当前位置:文档之家› 解析几何试题的背景及拓展116

解析几何试题的背景及拓展116

解析几何试题的背景及拓展116
解析几何试题的背景及拓展116

仿射几何与北京高考解析几何试题

——2016北京卷第19题的背景和拓展

我们知道,圆锥曲线的很多问题都可以在“圆”那里找到源头,那么圆的哪些性质可拓广到其它曲线呢?那些不能照搬的性质,又有什么样的变化形式?

举个例子:圆有一个重要的性质——“直径所对的圆周角为直角”。那么类似的,对于椭圆能得到什么相应的结论呢?

设AB 为椭圆22

221x y a b

+=的“直径”(即过中心的弦),P 为椭圆上一点(异于,A B ),

,

P AP B 仍垂直吗?会有什么关系?

分析:设1100(,),(,)A x y P x y ,则11(,)B x y -, 22

01010122

010101PA PB

y y y y y y k k x x x x x x -+-?=?=-+-,又因为2200221x y a b +=,2211221x y a b +=,

所以22012201y y x x --2

2b a

=-,也就是说直线,PA PB 的斜率之积为定值。

在2010年高考北京卷的第19题涉及到了这个内容:在平面直角坐标系xOy 中,点B 与

点(1,1)A -关于原点O 对称,P 是动点,且直线AP 与BP 的斜率之积等于1

3-。求动点P 的

轨迹方程。

这里,实际上就是把上面的问题反过来了。这些是简单的问题,对于圆的更复杂的性质,圆锥曲线里又会有怎样相应的结论呢?我们知道,对圆锥曲线的研究,思路的起点经常是圆,而圆里面的问题太丰富了,中学教师如果能够把圆锥曲线和圆的关系搞清楚,那么解析几何问题的探索与研究的源泉将永不枯竭。

本文简述仿射几何的几条基本理论,探讨如何把圆里的问题转化到圆锥曲线中去,寻找高等数学观点下的圆锥曲线(包括圆)的一致性,并谈谈在这方面北京卷命题所做的一些探索和实践。

一、仿射几何的几条基本结论

结论1: 仿射变换保持同素性. 仿射变换使得点对应点, 直线对应直线.

结论2:仿射变换保持结合性. ,,A B C 在直线L 上, 经过仿射变换后, 其对应点',','A B C 在直线L 的对应直线'L 上.

结论3:两个封闭图形面积之比经过仿射变化后保持不变。

二、仿射几何与高考试题

结合2016年高考北京卷的解析几何试题,谈谈在这方面北京卷命题所做的一些探索和实践。

(一)问题及背景

在平面几何中有下面的问题:

已知圆的半径为1,BO 垂直平分AC ,P 为弧CD 上的动点(且不与,C D 重合),则 (1)四边形ABNM 的面积为定值; (2)AN BM ?为定值.

实际上,四边形ABNM 的面积等于

1

2

AN BM ?,所以上面的(1)(2)两个问题是等价的。这个问题的平面几何解法不难找,这里不细述了,下面我们给出一个借助高中三角公式的证明.

证明:,NBO OAM ∠∠所对的弧分别为 ,PD

CP , 所以45NBO OAM ∠+∠= . 所以tan()1NBO OAM ∠+∠= 所以

11NO OM NO OM +=-?,即1111

2222

NO OM NO OM +=-??.

由圆的半径为1,得1111

,,,2222

NBO AOM NOM BOC S NO S OM S ON OM S =

==?=△△△△ 所以NBO AOM BOC NOM S S S S +=-△△△△ 所以AOM NOM BOC NBO S S S S +=-△△△△ 即BED AFE S S =△△

所以四边形ABNM 的面积等于ABC △的面积(等于1),即四边形ABNM 的面

积为定值(也即AN BM ?为定值).

我们知道,椭圆22221x y a b +=经过仿射变换',',

x x a

y y b ?

=????=??

后变为圆22''1x y +=. 同样的, 圆也

可以经过仿射变换变为椭圆. 我们可以从圆的某些性质导出椭圆的一些性质。

由于仿射变换保持同素性和结合性, 所以图1中的四边形ABNM 经过变换后仍为四边形记为四边形''''A B N M . 又由前面提到的仿射几何中的推论, 我们知道两个封闭图形面积

A

之比经过仿射变化后保持不变,即''''

ABNM

A B N M S S =

四边形四边形圆面积椭圆面积,四边形

''''A B N M 的面积

也为定值.

根据以上的分析,在椭圆里我们可以提出类似的问题,这就有了2016年高考数学北京卷(理科)的第19题:

已知椭圆22

22:1(0)x y C a b a b

+=>>,(,0)A a ,(0,)B b ,(0,0)O ,OAB

△的面积为1.

(Ⅰ)求椭圆C 的方程;

(Ⅱ)设P 是椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N .

求证:||||AN BM ?为定值.

(二)问题的拓展

2016高考数学北京卷的文科第19题与理科19题是姊妹题, 具体如下: 已知椭圆22

22:1x y C a b

+=过(2,0)A ,(0,1)B 两点.

(Ⅰ)求椭圆C 的方程及离心率;

(Ⅱ)设P 为第三象限内一点且在椭圆C 上,直线PA 与y 轴交于点M ,直线PB 与x 轴

交于点N .求证:四边形ABNM 的面积为定值.

在这个题的命制过程中,还给出了其他的一些方向,但慎重考虑后,我们做了一些取舍,这里一并和大家谈谈,和大家探讨。

本题中, 我们把点P 限定在第三象限,但实际上点P 在其他象限时也有类似问题,比如:

当点P 在第一象限的时候(且在椭圆22

141

x y +=上)

,仍然设AP 交y 轴于点M ,BP 交x 轴于点N ,其中(2,0),(0,1)A B ,则可以证明MNP ABP S S -△△是一个定值。证明的过程中,首先需要一个几何转化,即1

||||2

MNP ABP MNA ABN S S S S AN BM -=-=?△△△△,接下来就和前面的问题没什么差别了。

这个结果非常漂亮,但最后还是割爱了,为什么呢?我们放弃它,并不是因为这个几何转化,我们甚至认为解析几何一定要考查几何的东西,但是这个题的几何转化的途径太单一了,几乎就是“华山一条路”,而一旦考生不能几何转化,将面临及其艰苦的运算,这不是北京高考题应该具备的特质。

我们心目中的解析几何题应该是这样的:它首先应该是个几何问题,问题的提出应该有一个几何背景,中间解决的过程是代数的,从几何到代数的转化当然是需要的,但一般会给考生多一些途径,这个代数的方法也没有什么一定之规,套用中学教师的总结,“可以是设点,也可以是设直线”,比如今年的题就是这样,但最后还是回归到解决一个几何问题。一道好的解析几何试题里,几何应该是缘起,也是归宿,代数是解决这个几何问题的工具。

(三) 不同解法

在阅卷过程中, 我们发现学生有很多好的解法, 在这里列举几种理科19题的解法, 供大家参考. 解法1:

(Ⅱ)由(Ⅰ)知,(2,0)A ,(0,1)B .

设00(,)P x y ,则22

044x y +=. 当00x ≠时, 直线PA 的方程为0

0(2)2

y y x x =

--. 令0x =,得0022M y y x =-

-,从而0

02|||1|12M y BM y x =-=+-. 直线PB 的方程为00

1

1y y x x -=

+. 令0y =,得001N x x y =--,从而00|||2|21

N x

AN x y =-=+-. 所以

00

002||||2112

x y AN BM y x ?=+?+--

22

000000000044484

22

x y x y x y x y x y ++--+=

--+

000000004488

22

x y x y x y x y --+=

--+

4=.

当00x =时,01y =-,||2BM =,||2AN =, 所以||||4AN BM ?=. 综上,||||AN BM ?为定值.

解法2:

(Ⅱ)联立椭圆C 与直线PA 的方程1()b y k x a a =-得到P 点坐标为212

11211

,12.1P P k x a k k y b k ?-=?+?

?-?=?+?

联立椭圆C 与直线PB 的方程2()a x k y b b =-得到P 点坐标为2222

222

2,

11.

1P P k x a k k y b k -?

=?+?

?-?=?+? 因此22

1221

222212211212,1111

k k k k k k k k ----==

++++. 两式通分相减,得到121212()(1)0k k k k k k -++-=. 如果12k k k ==,则2221211

k k

k k --=++,即221k k +=. 因此,无论12,k k 是否相等,总有12121k k k k ++=.从而12(1)(1)2k k ++=. 由直线PA 的方程解得M 点坐标0M x =,1M y k b =-. 由直线PB 的方程解得N 点坐标2N x k a =-,0M y =. 21||||()()(1)(1)2N M AN BM a x b y ab k k ab ?=--=++=为定值. 解法3:

(Ⅱ) 由(Ⅰ)知,(2,0)A ,(0,1)B .

当直线PB 的斜率存在时,设其方程为1(0)y kx k =+≠, 令0y =得1

N x k

=-

,从而21|||2|N k AN x k +=-=.

由22

1,44y kx x y =+??+=? 得22

(14)80k x kx ++=, 所以2

814P k

x k -=+,221414P k y k -=+. 直线PA 方程为2

214(2)882

k y x k k -=

----, 令0x =得1221

M k

y k -=

+,从而4|||1|21M k BM y k =-=+.

所以214||||21

k k

AN BM k k +?=

+ 4=.

当直线PB 的斜率不存在时(0,1),(0,0)M N -,此时||2AN =,||2BM =, 所以||||4AN BM ?=.

综上所述||||

为定值.

AN BM

参考文献

1.朱德祥,朱维宗.高等几何[M] .北京:高等教育出版社,2007

2.梅向明,刘增贤,王汇淳,王智秋.高等几何[M] .北京:高等教育出版社,2007

3. 王雅琪. 坐标一桥飞架数形天堑变通途[J].数学通报,2016,3:46-48

4. 王雅琪. 高观点下的北京高考解析几何试题[J].数学通报,2016,11:28-30

5. 李红春. 仿射变换下一类椭圆问题的简单解法[J].中学数学月刊,2012,12:40-43

空间解析几何考题

《 空 间 解 析 几 何 》 试卷A 班级: 姓名: 学号: 分数: 我已阅读了有关的考试规定和纪律要求,愿意在考试中遵守《考场规则》,如有违反将愿接受相应的处理。 试卷共 5 页,请先查看试卷有无缺页,然后答题。 一.选择题(每小题3分,共10分) 1. 平面的法式方程是 ( ). A. 0=+++D Cz By Ax B. 1=++r z q y p x C. ()0,1cos cos cos 0cos cos cos 2 2 2 >=++=-++p p z y x γβαγβα其中 D. ()0,1cos cos cos 0 cos cos cos 2 22>=++=+++p p z y x γβαγβα其中 2. 两向量 21,n n 互相垂直的充要条件是 ( ). A. 021=?n n B. 021=?n n C. 21n n λ=. D. 以上都不对 3. 平面 0:11111=+++D z C y B x A π 与平面 0:22222=+++D z C y B x A π 互相垂直 的充要条件是 ( ). A. 2 12 12 1C C B B A A == B. 0212121=++C C B B A A C. 021212121=+++D D C C B B A A D. 以上都不对. 4. 1 11 11 11: n z z m y y l x x l -= -= -与2 22 22 22: n z z m y y l x x l -= -= -是异面直线,则必有 ( ). A.0212121=++n n m m l l B. 0212121≠++n n m m l l C. 021212122 2 1 11 =---z z y y x x n m l n m l D. 02 1212122 2 1 11 ≠---z z y y x x n m l n m l . 5. 若向量γβα ,,线性无关,则在该向量组中必有 ( ) A. 每个向量都可以用其它向量表示。 B. 有某个向量可以用其它向量表示。

第六章-空间解析几何要求与练习(含答案)

第六章 要求与练习 一、学习要求 1、理解空间直角坐标系,理解向量的概念及其表示. 2、掌握向量的运算(线性运算、数量积、向量积),两个向量垂直、平行的条件.掌握单位向量、方向数与方向余弦、向量的坐标表达式,以及用坐标表达式进行向量运算的方法. 3、掌握平面方程和直线方程及其求法,会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题. 7、了解空间曲线在坐标平面上的投影,会求其方程. 二、练习 1、一向量起点为A (2,-2,5),终点为B (-1,6,7),求 (1)AB 分别在x 轴、y 轴上的投影,以及在z 轴上的分向量; (2)AB 的模;(3)AB 的方向余弦;(4)AB 方向上的单位向量. 解:(1)()3,8,2AB =-,AB 分别在x 轴的投影为-3,在y 轴上的投影为8,在z 轴上的 分向量2k ;(2)AB = ;(3)AB ; (4)AB 382) i j k -++. 2、设向量a 和b 夹角为60o ,且||5a =,||8b =,求||a b +,||a b -. 解:()2 220||||||2||||cos60a b a b a b a b += +=++= ( ) 2 220||||||2||||cos60a b a b a b a b -= -=+-=7. 3、已知向量{2,2,1}a =,{8,4,1}b =-,求 (1)平行于向量a 的单位向量; (2)向量b 的方向余弦. 解(1)2223a = +=平行于向量a 的单位向量221 {,,}333±; (2)2849b =+=,向量b 的方向余弦为:841,,999 -. 4、一向量的终点为B (2,-1,7),该向量在三个坐标轴上的投影依次为4、-4和7.求该向量的起点A 的坐标. 解:AB =(4,-4,7)=(2,-1,7)-(x ,y ,z),所以(x ,y ,z)=(-2,3,0); 5、已知{2,2,1}a =-,{3,2,2}b =,求 (1)垂直于a 和b 的单位向量; (2)向量a 在b 上的投影;

空间解析几何(练习题参考答案)

1. 过点M o (1,1-,1)且垂直于平面01201=+++=+--z y x z y x 及的平面方程. 39.02=+-z y 3. 在平面02=--z y x 上找一点p ,使它与点),5,1,2()1,3,4(-)3,1,2(--及之间的距离 相等. 7.)5 1,1,57 (. 5.已知:→ → -AB prj D C B A CD ,则)2,3,3(),1,1,1(),7,1,5(),3,2,1(= ( ) A .4 B .1 C . 2 1 D .2 7.设平面方程为0=-y x ,则其位置( ) A .平行于x 轴 B .平行于y 轴 C .平行于z 轴 D .过z 轴. 8.平面0372=++-z y x 与平面0153=-++z y x 的位置关系( ) A .平行 B .垂直 C .相交 D .重合 9.直线 3 7423z y x =-+=-+与平面03224=---z y x 的位置关系( ) A .平行 B .垂直 C .斜交 D .直线在平面内 10.设点)0,1,0(-A 到直线?? ?=-+=+-0 720 1z x y 的距离为( ) A .5 B . 6 1 C . 51 D .8 1 5.D 7.D 8.B 9.A 10.A . 3.当m=_____________时,532+-与m 23-+互相垂直. 4 . 设 ++=2, 22+-=, 243+-=,则 )(b a p r j c += . 4. 过点),,(382-且垂直平面0232=--+z y x 直线方程为______________. 10.曲面方程为:442 2 2 =++z y x ,它是由曲线________绕_____________旋转而成的. 3.34-=m ; 4.29 19 9.332212--=+=-x y x ; 10.曲线 1422 =+z y 绕z 轴

解析几何专题含答案

椭圆专题练习 1.【2017浙江,2】椭圆22 194 x y +=的离心率是 A B C .23 D .5 9 2.【2017课标3,理10】已知椭圆C :22 221x y a b +=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为 A .3 B .3 C .3 D .13 3.【2016高考浙江理数】已知椭圆C 1:+y 2=1(m >1)与双曲线C 2:–y 2=1(n >0)的焦点重合,e 1, e 2分别为C 1,C 2的离心率,则() A .m >n 且e 1e 2>1 B .m >n 且e 1e 2<1 C .m 1 D .m b >0),四点P 1(1,1),P 2(0,1),P 3(–1, 2),P 4(1,2 )中恰有三点在椭圆C 上. (1)求C 的方程; (2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点. 8.【2017课标II ,理】设O 为坐标原点,动点M 在椭圆C :2 212 x y +=上,过M 作x 轴的垂线, 垂足为N ,点P 满足NP =u u u r u u u r 。

空间解析几何试题

空间解析几何试卷 一、填空题(本大题共计30分,每空3分。请把正确答案填在横线上) 1. 设向量{}{}1,1,2,0,1,1=--=→→b a ,则→→b a 在上的射影是_____________,→ a 是_______________. 2. 设向量{}3,5,4-=→a ,向量225共线,反向且模为与→→a b ,那么向量→ b 的坐标是 ________________. 3. 已知向量{}{}3,2,,1,1,1x b a ==→→, 如果→ →b a ,垂直, 那么x =_________. 4. 已知向量{}{},0,3,2,1,0,1=-=→→b a {}2,1,0=→c ,则由这3个向量张成的平行六面体的体积是_________. 5. 直线z y x -=-+=-3212与直线2 112-+=-=z y x 间的距离是_____________. 6. 若直线1 23z y a x ==- 与平面x-2y+bz=0平行,则a,b 的值分别是______________. 7. 经过直线???=-+-=-+0 201z y x y x 且与直线z y x 2==平行的平面的方程是_________________. 8. 空间曲线? ??+==-+1022x z z y x 在y x 0坐标面上的射影曲线和射影柱面的

方程分别是_____________________________. 9. 顶点在原点、准线为抛物线???==1 22z x y 的锥面方程是 ________________(请用x y x ,,的一个方程表示). 10.曲线?????==-0 19422y z x 绕x 轴旋转后产生的曲面方程是__________________,此曲面表示______________曲面. 二、单项选择题(本大题共10小题,每小题3分,共30分) 1. 若=?-+=+-=→ →→→→→→→→→b a k j i b k j i a 则,23,532( ) A. 7 B. -7 C. -1 D. 0 2. 已知→→b a ,不共线, 与→→b a ,同时垂直的单位向量是( ) A. →→?b a B. →→?a b C. ||→→→ →??±b a b a D. ||→→→→??b a b a 3. 在空间右手直角坐标系下,点P(-1,2,-3)在第( )卦限. A. II B. III C. V D. VI 4. 若两个非零向量→→b a ,满足|→→+b a |=|→→-b a |,则一定有( ) A. →→⊥b a B. →→b a // C. →→b a 与同向 D. → →b a 与反向 5. 点M(1,-3,-2)关于y 轴的对称点N 的坐标是( )

高考解析几何压轴题精选(含答案)

专业资料 1. 设抛物线y2 2 px( p 0) 的焦点为F,点 A(0, 2) .若线段FA的中点B在抛物线上, 则 B 到该抛物线准线的距离为_____________ 。(3 分) 2 . 已知m>1,直线l : x my m20 ,椭圆 C : x 2 y21, F1,F2分别为椭圆C的左、 2m2 右焦点 . (Ⅰ)当直线l过右焦点 F2时,求直线l的方程;(Ⅱ)设直线 l 与椭圆 C 交于A, B两点,V AF1F2,V BF1F2的重心分别为G, H .若原点O在以线段GH为直径的圆内,求实数m 的取值范围. (6 分) 3 已知以原点 O为中心,F5,0 为右焦点的双曲线 C 的离心率e 5 。2 (I)求双曲线C的标准方程及其渐近线方程;(I I )如题(20)图,已知过点M x1, y1 的直线 l1 : x1 x 4 y1 y 4 与过点 N x2 , y2(其中 x2x )的直 线 l2 : x2 x 4 y2 y 4 的交点E在 双曲线 C 上,直线MN与两条渐近 线分别交与G、H两点,求OGH 的面积。(8 分)

4. 如图,已知椭圆x2y21(a> b>0) 的离心率为2 ,以该椭圆上的点和椭圆的左、右 a2b22 焦点 F1 , F2为顶点的三角形的周长为4( 2 1) .一等轴双曲线的顶点是该椭圆的焦点,设 P 为该双曲线上异于顶点的任一点,直线PF1和 PF2与椭圆的交点分别为A、B和C、D. (Ⅰ)求椭圆和双曲线的标准方程;(Ⅱ)设直线PF1、 PF2的斜率分别为 k1、 k2,证明 k1·k2 1 ;(Ⅲ)是否存在常数,使得 A B C D A·B C恒D成立?若存在,求的值;若不存在,请说明理由. ( 7 分) 5. 在平面直角坐标系 x2y2 xoy 中,如图,已知椭圆1

空间解析几何练习题

习题一 空间解析几何 一、填空题 1、过两点(3,-2)和点(-1,0)的直线的参数方程为 。 2、直线2100x y --=方向向量为 。 3、直角坐标系XY 下点在极坐标系中表示为 。 4、平行与()6,3,6a =-的单位向量为 。 5、过点(3,-2,1)和点(-1,0,2)的直线方程为 。 6、过点(2,3)与直线2100x y +-=垂直的直线方程为 。 7、向量(3,-2)和向量(1,-5)的夹角为 。 8、直角坐标系XY 下区域01y x ≤≤≤≤在极坐标系中表示为 。 9、设 (1,2,3),(5,2,1)=-=-a b , 则(3)?a b = 。 10、点(1,2,1)到平面2100x y z -+-=的距离为 。 二、解答题 1、求过点(3,1,1)且与平面375120x y z -+-=平行的平面方程。 2、求过点(4,2,3) 且平行与直线 31215 x y z --==的直线方程。 3、求过点(2,0,-3) 且与直线247035210x y z x y z -+-=??+-+=? 垂直的平面方程。 4、一动点与两定点(2,3,2)和(4,5,6)等距离, 求这动点的方程。

5、求222,01z x y z =+≤≤在XOZ 平面上的投影域。 6、求222 19416 x y z ++=在XOY 平面上的投影域。 7、求2z z =≤≤在XOZ 平面上的投影域。 8、求曲线222251x y z x z ?++=?+=? 在XOY 平面上的投影曲线。 9、求曲线 22249361x y z x z ?++=?-=? 在XOY 平面上的投影曲线。 10、求由曲面22z x y =+与曲面2222x y z ++=所围成的区域在柱面坐标系下的表示。

向量代数与空间解析几何-期末复习题-高等数学下册

第七章 空间解析几何 一、选择题 1.在空间直角坐标系中,点( 1,— 2, 3 )在[D ] A. 第一卦限 B. 第二卦限 C. 第三卦限 D. 第四卦限 2 2 2.方程2x y 2在空间解析几何中表示的图形为 [C ] A. 椭圆 B. 圆 C. 椭圆柱面 D. 圆柱面 X —1 y + 1 z +1 ” _x + y _1 = 0 3.直线11 j 与 >2 : — —> 的夹角是[C ] 4 2 3 x+y+z-2=0 A Ji n n A.— B. — C.— D. 0 4 3 2 4.在空间直角坐标系中,点(1, 2,3 )关于xoy 平面的对称点是[D ] A. (-1,2,3) B. (1,-2,3) C. (-1,-2,3) D. (1,2,-3) A. 2 2 2 a b (a ?b) B. a 2 b 2=(a b)2 C. 2 2 (a 叱)=(a b) 2 2 2 2 D. (a *b) (a b) =a b 已知a,b 为不共线向量,则以下各式成立的是 D 5.将xoz 坐标面上的抛物线 z =4x 绕z 轴旋转一周,所得旋转曲面方程是 [B ] A. z 2 二 4(x y) B. z 2 _ _4.. x 2 y 2 C. y 2 z 2 =4x D. 2 2 y z = 4x 6.平面2x-2y+z+6=0与xoy 平面夹角的余弦是 2 C. 3 关于 [B ] A 1 1 A. B.— 3 3 7.在空间直角坐标系中,点( B. (1,-2,3) D. (1,2,-3) A. (-1,2,3) C. (-1,-2,3) 1,2,3) 2 D.— 3 yoz 平面的对称点是[A ] 2 2 8.方程—2 弓二z , a 2 b 2 表示的是[B ] A.椭圆抛物面 B.椭圆锥面 C. 椭球面 D.球面 9.已知 a ={0, 3, 4}, b ={2, 1, -2}, 则 proj a b =[ C ] A. 1 3 B. 3 C. -1 D. 1 10.

第七章_空间解析几何与向量代数复习题(答案)

第八章 空间解析几何与向量代数答案 一、选择题 1. 已知A (1,0,2), B (1,2,1)是空间两点,向量 的模是(A ) A 5 B 3 C 6 D 9 2. 设a =(1,-1,3), b =(2,-1,2),求c =3a -2b 是( B ) A (-1,1,5). B (-1,-1,5). C (1,-1,5). D (-1,-1,6). 3. 设a =(1,-1,3), b =(2, 1,-2),求用标准基i , j , k 表示向量c=a-b 为(A ) A -i -2j +5k B -i -j +3k C -i -j +5k D -2i -j +5k 4. 求两平面032=--+z y x 和052=+++z y x 的夹角是( C ) A 2π B 4π C 3 π D π 5. 已知空间三点M (1,1,1)、A (2,2,1)和B (2,1,2),求∠AMB 是( C ) A 2π B 4π C 3 π D π 6. 求点)10,1,2(-M 到直线L :12 213+= -=z y x 的距离是:( A ) A 138 B 118 C 158 D 1 7. 设,23,a i k b i j k =-=++求a b ?是:( D ) A -i -2j +5k B -i -j +3k C -i -j +5k D 3i -3j +3k 8. 设⊿ABC 的顶点为(3,0,2),(5,3,1),(0,1,3)A B C -,求三角形的面积是:( A ) A 2 B 364 C 3 2 D 3 9. 求平行于z 轴,且过点)1,0,1(1M 和)1,1,2(2-M 的平面方程是:( D ) A 2x+3y=5=0 B x-y+1=0 C x+y+1=0 D 01=-+y x . 10、若非零向量a,b 满足关系式-=+a b a b ,则必有( C ); A -+a b =a b ; B =a b ; C 0?a b =; D ?a b =0. 11、设,a b 为非零向量,且a b ⊥, 则必有( C ) A a b a b +=+ B a b a b -=-

空间解析几何及向量代数测试题及答案

军教院 第八章空间解析几何测试题 一、填空题(共7题,2分/空,共20分) 1.四点(0,0,0)O ,(1,0,0)A ,(0,1,1)B ,(0,0,1)C 组成的四面体的体积是______. 2.已知向量(1,1,1)a → =,)3,2,1(=→b ,(0,0,1)c →=,则→ →→??c b a )(=__(-2,-1,0)____. 3.点)1,0,1(到直线???=-=03z x y x 的距离是___66 ___________. 4.点)2,0,1(到平面321x y z ++=的距离是__ 3 147 ___________. 5.曲线C:220 1 x y z z x ?+-=?=+?对xoy 坐标面的射影柱面是___2210x x y -+-=____, 对yoz 坐标面的射影柱面是__22(1)0z y z -+-=_________,对xoz 坐标面的射影柱面是____10z x --=__________. 6.曲线C:220 x y z ?=?=?绕x 轴旋转后产生的曲面方程是__4224()x y z =+_____,曲线 C 绕y 轴旋转后产生的曲面方程是___222x z y +=_______________. 7.椭球面125 492 22=++z y x 的体积是_________________. 二、计算题(共4题,第1题10分,第2题15分,第3题20分, 第4题10分,共55分) 1. 过点(,,)P a b c 作3个坐标平面的射影点,求过这3个射影点的平面方程.这里 ,,a b c 是3个非零实数. 解: 设点(,,)P a b c 在平面0z =上的射影点为1(,,0)M a b ,在平面0x =上的射影 点为2(0,,)M a b ,在平面0y =上的射影点为3(,0,)M a c ,则12(,0,)M M a c =-u u u u u u r ,13(0,,)M M b c =-u u u u u u r

03级空间解析几何期末试卷B

2003--2004学年第一学期补考试题(卷) 03级数教《空间解析几何》 一、选择题:本大题共10个小题,每小题2分,共20分。在每小题给出的四 个选项中,只有一项是符合题目要求的。 1、若a ,b ,c 共面, c ,d ,e 共面,则a , c , e ( ) (A )不一定共面 (B )一定共面 (C )一定不共面 (D )一定共线 2、关于零矢量的描述不正确的是 ( ) (A )模不定 ( B )方向不定 ( C )模为零 ( D )模定方向不定 3、i i j j k k ?+?+?= ( ) (A )0 (B )3 (C )1 (D )0 4、若a ,b ,c 两两互相垂直,且模均为1,则a +b +c 的模为 ( ) (A (B )3 (C )0 (D )1 5、平面的法式方程中的常数项必满足 ( ) (A )≤0 (B )≥0 (C )< 0 (D )>0 6、将平面方程Ax+By+Cz=0化为法式方程时,法式化因子的符号 ( ) (A )任意 (B )与B 异号 (C )与A 异号 (D )与C 异号 7、直线通过原点的条件是其一般方程中的常数项D 1,D 2必须满足 ( ) (A )D 1=D 2=0 (B )D 1=0,D 2≠0 (C )D 1≠0,D 2=0 (D )D 1≠0,D 2≠0 8、两平面2x+3y+6z+1=0与4x+6y+12z+1=0之间的距离是 ( ) (A )0 (B )1 2 (C )1 7 (D ) 114 9、设一直线与三坐标轴的夹角为,,λμν则下列式子中不成立的是 ( ) (A )2 2 2 sin sin sin 1λμν++= (B )2 2 2 cos cos cos 2λμν++= (C )222cos cos cos 1λμν++= (D ) 222sin ()sin ()sin ()1πλπμπν-+-+-= 10、下列方程中表示双曲抛物面的是 ( ) (A )222x y z += (B )2232x y z -= (C )222x y z -= (D )222x y z += 二、填空题:本大题共10小题,每小题2分,共20分。把答案填在题中横线上。 1、平行于同一直线的一组矢量叫做 矢量。 2、三矢量不共面的充要条件是 。 3、 叫方向余弦。 4、两矢量a ⊥b 的充要条件是 。 5、给定直线000 : x x y y z z l ---== XYZ 和平面:0Ax By Cz D π+++=,则l π与平行的充要条件是 。 6、给定直线 111 1111: x x y y z z l X Y Z ---==与2222222 :x x y y z z l ---==XYZ则12l l 与异面的充要条件是 。 7、在空间过一点且与定曲线相交的一族直线所产生的曲面叫做 。 8、在直角坐标系下,单叶双曲面的标准方程是 。 9、柱面,锥面,椭球面,单叶(双叶)双曲面,椭圆(双曲)抛物面是直纹曲面的 有 。 10、单叶双曲面过一定点的直母线有 条。 三、判断题:本大题共10小题,共10分,正确的打”√”,错误的打”×”。 1、若a ,b 共线, b ,c 共线,则a ,c 也共线。 ( ) 2、自由矢量就是方向和模任意的矢量。 ( ) 3、若a ⊥b , 则|a +b |=|a -b |。 ( ) 4、若a ,b 同向,则|a -b |=|a |+|b |。 ( ) 5、若a ,b 反向,则|a +b |=|a |-|b |。 ( ) 6、两坐标面xoy 与yoz 所成二面角的平分面方程是x+y=0。 ( ) 7、第Ⅴ卦限内点(x,y,z)的符号为(+,+,-)。 ( ) 8、(a ,b ,c )=(c ,b ,a )。 ( ) 9、点到平面的离差等于点到平面的距离。 ( ) 10、将抛物线220 y pz x ?=?=?绕z 轴旋转所得曲面方程为222x y pz +=( ) 四、解答题:本大题共5小题,共50分,解答应写出文字说明,证明过程或演算步骤。

第七章向量代数与空间解析几何复习题

第七章向量代数与空间解析几何 (一)空间直角坐标系、向量及其线性运算 一、判断题 1.点( -1, -2, -3)是在第八卦限。()2.任何向量都有确定的方向。() 3.任二向量a,b,若a b .则 a = b 同向。() 4.若二向量a,b满足关系a b = a + b ,则 a,b 同向。()5.若a b a c, 则b c() 6.向量a, b满足a = b ,则a, b同向。()a b 7.若a ={ a x,a y, a z } ,则平行于向量 a 的单位向量为{a x,a y , a z }。() | a || a || a | 8.若一向量在另一向量上的投影为零,则此二向量共线。() 二、填空题 1.点( 2, 1, -3)关于坐标原点对称的点是 2.点( 4, 3, -5)在坐标面上的投影点是 M (0, 3, -5) 3.点( 5, -3, 2)关于的对称点是 M( 5, -3, -2)。 4.设向量 a 与 b 有共同的始点,则与a, b 共面且平分 a 与 b 的夹角的向量为 5.已知向量 a 与 b 方向相反,且 | b | 2 | a | ,则 b 由 a 表示为 b =。 6.设 a =4, a 与轴l的夹角为,则 prj l a= 6 7.已知平行四边形ABCD 的两个顶点 A (2, -3,-5)、 B( -1, 3, 2)。以及它的对角线交点 E( 4,-1,7),则顶点 C 的坐标为,则顶点 D 的坐标为。8.设向量 a 与坐标轴正向的夹角为、、,且已知=60,=120。则= 9.设 a 的方向角为、、,满足 cos=1时, a 垂直于坐标面。 三、选择题 1.点( 4,-3, 5)到oy轴的距离为 (A)42( 3)252( B)( 3)252 (C)42( 3)2(D)4252 2.已知梯形 OABC 、CB // OA且CB =1 OA 设 OA = a , OC = b ,则 AB 2 =

向量代数与空间解析几何期末复习题高等数学下册

第七章 空间解析几何 一、选择题 1. 在空间直角坐标系中,点(1,-2,3)在[ D ] A. 第一卦限 B. 第二卦限 C. 第三卦限 D. 第四卦限 2.方程2222=+y x 在空间解析几何中表示的图形为[ C ] A. 椭圆 B. 圆 C. 椭圆柱面 D. 圆柱面 3.直线3 1 2141: 1+= +=-z y x l 与?? ?=-++=-+-0 20 1:2z y x y x l ,的夹角是 [ C ] A. 4 π B. 3π C. 2 π D. 0 4. 在空间直角坐标系中,点(1,2,3)关于xoy 平面的对称点是[ D ] A. (-1,2,3) B. (1,-2,3) C. (-1,-2,3) D. (1,2,-3) 5.将xoz 坐标面上的抛物线x z 42=绕z 轴旋转一周,所得旋转曲面方程是[B ] A. )(42y x z += B. 2224y x z +±=

C. x z y 422=+ D. x z y 422±=+ 6.平面2x-2y+z+6=0与xoy 平面夹角的余弦是[B ] A. 13 - B. 13 C. 23 - D. 23 7. 在空间直角坐标系中,点(1,2,3)关于yoz 平面的对称点是[ A ] A. (-1,2,3) B. (1,-2,3) C. (-1,-2,3) D. (1,2,-3) 8.方程22 222x y z a b +=表示的是 [ B ] A.椭圆抛物面 B.椭圆锥面 C. 椭球面 D. 球面 9. 已知a ={0, 3, 4}, b ={2, 1, -2},则=b proj a [ C ] A. 3 B.3 1- C. -1 10.已知,a b 为不共线向量,则以下各式成立的是 D A. 222()a b a b =? B. 222()a b a b ?=? C. 22()()a b a b ?=? D. 2222()()a b a b a b ?+?= 11.直线1l 的方程为0 3130290 x y z x y z ++=?? --=?,直线2l 的方程为

空间解析几何习题答案解析(20210120005111)

WORD 格式整理 . 2 30 x 3 3) 10 、计算题与证明题 1.已知 |a| 1, |b| 4, |c| 5, 并且 a b c 0. 计算 a b b c c a . 解:因为 |a| 1, |b| 4, |c| 5, 并且 a b c 0 所以 a 与 b 同向,且 a b 与 c 反向 因此 a b 0 , b c 0 , c a 0 所以 a b b c c a 0 2.已知 |a b| 3, |a b| 4, 求 |a| |b|. 解: |a b| a b cos 3 (1) |a b| a bsin 4 ( 2) (1)2 2 2 得 a b 2 25 所以 a b 5 4.已知向量 x 与 a (,1,5, 2) 共线 , 且满足 a x 3, 求向量 x 的坐标. 解:设 x 的坐标为 x,y,z ,又 a 1,5, 2 则 a x x 5y 2z 3 又 x 与 a 共线,则 x a 0 ij xy 15 2y 5zi z 2x j 5x y k 0 所以 2y 5z 2 z 2x 2 5x y 2 0 即 29x 2 5y 2 26z 2 20yz 4xz 10xy 0 (2) 又 x 与 a 共线, x 与 a 夹角为 0或 22 yz cos0 1 xa x 2 y 2 z 2 12 52 2 2 1) xy 15 整理得

WORD 格式整理 . 2 30 x 3 3) 10 联立 1、2 、3 解出向量 x 的坐标为 1 ,1, 1 10,2, 5

6.已知点 A(3,8,7) , B( 1,2, 3) 求线段 AB 的中垂面的方程. 解:因为 A 3,8,7 ,B( 1,2, 3) AB 中垂面上的点到 A 、B 的距离相等,设动点坐标为 M x,y,z ,则由 MA MB 得 x 3 2 y 8 2 z 7 2 x 1 2 y 2 2 z 3 2 化简得 2x 3y 5z 27 0 这就是线段 AB 的中垂面的方程。 7. 向量 a , b , c 具有 相 同的 模 , 且两 两 所成 的角 相 等 , 若 a , b 的 坐 标分 别 为 (1,1,0)和(0,1,1), 求向量 c 的坐标. 解: abc r 且它们两两所成的角相等,设为 则有 a b 1 0 1 1 0 1 1 则 cos 设向量 c 的坐标为 x, y,z c x 2 y 2 z 2 r 12 12 02 2 所以 x 2 y 2 z 2 2 3 8.已知点 A(3,6,1) , B(2, 4,1) , C(0, 2,3), D( 2,0, 3), (1) 求以 AB , AC , AD 为邻边组成的平行六面体的体积. (2) 求三棱锥 A BCD 的体积. x1 联立( 1)、(2)、(3)求出 y 0 或 z1 则 a c 1 x 1 y 0 z x y a bcos r r 12 1 r b c 0 x 1 y 1 z y z b c cos r 1 r 2 r 1) 2) 所以向量 c 的坐标为 1,0,1 或 1 4 1 ,, 3,3, 3 3)

解析几何试题及答案

解析几何试题及答案https://www.doczj.com/doc/ae2726128.html,work Information Technology Company.2020YEAR

解析几何 1.(21)(本小题满分13分) 设λ>0,点A 的坐标为(1,1),点B 在抛物线y x 2=上运动,点Q 满足 BQ QA λ=,经 过Q 点与M x 轴垂直的直线交抛物线于点M ,点P 满足 QM MP λ=,求点P 的轨迹方程。 (21)(本小题满分13分)本题考查直线和抛物线的方程,平面向量 的概念,性质与运算,动点的轨迹方程等基本知 识,考查灵 活运用知识探究问题和解决问题的能力,全面考核综合数学 素养. 解:由MP QM λ=知Q ,M ,P 三点在同一条垂直于x 轴的直 线上,故可设 .)1(),(),,(),,(),,(2020220y x y x y y x x x M y x Q y x P λλλ-+=-=-则则 ① 再设),1,1().(,),,(010111y x y y x x QA BQ y x B --=--=λλ即由 解得???-+=-+=.)1(, )1(011λλλλy y x x ②,将①式代入②式,消去0y ,得 ???-+-+=-+=. )1()1(,)1(2 211λλλλλλy x y x x ③,又点B 在抛物线2 x y =上,所以211x y =, 再将③式代入211x y =,得222(1)(1)((1)),x y x λλλλλλ+-+-=+- 22222(1)(1)(1)2(1),x y x x λλλλλλλλ+-+-=+-++ 2(1)(1)(1)0.x y λλλλλλ+-+-+= 0,(1),210x y λλλ>+--=因同除以得 故所求点P 的轨迹方程为.12-=x y 2.(17)(本小题满分13分) 设直线11221212:x+1:y=k x 1k k k k +20l y k l =-?=,,其中实数满足,

《空间解析几何2》教学大纲.

《空间解析几何2》教学大纲 课程编号:12307229 学时:22 学分:1.5 课程类别:限制性选修课 面向对象:小学教育专业本科学生 课程英语译名:Interspace Analytic Geometry(2) 一、课程的任务和目的 任务:本课程要求学生熟练掌握解析几何的基本知识和基本理论,正确地理解和使用向量代数知识,并解决一些实际问题。深刻理解坐标观念和曲线(面)与方程相对应的观念,熟练掌握讨论空间直线、平面、曲线、曲面的基本方法,训练学生的空间想象能力和运算能力。 目的:通过本课程的学习,使学生掌握《空间解析几何》的基本知识、基本思想及基本方法,培养学生的抽象思维能力及空间想象力,培养学生用代数方法处理几何问题的能力,提高学生从几何直观分析问题和和解决问题的能力。为学习《高等代数》及《数学分析》及后继课程打下坚实基础,为日后胜任小学教学工作而作好准备。 二、课程教学内容与要求 (一)平面与空间直线(14学时) 1.教学内容与要求:本章要求学生熟练掌握平面与空间直线的各种形式的方程,能判别空间有关点、直线与平面的位置关系,能熟练计算它们之间的距离与交角。 2.教学重点:根据条件求解平面和空间直线的方程,及点、直线、平面之间的位置关系 3.教学难点:求解平面和空间直线的方程。 4. 教学内容: (1)平面的方程(2课时):掌握空间平面的几种求法(点位式、三点式、点法式、一般式)。 (2)平面与点及两个平面的相关位置(2课时):掌握平面与点的位置关系及判定方法;掌握空间两个平面的位置关系及判定方法。 (3)空间直线的方程(2课时):掌握空间直线的几种求法(点向式、两点式、参数式、一般式、射影式)。 (5)直线与平面的相关位置(2课时):掌握空间直线与平面的位置关系及判定方法。 (6)空间两直线的相关位置(2课时):掌握空间两直线的位置关系及判定方法。 (7)空间直线与点的相关位置(2课时):掌握直线与点的位置关系及判定方法。 (8)平面束(2课时):掌握平面束的定义(有轴平面束和平行平面束),并能根据题意求平面束的方程。

向量代数与空间解析几何复习题

第七章 向量代数与空间解析几何 (一) 空间直角坐标系、向量及其线性运算 一、判断题 1. 点(-1,-2,-3)是在第八卦限。 ( ) 2. 任何向量都有确定的方向。 ( ) 3. 任二向量, =.则a =b 同向。 ( ) 4. 若二向量, + ,则,同向。 ( ) 5. 若+=+,则= ( ) 6. 向量b a , b a ,同向。 ( ) 7.若={ z y x a a a ,,},则平行于向量的单位向量为| |a a x a | |a z }。( ) 8.若一向量在另一向量上的投影为零,则此二向量共线。 ( ) 二、填空题 1. 点(2,1,-3)关于坐标原点对称的点是 2. 点(4,3,-5)在 坐标面上的投影点是M (0,3,-5) 3. 点(5,-3,2)关于 的对称点是M (5,-3,-2)。 4. 设向量a 与b 有共同的始点,则与,共面且平分a 与b 的夹角的向量为 5. 已知向量与方向相反,且||2||a b =,则由表示为= 。 6. ,与轴l 的夹角为 6 π,则a l prj = 7. 已知平行四边形ABCD 的两个顶点A (2,-3,-5)、B (-1,3,2)。 以及它的对角线 交点E (4,-1,7),则顶点C 的坐标为 ,则顶点D 的坐标为 。 8. 设向量与坐标轴正向的夹角为α、β、γ,且已知α =ο 60,β=ο 120。则γ= 9. 设a 的方向角为α、β、γ,满足cos α=1时,a 垂直于 坐标面。 三、选择题

1.点(4,-3,5)到oy 轴的距离为 (A )2225)3(4+-+ (B ) 225)3(+- (C )22)3(4-+ (D )2254+ 2 . 已 知 梯 形 OABC 、 2 12 1 -21--2121-, ⊥ b + + - + < - +>-yoz 2AOB ∠42222)(b a b a ?=?a ?b a ???2 a b ??a ??b ωc a ρρ?0??≠a c b ??=b a ??=b a ?? ?22 2b b a a +?+??a b b a ???ρ?=?c b a ???、、a c b c b a ???????=?=,c b a ???、、b a ??,111,,γβα2 22,,γβαb a ∧ (2 12121cos cos cos cos cos cos γγββαα++) (b a ?∧3 π,8,5==b a ??b a ??-24,19,13=+==b a b a ??ρ?a b -v v 32)(π=∧b ?2 ,1==b a ??a b ?v v 72,26,3=?==b a b a ????b a ???}1,2,2{},4,3,4{=-=b a ??a }4,6,4{},2,3,2{--=-=b a ?? )(b ?∧b a ??,λb a P ???5+=λb a Q ???-=3MNP ∠π 4 3π2π 4π2a =0=?b a ??0??=a 0??=b c a b a c b a ???????-=-)(0??≠a c a b a ????=c b ??=}. 4,4,1{},2,3,{-==b x a ?? b a ??//}1,3,1{1},1,1,2{-=-= b a ?? b a ??、}2,1,2{}3,2,1{}1,3,2{=-=-=c b a ? ??、、d ?b a ??,. 14d c ?? ,求向量上的投影是312123 a a a b b b == 2222222 123123112233()()()a a a b b b a b a b a b ++++=++?..a C B c A B ????= =c a c a S ABD ρ?????= ?l l πππ⊥πππθ2 π πππ5πd 2 2212C B A D D ++-5 1 232-==-z y x { 7 421 253=+--=-+z y x z y x 1 3241z y x =+=-300 { x y z x y z ++=--={ 1240 322=+--=+-+z y x z y x 2 33211+=+=-z y x 1 0101z y x =-=+{ 0440 4=--=--y x z x ?? ? ??==+=4321z t y t x { 7 27 2=-+=++-z y x z y x

平面解析几何测试题及答案

平面解析几何测试题 一、选择题(本大题20个小题,每小题3分,共60分) 1.直线3x+4y-24=0在x 轴,y 轴上的截距为 ( ) A.6,8 B.-6,8 C.8,6 D.-8,6 2.x=29y -表示的曲线是 ( ) A.一条直线 B.两条直线 C.半个圆 D.一个圆 3.已知直线x-ay+8=0与直线2x-y-2=0垂直,则a 的值是 ( ) A.-1 B.2 C.1 D.-2 4.已知圆x 2+y 2+ax+by=0的圆心为(-4,3),则a,b 的值分别是 ( ) A.8,6 B.8,-6 C.-8,-6 D.-8,6 5.已知A (3,-6),B (-5,2),C (6,y )三点共线,则点C 的纵坐标是 ( ) A.-13 B.9 C.-9 D.13 6.已知过点P (2,2)的直线与圆(x-1)2 +y 2 =5相切,且与直线ax-y+1=0 垂直,则a 的值为( ) A.2 B.1 C.-21 D.2 1 7. 直线2x-y=0与圆x 2+y 2-2x-4y-1=0的位置关系为 ( ) A. 相交但不过圆心 B.相离 C.相切 D.相交过圆心 8.已知双曲线22a x -22b y =1的渐近线的斜率k=±3 4,则离心率等于 ( )

A.53 B.45 C.34 D.3 5 9.若椭圆22a x +22 b y =1(a>b>0)的左右焦点分别为F 1,F 2,点A 是椭圆 上一点,若▲AF 1F 2为正三角形,则椭圆的离心率为 ) A. 22 B.21 C.4 1 D.3-1 10.已知双曲线22x -22 b y =1(b>0)的左右焦点分别为F 1,F 2,其中一条 渐近线方程为y=x ,点P (3,y 0)在双曲线上,则1?2PF 等于 ( ) A.-12 B.-2 C.0 D.4 11.已知椭圆焦点在x 轴上,长轴长为18,且焦点将长轴三等分,则椭圆的方程为( ) A.812x +722y =1 B.812x +92 y =1 C.812x +452y =1 D.812x +16 2y 12.设点F 为抛物线y 2=3x 的焦点,过点F 且倾斜角为30°的直线交抛物线于A ,B 两点,则|AB|等于 ( ) A. 3 30 B.6 C.12 D.37 13.已知圆x 2+y 2-4x-4y=0与x 轴相交于A ,B 两点,则弦AB 所对的圆心角的大小为( ) A.6 π B.3 π C.2 π D. 3 π2 14.已知椭圆的中心在原点,焦点在x 轴上,长轴是短轴的3倍,且过点(-3,1),则椭圆的方程为 ( )

相关主题
文本预览
相关文档 最新文档