当前位置:文档之家› PCB的电磁兼容设计

PCB的电磁兼容设计

PCB电磁兼容性设计报告样本

PCB电磁兼容性设计报告 学科专业: 测控技术与仪器 本科生: 张亚新 学号: 1002445 班号: 232121 指导教师: 宋恒力

中国地质大学( 武汉) 自动化学院 10月24号

PCB电磁兼容性设计 摘要: 随着信息化社会的发展, 电子设备已被广泛应用于各个领域。各种电了产品趋向于小型化、智能化, 电子元器件也趋向于体积更小、速度更高、集成度更大, 这也导致了她们在其周围空间产生的电磁场点评的不断增加。由此带来的电磁兼容问题也日益严重。因此, 电磁兼容问题也就成为一个电工系统能否正常工作的关键。同样, 随着电子技术的飞速发展, 印刷电路板( PCB) 的密度越来越高, 其设计的好坏对电路的干扰及抗干扰能力影响很大。因此, 对PCB进行电磁兼容性(EMC)设计是非常重要的, 保证PCB的电磁兼容性是整个系统设计的关键。本文就EMC的历史发展及其在未来电子信息时代中的应用进行分析, 介绍电磁干扰的产生机理和 原因, 并提出了相应抗干扰设计的措施。 关键词: 信息化; 电磁兼容( EMC) ; 电磁兼容性; PCB;

一: 引言 .......................................................................... 错误!未定义书签。二: 电磁干扰与电磁兼容概述. (4) 1、早期历史概述 (5) 2、EMC 技术是随着干扰问题的日趋严重而发展的 (6) 3、电磁干扰对电子计算机等系统设施的危害 (6) 4、EMC在军事领域的发展状况 (7) 三: 电磁兼容学科的发展历史 (5) 四: 中国EMC技术的发展状况 (8) 五: 抗干扰措施与电磁兼容性研究 (8) 1、电路板设计的一般规则 (9) 2、电路板及电路抗干扰措施 (9) 六: 电磁兼容学科发展趋势 (10) 七: 小结 (12) 参考文献 (13) 一、引言 电磁干扰是现代电路工业面正确一个主要问题, 为了克服干扰, 电路设计者不得不赶走干扰源, 或者是设法保护电路不受到干扰源的干扰, 其目的都是为了让电路按照预期的目标开工作——

印制电路板PCB的电磁兼容设计

线路板(PCB )级的电磁兼容设计 1.引言 印制线路板(PCB )是电子产品中电路元件和器件的支撑件,它提供电路元件和器件之间的电气连接,它是各种电子设备最基本的组成部分,它的性能直接关系到电子设备质量的好坏。随着信息化社会的发展,各种电子产品经常在一起工作,它们之间的干扰越来越严重,所以,电磁兼容问题也就成为一个电子系统能否正常工作的关键。同样,随着电于技术的发展,PCB 的密度越来越高,PCB 设计的好坏对电路的干扰及抗干扰能力影响很大。要使电子电路获得最佳性能,除了元器件的选择和电路设计之外,良好的PCB 布线在电磁兼容性中也是一个非常重要的因素。 既然PCB 是系统的固有成分,在PCB 布线中增强电磁兼容性不会给产品的最终完成带来附加费用。但是,在印制线路板设计中,产品设计师往往只注重提高密度,减小占用空间,制作简单,或追求美观,布局均匀,忽视了线路布局对电磁兼容性的影响,使大量的信号辐射到空间形成骚扰。一个拙劣的PCB 布线能导致更多的电磁兼容问题,而不是消除这些问题。在很多例子中,就算加上滤波器和元器件也不能解决这些问题。到最后,不得不对整个板子重新布线。因此,在开始时养成良好的PCB 布线习惯是最省钱的办法。 有一点需要注意,PCB 布线没有严格的规定,也没有能覆盖所有PCB 布线的专门的规则。大多数PCB 布线受限于线路板的大小和覆铜板的层数。一些布线技术可以应用于一种电路,却不能用于另外一种,这便主要依赖于布线工程师的经验。然而还是有一些普遍的规则存在,下面将对其进行探讨。 为了设计质量好、造价低的PCB ,应遵循以下一般原则: 2.PCB 上元器件布局 首先,要考虑PCB 尺寸 大小。PCB 尺寸过大时,印 制线条长,阻抗增加,抗噪 声能力下降,成本也增加; 过小,则散热不好,且邻近 线条易受干扰。在确定PCB 尺寸后.再确定特殊元件的 位置。最后,根据电路的功 能单元,对电路的全部元器 件进行布局。 电子设备中数字电路、模拟电路以及电源电路的元件布局和布线其特点各不相同,它们产生的干扰以及抑制干扰的方法不相同。此外高频、低频电路由于频率不同,其干扰以及抑制干扰的方法也不相同。所以在元件布局时,应该将数字电路、模拟电路以及电源电路分别放置,将高频电路与低频电路分开。有条件的应使之各自隔离或单独做成一块电路板。此外,布局中还应特别注意强、弱信号的器件分布及信号传输方向途径等问题。 在印制板布置高速、中速和低速逻辑电路时,应按照图1-①的方式排列元器件。 在元器件布置方面与其它逻辑电路一样,应把相互有关的器件尽量放得靠近些,这样可以获得较好的抗噪声效果。元件在印刷线路板上排列的位置要充分考虑抗电磁干扰问题。原则之一是各部件之间的引线要尽量短。在布局上,要把模拟信号部分,高速数字电路部分,噪声源部分(如继电器,大电流开关等)这三部分合理地分开,使相互间的信号耦合为最小。如图1-②所示。 时钟发生器、晶振和CPU 的时钟输入端都易产生噪声,要相互靠近些。易产生噪声的器件、小电流电路、大电流电路等应尽量远离逻辑电路。如有可能,应另做电路板,这一点十分重要。 2.1 在确定特殊元件的位置时要遵守以下原则: (1) 尽可能缩短高频元器件之间的连线,设法减少它们的分布参数和相互间的电磁干扰。易受干扰的元器件不能相互挨得太近,输入和输出元件应尽量远离。 (2) 某些元器件或导线之间可能有较高的电位差,应加大它们之间的距离,以免放电引出意外短路。带高电压的元器件应尽量布置在调试时手不易触及的地方。 (3) 重量超过15g 的元器件、应当用支架加以固定,然后焊接。那些又大又重、发热量多的元器件,不宜装在印制板上,而应装在整机的机箱底板上,且应考虑散热问题。热敏元件应远离发热元件。 (4) 对于电位器、可调电感线圈、可变电容器、微动开关等可调元件的布局应考虑整机的结构要求。若是机内调节,应放在印制板上方便于调节的地方;若是机外调节,其位置要与调节旋钮在机箱面板上的位置相适应。 图1:印制板元器件布置图

电磁兼容PCB

PCB的EMC设计 PCB是构成电子设备的基础,保证PCB的电磁兼容性是整个系统设计的关键, 合理正确的PCB的布线和设计应该使得: (l)板上的各部分电路相互间无干扰,都能正常工作; (2)PcB对外的传导发射和辐射发射尽可能降低,达到有关标准要求; (3)外部传导干扰和辐射干扰对PCB上的电路基本无影响。 1.1 PCB设计理论基础 1.电磁兼容设计的带宽 在数字电路系统中,电磁兼容设计的带宽与数字电路的工作频率是两个不同的概念,数字系统的工作频率是由信号的重复周期决定的,而电磁兼容性设计的带宽是由信号的上升沿、下降沿决定。器件对电磁辐射的贡献不是取决于系统的工作频率,而是取决于边沿速率。理论研究表明,在进行电磁兼容设计时,主要考虑信号上升沿的十倍频,如公式4一1所示。 式中fmax为谐波频率,fr为需要考虑的电磁兼容性的带宽。 快速的信号切换时间(边沿速率)将导致回流、串扰、阻尼振荡(振铃)及反射等问题的增加。信号的边沿速率与信号的工作频率是两个不同的概念,高的边沿速率不一定是高的频率。例如在实际的应用中,可能系统的工作频率并不高。但如果信号的上升速率过快的话,将会产生较大振铃现象,同样会带来信号完整性的问题。当振铃信号达到器件所能容忍的极限值时会使器件内部的半导体 特性发生变化(电子迁移)、器件发热及功耗加大等现象,造成系统的可靠性降低,并且较快的边沿速率其功耗也越大。 信号的边沿速率与器件的输出强度(输出驱动电流)有直接的关系,过强的输出驱动电流除了能够提高信号的边沿速率之外,还会对周围的器件及传输线造成干扰(Crosstalk)。因此对电磁兼容性(EMI)非常敏感的系统,信号边沿速率是重点需要考虑的,而系统的时钟频率反而放在第二位考虑。 2.器件的分布参数 系统工作在低频情况下,电阻、电感、电容主要表现为集总参数,但当系统的工作频率较高时,元器件特性就较为复杂,这时候的元件就有很大的分布参数存在,比如分布电感、分布电容、分布互感、分布互电容等。在高频情况下电阻、电感、电容的等效电路如表4一1所示:

PCB电磁兼容性设计报告

PCB电磁兼容性设计报告 学科专业:测控技术与仪器 本科生:张亚新 学号:445 班号:232121 指导教师:宋恒力 中国地质大学(武汉)自动化学院 2014年10月24号

综述: PCB电磁兼容性设计 摘要:随着信息化社会的发展,电子设备已被广泛应用于各个领域。各种电了产品趋向于小型化、智能化,电子元器件也趋向于体积更小、速度更高、集成度更大,这也导致了他们在其周围空间产生的电磁场点评的不断增加。由此带来的电磁兼容问题也日益严重。所以,电磁兼容问题也就成为一个电工系统能否正常工作的关键。同样,随着电子技术的飞速发展,印刷电路板(PCB)的密度越来越高,其设计的好坏对电路的干扰及抗干扰能力影响很大。因此,对PCB进行电磁兼容性(EMC)设计是非常重要的,保证PCB的电磁兼容性是整个系统设计的关键。本文就EMC的历史发展及其在未来电子信息时代中的应用进行分析,介绍电磁干扰的产生机理和原因,并提出了相应抗干扰设计的措施。 关键词:信息化;电磁兼容(EMC);电磁兼容性;PCB; 目录 一:引言.................................................... 错误!未定义书签。二:电磁干扰与电磁兼容概述 . (4) 1、早期历史概述 (5) 2、EMC 技术是随着干扰问题的日趋严重而发展的 (6) 3、电磁干扰对电子计算机等系统设施的危害 (6) 4、EMC在军事领域的发展状况 (7) 三:电磁兼容学科的发展历史 (5) 四:我国EMC技术的发展状况 (8) 五:抗干扰措施与电磁兼容性研究 (8) 1、电路板设计的一般规则 (9) 2、电路板及电路抗干扰措施 (9) 六:电磁兼容学科发展趋势 (10) 七:小结 (12) 参考文献 (13)

相关主题
文本预览
相关文档 最新文档