当前位置:文档之家› 柴油机设计计算指导书

柴油机设计计算指导书

柴油机设计计算指导书
柴油机设计计算指导书

柴油机总体设计计算公式整理报告

1.概述

柴油机自19世纪60年代问世以来,经过不断改进和发展,其在拖拉机、农业机械、工程机械、船舶、小型移动电站、战车以及某些小型飞机上都用作动力。然而柴油机是一个复杂的动力装置(图1),不但零部件数量众多、结构复杂,而且系统需求的多样性使其总体性能和运动关系复杂。不同柴油机总体设计是其设计过程中最初的也是最具有创造性的阶段,在整个设计开发过程中占有重要的地位,总体设计的内涵十分广泛和深刻。

图1 柴油机总体模型示意图

采用传统的总体设计方法,工作串行展开,即便是经验丰富的设计人员对后续工作往往也缺乏足够的预见性,通常需要多次反复修改才能完成。而基于并行工程(图2柴油机分类)的系统设计方法提出了参数化的设计顺序。柴油机总体设计人员在明确任务之后,经过抽象化拟定功能结构,根据系统总的功能及各子系统功能要求,利用大量的计算公式计算寻求适当的作用原理及其组合,获得的工程数据,确定出基本的实现路径。本文正是基于这种设计方法进行柴油机总体计算公式的整理归纳。首先根据系统及各零部件功能要求确定柴油机的总体结构参数:柴油机型式、冲程数、冷却方式、增压方式、气缸直径、活塞行程、缸心距、气缸排量、缸数、功率、转速等,然后通过相应的公式计算确定柴油机的动力性指标、经济性指标、强化指标、紧

凑性指标、可靠性指标、耐久性指标、适应性指标、运转性指标和工艺性指标等。

图2 柴油机分类

2.柴油机计算指标简要关系

柴油机结构参数值是气缸直径越大、缸数越多、转速越快、活塞平均速度越大、发出功率越大越好;

动力性指标值越大越好,动力充沛,有劲;

经济性指标燃油消耗率值越小越好,省油;

强化指标评价柴油机的强化程度,提高机械负荷(柴油机惯性力系数)和热负荷(单位活塞面积功率)程度;

紧凑性指标如体积功率越大、比质量越小,柴油机越紧凑、小巧;

可靠性指标和耐久性值越好,耐用不用修;

运转性指标如操纵使用方便,运转平稳,振动小,起动迅速可靠、加速越短越好,噪音越低越好,排放越干净越好;

适应性指标如适应油类、醇类、醚类和燃气等多种燃料,适应高原、风沙泥泞等不同地理条件,适应高温、高寒等不同气候;

工艺性指标如设计适于生产,便于维修。

3.柴油机各类指标计算公式和术语简介

详细内容见下表。

总体设计计算公式整理表:

公式类型

计算公式名称

计算公式

计算公式参数

术语简介

有效压力

τ

π

30104

3

2me

e nip S D P ?×?= (kW )

S

D W p i

mi ?=

24

π

m mi

me p p η?=

∫??

=

cyc

i d d dV

p W ??

i e m

N N =

η

1

i i Q W =η

mi p —平均指示压力(Pa );

me p —平均有效压力(Pa )

D —气缸直径(m ); S —活塞行程(m );

i W —单缸每循环指示功;

i —气缸数;

τ—冲程数; m

η

—机械效率;

1Q —为得指示功Wi 所消耗热量;

e N —有效功率; i N —指示功率。

表示柴油机整个过程

完善性和热力过程强烈程度的重要参数。

指单位气缸工作容积内发出的有效功,平均有效压力越大,柴油机做功能力越强。

标定功率

ττ2

410854.7300

D C ip inV p N m e h

e e ?×== e p —平均有效压力(MPa);

Cm —活塞平均速度(m /s); D —气缸直径(mm); V h —气缸工作容积;

τ—冲程数;

i —气缸数。

单缸功率

ττ2410

854.7300

D C p n V p N m

e h e ecyl ?×==

()KW

CL L R C p s m e 2

22

4

10854.7=×=?τ Rs=L /D ;

e p —平均有效压力(MPa);

Cm —活塞平均速度(m /s); D —气缸直径(mm); τ—冲程数;

L —气缸中心矩(mm)。

根据使用目的而调整的外特性所达到的功率。

动力性指标计算公式

压缩比

h

c c

V V V +=

ε

V h —气缸工作容积; V c —燃烧室容积。

表示气体的压缩程度,它是气体压缩前的容积与气体压缩后的容积之比值,

1

即气缸总容积与燃烧室容积之比称为压缩比。

过量空气系数 0

b 1l g G =α

b g —每循环燃料供给量;

0l —燃烧1kg 柴油所需理论空气量,14.3kg 。燃烧1kg 柴油的实际

空气量与理论空气量之比。 指示油耗率 i

u i W H b ?×=6

106.3(h kW g ?)

u H —柴油机低热值(=44100kJ/kg )

。 有效油耗率

m

i

e b b η=

(h kW g ?)

i b —指示油耗率。

有效热销率

1

m i 1e e Q W Q W ηη==

m

i

e

η

ηη=

u b e e H G N 3106.3×=

η u

b e e H G N 2.632=

η 1Q —为得指示功Wi 所消耗热量;

b G —每小时油耗量; e N —有效功率; m

η—机械效率;

u H —柴油机低热值(=44100kJ/kg )

。 比油耗

u

e

e

b

e

H N G

g η3

3

106.310×=×= g/Kw.h 3103

.632×=

u

e e H g η g/PS.h b G —每小时油耗量; e N —有效功率;

u H —柴油机低热值(=44100kJ/kg )

经济性指标计算公式

柴油机每循环耗油量

/120e e b g P g g ni

τ

= (循环)

e g —标定功率点的燃油消耗率(g/kwh);

e P —柴油机标定功率(kW )

; τ—冲程系数;

n —转速(/min r ); i —气缸数。

油耗率随工况不同而

变化,以标定功率时每有效千瓦小时所消耗燃油量为衡量指标。

负荷率

()%eN

eW

G G L =

γ

eW G —实际作业时间的油耗量;

负荷率γ

L 影响柴油机

在不同用途时的功率标定。如轿车8~12%;轻型货车

2

eN G —柴油机标定功率的油耗量。

12~16%;重型汽车高速公路行驶10~20%;工程机械20~40%、40~60%、75~90%。

机械效率 0

7.0-

92.0n n

p mi m ×=η 指示效率 i

u i b H ?×=6

10

6.3η

有效效率

m i e ηηη?=

n —柴油机实际转速; 0

n —柴油机额定转速;

i b —指示油耗率;

u H —柴油机低热值(=44100kJ/kg )

评价柴油机效率指标。

标定工况升功率

h

e h e eL iV n

P iV N N == ()L kW

/

e N —标定工况下有效功率;

h V —单缸工作容积(L )

; e P —平均有效压力(MPa);

n —标定转速(r/min);

i —气缸数。 评价柴油机单位气缸工作容积有效利用程度的重要参数。

单位活塞面积功率

τ

ττm

e e

p h e p e F C P K

Sn

P iF n iV P iF N N ==?==2251225

e N —柴油机标定功率(ps ); i —气缸数;

p F —活塞面积(2

m )

; e P —平均有效压力(MPa);

h V —单缸工作容积(L )

n —标定转速(r/min);

τ—冲程系数;

m C —活塞平均速度(m/s )

强化指标

计算公式

校正单位活塞面积功率

D

S iF N f p

e =0

1

1f —校正单位活塞面积功率; e N —柴油机标定功率(ps )

; i —气缸数;

评价柴油机热负荷指标。

3

D —气缸直径(m ); S —活塞行程(m )。

平均有效压力

h

e e ni 225p V N τ=

e N —标定工况下有效功率;

h V —单缸工作容积(L )

; n —标定转速(r/min);

τ—冲程系数;

i —气缸数。

最大往复惯性力

()λω+∝

12max R g G

P j L S L R 2=

=λ G—往复运动件重量;

g —重力加速度;

R —曲柄半径(活塞冲程的一般S/2); ω

—曲柄角速度;

λ—曲柄半径与连杆长度的比值; L —连杆长度。

惯性力系数

D

C n

D D

S m 22

29

.0==α

SD

SD

C S

D S

C n m m

1'

'∝∝∝

D

S C C m

m =

'

α—惯性力系数(2

2

s m

);

D —气缸直径(m ); S —活塞行程(m );

'

m

C —活塞校正平均速度; S

D —气缸尺寸因素。

评价机械负荷强化程

度的指标。

速度系数

D

S C 9.010D n D

S 2m

3

22=×=?α (2

2

min

/m

D —气缸直径(m ); S —活塞行程(m );

n —标定转速(r/min)。

限制柴油机高速化的

因素。

升功率

]

[l ps iV N N h

e i =

i —气缸数;

h V —单缸工作容积;

衡量柴油机外形尺寸

指标。

4

比重量 ][ps kg N G g e

w w =

W G —柴油机总重量;

e N —柴油机标定功率(ps )

。 衡量柴油机重量指标

的参数。指单位输出功率所需要的金属重量,功率一样时,指标越大,柴油机越笨重。

体积功率

][N N 3v m ps V

e =

V —柴油机总体积;

e N —柴油机标定功率(ps )

。 衡量柴油机外形尺寸指标。

气缸直径

e

m e p iC N D 410854.7?×=

τ

()

mm p iC N e

m e

τ714

.35=

i

C p N 78

.9D m e e τ= i —气缸数;

τ—行程数;

C m —活塞平均速度(m /s);

e p —平均有效压力(MPa);

D —气缸直径(m )。

在保证充分结构强度可靠性的前提下所能包容的气缸直径,不仅是表征热力过程,也是表征结构强度。

紧凑性指标计算公式

容积系数

V

iV

h v =ξ

i —气缸数;

V —柴油机外形体积;

h V —单杠工作容积。

评价柴油机布置紧凑性指标。

可靠性指标计算公式 无故障综合评分值

()

()∑=?

=0

1

100r i i

i

E K nT MTB

F Q

()0MTBF —平均故障间隔时间;

0T —第i 个故障发生样机累计工作时间;

n —试验或调查样机台数;

i K —第i 个故障的危害系数;

i E —第i 个故障发生时间系数。

柴油机在设计规定的使用条件下,持续工作,不致因故障而影响正常工作能力的指标。

耐久性指标计算公式

有效度

MTTR

MTBF MTBF A t +=

MTBF —平均故障间隔时间; MTTR —平均修复时间。

以柴油机大修期的长短来表示。

5

转速适应性系数 max

Me e n n n K =

max e n —最大扭矩时转速; e n —标定转速。

适应性指标计算公式 适应性系数或扭矩贮备系数

e

e M M K max =

max e M —最大扭矩;

M —标定工况扭矩。

不同工况适应性指标。

合成噪声源压级

????????????+=?10

101lg 10PB

PA L L PA PC L L -

+ PA L —较高噪声源声压级; PB L —较低噪声源声压级。

衡量柴油机噪音指标。

柴油机最大阻力矩

f i f s M M M M ++=max 1 ㎏·m

900

2.716max max h

f f V P M ?=

㎏·m

4

max 9.1γ=f P ㎏/cm

2

α

max

i i L M =

㎏·m

t n I M s

f ?

?=30π ㎏·m

2

150ωe

N I =

㎏·m ·s 2

30

N

n πω=

max

f M ——克服柴油机内摩擦所需的最大

阻力矩;

i M ——克服空气在汽缸中受压缩而产生的

阻力矩;

f

M —柴油机静止状态加速到起动转速所

需克服的惯性阻力矩; e

N ——柴油机的额定功率;

ω——柴油机在额定功率转速时,曲轴的角速度;

N n ——柴油机在额定功率时的转速; γ——机油运动粘度;

h V ——柴油机汽缸总容积; i ——柴油机汽缸数;

I ——换算到柴油机曲轴上运动机件的转动惯量;

s n ——柴油机起动转速(柴油机为100~300r/min );

t ——柴油机起动时间。

运转性指标计算公式

起动电机的起动扭矩(完全制动扭矩)

s

s ST K M M η1

㎏·m K —起动齿轮与飞轮齿圈的传动比;

2Z —起动电机起动齿轮的齿数;

表征柴油机起动性能指标。

6

s

ST

n n Z Z K ST ≥=

2 ST

Z —飞轮齿圈的齿数;

ST n —起动电机额定功率时的转速;

s n —柴油机最低起动转速;

s η—减速装置效率,当采用一级齿轮减速

时,

s η=0.85~0.9。

起动电机功率

s

s

s ST n M N η??≥

2.7162 PS

m q s s Bn A M γ+=2 ㎏·m

A 、

B —柴油机确定的常数值;

q 、m 指数—按柴油机和机油确定; s n —柴油机的最低起动转速; γ—机油的运动粘度。

冷却系总散热量 60

e h H N q Q =

kJ/min 冷却水流量 60

e w W N q Q =

L/min 散热器进出水温度差

W

H Q Q t 187.4=

Δ K

e N —柴油机标定总功率(kW )

; h q —冷却水散热率;

w q —冷却水流率;

H Q —冷却系总散热量;

W Q —冷却水流量。

冷却系统的冷却效果

t F k Q A TH B Δ=

Q B —增压空气散热量(kJ);

TH k —中冷器总传热系数(kJ /(m 2·h ·k));F A —散热面积(m2);

t Δ—增压空气和冷却介质间的温差(K)。

散热器芯迎风面积

t

q Q F c H R Δ=

(2m ) c q —散热率;

t Δ—散热器进出水温度差。

表征柴油机冷却性能指标。

增压柴油机所需空气流量 0510

36L g N G e e c ×=α

(s kg /)

e N —计算点功率(kW )

; e g —计算点燃油消耗率(

()h kW kg

.)

;α—计算点过量空气系数;

0L —燃烧1kg 燃料所需理论空气量,

柴油为

14.3kg/kg 。

柴油机增压匹配指标。

柴油机各主要指标计算公式是柴油机参数化设计的基础,能全面、动态地反映柴油机总体设计中的指标。在柴油机运动分析和运动模拟的基础上,获得柴油机结构和性能静、动态的虚拟验证。解决设计师在柴油机设计途中对于其结构和性能问题的可视性、可预见性和可评价性,为总体设计人员进行精确、快速设计创造条件。

7

发动机课程设计汇总

课程设计说明书 设计题目 院(系)专业班学生姓名 完成日期 指导教师(签字) 华中科技大学

目录 一目的与要求 (1) 二设计任务 (2) 三工作过程模拟计算 (3) 四动力学计算 (7) 五设计感想 (10) 参考文献 (11) 附录A 发动机外特性曲线 (12) 附录 B F g-?、F j-?、F-?曲线图 (13) 附录 C F N-?、F L-?、F t-?、F k-?、R B-?曲线图 (14) 附录 D 发动机合成扭矩∑M k-?曲线图 (15)

一目的与要求 1.目的 发动机课程设计是《发动机现代设计》课程的后续教学环节,旨在对刚学习过的发动机设计课程以及发动机原理课程的知识进行综合运用,加深对专业知识的理解。在课程设计环节,通过总体性能计算(工作过程模拟计算与动力学计算)将发动机的结构参数与性能参数结合起来,弄清结构与性能之间的内在联系;通过发动机总体布置图设计,对发动机的总体结构有一个全面而具体的了解,并深化对发动机各主要零件的作用和设计要求的理解。 2.要求 对提供的教学参考资料要认真分析,在理解的基础上借鉴,不要盲目照搬照抄。独立完成,可以讨论,不许抄袭;按时完成,不得延期。交课程设计材料(计算说明书与图纸)时必须通过指导教师的考核,不得代交。计算说明书应包括:计算目的、已知条件、变量说明、计算结果及说明(分析)等,其中动力学计算应有受力分析图,曲线图应标明坐标及单位。所绘图纸应符合工程图纸规范要求。

二设计任务 4110柴油机总体方案设计 1. 技术参数 机型:立式,直列,水冷,四冲程,废气涡轮增压、中冷燃烧室型式:直喷式 气缸直径:110mm 活塞行程:125mm(曲柄半径:62.5mm) 缸数:4 发火顺序:1-3-4-2 压缩比:17 标定功率(kW)/转速(r/min):140/2300 最大扭矩(N.m)/转速(r/min): 640/1450~1550 外特性最低燃油耗率(g/kW.h):200 标定工况燃油耗率(g/kW.h):210 机油耗率(g/kW.h):≤1.0 调速率:≤8% 怠速(r/min): 750 曲轴旋转方向(从前端看):顺时针 气门间隙(冷态):进气门0.3~0.4,排气门0.4~0.5 冷却方式:强制水冷 润滑方式:压力、飞溅复合式 启动方式:电启动 配气定时:进气门开,上止点前20oCA;进气门关,下止点后43oCA排气门开,下止点前60oCA;排气门关,上止点后20oCA 供油提前角:上止点前18±2oCA 2. 其他有关数据 活塞质量:1.32kg 活塞销质量:0.58kg 活塞环总质量:0.088kg 连杆大头质量(直开口/斜开口, kg): 1.89/1.98 连杆小头质量(kg):0.704 连杆长度L(mm):210 曲柄销直径:70mm 曲柄销长度:40mm 主轴颈直径:85mm 主轴颈长度(非止推挡):36mm 曲柄臂厚度:28mm 曲柄臂宽度:126mm

发动机冷却系统设计规范

编号: 冷却系统设计规范 编制:万涛 校对: 审核: 批准: 厦门金龙联合汽车工业有限公司技术中心 年月曰

第2页 一、概述 要使发动机正常工作,必须使其得到适度的冷却,冷却不足或冷却过度均会带来严 重的影响。 发动机过热,会破坏各运动机件原来正常的配合间隙,导致摩擦阻力增 特别是活塞 环和气缸壁之间的运动,严重时会发生烧蚀、卡滞,使发动 “拉缸”现象,刮伤活塞或气缸,更严重时还会发生连杆打烂气缸体现 油变稀,运动机件间的油膜破坏,造成干摩擦或半干摩擦,加速磨损。 同时会降低发动 机充气量,使发动机功率下降。 发动机过度冷却时,由于冷却水带走太多热量,使发动机功率下降、动力性能变差。 发动机过冷,气缸磨损加剧。同时,由于过冷,混合气形成的液体,容易进入曲轴箱使 润 滑油变稀,影响润滑作用。 由此可见,使发 动机工作温度保持在最适宜范围内的冷却系,是何其重要。一般地, 发动机最适宜的工作温度是其气缸盖处冷却水温度保持在 80C ~90C ,此时发动机的动力 性、经济性最好。 、冷却系统设计的总体要求 a )具有足够的冷却能力,保证在所有工况下发动机出水温度低于所要求的许用值( 般为55°); 冷却系统的设计应保证散热器上水室的温度不超过99 Co 采用105 kPa 压力盖,在不连续工况运行下,最高水温允许到 110 C,但一年中 水温达到和 超过99 C 的时间不应超 过50 ho 冷却液的膨胀容积应等于整个系统冷却液容量的 6 %o 冷却系统必须用 不低于19 L/min 的速度加注冷却液,直至达到应有的冷却液平面, 以保证 所有工作条件下气缸体水套内冷却液能保持正常的压力。 三、冷却系统的构成 液体冷却系主要由以下部件组成:散热器、风扇、风扇护风罩、皮带轮、风扇离合器、 水泵、节温器、副水箱、发动机进水管、发动机出水管、散热器除气管、发动机除气管冷却不足, 加,磨损加剧, 机停转或者发生 象。也会使润滑 a) C ) d) e)

柴油机各系统 设计

第三章各系统的设计及主要零部件的结构特点 3.1活塞组 活塞组包括活塞,活塞销和活塞环。它们在气缸里做往复惯性运动,活塞主要作用是承受气缸的气体压力,并将此力通过活塞销传给连杆,以次推动曲轴旋转。它还和气缸壁面一起活动构成密封装置,保证燃烧室的良好密封,这个功能是通过装在活塞头部环槽的一系列带开口的弹性活塞实现的。在高温,高负荷,高速和少量的机油消耗的情况下,它一方面要保证漏气量少,另一方面又要使摩擦损失不大,同时还要保证足够的耐久性。因此设计时要选用热强度好,耐磨,比重小,热膨胀系数小,导热性好,具有良好减磨性,工艺性的材料。目前制造活塞常用的材料有共晶铝硅合金,过晶铝硅合金和铝铜合金。设计选用共晶铝硅合金材料。 1、活塞设计的主要尺寸 [4] (1)活塞高度H: 根据《柴油机设计手册》,对于中小型柴油机而言,H/D范围在 1.0-1.1,而D=110mm,取H=113.5mm。在选择活塞高度时要注意在合理布置的情况下尽量选择小的活塞高度,如果转速越高,要使H越小,尽量减轻活塞重量,从而控制由于转速高而应引的惯性力的增大。(2)压缩高度H1: 根据《柴油机设计手册》,H1/D范围在0.6-0.8,取H1=67mm。HI=H5(换带高度)+H4(上裙高度)+h(顶岸高度)。在保证气环良好良好工作情况下,宜缩短H1高度,以便降低整机的高度尺寸。 (3)顶岸高度h(第一活塞环至活塞顶部距离): 根据《柴油机设计手册》,对铝活塞h/D范围在0.07-0.20,取h=13.4mm。在保证第一道环可靠工作下,也要使h尽量小,降低活塞重量和高度,但h越小,会使第一道环的热负荷越高,。 一般第一道环的温度不应该超过240度,否则润滑油可能粘结甚至结碳,易使活塞环在活塞中失去活动性,散失了密封和传热的功能 (4)活塞环数目及排列: 根据《柴油机设计手册》,中速机气环3-4道,油环1-2道,取气环2道,油环一道。2道气环在上面,1道油环在气环下面。为了降低活塞和整台发动机的高度,减少惯性力和摩擦功率损耗,应该减少环数。 (5)环岸高度:

柴油机设计参数

387柴油机主要性能参数: 转速2400 r / min 功率20 kW 燃油消耗率≤243 g / kW. H 缸径:87mm; 设计: 1)汽缸数:i=3 2)冲程数:τ=4 3)缸径:d=87mm 4)行程:s=96 mm 由于s/d大约为1.05—1.2 s/d=1.103 5)总排量:V s=3×π/4×8.72×9.6=1711.20 ml=1.71 (l) 6)有效功率:Pe=20 kW 7)活塞平均速度:Cm=sn/30=0.096×2400÷30=7.68 m/s 8)平均有效压力:Pme=Pe·30τ/(Vh·Z·n)=20×30×4÷(1.71÷3)÷3÷2400=0.585 MPa 9)曲轴半径:R=s/2=96÷2=48 mm 10)连杆比:R/L取值为1/3--1/5,R/L可取1/4 连杆长度L=192 mm 11)缸心距L0/D=1.35---1.40 12) 取缸心距L0=1.40×87=121.8 13)压缩比:ε=18 朱仙鼎14~18 14)燃烧室形式:ω型半分开式 15)大气状态:P0=1 bar=0.1 Mpa,To=290 K 16)燃烧平均重量成分:C=0.87,H=0.126,O=0.004 17)燃料低热值:H u=441000kg/kg燃料 『1』参数选择 过量空气系数α=1.75 最高燃烧压力P z=70 bar=7 Mpa 热量利用率ξz=0.75 残余废气系数Φr=0.04 排气终点温度T r=800K 示功图丰满系数φi=0.96 机械效率ηm=0.80 『2』燃烧热计算: 1、理论所需空气量朱仙鼎热力计算 L0=1/0.21·(gC/12﹢gH/4-gO/32)=1/0.21×(0.87/12+0.126/4-0.004/32)=0.495 kgmol/kg燃料 2、新鲜空气量M1 M1=αL0=1.75×0.495=0.866 kgmol/kg燃料 3、理论上完全燃烧(α=1)时的燃烧产物M0 不一样 M0=C/12+H/2+0.79L0=0.87/12+0.126/2+0.79×0.495=0.5265 kgmol/kg燃料 4、当α=1.75时的多余空气量为 (α-1)L0=(1.75-1)×0.495=0.371 kgmol/kg燃料 5、燃烧产物总量M2 M2=M0+(α-1)L0=0.5265+0.371=0.8975 kgmol/kg燃料 6、理论分子变更系数μ0

船舶冷却水系统设计指导

编制大纲: 需要补充的内容:1,水泵(定速离心泵,变频泵);2,温控阀;3,节流孔板;4,热平衡计算的理论公式,温升热量水量公式;5,特殊案例的区分(温控阀,板冷,变频泵对整个冷却系统形式选定的影响;分离封闭式,高低温混流式,配置变频海水泵没有温控阀的中央式。)6,利用目前的实船进行计算公式的验证,还有一些经验系数的反推导(特别是一些厂家自己的经验系数)7,膨胀水箱;8,补充开发设计需要的部分,参考《船舶管舾装设计工艺实用手册》 前言(目的) 以《船舶设计实用手册---轮机分册》---国防工业出版社为蓝本,将其中的冷却水系统做了进一步内容扩展和深化描述,提供给详细设计人员参考。 参考《船舶管舾装设计工艺实用手册》,补充一部分工程计算公式; 系统发展核心: 1,稳定调节; 2,节省能源,余热循环利用; 3,节省成本,替代方案的方式; 关键词: 将冷却水稳定可靠的输送到需要冷却的设备中:这个可靠和稳定来源于几个参数:稳定的压力,稳定的流量,稳定的温度,稳定的水质(这个水质包含化学成分稳定不结垢,物理成分稳定,极少气泡,气泡会影响热交换器的效率)

冷却水系统 目录 1,范围 2,冷却水系统的基本形式 3,系统形式的选择 4,冷却水系统实例 5,中央冷却系统热平衡计算 6,冷却水系统的主要设备配置要点 7,制淡装置(造水机) 8,具有冰区航行船级符号船舶的冷却水系统特殊要求9,海水进水阀操纵位置的要求 10,冷却水系统的温控阀 11,冷却水系统的节流孔板 12,冷却水系统的泵 13,冷却水系统的膨胀水箱

冷却水系统 1,冷却水系统的基本形式 冷却水系统的基本形式见表1, 注解: (1),所谓开式和闭式冷却水系统是指柴油机本身冷却水系统而言。开式系统是指柴油机本身直接用舷外海水或者江水冷却。如今除江河小船之外,基本不采用开式系统。海拖(海洋港口拖轮)还在使用海水直接冷却柴油机。(潜在问题:船内海水泄露,在与柴油机连接的弹性管配置不正确时容易出现,已有其他公司的海拖因为这个弹性管破裂造成沉船)

295柴油机连杆加工说明书

机电及自动化学院 《机械制造工艺学》课程设计说明书 设计题目:柴油发动机连杆工艺规程设计 姓名:黄超群 学号:1311113011 班级:机电(1)班 届别:2013 指导教师:林碧 2016 年7月

目录 第一章工艺规程设计 1.1 连杆功用和受力分析 (3) 1.2连杆主要技术要求 (4) 1.3 选择毛坯制造方法 (6) 1.4拟定零件加工的工艺路线 (7) 1.4.1 拟定工艺方案原则 (7) 1.4.2 加工方法的选择 (8) 1.4.3加工顺序的安排 (8) 1.4.4 定位基准的选择 (9) 第二章机械加工工艺卡片的设计 2. 1 工艺方案的拟定 (11) 2. 2 机械加工余量的确定 (11) 2. 3 确定时间定额 (12) 总结 (14) 参考文献 (15)

第一章工艺规程设计 1.1 连杆功用,受力分析,工艺特点。 连杆是发动机的主要零件之一。连杆的功用是将活塞承受的力传给曲轴,从而使得活塞的往复运动变为曲轴的旋转运动。 连杆承受活塞销穿来的气体作用力及其本身摆动和活塞组成往复运动是的惯性力,这些力的大小和方向都是周期性变化的。因此,连杆受到的是压缩,拉伸和弯曲等交变载荷。这就要求连杆在质量尽可能小的情况下,有足够的强度和刚度。如果连杆的刚度不够,则可能产生的后果是:其大头孔失圆,导致连杆大头轴瓦因油膜破坏而烧损;连杆杆身弯曲,造成活塞与气缸偏磨。活塞环漏气和窜油等。连杆一般用中碳钢或合金钢经模锻或锟锻而成,然后经过机械加工和热处理。 本次设计的为295柴油机的连杆,它是有连杆体、连杆盖、定位套、活塞销轴承和螺钉等组成。它的大头孔与曲轴的曲轴颈配合,小头孔与活塞销配合。在小头孔的顶端有一个油孔,依靠飞溅润滑把润滑油注入小头孔内。工作时,连杆小头与销之间有相对转动,因此小头孔中一般压入减摩的青铜衬套。有的连杆在连杆体内钻通一个连接大小头孔的深油孔,把由曲轴颈来的润滑油强制通过深油孔注入小头孔内,但这种深油孔加工较困难,因此不被采用。 为了减少惯性力的影响,在保证连杆具有足够的强度的前提下,要尽可能减轻其重量,所以连杆采用了从大头孔到小头孔逐步变小的“工”字型截面形状。 连杆大头按剖分面的方向可分为平切口和斜切口两种。平切口连杆的剖分面垂直与连杆轴线。一般汽油机连杆大头尺寸都小于气缸直径。可以采用平切口。柴油机的连杆,由于受力比较大,其打头的尺寸往往超过气缸直径,为使大头能通过气缸。便于拆卸,一般采用斜切口连杆,斜切口连杆的大头剖分面与连杆轴线成30?~60?夹角。 斜切口连杆在工作中受惯性力的拉伸,在切口方向有一个较大的横向分力。因此在斜切口连杆上必须采用可靠的定位措施。斜切口连杆常用的定位方法有: 1)止口定位,2)套筒定位,3)锯齿定位。在295柴油机连杆采用的是套筒定位。 他是在连杆盖的每一个螺栓孔中压配一个刚度大,而且剪切强度高的短套筒。他与连杆大头

柴油机设计说明书.doc11

镇江高专 ZHENJIANG COLLEGE 毕业设计(论文) 基于柴油机拆装的零件设计与数控编程 Based on disassembly of parts engine design and NC programming 系名:机械工程系 专业班级: 学生姓名: 学号: 指导教师姓名: 指导教师职称: 二○一一年九月

目录 第一章R175A柴油机的工作原理 (1) 1.1 柴油机的概述 (1) 1.2 柴油机的工作原理 (1) 1.2.1 进气冲程 (2) 1.2.2 压缩冲程 (2) 1.2.3 燃烧膨胀冲程 (3) 1.2.4 排气冲程 (3) 第二章曲轴概述 (4) 2.1 曲轴的作用 (4) 2.2 曲轴的组成 (5) 2.2.1主轴颈 (5) 2.2.2连杆轴颈 (6) 2.2.3曲柄 (6) 2.2.4自由端(前端) (6) 2.2.5功率输出自由端(后端) (6) 第三章曲轴的加工工艺 (7) 3.1 一般曲轴的加工工艺 (7) 3.2 零件设计与工艺分析 (8) 3.2.1零件材料选择 (8) 3.2.2零件几何尺公差及技术要求的确定 (9) 3.3 确定生产类型 (10) 3.3.1确定毛坯种类 (10) 3.3.2确定铸件余量及形状 (10) 3.4 曲轴加工工艺过程设计 (10) 3.4.1选择表面加工方法 (10) 3.4.2确定工艺过程方案 (11)

3.5选择加工设备与工艺装备 (13) 3.5.1选择机床 (13) 3.5.2选择夹具 (13) 3.5.3选择刀具 (13) 3.5.4选择量具 (14) 3.6 确定工序尺寸 (14) 致谢 (18) 参考文献 (19)

发动机冷却系统设计规范..

发动机冷却系统设计规范..

号: 冷却系统设计规范 编制:万涛 校对: 审核: 批准: 第1页

第1页

水泵、节温器、副水箱、发动机进水管、发动机出水管、散热器除气管、发动机除气管等。 四、主要部件的设计选型 1、散热器 散热器的散热量(Q)和散热器散热系数(K)、散热器散热面积(A)及气液温差(⊿T)有关: Q=K·A·⊿T 其中:Q---散热器的散热量(kcal/h) K---散热器散热系数(kcal/m2?h?oC) A---散热器散热面积(m2) ⊿T---气液温差:散热器进水温度和散热器进风温度之差(oC)散热器的散热系数是代表散热效率的重要指标,主要影响因素如下: ①冷却管内冷却液的流速---据试验结果,冷却液流速由0.2m/s提高到0.8m/s,散热效 率有较大提高,但超过0.8m/s后,效果不大; ②通过散热器芯部的空气流量---空气的导热系数很小,因此散热器的散热能力主要取决 于空气的流动,通过散热器芯部的风量起了决定性作用; ③散热器的材料和管带的厚度---国内散热器的材料目前基本上已标准化; ④制造质量---主要是冷却管和散热带之间的贴合性和焊接质量; 第1页

1.1 散热器是冷却系统中的重要部件,其主要作用是对发动机进行强制冷却,以保证发动机能始终处于最适宜的温度状态下工作,以获得最高的动力性、经济性和可靠性。 1.2 发动机最适宜的冷却液温度为85 ℃~95 ℃,测量位置在散热器的上水室。 1.3 散热器和风扇组合匹配效率是当散热器芯子未被气流扫过的面积最小时为最高,因此,最好采用接近正方形的散热器芯子。 1.4 散热器的总散热面积、芯子的迎风面积、结构形状和结构尺寸要通过发动机冷却系统所需最大散热量来计算确定,并应通过试验评价来最终确定。但一般可按散热器芯子的迎风面积来估算:0.31~0.38m2/100kW,载货车和前置客车通风良好时,可取下限值;后置客车通风欠佳时可取上限值;城市公交车长期低速运转可偏下限值;自卸车、牵引车、山区长途客运车等经常大负荷运行的车辆可偏上限值。 1.5 散热器进风口的实际面积不得小于散热器芯子迎风面积的80 %,以防止散热能力下降。后置客车散热器的进风通道要与发动机舱密封隔离,散热器周围要安装密封橡胶,以防止发动机舱的热风回流到进风通道,影响散热性能;进风通道的面积应不小于散热器芯子的迎风面积。 1.6 在灰尘多的脏环境下使用时,应选用直排或斜排冷却管,且管子间隔要大,以避免散热器芯子堵塞,影响散热效果。 1.7 散热器安装时,紧固必须牢靠,与车架的连接必须采用减振垫,采用减振垫的目的是为了隔离和吸收来自车架的部份振动和冲击,使散热器在车辆运行中,不致发生振裂、扭曲等非正常损坏,延长散热器寿命。 1.8 因为散热器与车架之间安装有隔振橡胶,因而形成了绝缘状态,通过冷却液介质,在散热器与车架之间产生了电位差,在冷却液中产生了微弱电流,使冷却系统的零部件发生电腐蚀。因此,一定要采取散热器负极接地等措施,消除电位差,防止电腐蚀。 2 冷却风扇 风扇选型主要考虑风扇的风量、噪声和功率消耗。 风扇风量(G)与风扇直径(D)、风扇转速(n)之间存在如下比例关系: G=K1?n?D3------其中K1为比例系数 而风扇噪声的声压级(SPL)和风扇直径(D)、风扇转速(n)之间存在如下比例关系: SPL= K2?n3?D2------其中K2为比例系数 根据上述比例关系可得:SPL= K3?Q?n2/D------其中K3为比例系数 第2页

连杆设计的详细计算

第四章典型零部件(连杆)的设计 连杆是发动机最重要的零件之一,近代中小型高速柴油机,为使发动机结构紧凑,最合适的连杆长度应该是,在保证连杆及相关机件运动时不与其他机件相碰的情况下,选取小的连杆长度,而大缸径的中低速柴油机,为减少侧压力,可适当加长连杆。 连杆的结构并不复杂,且连杆大头、小头尺寸主要取决于曲轴及活塞组的设计。在连杆的设计中,主要考虑的是连杆中心距以及大、小头的结构形式。。连杆的运动情况和受力状态都比较复杂。在内燃机运转过程中,连杆小头中心与活塞一起作往复运动,承受活塞组产生的往复惯性力;大头中心与曲轴的连杆轴颈一起作往复运动,承受活塞连杆组往复惯性力和不包括连杆大头盖在内的连杆组旋转质量惯性力;杆身作复合平面运动,承受气体压力和往复惯性力所产生的拉伸.压缩交变应力,以及压缩载荷和本身摆动惯性力矩所产生的附加弯曲应力。 为了顺应内燃机高速化趋势,在发展连杆新材料、新工艺和新结构方面都必须既有利于提高刚度和疲劳强度,有能减轻质量,缩小尺寸。 对连杆的要求: 1、结构简单,尺寸紧凑,可靠耐用; 2、在保证具有足够强度和刚度的前提下,尽可能的减轻重量,以降低惯性力; 3、尽量缩短长度,以降低发动机的总体尺寸和总重量; 4、大小头轴承工作可靠,耐磨性好; 5、连杆螺栓疲劳强度高,连接可靠。 但由于本设计是改型设计,故良好的继承性也是一个考虑的方面。 4.1连杆材料 结合发动机工作特性,发动机连杆材料应当满足发动机正常工作所需要的要求。应具有较高的疲劳强度和冲击韧性,一般选用中碳钢或中碳合金钢,如45、40Cr等,本设计中发动机为中小功率发动机,故选用一般的45钢材料基本可以满足使用要求。

2100柴油机(机体)设计

2100柴油机(机体)设计 摘要 的画风客家话防空洞三角枫林科所经费连锁店开进发电量四克己复礼快速地方军林科所定界符开连锁店经费林科所就弗里敦思考分解力快速定界符卢萨卡定界符林科所定界符离开毒素就弗里敦看三角枫来扩大三角枫连锁店克己复礼可的松经费卢萨卡定界符连锁店经费三角地方离开定界符开绿灯经费独立思考。 的画风客家话防空洞三角枫林科所经费连锁店开进发电量四克己复礼快速地方军林科所定界符开连锁店经费林科所就弗里敦思考分解力快速定界符卢萨卡定界符林科所定界符离开毒素就弗里敦看三角枫来扩大三角枫连锁店克己复礼可的松经费卢萨卡定界符连锁店经费三角地方离开定界符开绿灯经费独立思考。 的画风客家话防空洞三角枫林科所经费连锁店开进发电量四克己复礼快速地方军林科所定界符开连锁店经费林科所就弗里敦思考分解力快速定界符卢萨卡定界符林科所定界符离开毒素就弗里敦看三角枫来扩大三角枫连锁店克己复礼可的松经费卢萨卡定界符连锁店经费三角地方离开定界符开绿灯经费独立思考。 关键词:

ABSTRACT The fuel injection system of diesel engines is of great importance since it ontrols the combustion mechanism. The rate of injection and the speed of injected fuel are important parameters for engine operation, controlling the combustion and pollutants formation mechanisms. A fuel injection system simulation capable of predicting the performance of the injection system to a good degree of accuracy has been developed. The simulation is based on a detailed geometrical description of the injection system and in modeling each subsystem as a separate control volume. The simulation starts at the driving mechanism of the fuel pump and describes all parts of the system pump chamber, delivery valve, delivery chamber, connecting pipe and injector. The components of the system are put together and interact as they do in reality. From the cam geometry an analytical expression is derived that gives the pump piston lift as a function of the engine crank angle. The equations of continuity and momentum are solved using the method of characteristics inside the pump chamber using a constantly moving mesh with boundary conditions derived from the motion of the plunger, while up to now most researchers considered the pressure inside the pump chamber uniform. KEY WORD:researchers,considered,inside,chamber

基于三维的柴油机气缸盖组合钻床总体及左主轴箱设计

本科毕业设计(论文)通过答辩 目录 1前言 (1) 2 总体设计 (3) 2.1总体方案论证 (3) 2.1.1 加工对象工艺性的分析 (3) 2.1.2 机床配置型式的选择 (3) 2.1.3 定位基准的选择 (4) 2.2确定切削用量及选择刀具 (4) 2.2.1 选择切削用量,计算切削力、切削扭矩及切削功率 (4) 2.2.2 验证刀具耐用度 (6) 2.2.3刀具耐用度的计算 (7) 2.2.4选择刀具结构 (8) 2.3组合机床总体设计—“三图一卡” (8) 2.3.1 被加工零件工序图 (8) 2.3.2 加工示意图 (8) 2.3.3 机床联系尺寸图 (10) 2.3.4 机床生产率计算卡 (13) 3 组合机床左主轴箱设计 (15) 3.1绘制左主轴箱设计原始依据图 (15) 3.2主轴结构型式的选择及动力计算 (17) 3.2.1 主轴结构型式的选择 (17) 3.2.2 主轴直径和齿轮模数的初步确定 (17) 3.2.3 主轴箱动力计算 (18) 3.3主轴箱传动系统的设计与计算 (18) 3.3.1 计算驱动轴、主轴的坐标尺寸 (18) 3.3.2 拟订主轴箱传动路线 (18) 3.3.3 传动轴的位置和转速及齿轮齿数 (19) 3.4主轴箱中传动轴坐标的计算及传动轴直径的确定 (20) 3.4.1 传动轴坐标的计算 (20) 3.4.2 传动轴轴径的确定 (21) 3.5轴的强度校核 (21) 3.6齿轮校核计算 (23) 3.7主轴箱中传动轴坐标检查图的绘制 (26) 3.8左主轴箱三维建模 (26) 4 结论 (30) 参考文献 (31) 致谢 (32) 附录 (33)

195柴油机连杆设计及连杆螺栓强度校核计算课程设计说明书

课程设计说明书 课程名称:发动机设计课程设计 课程代码: 题目:195柴油机连杆设计及连杆螺 栓强度校核计算 学院(直属系) :交通与汽车工程学院 年级/专业/班: 2009/热能与动力工程(汽车 发动机)/1班 学生姓名: 学号: 3120090805015XX 指导教师:曾东建、田维、暴秀超 开题时间: 2012 年 6 月 28 日 完成时间: 2012 年 7 月 16 日

目录 摘要 (2) 1引言 (3) 1.1国内外内燃机研究现状 (3) 1.2任务与分析 (5) 2柴油机工作过程计算 (6) 2.1 已知条件 (6) 2.2 参数选择 (7) 2.3 195柴油机额定工况工作过程计算 (7) 3 连杆设计 (11) 3.1 连杆结构设计 (11) 3.2 连杆材料选择 (13) 4 连杆螺钉强度校核 (14) 4.1 连杆螺钉的结构设计 (14) 4.2 连杆螺钉的强度校核 (14) 5 结论 (18) 致谢 (19) 参考文献 (19) 附录:195柴油机额定工况工作过程计算程序 (20)

摘要 20 世纪90 年代以来,汽车行业的竞争已从单一的性能竞争转向性能、环保、节能等多元综合竞争。仅就柴油机而言,为应对世界能源危机和减少对环境污染,其研究开发工作已侧重于降低油耗、减少排放、轻质及减少磨损等方面,在这些研究中优化技术将得到广泛的应用。汽车已经在普通民众中得到普及,随着汽车行业的不断发展,汽车产业的未来乐观与否一定意义决定于发动机的技术水平。因此,培养高素质的汽车发动机人才对当今社会的快速发展至关重要。 本次课程设计的既是通过对195柴油机结构的分析研究,计算工作过程中的热力参数绘制其工作过程的P-V图,绘制195柴油机总成横剖面图,对连杆进行设计、强度计算和绘制连杆零部件图,对并对设计好的连杆大头、小头和螺钉进行校核,以根据工况设计连杆小头、杆身、大头,合理达到要求。此次,我们就选择了对连杆螺钉进行校核。连杆螺钉在连杆盖以及连杆大头之间的联接发挥着至关重要的作用,并且由于往复惯性力和气体压力的双重作用下,使螺钉的受力十分严酷,所以对其进行强度校核就显得十分必要。 关键词:柴油机、连杆、设计、校核

发动机冷却系统总体参数设计

一、冷却系统说明 二、散热器总成参数设计 三、膨胀箱总成参数设计 四、冷却风扇总成参数设计 五、水泵总成参数设计 六、橡胶水管参数设计 七、节温器选择 八、冷却液选择 一、冷却系统说明 内燃机运转时,与高温燃气相接触的零件受到强烈的加热,如不加以适当的冷却,会使内燃机过热,充气系数下降,燃烧不正常(爆燃、早燃等),机油变质和烧损,零件的摩擦和磨损加剧,引起内燃机的动力性、经济性、可靠性和耐久性全面恶化。但是,如果冷却过强,汽油机混合气形成不良,机油被燃烧稀释,柴油机工作粗爆,散热损失和摩擦损失增加,零件的磨损加剧,也会使内燃机工作变坏。因此,冷却系统的主要任务是保证内燃机在最适宜的温度状态下工作。 1.1 发动机的工况及对冷却系统的要求 一个良好的冷却系统,应满足下列各项要求: 1)散热能力能满足内燃机在各种工况下运转时的需要。当工况和环境条件变化时,仍能保证内燃机可靠地工作和维持 最佳的冷却水温度;

2)应在短时间内,排除系统的压力; 3)应考虑膨胀空间,一般其容积占总容积的4-6%; 4)具有较高的加水速率。初次加注量能达到系统容积的90%以上。 5)在发动机高速运转,系统压力盖打开时,水泵进口应为正压; 6)有一定的缺水工作能力,缺水量大于第一次未加满冷却液的容积; 7)设置水温报警装置; 8)密封好,不得漏气、漏水; 9)冷却系统消耗功率小。启动后,能在短时间内达到正常工作温度。 10)使用可靠,寿命长,制造成本低。 1.2 冷却系统的总体布置 冷却系统总布置主要考虑两方面:一是空气流通系统;二是冷却液循环系统。在设计中必须作到提高进风系数和冷却液循环中的散热能力。 提高通风系数:总的进风口有效面积和散热器正面积之比≥30%。对于空气流通不顺的结构,需要加导风装置使风能有效的吹到散热器的正面积上,提高散热器的利用率。 在整车空间布置允许的条件下,尽量增大散热器的迎风面积,减薄芯子厚度。这样可充分利用风扇的风量和车的迎面风,提高散热器的散热效率。一般货车芯厚不超过四排水管,轿车芯厚不超过二排水

4110型柴油机总体设计

摘要 柴油机在现代动力机械中起着重要的作用。为了解和研究柴油机的总体结构及其动力性能,本次毕业设计涉及到“4110型柴油机总体设计”。文中详细地阐述了柴油机的机体组件、活塞连杆机构、配气机构、燃油系统、润滑系统、冷却系统、电气系统等七大系统的设计重点。理解柴油机工作原理、过程,并参照4110型柴油机原型及主要参数进行了柴油机的总体布局设计。通过热力、动力计算及使用情况的分析,对4110型柴油机提出了合理的建议并进行改进。经过改进,柴油机的动力性能和经济性能得以提升,以适应需求。此次毕业设计的选题意义在于提倡使用动力性能更好和节能环保的柴油机。 关键词:4110;柴油机;总体设计;改进;性能

Abstract Diesel engine plays an important role in modern power machinery. In order to make a further research of diesel engine, this paper is mainly concerned with the system design of 4110 type diesel engine. It is within the significant designing of airframe components、piston and crank mechanism、modified atmosphere mechanism、fuel system、lubricating system、cooling system and electrical system in detail. With the better understanding of diesel engine working principle and process or 4110 type diesel engine primary form and main parameters, the general layout design can be conducted as soon as possible. What is more, through the analysis of heat calculation、power calculation and uers′ feedback, reasonable su ggestions for the 4110 type diesel engine are put forward and then improved. As a result, power performance and economic performance are enhanced to meet demand for use. The important significance presented in this paper lies in advocating to use better power performance、energy conservation and environmental protection in diesel engine. Key Words:4110; diesel engine; system design; improvement; performance

柴油机齿轮设计

目录 1. 设计题目及参数 (1) 2. 数学模型地建立 (1) 3. 程序框图 (5) 4. 程序清单及结果 (6) 5. 设计总结 (12) 6. 参考文献 (13) 7.中期检查报告 (14) 1.设计题目及参数 已知:齿轮齿数Z 1=22,Z 2=44,m=5mm ,分度圆压力角а=20°; 齿轮为正常齿轮,在闭式的润滑油池中工作。 要求:1)用C 语言编写程序,选择两轮变位系数,计算齿轮各部分尺寸。 2)绘制柴油机机构运动简图 3)编写说明书一份。 2.数学模型的建立 1) 实际中心距a '的确定:2 )(21z z m a +? = ; a '=(a/5+1)?5; 2) 啮合角α': ;)cos(2)()cos(21ααα?'?+= 'z z m

αααinv z z x x inv +++=')/()(tan 22121; 3) 分配变位系数21x x 、; min 1min min 1/)(z z z h x a -=* ;min 2min min 2/)(z z z h x a -=* ; 4)中心距变动系数 y=(a a -')/m ; 5) 齿轮基本参数: 注:下面单位为mm 模数: m=5 压力角: ο20=α 齿数: 1z =22 2z =44 齿顶高系数: 0.1=* a h 齿根高系数: 25.0=*c 传动比: 12/z z i = 齿顶高变动系数: y x x -+=21σ 分度圆直径; 11mz d = 22mz d = 基圆直径; αcos 11mz d b = 齿顶高: )(11σ-+=* x h m h a a

柴油机冷却水系统

30. 冷却水系统 说明 冷却水系统…………………………………………………………第30-191页 工作卡 30 101-01冷却水恒温阀…………………………………………第30-193页 30 102-02冷却水泵的检修和更换………………………………第30-195页 备件图页 高温冷却水泵,顺时针方向……………………………………….图页号1 3010 高温冷却水泵,逆时针方向……………………………………….图页号1 3010 低温循环系统的冷却水恒温阀 手动越控………………………………………………………图页号1 3012 高温循环系统的冷却水恒温阀 手动越控………………………………………………………图页号1 3012 高温冷却水管……………………………………………………..图页号1 3016 发布号TOC_1 30 第30-189页

第30-190页 发布号TOC_1 30

冷却水系统 本柴油机只设计为淡水冷却,因此冷却水系统必须是中央/闭式冷却系统。 本柴油机设计几乎是无管子的,即水在前端 箱和气缸组件内部的水腔、水道中流动。所有大的管接头均设在前端箱中。在柴油机后端,供应齿轮箱滑油冷却器的淡水应由船厂连接上。 发布号1 30 A1-01 第30-191页

本柴油机的高、低温冷却水系统配有机带Array 高、低温淡水泵。为加强备用泵的自动启动功能,系统内设置了双作用式止回阀。 淡水泵安装在柴油机前端箱中,由曲轴通过齿轮系驱动。 泵的轴承由柴油机的滑油系统供油自动进行润滑。 控制高、低温冷却水系统的恒温元件也置于前端箱中。 增压空气冷却器分为二级,第一级由高温冷却水系统进行冷却,从增压器出来的高温空气传给冷却水的热量有可能较多地回收。第二级由低温冷却水系统进行冷却,使进入柴油机的空气温度得到进一步的降低。 在北极高寒地区航行时,直接从甲板进入的空气温度低,可采用一种调节系统来控制空气冷却器的第二级冷却水流量,以提高低负 荷下的增压空气温度。

柴油机“连杆”零件的机械加工工艺规程的编制及工装设计 机械设计毕业论文

柴油机“连杆”零件的机械加工工艺规程的编制及工装设计 前言 毕业设计是在学完了机械制造工艺及夹具和大部分专业课,并进行了生产实习的基础上进行的一个教学环节。这是我们在毕业前对所学课程的一次深入的全面的总复习,也是一次理论联系实际的训练,更是一次毕业总结。因此,毕业设计在这三年的学习中占有十分重要的地位,要求每位毕业生都能发挥所能,搞好自己的设计,给自己的学业划上一个圆满的句号。 我也十分重视这次毕业设计,并希望通过这次设计对自己今后将从事的工作进行一次适应性的训练,锻炼自己分析问题、解决问题的能力。 由于个人能力有限,设计中难免有许多不足之处。希望各位指导老师给予批评指正,我也会在以后的工作中严格要求自己,努力提高自己的专业技能。 摘要 机械制造工业是国民经济最重要的部门之一,是一个国家或地区经济发展的支柱产业,其发展水平标志着该国家或地区的经济实力、科技水平、生活水平和国防实力。机械制造业的生产能力和发展水平标志着一个国家或地区国民经济现代化的程度,而机械制造业的生产能力主要取决于机械制造装备的先进程度,产品性能和质量的好坏则取决于制造过程中工艺水平的高低。 连杆作为传递力的主要部件广泛应用于各类动力机车上,是各类柴油机或汽油机的重要部件。连杆在传递力的过程中,承受着很高的周期性冲击力、惯性力和弯曲力。这就要求连杆应具有高的强度、韧性和疲劳性能。同时,因其是发动机重要的运动部件,故要求很高的重量精度。随着汽车行业的发展,连杆的需求量在不断增加,也出现了许多不同的加工制造工艺。 关键词:机械制造、机械制造装备、连杆、加工工艺

目录 绪论............................................................................ (4) 一. 零件的结构工艺分析 (4) 1.1. 零件的作用及保护措施 (4) 1.2. 毛坯材料的选用、制造并绘制毛坯图 (6) 1.3. 连杆工艺规程的设计 (9) 1.4. 零件的工艺过程分析 (13) 1.5. 工艺方案的确定 (15) 1.6. 机械加工余量、切削用量、工序尺寸的确定 (16) 1.7. 工序工时定额的计算 (19) 二. 连杆机械加工技术近期发展 (22) 三. 连杆的修复 (24) 四. 工装设计 (25) 五. 总结 (33) 六. 致谢 (34) 七. 参考文献 (35) 八. 毕业设计任务 (36)

柴油机曲柄连杆机构的设计方案

目录 前言2 第一章柴油机总体设计方案4§1.1 高速柴油机设计的要求4 §1.2 柴油机设计的内容4 §1.2.1高速柴油机用途的确定4 §1.2.2 柴油机类型的确定5 §1.2.3 柴油机主要设计参数的确定6 第二章主要零部件设计及计算11§2.1 连杆组的设计11 §2.1.1 连杆的工作情况11 §2.1.2在设计中应注意的地方11 §2.1.3 连杆的材料11 §2.1.4 连杆长度的确定12 §2.1.5连杆小头的设计12 §2.1.6 连杆杆身的设计13 §2.1.7 连杆大头的设计14 §2.2 活塞组的设计16 §2.2.1 活塞16 §2.2.2 活塞环22 §2.2.3 活塞销23 第三章连杆强度校核24 §3.1 连杆小头计算24 §3.2 连杆杆身的强度计算25 §3.3连杆大头盖的计算26 第四章结论27 参考文献28 致谢29

前言 375柴油机是我国三缸柴油机系列中的主要产品,是我国经济体制改革不断深入,农村生产飞速发展的产物。传统的375柴油机母型是六十年代后期开发的产品,笨重而且燃油高、经济动力性能差,为此作者在国内的现有生产条件下,借鉴国内外先进设计理念与生产技术,在原有机型的基础设计375柴油机,该375柴油机是三缸,自然吸气,直列四冲程,水冷直喷,高速柴油机,在提高发动机的经济、动力性能的同时降低有害物的排放,同时仍然保持原机可靠性、耐久性、经济实用、使用维修方便的优点,广泛应用于农用运输机、拖拉机、小型机械,这些优点使其更好的融入农村生产,备受购买力相对较弱的农民群体的欢迎,因此该产品的开发拥有很广阔的市场。 国家的排放法规日益严格,国家对柴油机的微粒排放的关注度也日益提高,原来375柴油机存在的微粒和烟度的排放较高,针对这方面的缺点开发水冷直喷的燃烧室,其良好的燃油经济性、结构简单、起动容易优点,不仅能够有效的降低微粒和烟度的排放,而且能够降低油耗,从而满足现代的节能减排的新观念,该优点亦符合农村购买标准之一。 375柴油机一般用于农用运输和动力,国内农用机械配套动力要求动力充足可靠性高、经济性好,柴油机以其低速扭矩大、经济性好、可靠性高等优点占据主流,在农业机械化的大背景下,原来柴油机笨重,油耗高,功率低等已不能够满足新时代的要求,为了适应国内农用机械功率增长的需要,在原来的基础上开发出来的375柴油机,该发动机在排量、功率、动力性能等都有一定的增加,并且节省材料。该柴油机可以配套拖拉机、农用运输机、排灌机械、收割机等农用机械,也可以和空压机、矿石机械翻斗机、小型发电机组等。 475柴油机是四缸机,活塞行程为90mm,标定功率为24KW;某些企业的涡流475柴油机普遍存在油耗高、排气温度高等问题,若能把475型柴油机的涡流燃烧系统造成直喷式燃烧系统,能够使油耗大幅度降低、烟度排放少,特别严格的排放法规的实施,迫使人们在保持原有研究成果的同时,换一个角度去探索各种燃烧室及其供油系统、进气系统匹配的问题,

相关主题
文本预览
相关文档 最新文档