信息附上一些监督码元,这些多余的码元与信息码元之间以某种确定的规则相互关联(约束)。接收端按照既定的规则校验信息码元与监督码元之间的关系,一旦传输发生差错,则信息码元与监督码元的关系就受到破坏,从而接收端可以发现错误乃至纠正错误。因此,研究各种编码和译码方法是差错控制编码所要解决的问题。编码涉及到的内容也比较广泛,前向纠错编码(FEC)、线性分组码(汉明码、循环码)、理德-所罗门码(RS码)、BCH码、FIRE码、交织码,卷积码、TCM编码、Turbo码等都是差错控制编码的研究范畴。

五.主要研究内容、需重点研究的关键问题及解决思路5.1 主要研究内容

信道错误模式

传输信道中常见的错误有以下三种:

随机错误:错误的出现是随机的,一般而言错误出现的位置是随机分布的,即各个码元是否发生错误是互相独立的,通常不是成片地出现错误。这种情况一般是由信道的加性随机噪声引起的。因此,一般将具有此特性的信道称为随机信道。

突发错误:错误的的出现是一连串出现的。通常在一个突发错误持续时间内,开头和末尾的码元总是错的,中间的某些码元可能错也可能对,但错误的码元相对较多。这种情况如移动通信中信号在某一段时间内发生衰落,造成一串差错;汽车发动时电火花干扰造成的错误;光盘上的一条划痕等等。这样的信道我们称之为突发信道。

混合错误:既有突发错误又有随机差错的情况。这种信道称之为混合信道。

差错控制方式

检错重发(ARQ)

检错重发:在接收端根据编码规则进行检查,如果发现规则被破坏,则通过反向信道要求发送端重新发送,直到接收端检查无误为止。ARQ系统具有各种不同的重发机制:如可以停发等候重发、X.25协议的滑动窗口选择重发等。虽然ARQ系统需要反馈信道,效率较低,但是能达到很好的性能。

前向纠错(FEC)

前向纠错:发送端发送能纠正错误的编码,在接收端根据接收到的码和编码规则,能自动纠正传输中的错误。其特点是不需要反馈信道,实时性好,但是随着纠错能力的提高,编译码设备相对复杂。

混合方式(HEC)

结合前向纠错和ARQ的系统,在纠错能力范围内,自动纠正错误,超出纠错范围则要求发送端重新发送。它是一种折衷的方案。

差错控制编码的分类

差错控制编码按照差错控制的不同方式, 可分为检错码、纠错码和纠删码等; 按照误码产生的原因不同, 可分为纠正随机错误码与纠正突发性错误码; 按照信息码与附加的监督码元之间的检验关系, 可分为线性码与非线性码; 按照信息码元与附加监督码元之间的约束方式不同, 可以分为分组码与卷积码; 按照信息码元在编码之后是否保持原来的形式不变, 可分为系统码与非系统码。在实际运用中往往是多种方式的编码方式混合, 如线性分组码就是信息码元与附加的监督码元之间的检验关系为线性, 约束方式为分组形式。

差错控制编码的基本原理:

我们以重复编码来简单地阐述差错编码在相同的信噪比情况下为什么会获得更好的系统性能。假设我们发送的信息0、1(等概率出现),采用2PSK方式,我们知道最佳接收的系统比特误码率为:

现假设(即平均接收1000个中错一个)。如果我们将信息0编码成00,

信息1编码成11,仍然采用上述系统,则在接收端可以作以下判断:如果发送的是00,而收到的是01或10,此时我们知道发生了差错,要求发送端重新传输,直到传送正确为止,只有当收到11时,我们才错误地认为当前发送的是1。因此在这种情况下发生译码错误的概率是;同理,如果发送的是11,只有收到00时才

可能发生错误译码,因此在这种情况下发生译码错误的概率也是。所以采用

00、11编码的系统比特误码率为,即10-6。系统的性能将明显提高。

在上例中,将0、1采用00000、11111编码,在接收端我们用如下的译码方法,每收到5个比特译码一次,采用大数判决,即5个比特中0的个数大于1的个数则译码成0,反之译码成1;不采用ARQ方式。那么,我们看到这种编码方式就变成了纠错编码。由于传输错误当接收端收到11000,10100,10010,10001,01100,01 010,01001,00110,00101,00011中的任何一种时,都可以自动纠正成00000。

采用动态系统仿真软件System view设计编码电路

System view 是美国Elanix 公司研制的一个动态系统设计和分析的可视化软件, 提供有开发电子系统的模拟和数字工具。包括一整套可选择的能够增强核心库功能的特殊用途的图符库, 如: 通讯库、DSP 库、逻辑库、信号源库、射频/ 模拟库、用户代码库及自动程序生成库等。此软件的主要功能有: 动态系统仿真、信号频谱和功率谱分析、连续系统的Laplace 分析、离散系统的Z域分析、模拟和数字滤波器的设计等。用System view 软件进行系统仿真的工作大致分三步:

①从System view 图符库中调取功能图符(System view 提供有几百种信号源、接受端操作符和功能块) 并将其拖拽到设计窗口 (所有图符均可

通过定义窗口来定义参数) ;

②在设计窗口中按照教学或开发需要连接各个图符, 创建各种系统 (线性/ 非线性、离散/ 连续、模拟/ 数字以及混合模式系统) 生成系统文件 ( 3 1svu) ;

③对创建完成的系统进行仿真运行, 并将运行结果进行保存以供用户查询或调试。

5.2需重点研究的关键问题

循环码是线性分组码中最重要的一种子类,是目前研究得比较成熟的一类码。循环码具有许多特殊的代数性质,这些性质有助于按照要求的纠错能力系统地构造这类码,并且简化译码算法,并且目前发现的大部分线性码与循环码有密切关系。循环码还有易于实现的特点,很容易用带反馈的移位寄存器实现其硬件。正是由于循环码具有码的代数结构清晰、性能较好、编译码简单和易于实现的特点,因此在目前的计算机纠错系统中所使用的线性分组码几乎都是循环码。它不仅可以用于纠正独立的随机错误,而且也可以用于纠正突发错误。

所以循环码的相关知识将是本次研究过程中的关键问题。

5.3解决思路

循环码具有以下一些性质:

1、封闭性(线性性)。任何许用码组的线性和还是许用码组。由此性质可以知:线性码都包含全零码。且最小码重就是最小码距。

2、循环性。任何许用的码组循环移位后的码组还是许用码组。

循环码的生成多项式

循环码可以用多项式来表示。为了用代数理论的方法研究循环码的特性,我们经常将循环码表示成码多项式的形式:通常将码的码多项式定义如下:

其中,D、。

这里,GF(2)表示2元域,在GF(2)内只有两种元素0,1,且0、1满足如下的加法和乘法运算规则:1+1=0、1+0=1、0+1=1、0+0=0;1×1=1、1×0=0、0×0=0、0

×1=0。例如(1011000)码的多项式表示为。

循环码完全由其码长n和生成多项式构成。其中g(D)是一个能除尽的n-k

阶多项式。阶数低于n并能被g(D)除尽的一组多项式就构成一个(n,k)循环码。也就是说,阶数小于n-1且能被g(D)除尽的每个多项式都是循环码的许用码组。

六.完成毕业设计所必须具备的工作条件及解决的办法

[1] System View仿真软件及相关资料;

[2] 《信息论与编码》,《数字电路》的相关知识;

[3] PC机一台

[4] 上机时数60学时

七.工作的主要阶段、进度与时间安排

第一阶段:2009年12月10日-2010年1月20日,了解课题内容,完成开题报告;

第二阶段:2010年1月15日-2010年2月15日,系统了解差错控制编码的知识;

第三阶段:2010年2月16日-2010年3月10日,设计编码电路;

第四阶段:2010年3月11日-2010年4月15日,测试运行所设计编码电路功能;

第五阶段:2010年6月1日-2010年6月15日,写论文。

八.指导老师审核意见

签字:

年月日

5 差错控制与信道编码

第五章 差错控制与信道编码
内容简介
学习要求
学习目录
结束放映
作者:蒋占军

内容简介
——差错控制就是通过某种方法,发现并纠正数据传输中出现的 错误。差错控制技术是提高数据传输可靠性的重要手段之一,现 代数据通信中使用的差错控制方式大都是基于信道编码技术来实 现的,本章对差错控制的基本概念以及常用的信道编码方案作了 比较详细的理论述。
返回
结束

学习要求
1. 理解差错控制的基本概念及其原理等; 2. 掌握信道编码的基本原理; 3. 了解常用检错码的特性; 4. 掌握线性分组码的一般特性; 5. 掌握汉明码以及循环码的编译码及其实现原理; 6. 了解卷积码的基本概念。
返回
结束

学习目录
5.1 概述 5.2 常用的简单信道编码 5.3 线性分组码 5.4 卷积码
返回
结束

5.1 概 述
本节内容提要:
——差错控制是数据通信系统中提高传输可靠性,降低系统传输误 码率的有效措施 。本节将介绍差错控制和信道编码的基本原理、 差错控制的实现方式等内容。 5.1.1 差错控制 5.1.2 信道编码 5.1.3 基于信道编码的差错控制方式
上一页
下一页

5.1.1 差错控制
差错控制 ——通过某种方法,发现并纠正传输中出现的错误。 香农信道编码定理 ——在具有确定信道容量的有扰信道中,若以低于信道容量的速率传输 数据,则存在某种编码方案,可以使传输的误码率足够小。 基于信道编码的差错控制 ——在发送端根据一定的规则,在数据序列中按照一定的规则附加一 些监督信息,接收端根据监督信息进行检错或者纠错。
上一页
下一页

差错控制编码

第九章差错控制编码 9.1引言 一、信源编码与信道编码 数字通信中,根据不同的目的,编码分为信源编码与信道编码二大类。 信源编码~ 提高数字信号的有效性,如,PCM编码,M 编码,图象数据压缩编码等。 信道编码~ 提高传输的可靠性,又称抗干扰编码,纠错编码。 由于数字通信传输过程中,受到干扰,乘性干扰引起的码间干扰,可用均衡办法解决。 加性干扰解决的办法有:选择调制解码,提高发射功率。 如果上述措施难以满足要求,则要考虑本章讨论的信道编码技术,对误码(可能或已经出现)进行差错控制。 从差错控制角度看:信道分三类:(信道编码技术) ①随机信道:由加性白噪声引起的误码,错码是随机的,错码间统计独立。 ②突发信道:错码成串,由脉冲噪声干扰引起。 ③混合信道:既存在随机错误,又存在突发错码,那一种都不能忽略不计的信道。 信道编码(差错控制编码)是使不带规律性的原始数字信号,带上规律性(或加强规律性,或规律性不强)的数字信号,信道译码器则利用这些规律性来鉴别是否发生错误,或进而纠错。 需要说明的是信道编码是用增加数码,增加冗余来提高抗干扰能力。二:差错控制的工作方式 (1) 检错重发 (2) 前向纠错,不要反向信道 (3) 反馈校验法,双向信道 这三种差错控制的工作方式见下图所示: 检错重发 前向纠错 反馈校验法 检错误 判决信号 纠错码 信息信号 发 发 收 信息信号 152

153 9.2 纠错编码的基本原理 举例说明纠错编码的基本原理。 用三位二进制编码表示8种不同天气。 ???????? ?????雹 雾霜雪雨阴云 晴1 11 011101001 110010100000???→?种 许使用种中只准 48码组许用码组,其它为禁用雨阴云晴 0 11101110000 ??? ? ??? 许用码组中,只要错一位(不管哪位错),就是禁用码组,故这种编码能 发现任何一位出错,但不能发现的二位出错,二位出错后又产生许用码。 上述这种编码只能检测错误,不能纠正错误。 因为晴雨阴错一位,都变成1 0 0。 要想纠错,可以把8种组合(3位编码)中,只取2种为许用码,其它6种为禁用码。 例如: 0 0 0 晴 1 1 1 雨 这时,接收端能检测两个以下的错误,或者能纠正一个错码。 例:收到禁用码组1 0 0时,如认为只有一位错,则可判断此错码发生在第1位,从而纠正为0 0 0(晴),因为1 1 1(雨)发生任何一个错误都不会变成1 0 0。 若上述接收码组种的错码数认为不超过二个,则存在两种可能性: 位错) (位错)(21111000/变成(1 1 1)或(1 0 0), 因为只能检出错误,但不能纠正。 一:分组码,码重,码距 (见樊书P282 表9-1) 将码组分段:分成信息位段和监督位段,称为分组码,记为(n, k ) n ~ 编码组的总位数,简称码长(码组的长度) k ~ 每组二进制信息码元数目,(信息位段) r k n =- ~ 监督码元数目,(监督位段)(见樊书P282,图9-2) 一组码共计8种

第九章差错控制编码(信道编码)

第九章差错控制编码(信道编码) 9.1引言 一、信源编码与信道编码 数字通信中,根据不同的目的,编码分为信源编码与信道编码二大类。 信源编码~ 提高数字信号的有效性,如,PCM编码,M 编码,图象数据压缩编码等。 信道编码~ 提高传输的可靠性,又称抗干扰编码,纠错编码。 由于数字通信传输过程中,受到干扰,乘性干扰引起的码间干扰,可用均衡办法解决。 加性干扰解决的办法有:选择调制解码,提高发射功率。 如果上述措施难以满足要求,则要考虑本章讨论的信道编码技术,对误码(可能或已经出现)进行差错控制。 从差错控制角度看:信道分三类:(信道编码技术) ①随机信道:由加性白噪声引起的误码,错码是随机的,错码间统计独立。 ②突发信道:错码成串,由脉冲噪声干扰引起。 ③混合信道:既存在随机错误,又存在突发错码,那一种都不能忽略不计的信道。 信道编码(差错控制编码)是使不带规律性的原始数字信号,带上规律性(或加强规律性,或规律性不强)的数字信号,信道译码器则利用这些规律性来鉴别是否发生错误,或进而纠错。 需要说明的是信道编码是用增加数码,增加冗余来提高抗干扰能力。二:差错控制的工作方式 (1) 检错重发 (2) 前向纠错,不要反向信道 (3) 反馈校验法,双向信道 这三种差错控制的工作方式见下图所示: 检错重发 前向纠错 反馈校验法 检错误 判决信号 纠错码 信息信号 发 发 收 信息信号

9.2 纠错编码的基本原理 举例说明纠错编码的基本原理。 用三位二进制编码表示8种不同天气。 ???????? ?????雹 雾 霜 雪 雨阴 云 晴111 0111 01001 11001010 0000???→ ?种 许使用种中只准 48码组许用码组,其它为禁用雨阴云晴 011101110000??? ? ??? 许用码组中,只要错一位(不管哪位错),就是禁用码组,故这种编码能发现任何一位出错,但不能发现的二位出错,二位出错后又产生许用码。 上述这种编码只能检测错误,不能纠正错误。 因为晴雨阴错一位,都变成1 0 0。 要想纠错,可以把8种组合(3位编码)中,只取2种为许用码,其它6种为禁用码。 例如: 0 0 0 晴 1 1 1 雨 这时,接收端能检测两个以下的错误,或者能纠正一个错码。 例:收到禁用码组1 0 0时,如认为只有一位错,则可判断此错码发生在第1位,从而纠正为0 0 0(晴),因为1 1 1(雨)发生任何一个错误都不会变成1 0 0。 若上述接收码组种的错码数认为不超过二个,则存在两种可能性: 位错) (位错)(21111000/变成100 因为只能检出错误,但不能纠正。 一:分组码,码重,码距 (见樊书P282 表9-1) 将码组分段:分成信息位段和监督位段,称为分组码,记为(n, k ) n ~ 编码组的总位数,简称码长(码组的长度) k ~ 每组二进制信息码元数目,(信息位段) r k n =- ~ 监督码元数目,(监督位段)(见樊书P282,图9-2) 一组码共计8种

设计报告--008---差错控制编码的SIMULINK建模与仿真

差错控制编码的SIMULINK建模与仿真一.线性分组码编码系统建模 Reed-Solomon码编码系统框图: 信源模块的系统框图: 信宿模块的系统框图: 1.循环冗余码编码系统建模与仿真 CRC-16编码系统框图:

信源模块的系统框图: 信宿模块的系统框图: 信号比较模块系统款图: M文件如下: x=[0.00001 0.0001 0.001 0.005 0.01 0.02 0.03 0.04 0.05 0.1 0.2 0.3 0.4 0.5]; y=x; ProtectedData=48; FrameInterval=0.010; BitPeriod=FrameInterval/ProtectedData;

ProtectedDataWithCRC=ProtectedData+16; FrameLength=480; SimulationTime=1000; TotalFrameNumber=SimulationTime/FrameInterval; for i=1:length(x) ChannelErrorRate=x(i); sim('project_2'); y(i)=MissedFrameNumber(length(MissedFrameNumber))/TotalFrameNumber; end loglog(x,y); 仿真结果:没有达到预想的结果,还有待改进。 二.卷积码编码系统建模与仿真: 1)卷积码编码系统在二进制对称信道中的性能 系统框图: M文件如下: x=[0.01 0.02 0.03 0.04 0.05 0.1 0.15 0.2 0.25 0.3 0.4 0.5];%x表示二进制对称信道的误比特率的各个取值 y=x;%y表示卷积编码信号的误码率,它的长度与x的长度相等 for i=1:length(x)%对x中的每个元素依次执行仿真

差错控制编码

2.差错控制编码 2.1. 引言 什么是差错控制编码(纠错编码、信道编码)? 为什么要引入差错控制编码? 差错控制编码的3种方式? 本章主要讲述:前向纠错编码(FEC)、常用的简单编码、线性分组码(汉明码、循环码)、简单介绍RS码*、BCH码*、FIRE码*、交织码,卷积码极其译码、TCM编码*。 一、什么是差错控制编码及为什么引入差错控制编码? 在实际信道上传输数字信号时,由于信道传输特性不理想及加性噪声的影响,接收 端所收到的数字信号不可避免地会发生错误。为了在已知信噪比情况下达到一定的 误比特率指标,首先应该合理设计基带信号,选择调制解调方式,采用时域、频域 均衡,使误比特率尽可能降低。但若误比特率仍不能满足要求,则必须采用信道编 码(即差错控制编码),将误比特率进一步降低,以满足系统指标要求。 随着差错控制编码理论的完善和数字电路技术的发展,信道编码已经成功地应用于 各种通信系统中,并且在计算机、磁记录与存储中也得到日益广泛的应用。 差错控制编码的基本思路:在发送端将被传输的信息附上一些监督码元,这些多余 的码元与信息码元之间以某种确定的规则相互关联(约束)。接收端按照既定的规 则校验信息码元与监督码元之间的关系,一旦传输发生差错,则信息码元与监督码 元的关系就受到破坏,从而接收端可以发现错误乃至纠正错误。 研究各种编码和译码方法是差错控制编码所要解决的问题。 二、差错控制的三种方式 1、检错重发(ARQ) 检错重发:在接收端根据编码规则进行检查,如果发现规则被破坏,则通过反向 信道要求发送端重新发送,直到接收端检查无误为止。 ARQ系统具有各种不同的重发机制:如可以停发等候重发、X.25协议的滑动窗 口选择重发等。 ARQ系统需要反馈信道,效率较低,但是能达到很好的性能。 2、前向纠错 前向纠错(FEC):发送端发送能纠正错误的编码,在接收端根据接收到的码和 编码规则,能自动纠正传输中的错误。 不需要反馈信道,实时性好,但是随着纠错能力的提高,编译码设备复杂。

第七章 差错控制编码 习题解答

8-1 某码字的集合为 00000000 1000111 0101011 0011101 1101100 1011010 0110110 1110001 求:(1)该码字集合的最小汉明距离;(2)根据最小汉明距离确定其检错和纠错能力。 解: (1)通过两两比较每个码字,可知该码字集的最小汉明距离为4; (2)因为检错能力与最小码距的关系为:1min +=e d ,所以检错能力为 3141min =-=-=d e 又因为纠错能力与最小码距的关系为:12min +=t d ,所以纠错能力为 5.12 1 421min =-=-= d t 取整后可得,纠错能力为1=t 。 8-2 已知二进制对称信道的差错率为2 10-=P 。(1)(5,1)重复码通过此信道传输,不可纠正错误的出现概率是多少?(2)(4,3)偶校验码通过此信道传输,不可检出错误的出现概率是多少? 解: (1)当(5,1)重复码发生3个或3个以上的错误时不可纠正,此时不可纠正的错误出现的概率为 ( )()()60 5 551 4452 3351085.9111-?≈-+-+-=P P C P P C P P C P e (2)当(4,3)偶校验码发生偶数个错误时这些错误不可检出,这些错误出现的概率 为 ( )()40 4 442 2241088.511-?≈-+-=P P C P P C P e 8-3 等重码是一种所有码字具有相同汉明重量的码,请分析等重码是否线性码? 解: 因为该码字集中所有的码字均有相同的码重,因此全零码字不包括在内,而线性码在输入信息位均为零时,输出也全为零,因此一定包含全零码。因此等重码不是线性码。 8-4 对于一个码长为15,可纠正2个随机错误的线性分组码,需要多少个不同的校正子?至少需要多少位监督码元? 解:对于一个码长为15的线性码,1个及2个随机错误的图样数为 120215115=+C C

差错控制编码技术的应用

差错控制编码技术的应用 摘要:随着网络技术的发展,网络中数据交换量迅速增加,大量的数据需要通过网络进行交 换。在数据的传输过程中,由于种种原因,数据并不能保证100%的准确传输,数据传输的高准确率与高效率中间存在着比较难调和的矛盾。为了解决这个问题,便出现了通信中的差错控制技术,即通过将传送数据进行编码发送的方法来进行检错和纠正。 引言:无线应用的飞跃发展和广阔的应用前景,使得人们不得不把更多的目光投向无线网 络的通信。由于无线环境与有线环境相比,具有误码率高、时延长、带宽窄、信道不对称以及频繁的移动等特性,使无线网络中的通信质量难于保证。这样,怎样改善无线网络中的通信性能也自然成了目前乃至以后较长时期网络领域的重要研究课题。 一、差错控制编码技术的概念 信道干扰源可分为无源干扰和有源干扰。前者引起的差错是一种随机差错,即某个码元的出错具有独立性,与前后码元无关。而后者是由短暂原因如突然施加干扰源引起的,差错是成群的,其差错持续时间称为突发错的长度在信息传输中,二者均有可能被引入。根据具体情况而选定合适的差错控制编码可以发现并纠正这些错误。 1.1差错控制的基本方式 (1)反馈纠错 反馈纠错是在信源端采用能发现一定程度传输差错的简单编码方法对所传信息进行编码(加入少量监督码元),在信宿端根据编码规则对收到的编码信号进行检查,一旦检测出误码,即向信源端发出信号要求重发。信源端收到信号后,立即重发已发生传输差错的那部分信息,直到正确收到为止。这种方法只能发现接收码元中的一个或一些错误,但无法确定误码的准确位置,较适合于双向数据通信,要求信源端有数据存储装置。 (2)前向纠错 前向纠错是信源端采用在解码时能纠正一定程度传输差错的较复杂的编码方法,使信宿端在收到码元后不仅能发现错码,还能够纠正错码。采用前向纠错方式时,不需要反馈信道,也无需反复重发而延误传输时间,对实时传输有利。但是纠错装置比较复杂。此方法可用于没有反馈通道的单向数字信号的传输。 (3)混合纠错 混合纠错即在接收端自动纠正少量差错,当误码严重超出其自行纠正能力时,就向信源端发出询问信号,要求重发,是反馈纠错和前向纠错的混合形式。 1.2差错控制编码的分类 差错控制编码按照差错控制的不同方式,可分为检错码、纠错码和纠删码等;按照误码产生的原因不同,可分为纠正随机错误码与纠正突发性错误码;按照信息码元与附加的监督码元之间的检验关系,可分为线性码与非线性码;按照信息码元与附加监督码元之间的约束方式不同,可以分为分组码与卷积码;按照信息码元在编码之后是否保持原来的形式不变,可分为系统码与非系统码。在实际运用中往往是多种方式的编码方式混合,如线性分组码就是信息码元与附加的监督码元之间的检验关系为线性,约束方式为分组形式。

第9章 差错控制编码习题解答

第9章 差错控制编码习题解答 9-1 (1) 写出),(k n 循环码的码多项式的一般表达式; (2) 已知)3,7(循环码的生成多项式为1)(24+++=x x x x g ,若)(x m 分别为2x 和1, 求循环码的码字。 解: : ,1)()()(:,,)(1)(:,4,3,)3,7()2()(),()1(36 242 24012211过程如下的余式为得根据编码规则若信息码生成多项式循环码式为系统码码字的一般表达++÷===+++===++++=----x x x g x m x x x x x m x x x m x x x x g r k a x a x a x a x A k n r r n n n n x x x x x x x 1001011 1 1011 11 1 10123456233242342 3466 24=++++++++++++++++a a a a a a a x x x x x x x x x x x x 最后得系统码码字为对应码为得余多项式为 x x x x x x 0010111 1 0111 111 1012345622244 24=++++++++++a a a a a a a x x x x x x x 最后得系统码码字为对应码为得余多项式: ,1)()()(:,1)(24 过程如下的余式为则有若信息码++÷==x x x g x m x m x x m r r 9-2 (5,1)重复码若用于检错,能检测几位错?若用于纠错,能纠正几位错?,若同时用 于检错与纠错,情况又如何?

. 31,2,4,5)1,5(:1,)(,)2(1 2,)2(1,)1(0000位错位错和检并同时能纠位错纠位错故能检重复码由上述公式得则要求随机错误个同时检测个纠则要求个随机错误纠则要求个随机错误检测=++≥>+≥+≥d e t d t e e t t d t e d e 9-3 已知八个码字分别为000000、001110、010101、011011、100011、101101、110110、 111000,试求其最小码距0d 。 解: . 3,1,1,0:.,,,.:. ,,:111000 110110, 101101, 100011,011011, ,010101 ,001110 ,00000080=d 故得的个数为最小汉明距离该码中少的码的个数为最找出码外除全具体方法是是类似的性这和实数运算具有封闭属于该码组中的一个码仍然算的结果码组中任意两组异或运闭性是指所谓封性来判断利用码组是否具有封闭方法二码组大时较麻烦这种方法在可得最小汉明距离两两比较方法一个码组为 已知 9-4 上题所给的码组若用于检错,能检测几位错?用于纠错,能纠正几位错?,若同时用 于检错与纠错,情况又如何? 解: ). 3?(,2,1:1 ,)(,)3(12,)2(1,)1(: .30000条不满足第为什么同时用于纠错和检错但不能位错检位错能纠由上述公式得要求则随机错误个同时检测个纠则要求个随机错误纠则要求个随机错误检测利用公式得++≥>+≥+≥=e t d t e e t t d t e d e d 9-5 汉明码(7,4)循环码的1)(3++=x x x g ,若输入信息组0111,试设计该码的编码电路, 并求出对应的输出码字。

通信原理—差错控制编码基本理论

差错控制概述 1. 差错的概念 所谓差错,就是在通信接收端收到的数据与发送端实际发出的 数据出现不一致的现象。 2. 差错类型 通信信道的噪声分为热噪声和冲击噪声两种。由这两种噪声分 别产生两种类型的差错,随机差错和突发差错。 热噪声是由传输介质导体的电子热运动产生的,它的特点是: 时刻存在,幅度较小且强度与频率无关,但频谱很宽,是一类随机 噪声。由热噪声引起的差错称随机差错。此类差错的特点是:差错 是孤立的,在计算机网络应用中是极个别的。 与热噪声相比,冲击噪声幅度较大,是引起传输差错的主要原 因。冲击噪声的持续时间要比数据传输中的每比特发送时间要长, 因而冲击噪声会引起相邻多个数据位出错。冲击噪声引起的传输差 错称为突发差错。常见的突发错是由冲击噪声(如电源开关的跳火、 外界强电磁场的变换等)引起,它的特点是:差错呈突发状,影响 一批连续的bit(突发长度)。计算机网络中的差错主要是突发差错。 通信过程中产生的传输差错,是由随机差错和突发差错共同构 成的。 3. 误码率 数据传输过程中可用误码率Pe来衡量信道数据传输的质量,误码率是指二进制码元在数据传输系统中出现差错的概率,可用下式表达: 4. 差错控制 差错控制是指在数据通信过程中能发现或纠正差错,将差错限 制在尽可能小的允许范围内。

差错检测是通过差错控制编码来实现的;而差错纠正是通过差错控制方法来实现的。 差错控制编码 差错控制编码的原理是:发送方对准备传输的数据进行抗干扰编码,即按某种算法附加上一定的冗余位,构成一个码字后再发送。接收方收到数据后进行校验,即检查信息位和附加的冗余位之间的关系,以检查传输过程中是否有差错发生。差错控制编码分检错码和纠错码两种,检错码是能自动发现差错的编码,纠错码是不仅能发现差错而且能自动纠正差错的编码。 衡量编码性能好坏的一个重要参数是编码效率R: 其中,n表示码字的位长,k表示数据信息的位长,r表示冗余位的位长。 计算机网络中常用的差错控制编码是奇偶校验码和循环冗余码。 1. 奇偶校验码 奇偶校验码是一种最简单的检错码。 原理:通过增加冗余位来使得码字中"1"的个数保持为奇数(奇校验)或偶数(偶校验)。例如,偶校验:110101000,011011011在实际使用时,奇偶校验可分为以下三种方式。 (1) 垂直奇偶校验 原理:将要发送的整个数据分为定长p位的q段,每段的后面按"1"的个数为奇数或偶数的规律加上一位奇偶位: 编码效率:R = P/(P+1) 检错能力:能检出每列中的所有奇数个错,但检不出偶数个错。对突发错,漏检率约为50%

差错控制编码仿真

差错控制编码仿真 一、实验目的 掌握差错控制编码的实现技术以及仿真方法 二、实验内容 1、设计一个(7,4)汉明码编译码仿真模型 2、观察经过并串转换后的(7,4)汉明码输出波形图 三、实验原理 1、线性分组码的基本概念: 线性分组码(n,k)中许用码字(组)为2k个。定义线性分组码的加法为模2和,乘法为二进制乘法。即1+1=0、1+0=1、0+1=1、0+0=0; 1×1=1、1×0=0、0×0=0、0×1=0。且码字与码字 的运算在各个相应比特位上符合上述二进制加法运算规则。 线性分组码具有如下性质(n,k)的性质: 1)封闭性。任意两个码组的和还是许用的码组。 2)码的最小距离等于非零码的最小码重。 对于码组长度为n、信息码元为k位、监督码元为r=n-k位的分组码,常记作(n,k)码,如果满足2r-1≥n,则有可能构造出纠正一 位或一位以上错误的线性码。 下面我们通过(7,4)分组码的例子来说明如何具体构造这种线性码。设分组码(n,k)中,k = 4,为能纠正一位误码,要求r≥3。现取 r=3,则n=k+r=7。我们用a0ala2a3a4a5a6表示这7个码元,用S1、 S2、S3表示由三个监督方程式计算得到的校正子,并假设三位S1、S2、 S3校正子码组与误码位置的对应关系如下表12.2所示。 (7,4)码校正子与误码位置

S1=0。因此有S1=a6⊕a5⊕a4⊕a2,同理有S2=a6⊕a5⊕a3⊕a1和S3=a6⊕a4⊕a3⊕a0。在编码时a6、a5、a4、a3为信息码元,a2、a1、a0为监督码元。则监督码元可由以下监督方程唯一确定 即 由上面方程可得到表12.3所示的16个许用码组。在接收端收到每个码组后,计算出S1、S2、S3,如果不全为0,则表示存在错误,可以由表12.2确定错误位置并予以纠正。例如收到码组为0000011,可算出S1S2S3=011,由表12.2可知在a3上有一误码。通过观察可以看出,上述(7,4)码的最小码距为dmin=3,它能纠正一个误码或检测两个误码。如果超出纠错能力则反而会因“乱纠”出现新的误码。 (7,4)许用码组 有以下一些特点:码长n=2m-1,最小码距为d=3,信息码长k=2n -m-1,纠错能力t=1,监督码长r=n-k=m。这里m为≥2的正整数。给定m后,就可构造出汉明码(n,k)。 1、(7,4)汉明码的编译码仿真:

差错控制编码

差错控制编码的设计与仿真 学生:陈琪,长江大学文理学院 指导教师:黄金平,长江大学电信学院 一、题目来源 来源于通信过程中所遇到的实际的问题 二、研究目的和意义 通信系统必须具备发现(即检测)差错的能力,并采取措施纠正之,使差错控制在所能允许的尽可能小的范围内,这就是差错控制过程,也是数据链路层的主要功能之一。 接收方通过对差错编码(奇偶校验码或CRC码)的检查,可以判定一帧在传输过程中是否发生了差错。一旦发现差错,一般可以采用反馈重发的方法来纠正。这就要求接受方收完一帧后,向发送方反柜一个接收是否正确的信息,使发送方据此做出是否需要重新发送的决定。发送方仅当收到接收方以正确接收的反馈信号后才能认为该帧已经正确发送完毕,否则需要重发直至正确为止。 物理信道的突发噪声可能完全“淹没”一帧,即使得整个数据帧或反馈信息帧丢失,这将导致发送方永远收不到接受方发来的信息,从而使传输过程停滞。为了避免出现这种情况,通常引入计时器(Timer)来限定接收方发回方反柜消息的时间间隔,当发送方发送一帧的同时也启动计时器,若在限定时间间隔内未能收到接收方的反柜信息,即计时器超时(Timeout),则可认为传出的帧以出错或丢失,就要重新发送。由于同一帧数据可能被重复发送多次,就可能引起接收方多次收到同一帧并将其递交给网络层的危险。为了防止防止发生这种危险,可以采用对发送的帧编号的方法,即赋予每帧一个序号,从而使接收方能从该序号来区分是新发送来的帧还是已经接受但又重发来的帧,以此来确定要不要将接收到的帧递交给网络层。数据链路层通过使用计数器和序号来保证每帧最终都能被正确地递交给目标网络层一次。

相关主题
文本预览
相关文档 最新文档