当前位置:文档之家› 液压系统的设计步骤与设计要求

液压系统的设计步骤与设计要求

液压系统的设计步骤与设计要求
液压系统的设计步骤与设计要求

液压系统的设计步骤与设计要求

液压系统的设计步骤与设计要求

液压传动系统是液压机械的一个组成部分,液压传动系统的设计要同主机的总体设计同时进行。着手设计时,必须从实际情况出发,有机地结合各种传动形式,充分发挥液压传动的优点,力求设计出结构简单、工作可靠、成本低、效率高、操作简单、维修方便的液压传动系统。

1.1 设计步骤

液压系统的设计步骤并无严格的顺序,各步骤间往往要相互穿插进行。一般来说,在明确设计要求之后,

大致按如下步骤进行。

1)确定液压执行元件的形式;

2)进行工况分析,确定系统的主要参数;

3)制定基本方案,拟定液压系统原理图;

4)选择液压元件;

5)液压系统的性能验算;

6)绘制工作图,编制技术文件。

1.2 明确设计要求

设计要求是进行每项工程设计的依据。在制定基本方案并进一步着手液压系统各部分设计之前,必须把设

计要求以及与该设计内容有关的其它方面了解清楚。

1)主机的概况:用途、性能、工艺流程、作业环境、总体布局等;

2)液压系统要完成哪些动作,动作顺序及彼此联锁关系如何;

3)液压驱动机构的运动形式,运动速度;

4)各动作机构的载荷大小及其性质;

5)对调速范围、运动平稳性、转换精度等性能方面的要求;

6)自动化程序、操作控制方式的要求;

7)对防尘、防爆、防寒、噪声、安全可靠性的要求;

8)对效率、成本等方面的要求。

制定基本方案和绘制液压系统图

3.1制定基本方案

(1)制定调速方案

液压执行元件确定之后,其运动方向和运动速度的控制是拟定液压回路的核心问题。

方向控制用换向阀或逻辑控制单元来实现。对于一般中小流量的液压系统,大多经过换向阀的有机组合实现所要求的动作。对高压大流量的液压系统,现多采用插装阀与先导控制阀的逻辑组合来实现。

速度控制经过改变液压执行元件输入或输出的流量或者利用密封空间的容积变化来实现。相应的调整方式有节流调速、容积调速以及二者的结合——容积节流调速。

节流调速一般采用定量泵供油,用流量控制阀改变输入或输出液压执行元件的流量来调节速度。此种调速方式结构简单,由于这种系统必须用闪流阀,故效率低,发热量大,多用于功率不大的场合。

容积调速是靠改变液压泵或液压马达的排量来达到调速的目的。其优点是没有溢流损失和节流损失,效率较高。但为了散热和补充泄漏,需要有辅助泵。此种调速方式适用于功率大、运动速度高的液压系统。容积节流调速一般是用变量泵供油,用流量控制阀调节输入或输出液压执行元件的流量,并使其供油量与需油量相适应。此种调速回路效率也较高,速度稳定性较好,但其结构比较复杂。

节流调速又分别有进油节流、回油节流和旁路节流三种形式。进油节流起动冲击较小,回油节流常见于有

负载荷的场合,旁路节流多用于高速。

调速回路一经确定,回路的循环形式也就随之确定了。

节流调速一般采用开式循环形式。在开式系统中,液压泵从油箱吸油,压力油流经系统释放能量后,再排回油箱。开式回路结构简单,散热性好,但油箱体积大,容易混入空气。

容积调速大多采用闭式循环形式。闭式系统中,液压泵的吸油口直接与执行元件的排油口相通,形成一个

封闭的循环回路。其结构紧凑,但散热条件差。

(2)制定压力控制方案

液压执行元件工作时,要求系统保持一定的工作压力或在一定压力范围内工作,也有的需要多级或无级连续地调节压力,一般在节流调速系统中,一般由定量泵供油,用溢流阀调节所需压力,并保持恒定。在容积调速系统中,用变量泵供油,用安全阀起安全保护作用。

在有些液压系统中,有时需要流量不大的高压油,这时可考虑用增压回路得到高压,而不用单设高压泵。液压执行元件在工作循环中,某段时间不需要供油,而又不便停泵的情况下,需考虑选择卸荷回路。

在系统的某个局部,工作压力需低于主油源压力时,要考虑采用减压回路来获得所需的工作压力。

(3)制定顺序动作方案

主机各执行机构的顺序动作,根据设备类型不同,有的按固定程序运行,有的则是随机的或人为的。工程机械的操纵机构多为手动,一般用手动的多路换向阀控制。加工机械的各执行机构的顺序动作多采用行程控制,当工作部件移动到一定位置时,经过电气行程开关发出电信号给电磁铁推动电磁阀或直接压下行程阀来控制接续的动作。行程开关安装比较方便,而用行程阀需连接相应的油路,因此只适用于管路联接比

较方便的场合。

另外还有时间控制、压力控制等。例如液压泵无载启动,经过一段时间,当泵正常运转后,延时继电器发出电信号使卸荷阀关闭,建立起正常的工作压力。压力控制多用在带有液压夹具的机床、挤压机压力机等场合。当某一执行元件完成预定动作时,回路中的压力达到一定的数值,经过压力继电器发出电信号或打

开顺序阀使压力油经过,来启动下一个动作。

(4)选择液压动力源

液压系统的工作介质完全由液压源来提供,液压源的核心是液压泵。节流调速系统一般用定量泵供油,在

无其它辅助油源的情况下,液压泵的供油量要大于系统的需油量,多余的油经溢流阀流回油箱,溢流阀同时起到控制并稳定油源压力的作用。容积调速系统多数是用变量泵供油,用安全阀限定系统的最高压力。为节省能源提高效率,液压泵的供油量要尽量与系统所需流量相匹配。对在工作循环各阶段中系统所需油量相差较大的情况,一般采用多泵供油或变量泵供油。对长时间所需流量较小的情况,可增设蓄能器做辅

助油源。

油液的净化装置是液压源中不可缺少的。一般泵的入口要装有粗过滤器,进入系统的油液根据被保护元件的要求,经过相应的精过滤器再次过滤。为防止系统中杂质流回油箱,可在回油路上设置磁性过滤器或其它型式的过滤器。根据液压设备所处环境及对温升的要求,还要考虑加热、冷却等措施。

3.2 绘制液压系统图

整机的液压系统图由拟定好的控制回路及液压源组合而成。各回路相互组合时要去掉重复多余的元件,力求系统结构简单。注意各元件间的联锁关系,避免误动作发生。要尽量减少能量损失环节。提高系统的工

作效率。

为便于液压系统的维护和监测,在系统中的主要路段要装设必要的检测元件(如压力表、温度计等)。

大型设备的关键部位,要附设备用件,以便意外事件发生时能迅速更换,保证主要连续工作。

各液压元件尽量采用国产标准件,在图中要按国家标准规定的液压元件职能符号的常态位置绘制。对于自

行设计的非标准元件可用结构原理图绘制。

系统图中应注明各液压执行元件的名称和动作,注明各液压元件的序号以及各电磁铁的代号,并附有电磁

铁、行程阀及其它控制元件的动作表。

液压元件的选择与专用件设计

4.1 液压泵的选择

1)确定液压泵的最大工作压力pp

pp≥p1+Σ△p (21)

式中 p1——液压缸或液压马达最大工作压力;

Σ△p——从液压泵出口到液压缸或液压马达入口之间总的管路损失。Σ△p的准确计算要待元件选定并绘出管路图时才能进行,初算时可按经验数据选取:管路简单、流速不大的,取Σ△p=(0.2~0.5)MPa;

管路复杂,进口有调阀的,取Σ△p=(0.5~1.5)MPa。

2)确定液压泵的流量QP 多液压缸或液压马达同时工作时,液压泵的输出流量应为

QP≥K(ΣQmax)(22)

式中 K——系统泄漏系数,一般取K=1.1~1.3;

ΣQmax——同时动作的液压缸或液压马达的最大总流量,可从(Q-t)图上查得。对于在工作过程中用节流调速的系统,还须加上溢流阀的最小溢流量,一般取0.5×10-4m3/s。

系统使用蓄能器作辅助动力源时

式中 K——系统泄漏系数,一般取K=1.2;

Tt——液压设备工作周期(s);

Vi——每一个液压缸或液压马达在工作周期中的总耗油量(m3);

z——液压缸或液压马达的个数。

3)选择液压泵的规格根据以上求得的pp和Qp值,按系统中拟定的液压泵的形式,从产品样本或本手册中选择相应的液压泵。为使液压泵有一定的压力储备,所选泵的额定压力一般要比最大工作压力大

25%~60%。

4)确定液压泵的驱动功率在工作循环中,如果液压泵的压力和流量比较恒定,即(p-t)、(Q-t)图变

化较平缓,则

式中 pp——液压泵的最大工作压力(Pa);

QP——液压泵的流量(m3/s);

ηP——液压泵的总效率,参考表9选择。

表9液压泵的总效率

液压泵类型

齿轮泵

螺杆泵

叶片泵

柱塞泵

总效率

0.6~0.7

0.65~0.80

0.60~0.75

0.80~0.85

限压式变量叶片泵的驱动功率,可按流量特性曲线拐点处的流量、压力值计算。一般情况下,可取

pP=0.8pPmax,QP=Qn,则

式中——液压泵的最大工作压力(Pa);

——液压泵的额定流量(m3/s)。

在工作循环中,如果液压泵的流量和压力变化较大,即(Q-t),(p-t)曲线起伏变化较大,则须分别计算出各个动作阶段内所需功率,驱动功率取其平均功率

式中 t1、t2、…tn——一个循环中每一动作阶段内所需的时间(s);

P1、P2、…Pn——一个循环中每一动作阶段内所需的功率(W)。

按平均功率选出电动机功率后,还要验算一下每一阶段内电动机超载量是否都在允许范围内。电动机允许

的短时间超载量一般为25%。

4.2 液压阀的选择

1)阀的规格,根据系统的工作压力和实际经过该阀的最大流量,选择有定型产品的阀件。溢流阀按液压泵的最大流量选取;选择节流阀和调速阀时,要考虑最小稳定流量应满足执行机构最低稳定速度的要求。

控制阀的流量一般要选得比实际经过的流量大一些,必要时也允许有20%以内的短时间过流量。

2)阀的型式,按安装和操作方式选择。

4.3 蓄能器的选择

根据蓄能器在液压系统中的功用,确定其类型和主要参数。

1)液压执行元件短时间快速运动,由蓄能器来补充供油,其有效工作容积为

式中 A——液压缸有效作用面积(m2);

l——液压缸行程(m);

K——油液损失系数,一般取K=1.2;

QP——液压泵流量(m3/s);

t——动作时间(s)

2)作应急能源,其有效工作容积为:

式中——要求应急动作液压缸总的工作容积(m3)。

有效工作容积算出后,根据第8章中有关蓄能器的相应计算公式,求出蓄能器的容积,再根据其它性能要

求,即可确定所需蓄能器。

4.4 管道尺寸的确定

(1)管道内径计算

式中 Q——经过管道内的流量(m3/s);

υ——管内允许流速(m/s),见表10。

计算出内径d后,按标准系列选取相应的管子。

(2)管道壁厚δ的计算

表10 允许流速推荐值

管道

推荐流速/(m/s)

液压泵吸油管道

0.5~1.5,一般常取1以下

液压系统压油管道

3~6,压力高,管道短,粘度小取大值

液压系统回油管道

1.5~

2.6

式中 p——管道内最高工作压力(Pa);

d——管道内径(m);

[σ]——管道材料的许用应力(Pa),[σ]=

σb——管道材料的抗拉强度(Pa);

n——安全系数,对钢管来说,p<7MPa时,取n=8;p<17.5MPa时,取n=6;p>17.5MPa时,取

n=4。

4.5 油箱容量的确定

初始设计时,先按经验公式(31)确定油箱的容量,待系统确定后,再按散热的要求进行校核。

油箱容量的经验公式为

V=αQV (31)

式中 QV——液压泵每分钟排出压力油的容积(m3);

α——经验系数,见表11。

表11 经验系数α

系统类型

行走机械

低压系统

中压系统

锻压机械

冶金机械

α

1~2

2~4

5~7

6~12

10

在确定油箱尺寸时,一方面要满足系统供油的要求,还要保证执行元件全部排油时,油箱不能溢出,以及系统中最大可能充满油时,油箱的油位不低于最低限度。

液压系统性能验算

液压系统初步设计是在某些估计参数情况下进行的,当各回路形式、液压元件及联接管路等完全确定后,针对实际情况对所设计的系统进行各项性能分析。对一般液压传动系统来说,主要是进一步确切地计算液压回路各段压力损失、容积损失及系统效率,压力冲击和发热温升等。根据分析计算发现问题,对某些不

合理的设计要进行重新调整,或采取其它必要的措施。

5.1 液压系统压力损失

压力损失包括管路的沿程损失△p1,管路的局部压力损失△p2和阀类元件的局部损失△p3,总的压力损

失为

△p=△p1+△p2+△p3 (32)

(33)

(34)

式中 l——管道的长度(m);

d——管道内径(m);

υ——液流平均速度(m/s);

ρ——液压油密度(kg/m3);

λ——沿程阻力系数;

ζ——局部阻力系数。

λ、ζ的具体值可参考第2章有关内容。

式中 Qn——阀的额定流量(m3/s);

Q——经过阀的实际流量(m3/s);

△pn——阀的额定压力损失(Pa)(可从产品样本中查到)。

对于泵到执行元件间的压力损失,如果计算出的△p比选泵时估计的管路损失大得多时,应该重新调整泵

及其它有关元件的规格尺寸等参数。

系统的调整压力

pT≥p1+△p (36)

式中 pT——液压泵的工作压力或支路的调整压力。

5.2 液压系统的发热温升计算

5.2.1 计算液压系统的发热功率

液压系统工作时,除执行元件驱动外载荷输出有效功率外,其余功率损失全部转化为热量,使油温升高。

液压系统的功率损失主要有以下几种形式:

(1)液压泵的功率损失

式中 Tt——工作循环周期(s);

z——投入工作液压泵的台数;

Pri——液压泵的输入功率(W);

ηPi——各台液压泵的总效率;

ti——第i台泵工作时间(s)。

(2)液压执行元件的功率损失

式中 M——液压执行元件的数量;

Prj——液压执行元件的输入功率(W);

ηj——液压执行元件的效率;

tj——第j个执行元件工作时间(s)。

(3)溢流阀的功率损失

(39)

式中 py——溢流阀的调整压力(Pa);

Qy——经溢流阀流回油箱的流量(m3/s)。

(4)油液流经阀或管路的功率损失

Ph4=△pQ (40)

式中△p——经过阀或管路的压力损失(Pa);

Q——经过阀或管路的流量(m3/s)。

由以上各种损失构成了整个系统的功率损失,即液压系统的发热功率

Phr=Ph1+ Ph2+ Ph3+Ph4 (41)

式(41)适用于回路比较简单的液压系统,对于复杂系统,由于功率损失的环节太多,一一计算较麻烦,

一般见下式计算液压系统的发热功率

Phr=Pr-Pc (42)

式中Pr是液压系统的总输入功率,PC是输出的有效功率。

其中 Tt——工作周期(s);

z、n、m——分别为液压泵、液压缸、液压马达的数量;

pi、Qi、ηPi——第i台泵的实际输出压力、流量、效率;

ti——第i台泵工作时间(s);

TWj、ωj、tj——液压马达的外载转矩、转速、工作时间(N·m、rad/s、s);

FWi、si——液压缸外载荷及驱动此载荷的行程(N·m)。

5.2.2 计算液压系统的散热功率

液压系统的散热渠道主要是油箱表面,但如果系统外接管路较长,而且用式(41)计算发热功率时,也应

考虑管路表面散热。

Phc=(K1A1+K2A2)△T (45)

式中 K1——油箱散热系数,见表12;

K2——管路散热系数,见表13;

A1、A2——分别为油箱、管道的散热面积(m2);

△T——油温与环境温度之差(℃)。

表12 油箱散热系数K1 (W/(m2·℃))

冷却条件

K1

通风条件很差

8~9

通风条件良好

15~17

用风扇冷却

23

循环水强制冷却

110~170

表13 管道散热系数K2 (W/(m2·℃))

风速/m·s-1

管道外径/m

0.01

0.05

0.1

8

6

5

1

25

14

10

5

69

40

23

若系统达到热平衡,则Phr=Phc,油温不再升高,此时,最大温差

环境温度为T0,则油温T=T0+△T。如果计算出的油温超过该液压设备允许的最高油温(各种机械允许油温见表14),就要设法增大散热面积,如果油箱的散热面积不能加大,或加大一些也无济于事时,需

要装设冷却器。冷却器的散热面积

表14 各种机械允许油温(℃)

液压设备类型

正常工作温度

最高允许温度

数控机床

30~50

55~70

一般机床

30~55

55~70

机车车辆

40~60

70~80

船舶

30~60

80~90

冶金机械、液压机

40~70

60~90

工程机械、矿山机械

50~80

70~90

式中 K——冷却器的散热系数,见本篇第8章液压辅助元件有关散热器的散热系数;

△tm——平均温升(℃),

T1、T2——液压油入口和出口温度;

t1、t2——冷却水或风的入口和出口温度。

5.2.3 根据散热要求计算油箱容量

式(46)是在初步确定油箱容积的情况下,验算其散热面积是否满足要求。当系统的发热量求出之后,可

根据散热的要求确定油箱的容量。

由式(46)可得油箱的散热面积为

如不考虑管路的散热,式(48)可简化为

油箱主要设计参数如图3所示。一般油面的高度为油箱高h的0.8倍,与油直接接触的表面算全散热面,

与油不直接接触的表面算半散热面,图示油箱的有效容积和散热面积分别为

图3 油箱结构尺寸

V=0.8αbh (50)

A1=1.6h(α+b)+1.5αb (51)

若A1求出,再根据结构要求确定α、b、h的比例关系,即可确定油箱的主要结构尺寸。

如按散热要求求出的油箱容积过大,远超出用油量的需要,且又受空间尺寸的限制,则应适当缩小油箱尺

寸,增设其它散热措施。

5.3 计算液压系统冲击压力

压力冲击是由于管道液流速度急剧改变而形成的。例如液压执行元件在高速运动中突然停止,换向阀的迅速开启和关闭,都会产生高于静态值的冲击压力。它不但伴随产生振动和噪声,而且会因过高的冲击压力而使管路、液压元件遭到破坏。对系统影响较大的压力冲击常为以下两种形式:

1)当迅速打开或关闭液流通路时,在系统中产生的冲击压力。

直接冲击(即t<τ)时,管道内压力增大值

(52)

间接冲击(即t>τ)时,管道内压力增大值

式中ρ——液体密度(kg/m3);

△υ——关闭或开启液流通道前后管道内流速之差(m/s);

t——关闭或打开液流通道的时间(s);

τ=

——管道长度为l时,冲击波往返所需的时间(s);

——管道内液流中冲击波的传播速度(m/s)。

若不考虑粘性和管径变化的影响,冲击波在管内的传播速度

式中 E0——液压油的体积弹性模量(Pa),其推荐值为E0=700MPa;

δ、d——管道的壁厚和内径(m);

E——管道材料的弹性模量(Pa),常见管道材料弹性模量:钢E=2.1×1011Pa,紫铜

E=1.18×1011Pa。

2)急剧改变液压缸运动速度时,由于液体及运动机构的惯性作用而引起的压力冲击,其压力的增大值为

式中——液流第i段管道的长度(m);

Ai——第i段管道的截面积(m2);

A——液压缸活塞面积(m2);

M——与活塞连动的运动部件质量(kg);

△υ——液压缸的速度变化量(m/s);

t——液压缸速度变化△υ所需时间(s)。

计算出冲击压力后,此压力与管道的静态压力之和即为此时管道的实际压力。实际压力若比初始设计压力大得多时,要重新校核一下相应部件管道的强度及阀件的承压能力,如不满足,要重新调整。

设计液压装置,编制技术文件

6.1 液压装置总体布局

液压系统总体布局有集中式、分散式。

集中式结构是将整个设备液压系统的油源、控制阀部分独立设置于主机之外或安装在地下,组成液压站。

如冷轧机、锻压机、电弧炉等有强烈热源和烟尘污染的冶金设备,一般都是采用集中供油方式。

分散式结构是把液压系统中液压泵、控制调节装置分别安装在设备上适当的地方。机床、工程机械等可移

动式设备一般都采用这种结构。

6.2 液压阀的配置形式

1)板式配置板式配置是把板式液压元件用螺钉固定在平板上,板上钻有与阀口对应的孔,经过管接头联接油管而将各阀按系统图接通。这种配置可根据需要灵活改变回路形式。液压实验台等普遍采用这种配

置。

2)集成式配置当前液压系统大多数都采用集成形式。它是将液压阀件安装在集成块上,集成块一方面起安装底板作用,另一方面起内部油路作用。这种配置结构紧凑、安装方便。

6.3 集成块设计

1)块体结构集成块的材料一般为铸铁或锻钢,低压固定设备可用铸铁,高压强振场合要用锻钢。块体加

工成正方体或长方体。

对于较简单的液压系统,其阀件较少,可安装在同一个集成块上。如果液压系统复杂,控制阀较多,就要

采取多个集成块叠积的形式。

相互叠积的集成块,上下面一般为叠积接合面,钻有公共压力油孔P,公用回油孔T,泄漏油孔L和4个

用以叠积紧固的螺栓孔。

P孔,液压泵输出的压力油经调压后进入公用压力油孔P,作为供给各单元回路压力油的公用油源。

T孔,各单元回路的回油均通到公用回油孔T,流回到油箱。

L孔,各液压阀的泄漏油,统一经过公用泄漏油孔流回油箱。

集成块的其余四个表面,一般后面接通液压执行元件的油管,另三个面用以安装液压阀。块体内部按系统

图的要求,钻有沟通各阀的孔道。

2)集成块结构尺寸的确定外形尺寸要求满足阀件的安装,孔道布置及其它工艺要求。为减少工艺孔,缩短孔道长度,阀的安装位置要仔细考虑,使相通油孔尽量在同一水平面或是同一竖直面上。对于复杂的液压系统,需要多个集成块叠积时,一定要保证三个公用油孔的坐标相同,使之叠积起来后形成三个主通

道。

各通油孔的内径要满足允许流速的要求,具体参照本章4.4节确定孔径。一般来说,与阀直接相通的孔径

应等于所装阀的油孔通径。

油孔之间的壁厚δ不能太小,一方面防止使用过程中,由于油的压力而击穿,另一方面避免加工时,因油孔的偏斜而误通。对于中低压系统,δ不得小于5mm,高压系统应更大些。

6.4 绘制正式工作图,编写技术文件

液压系统完全确定后,要正规地绘出液压系统图。除用元件图形符号表示的原理图外,还包括动作循环表和元件的规格型号表。图中各元件一般按系统停止位置表示,如特殊需要,也能够按某时刻运动状态画

出,但要加以说明。

装配图包括泵站装配图,管路布置图,操纵机构装配图,电气系统图等。

技术文件包括设计任务书、设计说明书和设备的使用、维护说明书等。

进行工况分析、确定液压系统的主要参数

经过工况分析,能够看出液压执行元件在工作过程中速度和载荷变化情况,为确定系统及各执行元件的参

数提供依据。

液压系统的主要参数是压力和流量,它们是设计液压系统,选择液压元件的主要依据。压力决定于外载

荷。流量取决于液压执行元件的运动速度和结构尺寸。

2.1 载荷的组成和计算

2.1.1 液压缸的载荷组成与计算

图1表示一个以液压缸为执行元件的液压系统计算简图。各有关参数标注图上,其中FW是作用在活塞杆上的外部载荷,Fm中活塞与缸壁以及活塞杆与导向套之间的密封阻力。

图1液压系统计算简图

作用在活塞杆上的外部载荷包括工作载荷Fg,导轨的摩擦力Ff和由于速度变化而产生的惯性力Fa。

(1)工作载荷Fg

常见的工作载荷有作用于活塞杆轴线上的重力、切削力、挤压力等。这些作用力的方向如与活塞运动方向

相同为负,相反为正。

(2)导轨摩擦载荷Ff

对于平导轨

(1)

对于V型导轨

(2)

式中 G——运动部件所受的重力(N);

FN——外载荷作用于导轨上的正压力(N);

μ——摩擦系数,见表1;

α——V型导轨的夹角,一般为90°。

(3)惯性载荷Fa

表1 摩擦系数μ

导轨类型

导轨材料

运动状态

摩擦系数

滑动导轨

铸铁对铸铁

起动时

0.15~0.20

低速(υ<0.16m/s)

0.1~0.12

高速(υ>0.16m/s)

0.05~0.08

滚动导轨

铸铁对滚柱(珠)

0.005~0.02

淬火钢导轨对滚柱

0.003~0.006

静压导轨

铸铁

0.005

式中 g——重力加速度;g=9.81m/s2;

△υ——速度变化量(m/s);

△t——起动或制动时间(s)。一般机械△t=0.1~0.5s,对轻载低速运动部件取小值,对重载高速部件取

大值。行走机械一般取

=0.5~1.5 m/s2。

以上三种载荷之和称为液压缸的外载荷FW。

起动加速时 FW=Fg+Ff+Fa (4)

稳态运动时 FW=Fg+Ff (5)

减速制动时 FW=Fg+Ff-Fa (6)

工作载荷Fg并非每阶段都存在,如该阶段没有工作,则 Fg=0。

除外载荷FW外,作用于活塞上的载荷F还包括液压缸密封处的摩擦阻力Fm,由于各种缸的密封材质和

密封形成不同,密封阻力难以精确计算,一般估算为

(7)

式中ηm——液压缸的机械效率,一般取0.90~0.95。

(8)

2.1.2 液压马达载荷力矩的组成与计算

(1)工作载荷力矩Tg

常见的载荷力矩有被驱动轮的阻力矩、液压卷筒的阻力矩等。

(2)轴颈摩擦力矩Tf

Tf=μGr (9)

式中 G——旋转部件施加于轴劲上的径向力(N);

μ——摩擦系数,参考表1选用;

r——旋转轴的半径(m)。

(3)惯性力矩Ta

(10)

式中ε——角加速度(rad/s2);

△ω——角速度变化量(rad/s);

△t——起动或制动时间(s);

J——回转部件的转动惯量(kg·m2)。

起动加速时(11)

稳定运行时(12)

减速制动时(13)

计算液压马达载荷转矩T时还要考虑液压马达的机械效率ηm(ηm=0.9~0.99)。

(14)

根据液压缸或液压马达各阶段的载荷,绘制出执行元件的载荷循环图,以便进一步选择系统工作压力和确

定其它有关参数。

2.2 初选系统工作压力

压力的选择要根据载荷大小和设备类型而定。还要考虑执行元件的装配空间、经济条件及元件供应情况等的限制。在载荷一定的情况下,工作压力低,势必要加大执行元件的结构尺寸,对某些设备来说,尺寸要受到限制,从材料消耗角度看出不经济;反之,压力选得太高,对泵、缸、阀等元件的材质、密封、制造精度也要求很高,必然要提高设备成本。一般来说,对于固定的尺寸不太受限的设备,压力能够选低一些,行走机械重载设备压力要选得高一些。具体选择可参考表2和表3。

2.3 计算液压缸的主要结构尺寸和液压马达的排量

(1)计算液压缸的主要结构尺寸

液压缸有关设计参数见图2。图a为液压缸活塞杆工作在受压状态,图b活塞杆工作在受拉状态。

活塞杆受压时

(15)

活塞杆受压时

(16)

式中

——无杆腔活塞有效作用面积(m2);

——有杆腔活塞有效作用面积(m2);

p1——液压缸工作腔压力(Pa);

p2——液压缸回油腔压力(Pa),即背压力。其值根据回路的具体情况而定,初算时可参照表4取值。

差动连接时要另行考虑;

D——活塞直径(m);

d——活塞杆直径(m)。

图2 液压缸主要设计参数

表2 按载荷选择工作压力

载荷/kN

<5

5~10

10~20

20~30

30~50

>50

工作压力/MPa

<0.8~1

1.5~2

2.5~3

3~4

4~5

≥5

表3 各种机械常见的系统工作压力

机械类型

机床

家业机械

小型工程机械

建筑机械

液压凿岩机

液压机

大中型挖掘机

重型机械

起重运输机械

磨床

组合机床

龙门创床

拉床

工作压力/MPa

0.8~2

3~5

2~8

8~10

10~18

20~32

表4 执行元件背压力

系统类型

背压力/MPa

简单系统或轻载节流调速系统

0.2~0.5

回油路带调速阀的系统

0.4~0.6

回油路设置有背压阀的系统

0.5~1.5

用补油泵的闭式回路

0.8~1.5

回油路较复杂的工程机械

1.2~3

回油路较短,且直接回油箱

可忽略不计

一般,液压缸在受压状态下工作,其活塞面积为

(17)

运用式(17)须事先确定A1与A2的关系,或是活塞杆径d与活塞直径D的关系,令杆径比φ=d/D,其

比值可按表5和表6选取。

(18)

采用差动连接时,υ1/υ2=(D2-d2)/d2。如果求往返速度相同时,应取d=0.71D。

对行程与活塞杆直径比l/d>10的受压柱塞或活塞杆,还要做压杆稳定性验算。

当工作速度很低时,还须按最低速度要求验算液压缸尺寸

式中 A——液压缸有效工作面积(m2);

Qmin——系统最小稳定流量(m3/s),在节流调速中取决于回路中所设调速阀或节流阀的最小稳定流

量。容积调速中决定于变量泵的最小稳定流量。

υmin——运动机构要求的最小工作速度(m/s)。

如果液压缸的有效工作面积A不能满足最低稳定速度的要求,则应按最低稳定速度确定液压缸的结构尺

寸。

另外,如果执行元件安装尺寸受到限制,液压缸的缸径及活塞杆的直径须事先确定时,可按载荷的要求和

液压缸的结构尺寸来确定系统的工作压力。

液压缸直径D和活塞杆直径d的计算值要按国标规定的液压缸的有关标准进行圆整。如与标准液压缸参数相近,最好选用国产标准液压缸,免于自行设计加工。常见液压缸内径及活塞杆直径见表7和表8。

表5 按工作压力选取d/D

工作压力/MPa

≤5.0

5.0~7.0

≥7.0

d/D

0.5~0.55

0.62~0.70

0.7

表6 按速比要求确定d/D

υ2/υ1

1.15

1.25

1.46

1.61

2

d/D

0.3

0.4

0.5

0.55

0.62

0.71

注:υ1—无杆腔进油时活塞运动速度;υ2—有杆腔进油时活塞运动速度。

表7 常见液压缸内径D(mm)

40

50

63

80

90

100

110

125

140

160

180

200

220

250

表8 活塞杆直径d(mm)

速比

缸径

40

50

63

80

90

心得体会 液压实训总结报告

液压实训总结报告 液压实训总结报告 海南大学液压试验 (二○一四至二○一五学年度第一学期) 心得体会 学生姓名:xxx 学生学号: 所在学院: 年级专业:xx级机械设计制造及其自动化专业 任课教师:梁栋 完成日期:xx年1月13日 海南大学机电工程学院制 液压试验心得体会 (xxx,xx级机械设计及其自动化专业) 一、实验目的 掌握快进-工进回路特点和工作原理 二、实验要求 画出快进-工进回路原理图。 使液压缸在伸出的过程中具有两个不同的工作速度。液压缸返回时快速退回。 三、实验准备 一个调速阀、二个二位四通换向阀、二个压力表、一个单向阀、二个

分配接头、二个压力软管、二个测量软管、二个电感式限位开关、压力软管若干。 四、实验连接 1.关掉液压泵,使系统不带压力。 2.所需要的液压元件安装在实验台上。 3.根据液压回路图,使用压力软管连接各个元件。 4.确保重物已被液压缸上卸下。 5.检查传感器的位置。如果,液压缸碰撞到传感器的话,液压缸的有机玻璃罩和传感器都可能会被损坏。 五、实验步骤 1.检查所连接的回路。 2.确保元件与软管连接正确。 3.启动液压泵。 4.将两通调速阀的开口位置设置在1.0上。 5.使液压缸伸出。记录并将液压缸快速运动和工进运动的时间以及压力Pe1和Pe2填入到数据表中。 6.使液压缸返回。记录并将液压缸返回运动的时间以及压力Pe1和Pe2填入到数据表中。 7.调速阀的开口位置设置在1.5上,重复步骤5到6。8.关掉液压泵。液压原理图如下图所示: 六、数据记录 七、实验改进 经过认真思考,可以在原来的基础上减少一个二位三通的电磁阀,把O型三位四通电磁阀换成P型三位四通阀构成差动回路形成快进动作

机械机电毕业设计_液压系统设计计算实例

液压系统设计计算实例 ——250克塑料注射祝液压系统设计计算 大型塑料注射机目前都是全液压控制。其基本工作原理是:粒状塑料通过料斗进入螺旋推进器中,螺杆转动,将料向前推进,同时,因螺杆外装有电加热器,而将料熔化成粘液状态,在此之前,合模机构已将模具闭合,当物料在螺旋推进器前端形成一定压力时,注射机构开始将液状料高压快速注射到模具型腔之中,经一定时间的保压冷却后,开模将成型的塑科制品顶出,便完成了一个动作循环。 现以250克塑料注射机为例,进行液压系统设计计算。 塑料注射机的工作循环为: 合模→注射→保压→冷却→开模→顶出 │→螺杆预塑进料 其中合模的动作又分为:快速合模、慢速合模、锁模。锁模的时间较长,直到开模前这段时间都是锁模阶段。 1.250克塑料注射机液压系统设计要求及有关设计参数 1.1对液压系统的要求 ⑴合模运动要平稳,两片模具闭合时不应有冲击; ⑵当模具闭合后,合模机构应保持闭合压力,防止注射时将模具冲开。注射后,注射机构应保持注射压力,使塑料充满型腔; ⑶预塑进料时,螺杆转动,料被推到螺杆前端,这时,螺杆同注射机构一起向后退,为使螺杆前端的塑料有一定的密度,注射机构必需有一定的后退阻力; ⑷为保证安全生产,系统应设有安全联锁装置。 1.2液压系统设计参数 250克塑料注射机液压系统设计参数如下: 螺杆直径40mm 螺杆行程200mm 最大注射压力153MPa 螺杆驱动功率5kW 螺杆转速60r/min 注射座行程230mm 注射座最大推力27kN 最大合模力(锁模力) 900kN 开模力49kN 动模板最大行程350mm 快速闭模速度0.1m/s 慢速闭模速度0.02m/s 快速开模速度0.13m/s 慢速开模速度0.03m/s 注射速度0.07m/s 注射座前进速度0.06m/s 注射座后移速度0.08m/s 2.液压执行元件载荷力和载荷转矩计算 2.1各液压缸的载荷力计算 ⑴合模缸的载荷力 合模缸在模具闭合过程中是轻载,其外载荷主要是动模及其连动部件的起动惯

液压课设液压启闭机的液压系统设计样本

《液压与气压传动》课程设计学号姓名年级专业 指导教师: 钱雪松 内容: 设计计算说明书 1份 20 页 液压系统原理图 1张

河海大学机电工程学院 - 第二学期 《液压与气压传动》课程设计任务书5 授课班号138101/2 年级专业机自指导教师钱雪松学号姓名课程设计题目5 设计一台液压启闭机液压系统, 其主要技术要求如下: 启闭力50T, 行程8000mm, 往返速度4000~10000mm/min, 加减速时间为1秒, 双缸, 用同步回路, 垂直液压缸。 1.课程设计的目的和要求 经过设计液压传动系统, 使学生获得独立设计能力, 分析思考能力, 全面了解液压系统的组成原理。 明确系统设计要求; 分析工况确定主要参数; 拟订液压系统草图; 选择液压元件; 验算系统性能。 2.课程设计内容和教师参数( 各人所取参数应有不同) 其主要技术要求如下: 启闭力50T, 行程8000mm, 往返速度4000~10000mm/min, 加减速时间为1秒, 双缸, 用同步回路, 垂直液压缸。 4. 设计参考资料( 包括课程设计指导书、设计手册、应用软件等) ●章宏甲《液压传动》机械工业出版社 .1 ●章宏甲《液压与气压传动》机械工业出版社 .4 ●黎启柏《液压元件手册》冶金工业出版社 .8

榆次液压有限公司《榆次液压产品》 .3 课程设计任务 明确系统设计要求; 分析工况确定主要参数; 拟订液压系统草图; 选择液压元件; 验算系统性能。 5.1设计说明书( 或报告) 分析工况确定主要参数; 拟订液压系统草图; 选择液压元件; 验算系统性能。 5.2技术附件( 图纸、源程序、测量记录、硬件制作) 5.3图样、字数要求 系统图一张( 3号图) , 设计说明书一份( ~3000字) 。 6. 工作进度计划 3.设计方式 手工 4.设计地点、指导答疑时间

液压系统培训总结

液压系统培训总结 Prepared on 22 November 2020

液压系统培训总结 液压系统是模块钻机重要的组成部分,为了提升机电部门人员的专业技能水平,强化机电人员的专业能力,公司进行了本次液压系统培训,本次培训主要有以下几个方面: 1、液压传动的基本原理以及液压传动的基本构件。 ?液压传动的工作原理 1)液压传动是以液体为工作介质来传递动力的,液压传动用液体的压力能来传递动力,它与液体动能的液力传动是不相同的。 2)液压传动中的工作介质是在受控制,受调节的状态下进行工作的,因此液压传动和液压控制常常难以截然分开。 ?液压传动的组成部分 1)能源装置―――把机械能转换成油液液压能的装置,最常见的形式就是液压泵,它给液压系统提供压力油。 2)执行装置―――把油液的液压能转换成机械能的装置,它可以是作直线运动的液压缸,也可以是作回转运动的液压马达。 3)控制调节装置―――对系统中油液的压力、流量、或流动方向进行控制或调节的装置,例如溢流阀,节流阀、换向阀、先导阀等,这些元件的不同组合形成了不同功能的液压系统。 4)辅助装置―――上述部分以外的其它装置,例如油箱、滤油器、油管等。 2、常用液压符号的了解。 3、液压传动能源装置的学习以及一些基本计算的了解,传动控制装 置的基本原理,和一些辅助装置。 4、了解传动介质(液压油)的性质。 5、了解液压回路的基本构成和工作原理。 6、液压系统常见故障的判断以及处理方法。 液压系统噪声的原因有: ?“气穴”现象---油中析气或进气

?泵或马达损坏; ?阀件(溢流阀、换向阀、主油路锁闭阀等)噪音; ?其他机械原因(联轴节、管路、地脚、舵柱轴承等) ?漏泄引起----超声波可探测4万HZ漏泄噪音 故障诊断的一般方法: ?看资料(液压原理图、重要原件结构、性能参数、压力控制阀整定压力、电气原理、各种保护) ?查情况(问故障、使用、维修情况;尤需现场试车调查) ?想方案(逻辑分析,设想原因,确定鉴别方法) ?查毛病(按预定方案进行,随时调整) ?修故障(调节、修换元件及密封、换油清洗) ?做总结(书面记录故障现象、分析调查过程、处理结果、经验教训) ?分类排除法---故障树法或鱼刺图法 ?逐项排除法:先易后难,先多发后特殊,逐项查看;缺乏严密的理论分析和鉴别手段时用,易走弯路,依靠经验。 7、液压系统的日常维护保养。 本次培训丰富了我们的专业知识,让我们从各方面对液压系统有了更深入 的了解,为今后的工作积累了宝贵的经验,帮助我们能够更好的使用液压系 统、保养液压系统以及解决液压方面的故障。

液压系统的设计步骤与设计要求

液压系统得设计步骤与设计要求 液压传动系统就是液压机械得一个组成部分,液压传动系统得设计要同主机得总体设计同时进行。着手设计时,必须从实际情况出发,有机地结合各种传动形式,充分发挥液压传动得优点,力求设计出结构简单、工作可靠、成本低、效率高、操作简单、维修方便得液压传动系统。 1、1 设计步骤 液压系统得设计步骤并无严格得顺序,各步骤间往往要相互穿插进行。一般来说,在明确设计要求之后,大致按如下步骤进行。 1)确定液压执行元件得形式; 2)进行工况分析,确定系统得主要参数; 3)制定基本方案,拟定液压系统原理图; 4)计算与选择液压元件; 5)液压系统得性能验算; 6)绘制工作图,编制技术文件。 1、2 明确设计要求 设计要求就是进行每项工程设计得依据。在制定基本方案并进一步着手液压系统各部分设计之前,必须把设计要求以及与该设计内容有关得其她方面了解清楚。 1)主机得概况:用途、性能、工艺流程、作业环境(温度、湿度、振动冲击)、总体布局(及液压传动装置得位置与空间尺寸得要求)等; 2)液压系统要完成哪些动作,动作顺序及彼此联锁关系如何; 3)液压驱动机构得运动形式,运动速度; 4)各动作机构得载荷大小及其性质; 5)对调速范围、运动平稳性、换向定位精度等性能方面得要求; 6)自动化程度、操作控制方式得要求; 7)对防尘、防爆、防腐、防寒、噪声、安全可靠性得要求; 8)对效率、成本等方面得要求。

主机得工况分析 通过工况分析,可以瞧出液压执行元件在工作过程中速度与载荷变化情况,为确定系统及各执行元件得参数提供依据。 液压系统得主要参数就是压力与流量,它们就是设计液压系统,选择液压元件得主要依据。压力决定于外载荷。流量取决于液压执行元件得运动速度与结构尺寸。 主机工况分析包括运动分析与动力分析,对复杂得系统还需编制负载与动作循环图,由此了解液压缸或液压马达得负载与速度随时间变化得规律,以下对工况分析得内容作具体介绍。 2、1 运动分析 主机得执行元件按工艺要求得运动情况,可以用位移循环图(L—t) ,速度循环图(v—t) ,或速度与位移循环图表示,由此对运动规律进行分析。 1、位移循环图L —t 液压机得液压缸位移循环图纵坐标L 表示活塞位移,横坐标t 表示从活塞启动到返回原位得时间,曲线斜率表示活塞移动速度。该图清楚地表明液压机得工作循环分别由快速下行、减速下行、压制、保压、泄压慢回与快速回程六个阶段组成。 2、速度循环图v —t(或v —L) 工程中液压缸得运动特点可归纳为三种类型。 图为三种类型液压缸得v —t 图,第一种如图中实线所示,液压缸开始作匀加速运动,然后匀速运动,最后匀减速运动到终点;第二种,如图中虚线所示,液压缸在总行程得前一半作匀加速运动,在另一半作匀减速运动,且加速度得数值相等;第三种,液压缸在总行程得一大半以上以较小得加速度作匀加速运动,然后匀减速至行程终点。v —t 图得三条速度曲线,不仅清楚地表明了三种类型液压缸得运动规律,也间接地表明了三种工况得动力特性。 位移循环图速度循环图 2、2 动力分析 动力分析,就是研究机器在工作过程中,其执行机构得受力情况,对液压系统而言,就就是研究液压缸或液压马达得负载情况。 1.液压缸得负载及负载循环图 (1)液压缸得负载力计算。 工作机构作直线往复运动时,液压缸必须克服得负载由六部分组成:

液压实验心得体会

第一篇、液压与气压传动学习心得 液压实验心得体会 液压与气压传动学习心得 在学完本课程后,我能够正确选择和使用液压气动元件。掌握液压系统、气动系统的设计方法。能够分析和评价现有液压、气动系统。能够正确设计液压系统,选择液压元件。 回想每一阶段的学习总有不同的收获与体会。在学习绪论的时候吴乃领老师从机器的组成为起点,介绍机械传动、电传动、流体传动、控制的原理与特点,通过比较介绍流体传动与控制的优缺点,系统组成流体传动与控制技术的发展历史,目前的运用状况以及传动技术的最新发展,使我们了解流体传动与控制的地位、原理、结构以及特点,以及流体传动运用与发展历史,并介绍本课程的学习方法,是我们大家对本课程的学习产生了浓厚的兴趣。在第二章流体力学基础的学习中,老师介绍了流体的特性,流体静力学、流体动力学伯努利方程等专业知识,帮助我们掌握学习流体传动与控制技术所需的流体力学基础。第三章我们主要学习了液压传动系统中的动力元件,第四章则是介绍液压系统的执行元件各种缸的结构、特点与使用方法,缸的推力、速度的计算;缸的各部分结构设计要点,

各种缸的最新发展方向。让我掌握了各种形式的液压缸的设计计算方法,各种缸的典型结构与应用。随后的第五章老师则介绍了压力控制阀、流量控制阀、方向控制阀的原理、结构与使用方法,在此基础上,介绍电液比例阀、伺服阀以及电液伺服阀的原理、特点、结构以及特性。介绍液压控制阀技术的最新发展。而后的学习更是给我们的认识打开了另一扇门。 液压就是通过液压油来传递压力的装置。一个完整的液压系统由五个部分组成,即动力元件、执行元件、控制元件、辅助元件和液压油。液压由于其传动力最大,易于传递及配置,在工业、民用行业应用广泛。液压系统的执行元件液压缸和液压马达的作用是将液体的压力能转换为机械能,而获得需要的直线往复运动或回转运动。 液压系统中油液的可压缩性很小,在一般的情况下它的影响可以忽略不计,但低压空气的可压缩性很大,大约为油液的10000倍,所以即使系统中含有少量的空气,它的影响也是很大的。溶解在油液中的空气,在压力低时就会从油中逸出,产生气泡,形成空穴现象,到了高压区在压力油的作用下这些气泡急剧受到压缩,很快被击碎,形成气蚀现象。气蚀现象可引起固体壁面的剥蚀,对液压管路损害是很严重的。同时当气体突然受到压缩时会放出大量热量,引起局部过热,使液压元件和液压油受到损坏。空气的可压缩性大,还会使执行元件产生爬行现象,破坏工作平稳性,有时甚至引起振动。这些都影响到系统的正常工作。油液中混人大量气泡还容易使油液变质。降低油液的使用寿命,因此必须防止空气进入液压系统。

液压系统的设计步骤与设计要求

液压绻统的设计步骤与设计要湂 液压传动绻统是液压机械的一个组成部分,液压传动绻统的设计要同主机的总体设计同时进行。着手设计时,必须从实际情况出发,有机地结合各种传动形式,充分发挥液压传动的优点,力湂设计出结构简单、工作可靠、成本低、效率高、操作简单、维修方便的液压传动绻统。 1.1 设计步骤 液压绻统的设计步骤并无严格的顺序,各步骤间往往要相互穿插进行。一般来说,在明确设计要湂之后,大致按如下步骤进行。 1)确定液压执行元件的形式; 2)进行工况分析,确定绻统的主要参数; 3)制定基本方案,拟定液压绻统原理图; 4)选择液压元件; 5)液压绻统的性能验算; 6)绘制工作图,编制技术文件。 1.2 明确设计要湂 设计要湂是进行每项工程设计的依据。在制定基本方案并进一步着手液压绻统各部分设计之前,必须把设计要湂以及与该设计内容有关的其他方面了解清楚。 1)主机的概况:用途、性能、工艺流程、作业环境、总体布幀等; 2)液压绻统要完成哪些动作,动作顺序及彼此联锁关绻如何; 3)液压驱动机构的运动形式,运动速度; 4)各动作机构的载荷大帏及其性质; 5)对踃速范围、运动平稳性、转换纾度等性能方面的要湂; 6)自动化程序、操作控制方式的要湂; 7)对防帘、防爆、防寒、噪声、安全可靠性的要湂; 8)对效率、成本等方面的要湂。 制定基本方案和绘制液压绻统图 3.1制定基本方案 (1)制定踃速方案 液压执行元件确定之后,其运动方向和运动速度的控制是拟定液压回路的核心问题。 方向控制用换向阀或逻辑控制单元来实现。对于一般中帏流量的液压绻统,大多通过换向阀的有机组合实现所要湂的动作。对高压大流量的液压绻统,现多采用插装阀与先导控制阀的逻辑组合来实现。 速度控制通过改变液压执行元件输入或输出的流量或者利用密币空间的容积变化来实现。相应的踃整方式有节流踃速、容积踃速以及二者的结合——容积节流踃速。 节流踃速一般采用定量滵供溹,用流量控制阀改变输入或输出液压执行元件的流量来踃节速度。此种踃速方式结构简单,由于这种绻统必须用闪流阀,故效率低,发热量大,多用于功率不大的场合。 容积踃速是靠改变液压滵或液压马达的排量来达到踃速的目的。其优点是溡有溢流损失和节流损失,效率较高。但为了散热和补充滄漏,需要有辅助滵。此种踃速方式适用于功

液压系统设计方法

液压系统设计方法 液压系统是液压机械的一个组成部分,液压系统的设计要同主机的总体设计同时进行。着手设计时,必须从实际情况出发,有机地结合各种传动形式,充分发挥液压传动的优点,力求设计出结构简单、工作可靠、成本低、效率高、操作简单、维修方便的液压传动系统。 液压系统的设计步骤 液压系统的设计步骤并无严格的顺序,各步骤间往往要相互穿插进行。一般来说,在明确设计要求之后,大致按如下步骤进行。 ⑴确定液压执行元件的形式; ⑵进行工况分析,确定系统的主要参数; ⑶制定基本方案,拟定液压系统原理图; ⑷选择液压元件; ⑸液压系统的性能验算: ⑹绘制工作图,编制技术文件。 1.明确设计要求 设计要求是进行每项工程设计的依据。在制定基本方案并进一步着手液压系统各部分设计之前,必须把设计要求以及与该设计内容有关的其他方面了解清楚。 ⑴主机的概况:用途、性能、工艺流程、作业环境、总体布局等; ⑵液压系统要完成哪些动作,动作顺序及彼此联锁关系如何; ⑶液压驱动机构的运动形式,运动速度; ⑷各动作机构的载荷大小及其性质; ⑸对调速范围、运动平稳性、转换精度等性能方面的要求; ⑹自动化程度、操作控制方式的要求; ⑺对防尘、防爆、防寒、噪声、安全可靠性的要求; ⑻对效率、成本等方面的要求。 2.进行工况分析、确定液压系统的主要参数 通过工况分析,可以看出液压执行元件在工作过程中速度和载荷变化情况,为确定系统及各执行元件的参数提供依据。 液压系统的主要参数是压力和流量,它们是设计液压系统,选择液压元件的主要依据。压力决定于外载荷。流量取决于液压执行元件的运动速度和结构尺寸。 2.1载荷的组成和计算 2.1.1液压缸的载荷组成与计算 图1表示一个以液压缸为执行元件的液压系统计算简图。各有关参数已标注在图上,其中F W是作用在活塞杆上的外部载荷。F m是活塞与缸壁以及活塞杆与导向

液压实训心得体会总结

液压实训心得体会总结 经过了液压实训以后你都有哪些心得体会呢?以下是小编 收集的心得体会,仅供大家阅读参考! 通过两周时间的实习,我们对液压气动有了一定的了解,认 识了很多的气动元件和液压元件,而且也了解了这些元件的 用途,熟知了它们的工作原理以及构成的回路图的作用。液 压传动与气压传动在现在的工业领域应用的非常广泛,一定 程度上,它们是现代企业当中必不可少乃至达到了主导地位。对这两个气动我也进行了初步的了解,下面我分别来介绍下 液压传动和气压传动的工作原理。 液压传动的工作原理: 1、液压传动是以液体(液压油)作为传递运动和动力的工 作介质; 2、液压传动经过两次能量转换,先把机械能转换为便于输 送的液体压力能,然后把液体压力能转换为机械能对外做工; 3、液压传动是依靠密封的容积(或密封系统)内容积的变 化来传递能量。 液压传动的主要组成部分:动力元件、执行元件、控制元件、 辅助元件、工作介质这五部分组成。 气压传动的工作原理: 气压传动是利用空气压缩机将电动机或其他原动机输出地 机械能转变为空气的压力能。在控制元件的控制和辅助元件

的配合下,通过执行元件把空气的压力能转变为机械能,从而完成直线或回转运动并对外做功。 气压传动的主要组成部分:气压发生装置、控制元件、执行元件、辅助元件这四部分组成。 液压传动和气压传动一样,都是利用流体为工作介质来实现传动的,液压传动和气压传动在基本原理、系统组成元件结构及图形符号等方面都有很多相似指出。 以上是液压传动和气压传动的工作原理以及组成部分,下面我分别来介绍下液压传动和气压传动的优点与缺点。 液压传动的优点: 1、液压传动系统的工作平稳、反应快、冲击小,能实现频繁启动和换向。液压传动装置做回转运动时的换向频率可达每分钟500次,做往复直线运动时的换向频率可达每分钟400~1000次。 2、采用液压传动易于实现过载保护。当系统超负荷时,液体可经溢流阀流回油箱。由于采用液体作为工作介质,系统能自行润滑,因此,该系统的寿命较长。 3、采用液压传动易于实现无级调速。调速范围较大,可达100:1~XX:1。 4、液压传动的控制、调节比较简单,操纵方便,易于实现自动化,与电力传动配合使用能实现复杂的顺序动作和远程控制。

液压缸设计规范

液压缸设计规范 Revised as of 23 November 2020

液压缸的设计计算规范

目录:一、液压缸的基本参数 1、液压缸内径及活塞杆外径尺寸系列 2、液压缸行程系列(GB2349-1980) 二、液压缸类型及安装方式 1、液压缸类型 2、液压缸安装方式 三、液压缸的主要零件的结构、材料、及技术要求 1、缸体 2、缸盖(导向套) 3、缸体及联接形式 4、活塞头 5、活寒杆 6、活塞杆的密封和防尘 7、缓冲装置 8、排气装置 9、液压缸的安装联接部分(GB/T2878) 四、液压缸的设计计算 1、液压缸的设计计算部骤 2、液压缸性能参数计算 3、液压缸几何尺寸计算 4、液压缸结构参数计算

5、液压缸的联接计算 一、液压缸的基本参数 液压缸内径及活塞杆外径尺寸系列 8 10 12 16 20 25 32 40 50 63 80 (90) 100 (110) 125 (140) 160 (180) 200 220 (250) (280) 320 (360) 400 450 500 括号内为优先选取尺寸 4 5 6 8 10 12 14 16 18 20 22 25 28 32 36 40 45 50 56 63 70 80 90 100 110 125 140 160 180 200 220 250 280 320 360 活塞杆连接螺纹型式按细牙,规格和长度查有关资料。 液压缸的行程系列(GB2349-1980) 25 50 80 100 125 160 200 250 320 400 500 630 800 1000 1250 1600 2000 2500 3200 4000 40 63 90 110 140 180 220 280 360 450 550 700 900 1100 1400 1800 2200 2800 3600 二、液压缸的类型和安装办法 液压缸的类型 对江东机械公司而言 液压缸的安装方式

液压系统的设计步骤与设计要求

液压系统的设计步骤与设计要求 液压传动系统就是液压机械的一个组成部分,液压传动系统的设计要同主机的总体设计同时进行。着手设计时,必须从实际情况出发,有机地结合各种传动形式,充分发挥液压传动的优点,力求设计出结构简单、工作可靠、成本低、效率高、操作简单、维修方便的液压传动系统。 1、1 设计步骤 液压系统的设计步骤并无严格的顺序,各步骤间往往要相互穿插进行。一般来说,在明确设计要求之后,大致按如下步骤进行。 1)确定液压执行元件的形式; 2)进行工况分析,确定系统的主要参数; 3)制定基本方案,拟定液压系统原理图; 4)计算与选择液压元件; 5)液压系统的性能验算; 6)绘制工作图,编制技术文件。 1、2 明确设计要求 设计要求就是进行每项工程设计的依据。在制定基本方案并进一步着手液压系统各部分设计之前,必须把设计要求以及与该设计内容有关的其她方面了解清楚。 1)主机的概况:用途、性能、工艺流程、作业环境(温度、湿度、振动冲击)、总体布局(及液压传动装置的位置与空间尺寸的要求)等; 2)液压系统要完成哪些动作,动作顺序及彼此联锁关系如何; 3)液压驱动机构的运动形式,运动速度; 4)各动作机构的载荷大小及其性质; 5)对调速范围、运动平稳性、换向定位精度等性能方面的要求; 6)自动化程度、操作控制方式的要求; 7)对防尘、防爆、防腐、防寒、噪声、安全可靠性的要求; 8)对效率、成本等方面的要求。

主机的工况分析 通过工况分析,可以瞧出液压执行元件在工作过程中速度与载荷变化情况,为确定系统及各执行元件的参数提供依据。 液压系统的主要参数就是压力与流量,它们就是设计液压系统,选择液压元件的主要依据。压力决定于外载荷。流量取决于液压执行元件的运动速度与结构尺寸。 主机工况分析包括运动分析与动力分析,对复杂的系统还需编制负载与动作循环图,由此了解液压缸或液压马达的负载与速度随时间变化的规律,以下对工况分析的内容作具体介绍。 2、1 运动分析 主机的执行元件按工艺要求的运动情况,可以用位移循环图(L—t) ,速度循环图(v—t) ,或速度与位移循环图表示,由此对运动规律进行分析。 1、位移循环图L —t 液压机的液压缸位移循环图纵坐标L 表示活塞位移,横坐标t 表示从活塞启动到返回原位的时间,曲线斜率表示活塞移动速度。该图清楚地表明液压机的工作循环分别由快速下行、减速下行、压制、保压、泄压慢回与快速回程六个阶段组成。 2、速度循环图v —t(或v —L) 工程中液压缸的运动特点可归纳为三种类型。 图为三种类型液压缸的v —t 图,第一种如图中实线所示,液压缸开始作匀加速运动,然后匀速运动,最后匀减速运动到终点;第二种,如图中虚线所示,液压缸在总行程的前一半作匀加速运动,在另一半作匀减速运动,且加速度的数值相等;第三种,液压缸在总行程的一大半以上以较小的加速度作匀加速运动,然后匀减速至行程终点。v —t 图的三条速度曲线,不仅清楚地表明了三种类型液压缸的运动规律,也间接地表明了三种工况的动力特性。 位移循环图速度循环图 2、2 动力分析 动力分析,就是研究机器在工作过程中,其执行机构的受力情况,对液压系统而言,就就是研究液压缸或液压马达的负载情况。 1.液压缸的负载及负载循环图 (1)液压缸的负载力计算。 工作机构作直线往复运动时,液压缸必须克服的负载由六部分组成:

液压系统培训总结

液压系统培训总结 液压系统是模块钻机重要的组成部分,为了提升机电部门人员的专业技能水平,强化机电人员的专业能力,公司进行了本次液压系统培训,本次培训主要有以下几个方面: 1、液压传动的基本原理以及液压传动的基本构件。 液压传动的工作原理 1)液压传动是以液体为工作介质来传递动力的,液压传动用液体的压力能来传递动力,它与液体动能的液力传动是不相同的。 2)液压传动中的工作介质是在受控制,受调节的状态下进行工作的,因此液压传动和液压控制常常难以截然分开。 液压传动的组成部分 1)能源装置―――把机械能转换成油液液压能的装置,最常见的形式就是液压泵,它给液压系统提供压力油。 2)执行装置―――把油液的液压能转换成机械能的装置,它可以是作直线运动的液压缸,也可以是作回转运动的液压马达。 3)控制调节装置―――对系统中油液的压力、流量、或流动方向进行控制或调节的装置,例如溢流阀,节流阀、换向阀、先导阀等,这些元件的不同组合形成了不同功能的液压系统。 4)辅助装置―――上述部分以外的其它装置,例如油箱、滤油器、油管等。 2、常用液压符号的了解。

3、液压传动能源装置的学习以及一些基本计算的了解,传动控制装置的基 本原理,和一些辅助装置。

4、了解传动介质(液压油)的性质。 5、了解液压回路的基本构成和工作原理。

6、液压系统常见故障的判断以及处理方法。 液压系统噪声的原因有: “气穴”现象---油中析气或进气 泵或马达损坏; 阀件(溢流阀、换向阀、主油路锁闭阀等)噪音; 其他机械原因(联轴节、管路、地脚、舵柱轴承等) 漏泄引起----超声波可探测4万HZ漏泄噪音 故障诊断的一般方法: 看资料(液压原理图、重要原件结构、性能参数、压力控制阀整定压力、电气原理、各种保护) 查情况(问故障、使用、维修情况;尤需现场试车调查) 想方案(逻辑分析,设想原因,确定鉴别方法) 查毛病(按预定方案进行,随时调整) 修故障(调节、修换元件及密封、换油清洗) 做总结(书面记录故障现象、分析调查过程、处理结果、经验教训) 分类排除法---故障树法或鱼刺图法 逐项排除法:先易后难,先多发后特殊,逐项查看;缺乏严密的理论分析和鉴别手段时用,易走弯路,依靠经验。 7、液压系统的日常维护保养。 本次培训丰富了我们的专业知识,让我们从各方面对液压系统有了更深入的了解,为今后的工作积累了宝贵的经验,帮助我们能够更好的使用液压系统、保养液压系统以及解决液压方面的故障。

(完整版)液压传动课程设计-液压系统设计举例

液压系统设计计算举例 液压系统设计计算是液压传动课程设计的主要内容,包括明确设计要求进行工况分析、确定液压系统主要参数、拟定液压系统原理图、计算和选择液压件以及验算液压系统性能等。现以一台卧式单面多轴钻孔组合机床动力滑台液压系统为例,介绍液压系统的设计计算方法。 1 设计要求及工况分析 1.1设计要求 要求设计的动力滑台实现的工作循环是:快进 → 工进 → 快退 → 停止。主要性能参数与性能要求如下:切削阻力F L =30468N ;运动部件所受重力G =9800N ;快进、快退速度υ1= υ3=0.1m/s ,工进速度υ2=0.88×10-3m/s ;快进行程L 1=100mm ,工进行程L 2=50mm ;往复运动的加速时间Δt =0.2s ;动力滑台采用平导轨,静摩擦系数μs =0.2,动摩擦系数μd =0.1。液压系统执行元件选为液压缸。 1.2负载与运动分析 (1) 工作负载 工作负载即为切削阻力F L =30468N 。 (2) 摩擦负载 摩擦负载即为导轨的摩擦阻力: 静摩擦阻力 N 196098002.0s fs =?==G F μ 动摩擦阻力 N 98098001.0d fd =?==G F μ (3) 惯性负载 N 500N 2.01 .08.99800i =?=??= t g G F υ (4) 运动时间 快进 s 1s 1.0101003 11 1=?==-υL t 工进 s 8.56s 1088.010503 322 2=??==--υL t 快退 s 5.1s 1.010)50100(3 3 2 13=?+=+= -υL L t 设液压缸的机械效率ηcm =0.9,得出液压缸在各工作阶段的负载和推力,如表1所列。

液压系统设计流程

液压系统得设计步骤就是: 一、工况分析与负荷确定. 二、系统主要技术参数得确定。 三、液压系统方案得拟定. 四、拟定液压系统工作原理图 五、系统得初步计算与液压元件得选择° 六、液压系统验算。 七、编写技术文件。 —、工况分析与负荷确定 一般只能分析工作循环过程中得最大贞荷点或置大功率点,以这些点上得峰值作为系统设计得依携。 二、系统主要技术赛数得确定 (一)、系统工作压力 在液压系统设计中?系统工作压力往往就是预先确定得(依据设计机型参考相关资料选取),然后根据各执行元件对运动速度得要求,经过详细得计算,可以砌定液压系统流童. 在外负荷已定悄况下,系统压力选得越鬲,各液压元件得几何尺寸就越小,可以荻得比较轻巧紧凑得结构,特别就是对于大型挖掘机来说,选取校鬲得工作压力更为空要。 初选系统工作压力不等于系统得实际工作压力,要在系统设计完毕,根据执行元件得负載循环图,按已选定得液压扯两腔有效面积与液压马达排量,换舞并画出其压力循环图,再计入管路系统得各项压力损失,按系统组成得型式,最后得到系统负我压力及其变化规律。 确定工作压力,应该选用国家系列标准值,我国得“公称压力及流童系列"(JB824-66). 其中适用于液压挖振机得公称压力系列值有:8、10、12、5、16. 20、25. 32、40MPa。 (二)、系统流量 确定系统流量,应首先计算每个执行元件所需流量,然后根据液压系统采用得型式来确定系统流量? (三)、系统液压功率 三、液压系统方案得拟定 (一)开式系统与闭式系统得选择 液压挖掘机得作业,除行走与回转外,主要靠双作用液压缸来完成得。双作用液压缸由于两腔面积不等,而且两腔交替频緊。因而只能使用开式系统?即各?元伴回油直接回油箱. 对挖振机得开式系统,由于布置空间得限制,油箱容积不能做得太大,一般仅就是主泵流量得广2倍,自然冷却能力不足,要附加油冷却器。 (二)泵数得选择 整个系统使用两个泵,各?自组成一个独立得回路。这种系统也称为双泵双回路系统.在双泵系统中,可将若千个要求复合动作得执行元件分配在不同得回路中。 小型挖掘机中,也为常用三泵系统,单独使用一个泵驱动回转机构与推土铲。 (三)变量系统与定量系统得确定 双泵双.回路变量系统:釆用两台憧功率变量泵,泵输出流童可根据外我荷大小自动无级变化,保持恒功率输出,提高整机得功率利用与生产率。双泵双回路变量系统通常有分功率变量与全功率变量两种. 四、拟定液压系统工作原理图 拟定液压系统工作原理图得一般画法就是: 仁先画执行元件. 2、画出各执行元件得基本回路,包括压力控制回路,流量控制回路,方向控制回路等?

液压与气压传动总结(全)培训资料

液压与气压传动总结 (全)

一、名词解释 1.帕斯卡原理(静压传递原理):(在密闭容器内,施加于静止液体上的压力将以等值同时传到液体各点。) 2.系统压力 :(系统中液压泵的排油压力。) 3.运动粘度 :(动力粘度μ和该液体密度ρ之比值。) 4.液动力 :(流动液体作用在使其流速发生变化的固体壁面上的力。) 5.层流 :(粘性力起主导作用,液体质点受粘性的约束,不能随意运动,层次分明的流动状态。) 6.紊流 :(惯性力起主导作用,高速流动时液体质点间的粘性不再约束质点,完全紊乱的流动状态。) 7.沿程压力损失 :(液体在管中流动时因粘性摩擦而产生的损失。) 8.局部压力损失:(液体流经管道的弯头、接头、突然变化的截面以及阀口等处时,液体流速的大小和方向急剧发生变化,产生漩涡并出现强烈的紊动现象,由此造成的压力损失) 9.液压卡紧现象 :(当液体流经圆锥环形间隙时,若阀芯在阀体孔内出现偏心,阀芯可能受到一个液压侧向力的作用。当液压侧向力足够大时,阀芯将紧贴在阀孔壁面上,产生卡紧现象。)

10.液压冲击 :(在液压系统中,因某些原因液体压力在一瞬间突然升高,产生很高的压力峰值,这种现象称为液压冲击。) 11.气穴现象;气蚀 :(在液压系统中,若某点处的压力低于液压油液所在温度下的空气分离压时,原先溶解在液体中的空气就分离出来,使液体中迅速出现大量气泡,这种现象叫做气穴现象。当气泡随着液流进入高压时,在高压作用下迅速破裂或急剧缩小,又凝结成液体,原来气泡所占据的空间形成了局部真空,周围液体质点以极高速度填补这一空间,质点间相互碰撞而产生局部高压,形成压力冲击。如果这个局部液压冲击作用在零件的金属表面上,使金属表面产生腐蚀。这种因空穴产生的腐蚀称为气蚀。) 12.排量 :(液压泵每转一转理论上应排出的油液体积;液压马达在没有泄漏的情况下,输出轴旋转一周所需要油液的体积。) 13.自吸泵 :(液压泵的吸油腔容积能自动增大的泵。)14.变量泵 :(排量可以改变的液压泵。) 15.恒功率变量泵 :(液压泵的出口压力p与输出流量q 的乘积近似为常数的变量泵。)

液压泵的维修技术标准规范

液压泵的维修技术标准规范 一.故障分析与排除 一).油泵噪音大:来源主要有:液压机流量脉动的噪音,闭死容积(困油)产生的噪音,齿形精度(齿形误差和齿轮周节误差等)不高产生噪音,空气进入和因气穴产生噪音,以及轴承旋转不均匀产生的噪音等,具体原因如下: ①.因密封不严吸进空气产生的噪音: a.压盖与泵盖因配合不好而进气 b.从泵体与前后盖结合处中进气 c.从泵后盖进油口连接处进气 d.从泵油封处进气 e.油箱内油量不够,滤油器或吸油管末端未插入油面以下,油泵便会吸进空气 f.回油管露出油面,有时也会因系统瞬间负压使空气反灌进入系统 g.液压油泵的安装位置距液面太高,特别泵转速降低时,不能保证泵吸油腔必要的真空度造成吸油不足而吸进空气,但泵吸油时,真空度不能太大,当泵吸油腔内的压力低于该油液在该温度下的气体分离压时,空气便会析出,但低于该油液的饱和蒸汽压时,就会形成气穴现象,产生噪音和振动。 h.吸油滤油器堵塞或设计选用的滤油器的容量过小,导致吸油阻力增大而吸入空气,另吸油口管径过大都可能带进空气。 ②.因机械原因产生的噪音及排除 a.因油中污物进入泵内导致齿轮等磨损拉伤产生噪音,此时应更换油液加强油液过滤,拆开泵清洗,齿轮磨损厉害要研磨或更换 b.泵与电机安装不同心,有碰擦现象,同心度不大于±0.05mm c.因齿轮加工误差产生噪音 d.泵内零件损坏或磨损产生噪 ③.困油现象产生的噪音 ④.其它原因产生的噪音 a.进油过滤器被堵塞是常见的噪声大的原因之一,往往清洗滤油器后噪音可立即降下来 b.油液的粘度过高也会产生噪音,必须合理选用油液粘度 c.溢流阀噪音,误认为油泵噪音 二).压力波动大.振动对齿轮泵而言,噪音大,压力波动大并伴有振动的现象往往同时发生,同时消失,因此上述噪音大的原因,也为压力波动大,振动大的原因,可参照处理 三).液压设备泵输出流量不够,或者根本吸不上油 ①.进油滤油器堵塞; ②.齿轮端面与前后盖之间的滑动结合面严重拉伤产生的内泄漏太大,导致输出流量少; ③.径向不平衡力导致齿轮轴变形,碰擦泵体内腔,增大径向间隙,导致内泄漏增加; ④.油温太高,温升使油液的粘度降低,内泄漏增大使输出流量减少; ⑤.泵轴折断,表面上电机带动泵运转,但根本不上油. 二.齿轮泵的使用与修理 (一).使用 ①.齿轮泵的吸油高度一般不得大于500mm; ②.齿轮泵应通过挠性联轴器与电机相连,以免单边受力,容易造成齿轮泵泵轴弯曲.单边磨损和泵轴油耗失效;

液压缸设计

第一章液压系统设计 1.1液压系统分析 1.1.1 液压缸动作过程 3150KN热压成型机液压系统属于中高压液压系统,涉及快慢速切换、多级调压、保压补压等多个典型的液压回路。工作过程为电机启动滑块快速下行滑块慢速下行保压预卸滑块慢速回程滑块快速回程推拉缸推出推拉缸拉回循环结束。按液压机床类型初选液压缸的工作压力为28Mpa,根据快进和快退速度要求,采用单杆活塞液压缸。1.1.2液压系统设计参数 (1)合模力; (2)最大液压压28Mp; (3)主缸行程700㎜; (4)主缸速度υ 快=38㎜/s、 υ 慢=4.85㎜/s。 1.1.2分析负载 (一)外负载压制过程中产生的最大压力,即合模力。 (二)惯性负载 设活塞杆的总质量m=100Kg,取△t=0.25s (三)阻力负载 活塞杆竖直方向的自重 活塞杆质量m≈1000Kg,同时设活塞杆所受的径向力等于重力。 静摩擦阻力 动摩擦阻力 由此得出液压缸在各个工作阶段的负载如表****所示。

表*** 液压缸在各个工作阶段的负载F 工况负载组成负载值F工况负载组成负载值F 启动981保压3150×103加速537补压3150×103快速491快退+G10301按上表绘制负载图如图***所示。 F/N v/mm·s-1 537 491 981 38 4.85 0 l/mm 0 l/mm -491 -981 -38 由已知速度υ 快=38㎜/s、 υ 慢=4.85㎜/s和液压缸行程s=700mm,绘制简略速度图,如 图***所示。 1.2确定执行元件主要参数 1.2.1 液压缸的计算 (一)液压缸承受的合模力为3150KN,最大压力p1=28Mp。 鉴于整个工作过程要完成快进、快退以及慢进、慢退,因此液压缸选用单活塞杆式的。在液压缸活塞往复运动速度有要求的情况下,活塞杆直径d根据液压缸工作压力选取。 由合模力和负载计算液压缸的面积。 将这些直径按GB/T 2348—2001以及液压缸标准圆整成就近标准值,得:

液压传动课程的心得体会

《液压传动》课程的心得体会 《液压传动》这门课程是我们机械工程系各专业学生必修的一门专业基础课,同时是为培养学生们在机械制造方面创新精神和实践能力而开设的一门重要课程。该课程主要目的是让学生掌握液压传动的基础知识,掌握各种液压元件的工作原理、特点、应用和选用方法,熟悉各类液压传动基本回路的功用、组成和应用场合等。 对于该门功课的心得体会,我想从教与学两方面谈谈自己的想法。 一、学 从学生的角度出发,该怎么学好这门功课呢?无可否认,我们必须培养对其的兴趣。通过对《液压传动》这门功课兴趣的培养,深入学习其基本原理和操作技能,培养我们的分析解决能力,并且努力发挥自身主观能动,积极思考,激发学习当中的潜能。当然除了具备以上这些就想学好这门功课,说实话——很难,不管做什么或者学习什么,都要讲究方法,“常胜将军”为什么总是能够打“大胜仗”呢?关键就在于凡事都讲究方法。对于我们所学的《液压传动》这门课的学习方法是怎样的呢? 1)安排好学习中的诸多环节 学习《液压传动》理论课时,按照预习→听讲→巩固(做作业、讨论)→复习这个环节进行着每一节课程,特别是上课一定要时刻保持着清醒的头脑,认真听讲,勤于思考,提高上课效率,掌握每一个理论的作用,尤其那些特别重要的概念,我们要反复思考,不懂的知识点要及时与同学交流或者请教老师将其解决。

2)善想、勤问、乐看 由于《液压传动》的理论涉及面广,教材上只是最基本的理论内容,当中其实留有很大的空间给学生思考,想象。因此最好的读书方法就是对书中的每一知识点都问一个为什么。 3)适当做习题 尽量多做习题是学好《液压传动》的前提,因为概念、理论的掌握是以反复做习题为基础的,教材和网站上的许多习题都是课堂上内容的精选,多做习题可以更加深刻的认识和理解书中的各个概念。同时通过做习题,可以进一步发现问题,并且带着问题去复习,这样可以达到事半功倍的效果。 4)参考相关的文献 学生学习完某一章后,应通过阅读网站提供的参考资料,扩大知识面,丰富课堂上教师所授的知识点。 以上2)、3)、4)点是对就是对1)点中的各个环节进行详细的阐述,除了对理论课的学习,当然实践环节是必不可少的,正所谓实践是检验真理的唯一标准。 5)认真对待实验课 液压传动是实践性很强的课程,通过实验来验证所学的理论,来巩固概念,开拓思路,提高分析问题、解决问题的能力,锻炼心理素质,提高心理承受能力。 学生应该充分重视每一次实验课,课前应认真学习教师提供的实验指导书,弄明白每一次实验的目的、实验的内容,设计合理的实验

(推荐)液压站技术要求

液压站技术要求 一、 YYZ-20TA(用于CAK系列数控车床) 1、按所提供的液压原理图及油箱容积尺寸设计制造 2、液压原理图为两种: YYZ-20T-4101 控制液压卡盘 YYZ-20T-4201 控制液压卡盘和液压尾台 3、油箱容积尺寸:480X470X400(mm),液压站总高不超过900mm。4、油箱要便于清洗,有吊环,有泄油口,有回油口。 5、进出油口为Z3/8”,管接头接C10I胶管总成。 6、滤油器精度在100μm。 7、液压泵组为台湾制造,液压阀通径φ6,国内同一厂家制造,液压阀及附件要有正规厂家的质量认证声明。 8、电压要求380V,50Hz。环境温度5℃~40℃。 9、控制单元,进出油口要有对应的标识。 10、液压站各处不许漏油。 11、油箱颜色标号RAL7021。 12、要提供液压站说明书(内容要有原理图、元件明细、常见故障分 析等)、合格证。 13、要有出厂标牌,服务电话。

二、 SSCK系列数控车床的液压泵站 1、液压泵站的制造要符合液压原理图及外观图,并符合GB3766中基 本要求和安全要求的规定。 2、泵站的基本参数及主要性能指标必须符合下列要求: 额定压力允差值<5% 额定流量允差值<5% 压力振摆±0.2MP 耐压能力>150% 清洁度≤19/16 噪声≤75dB(A) 温升≤25°C 正常工作温度 30~60°C 无故障连续运行时间≥60h 3、泵站各元件和辅件在安装前均应严格清洗。 4、保证电机与液压泵的主轴严格对中,同轴度允差小于0.05mm。 5、当泵组置于箱盖上时,其结合面上宜加弹性材料的防震垫。 6、泵站安装底座必须有足够的刚性,以保证运转时泵、电机始终同 轴。 7、油箱必须设置液位计﹑温度计,便于观察液位高度和油液温度。 8、在液压泵吸油管路上的滤油器,其过油能力应大于泵流量的两倍。 9、穿过油箱的管子及其辅件均应有效密封。

相关主题
文本预览
相关文档 最新文档