当前位置:文档之家› 柴油机设计 热计算例

柴油机设计 热计算例

柴油机设计 热计算例
柴油机设计 热计算例

附录热计算例

轻12V180型柴油机热力计算

1.轻12-180型柴油机主要技术参数

该机的曲轴箱、气缸排、活塞及各构架体壳等均由铝合金制成;主要传力部件,如曲轴、连杆、传动齿轮及其轴等均由高强度合金钢制成。具有重量轻、尺寸小、功率大等优点,适于小型艇应用。

2.柴油机热参数的选择

本计算工况取735 kW(1000ps),1700 r/min 。MPa P K 157.0= ⑵ 流通能力系数ηV ?S 取1.05(参阅手册P.3-11选取) ⑵ 平均有效压力p me

MPa in V m N p S e e 849.01700

12089.573543030=????==

⑶ 平均机械损失压力Pm (参阅手册,式(3.1.2.4)) ()[]524.0087.01

-+=-m e m C p D P

??

??

?

?-??

? ?

?

?+??=-524

.030

17002.02.10849.0087.0180.025.0 []MPa cm kg 183.0866.1524.0993.19087.0535.12==-??=

⑷ 机械效率ηm (参阅教材P.213表8-5,四冲程高速增压 ηm

= 0.8~0.88)

823.0183

.0849.0849

.0=+=+=

m e e m

p p p η

⑸ 环境条件:P 0= 100 kPa, T 0=30℃。 3.换气过程计算

⑴充量系数 ηv (参阅手册P.3-15式3.1.2.19) 29610271021976.0n n v ??-??+=--η

934.01700102717001021976.0296=??-??+=-- 124.1934.005.1===V S V S η?η?

⑵ 残余废气系数:γr = 0.02

(参阅手册P.3-15。也可按某些参考书中,四冲程增压 γr = 0~0.03) ⑶ 进气终了温度a T

K T T T T r r r S a 38302.0180002.053701=+?++=++?+=γγ 式中: 无中冷增压柴油机:K S T T = ())97(3701.0157.03027318.1100C K P P T T

K

K n n K K

?=?

?

?

??+=?

?

?

??=--

K n --增压器平均多变压缩指数, K n =1.8 新鲜空气预热温度: C T ?=?5 残余废气温度: T r = 800 K

⑷ 进气终点压力a P (按手册P.3-15式3.1.2.16计算)

()()02.01370383934.0157.05.1315.1311+???-=+-=r

S a V S a T T P P γηεε

MPa 143.0= (与教材P.204式(8-10)一致) 911.0157.0143.0==S a P P (四冲程增压(90.0=a P ~)S P 0.1) ⑸ 排气压力 r P

四冲程非增压(05.1=r P ~)015.1P 四冲程增压 (75.0=r P ~)K P 90.0

机械增压可参考非增压的值,取MPa P P r 11.010.10== ⑹ 柴油机所需的总空气流量K G

s kg m in RT V P G S S S S V K /343.1430170012370287.0089.5157.005.130=??????==?η

4.压缩过程计算

⑴ 平均多变压缩指数1n ,若忽略残余废气,可用下式估算:

()

1

1113143.81-++=-n a v bT a n ε

式中:v a 、b 为干空气的平均等容莫尔比热式bT a C v vm +=中的常数 v a =20.484 , b =0.002687 上式可用试算法求出。

第一次试算,先假定一个1n 值(本例先设定35.11=n ),代入等式右边,得 ()

345.03143

.85

.131383002687.0484.203143.811

35.11==+??+=

--n 试算值与假设不符,将新求得的1n 值代入等式右边计算。 第二次试算,345.11=n ,计算得 3458.00391

.243143

.811==

-n

第三次试算,3458.11=n ,得 3458.03143

.811==

-n

最后得 3458.11=n (参阅教材P.205,n 1=1.28~1.37) ⑵ 压缩终点压力c P 与温度c T

MPa P P n a c 748.45.13143.03458.1=?==ε K T T n a c 9425.1338313458.111=?==--ε 5.燃烧过程计算 ⑴ 压力升高比λ 86.1823.8===c

z P λ

⑵ 燃烧过量空气系数α (按手册P.3-29表格28项公式计算---注意单位换算)

56.12625.0370849.0934.0157.02.87736.1645=????=?=e S e v S g T P P ηα

式中 e g 的单位为kg/(kW .h) ⑶ 燃料热化学计算

① 计算理论空气量L 0

kg kmol g g g L O H C 495.032004.04

126.012

87.021.01324

12

21.010

=??

?-+ ??=??

? ??-+= ② 新鲜空气量M 1

kg kmol L M 7722.0495.056.101=?==α ③ 完全燃烧时燃烧产物的摩尔数M 2

kg kgmol g g M M O H 8038.032

004.04

126.07722.032

4

12=++=++=

④ 理论分子变更系数β0 041.17722

.08038.01

20

===M M β

⑤ 实际分子变更系数β

040.102.0102.0041.110=++=++=r r γγββ

⑷ 平均定容莫尔比热()m VC C μ、()m VZ C μ计算

压缩终点C 的平均定容莫尔比热可近似按干空气的平均定容莫尔比热式计算。

()942002687.0484.20002687.0484.20?+=+=C m VC T C μ K kmol kJ ?=015.23

燃烧产物可看成由干空气和纯燃烧产物组成,故燃烧终点Z 的平均定容莫尔比热为

()()()Z m

VZ

T C 5

10

7

.2681381484

.201764.21??-++

?-+=

ααα

αμ ()()Z T 5

10

56.17

.268156.138156.1484.20156.1764.21??-++?-+= Z T 0034.03.21+= K kmol kJ ? ⑸ 定压燃烧终点温度Z T

()()[]()[]3143

.83143.80+=++m VZ Z m VC C

r u

Z C T C T H μβλμξ (式中: 75.0=Z ξ~85.0,取75.0=Z ξ)

()

[]=?+?++???86.13143.8015.2194202.01495.056.143126

75.0

[]3143.80034.03.21040.1++??=Z Z T T []Z Z T T 0034.06143.29041.18.343639.41064+??=+ 07.75428828.30003536.02

=-+Z Z T T 解方程,得 K T Z 1992=

⑹ 初期膨胀比ρ

182.1942199286.1040.1=?=?=C Z T T λβρ (ρ=1.1~1.7)

6.膨胀过程计算

⑴ 后期膨胀比δ

42.11182.15

.13===ρεδ

⑵ 平均多变膨胀指数2n ()()

()()b

b v Z Z v r u

Z b b Z T bT a T bT a H T T n +-++--=

-ξξ002

)(3143

.81

(式中:v a 、b 为燃烧产物定容莫尔比热式的常数,v a =21.3,b =0.0034) (式中:b ξ=0.85~0.90,取b ξ=0.88)

()

()()

()b

b Z Z b T

T T T T n 0034.03.21)0034.03.21(02.0041.1495.056.14312675.088.019923143.812+-+++???--?=

-

()()b

b b T T T 0034.03.210.559219.684219923143.8+-+-?=

()()b

b b T T T 0034.03.219.6276319923143.8+--?=

与b T 的计算式联立 1

`1

22

42

.111

19921

--?

==n n Z

b T T δ 用试算法计算。

第一次试算,设20.12=n ,得 K T b 122442.111

19921

20.1=?=-

()()202.09

.315984

.6385122412240034.03.219.62763122419923143.812==??+--?=

-n

试算值与设定值不符。 第二次试算,取202.12=n ,得 K T b 121842.111

19921

202.1=?=-

()()202.03

.6435121819923143.812≈=-?=

-n

最后取 K T b 1218=, 202.12=n ⑶ 膨胀终点压力b P

MPa P P n

Z

b 472.042

.11823

.8202

.12

==

=

δ 7.指示参数计算 ⑴ 平均指示压力i P

()?????

???? ??---??? ??--+--=--111212*********n n C n

i n n P P εδλρρλε?

()??

???

??

?? ??---??? ?

?-

-?+--?=3458.0202.05.131113458.1142.11111202.1182.186.11182.186.115.13748.496.0

[]7161.12290.43385.03798.096.0-+??= MPa 0396.18514.23798.096.0=??=

其中:n ?--丰满系数,一般n ?=0.92~0.98,取n ?=0.96

⑵ 指示功率i N kW m ni V P N S i i 4.8994

3012

1700089.50396.130=????==

⑶ 指示热效率i η

i v S S u i

P P T H L ???=ηαη13143.80 %3939.00396.1934

.01

157

.037043126

7722.03143.8==??

??= ⑷ 指示燃油消耗率i g

)(21443126

39.03610361055h kW g H g u i i ?=??=?=η

8.有效参数计算 ⑴ 平均有效压力e P

MPa P P m i e 856.0823.00396.1=?==η ⑵ 有效功率e N

kW N N m i e 2.740823.04.899=?==η ⑶ 有效燃油消耗率i g

()h kW g g g m i e ?===260823.0214η ⑷ 有效热效率e η

%32321.0823.039.0≈≈?==m i e ηηη

9.绘制P-V 示功图

⑴ 计算气缸工作容积V S 和燃烧室容积V C

32

2

089.50.24

8.11415.34dm S D V S =??==π

3407.01

5.13089

.51dm V V S C =-=-=

ε ⑵ 计算理论循环各特征点容积

3496.5089.5407.0dm V V V S C a =+=+= 3'407.0dm V V C Z ==

3481.0407.0182.1dm V V C Z =?==ρ 3496.5dm V V a b ==

⑶ 压缩曲线各点参数

按公式 1

n a a

x V V P P ?? ?= 可列表计算,也可编程计算。

⑷ 膨胀曲线各点参数

按公式 2

n x b b x V V P P ??

?= 可列表计算,也可编程计算。

太阳能集热器的设计与计算

华扬公司工程计算举例: 客户要求 1)、项目名称:河南郑州太阳能集中热水工程; 2)、用水类型:全天 3)、用水量:3吨/天 4)、用水方式:落水式 5)、辅助能源:电加热 设计气象参数依据 1)、河南郑州在我国为二等太阳能辐照度地区。太阳辐射强度高,但总量大,年辐射总量为 16.41 MJ/m2.a。 2)、郑州地理纬度为34°43′,东经113°21′左右; 3)、郑州地区全年自来水水温在5-12℃之间。(设计取值8℃,春分时节); 确定总用水量 人均用水当量参照给排水设计规范,如下表:

选择初始水温:

参照下表,采用设计冷水水温为8℃。 集热面积计算 将已知条件“用户设计用水量3吨,日平均辐射量16.41MJ/㎡,,设计热水温度为50℃,初始水温8℃。,太阳能保证率取0.5(系统要求全年使用)”等参数代入国家标准 GB 50364-2005《民用建筑太阳能热水系统应用技术规范》中 直接循环系统计算公式,集热面积c A 为: )1()(L cd T i end w w c J f t t C Q A ηη--= c A ——直接系统集热器采光面积,㎡; w Q ——日均用水量Kg ;3000L end t ——储水箱内水的终止温度(用水温度);50℃ w C ——水的定压比热容,4.18 KJ/(㎏2℃); i t —— 自来水的初始温度,8℃; t J ——集热器受热面上春分时节日辐照量,取16410KJ/m 2 f ——太阳能保证率,无量纲,0.5;

cd η——集热器全日集热效率,无量纲, L η—管路及储水箱热损失率(按最寒冷季节取值),无量纲, 取0.3; 则: Ac=Q W C W (t end - t i )f/J T η cd (1-η L )= 3000 ㎏34.18 KJ/㎏2℃3 (50℃-8℃)350%÷{16410 KJ/㎡30.53(1-0.3)}≈45.85㎡ 选择用全玻璃管联箱横插直接循环集热器,直径47*1500/每组50支(集热面积5.41,配水量300-500L平均每只管带6—10L)9组,从而提供3T热水,(即取每只带水箱水6.7L水箱水的容积。) 参数表

柴油机设计参数

387柴油机主要性能参数: 转速2400 r / min 功率20 kW 燃油消耗率≤243 g / kW. H 缸径:87mm; 设计: 1)汽缸数:i=3 2)冲程数:τ=4 3)缸径:d=87mm 4)行程:s=96 mm 由于s/d大约为1.05—1.2 s/d=1.103 5)总排量:V s=3×π/4×8.72×9.6=1711.20 ml=1.71 (l) 6)有效功率:Pe=20 kW 7)活塞平均速度:Cm=sn/30=0.096×2400÷30=7.68 m/s 8)平均有效压力:Pme=Pe·30τ/(Vh·Z·n)=20×30×4÷(1.71÷3)÷3÷2400=0.585 MPa 9)曲轴半径:R=s/2=96÷2=48 mm 10)连杆比:R/L取值为1/3--1/5,R/L可取1/4 连杆长度L=192 mm 11)缸心距L0/D=1.35---1.40 12) 取缸心距L0=1.40×87=121.8 13)压缩比:ε=18 朱仙鼎14~18 14)燃烧室形式:ω型半分开式 15)大气状态:P0=1 bar=0.1 Mpa,To=290 K 16)燃烧平均重量成分:C=0.87,H=0.126,O=0.004 17)燃料低热值:H u=441000kg/kg燃料 『1』参数选择 过量空气系数α=1.75 最高燃烧压力P z=70 bar=7 Mpa 热量利用率ξz=0.75 残余废气系数Φr=0.04 排气终点温度T r=800K 示功图丰满系数φi=0.96 机械效率ηm=0.80 『2』燃烧热计算: 1、理论所需空气量朱仙鼎热力计算 L0=1/0.21·(gC/12﹢gH/4-gO/32)=1/0.21×(0.87/12+0.126/4-0.004/32)=0.495 kgmol/kg燃料 2、新鲜空气量M1 M1=αL0=1.75×0.495=0.866 kgmol/kg燃料 3、理论上完全燃烧(α=1)时的燃烧产物M0 不一样 M0=C/12+H/2+0.79L0=0.87/12+0.126/2+0.79×0.495=0.5265 kgmol/kg燃料 4、当α=1.75时的多余空气量为 (α-1)L0=(1.75-1)×0.495=0.371 kgmol/kg燃料 5、燃烧产物总量M2 M2=M0+(α-1)L0=0.5265+0.371=0.8975 kgmol/kg燃料 6、理论分子变更系数μ0

热辐射计算公式

传热学课程自学辅导资料 (热动专业) 二○○八年十月

传热学课程自学进度表 教材:《传热学》教材编者:杨世铭陶文铨出版社:高教出版时间:2006 1

注:期中(第10周左右)将前半部分测验作业寄给班主任,期末面授时将后半部分测验作业直接交给任课教师。总成绩中,作业占15分。 2

传热学课程自学指导书 第一章绪论 一、本章的核心、重点及前后联系 (一)本章的核心 1、导热、对流、辐射的基本概念。 2、传热过程传热量的计算。 (二)本章重点 1、导热、对流、辐射的基本概念。 2、传热过程传热量的计算。 (三)本章前后联系 简要介绍了热量传递的三种基本方式和传热过程 二、本章的基本概念、难点及学习方法指导 (一)本章的基本概念 1、热传导 导热(Heat Conduction):物体各部分之间不发生相对位移时,依靠分子、原子及自由电子等微观粒子的热运动而产生的热量传递称为导热。 特点:从宏观的现象看,是因物体直接接触,能量从高温部分传递到低温部分,中间没有明显的物质迁移。 从微观角度分析物体的导热机理: 气体:气体分子不规则运动时相互碰撞的结果。 导电固体:自由电子不规则运动相互碰撞的结果,自由电子的运动对其导热起主导作用。 非导电固体:通过晶格结构振动所产生的弹性波来实现热量传递,即院子、分子在其平衡位置振动。 液体:第一种观点类似于气体,只是复杂些,因液体分子的间距较近,分子间的作用力对碰撞的影响比气体大;第二种观点类似于非导电固体,主要依靠弹性波(晶格的振动,原子、分子在其平衡位置附近的振动产生的)的作用。 热流量:单位时间传递的热量称为热流量,用Ф表示,单位为W。 3

热交换器的选型和设计指南

热交换器的选型和设计指南

目录 1 概述 (1) 2 换热器的分类及结构特点。 (1) 3 换热器的类型选择 (2) 4 无相变物流换热器的选择 (11) 5 冷凝器的选择 (13) 6 蒸发器的选择 (14) 7 换热器的合理压力降 (17) 8 工艺条件中温度的选用 (18) 9 管壳式换热器接管位置的选取 (19) 10 结构参数的选取 (19) 11 管壳式换热器的设计要点 (23) 12 空冷器的设计要点 (32) 13 空冷器设计基础数据 (35)

1 概述 本工作指南为工艺系统工程师提供换热器的选型原则和工艺参数的选取及计算方法。 2 换热器的分类及结构特点。 表 2-1 换热器的结构分类

3 换热器的类型选择 换热器的类型很多,每种型式都有特定的应用范围。在某一种场合下性能很好的换热器,如果换到另一种场合可能传热效果和性能会有很大的改变。 因此,针对具体情况正确地选择换热器的类型,是很重要的。换热器选型时需要考虑的因素是多方面的,主要有: 1) 热负荷及流量大小 2) 流体的性质 3) 温度、压力及允许压降的范围 4) 对清洗、维修的要求 5) 设备结构、材料、尺寸、重量 6) 价格、使用安全性和寿命 在换热器选型中,除考虑上述因素外,还应对结构强度、材料来源、加工条件、密封性、安全性等方面加以考虑。所有这些又常常是相互制约、相互影响的,通过设计的优化加以解决。针对不同的工艺条件及操作工况,我们有时使用特殊型式的换热器或特殊的换热管,以实现降低成本的目的。因此,应综合考虑工艺条件和机械设计的要求,正确选择合适的换热器型式来有效地减少工艺过程的能量消耗。对工程技术人员而言,在设计换热器时,对于型式的合理选择、经济运行和降低成本等方面应有足够的重视,必要时,还得通过计算来进行技术经济指标分析、投资和操作费用对比,从而使设计达到该具体条件下的最佳设计。 3.1管壳式换热器 管壳式换热器的应用范围很广,适应性很强,其允许压力可以从高真空到41.5MPa,温度可以从-100°C以下到 1100°C高温。此外,它还具有容量

换热器设计计算范例

列管式换热器的设计和选用的计算步骤 设有流量为m h的热流体,需从温度T1冷却至T2,可用的冷却介质入口温度t1,出口温度选定为t2。由此已知条件可算出换热器的热流量Q和逆流操作的平均推动力。根据 传热速率基本方程: 当Q和已知时,要求取传热面积A必须知K和则是由传热面积A的大小和换热器结构决定的。可见,在冷、热流体的流量及进、出口温度皆已知的条件下,选用或设计换 热器必须通过试差计算,按以下步骤进行。 ◎初选换热器的规格尺寸 ◆ 初步选定换热器的流动方式,保证温差修正系数大于0.8,否则应改变流动方式, 重新计算。 ◆ 计算热流量Q及平均传热温差△t m,根据经验估计总传热系数K估,初估传热面积A 估。 ◆ 选取管程适宜流速,估算管程数,并根据A估的数值,确定换热管直径、长度及排 列。◎计算管、壳程阻力 在选择管程流体与壳程流体以及初步确定了换热器主要尺寸的基础上,就可以计算管、壳程流速和阻力,看是否合理。或者先选定流速以确定管程数N P和折流板间距B再计算压力降是否合理。这时N P与B是可以调整的参数,如仍不能满足要求,可另选壳径再进行计 算,直到合理为止。 ◎核算总传热系数 分别计算管、壳程表面传热系数,确定污垢热阻,求出总传系数K计,并与估算时所取用的传热系数K估进行比较。如果相差较多,应重新估算。 ◎计算传热面积并求裕度 根据计算的K计值、热流量Q及平均温度差△t m,由总传热速率方程计算传热面积A0,一般应使所选用或设计的实际传热面积A P大于A020%左右为宜。即裕度为20%左右,裕度的 计算式为: 某有机合成厂的乙醇车间在节能改造中,为回收系统内第一萃取塔釜液的热量,用其釜液将原料液从95℃预热至128℃,原料液及釜液均为乙醇,水溶液,其操作条件列表如下: 表4-18 设计条件数据 物料流量 kg/h 组成(含乙醇量) mol% 温度℃操作压力 MPa 进口出口 釜液 3.31450.9

柴油机各系统 设计

第三章各系统的设计及主要零部件的结构特点 3.1活塞组 活塞组包括活塞,活塞销和活塞环。它们在气缸里做往复惯性运动,活塞主要作用是承受气缸的气体压力,并将此力通过活塞销传给连杆,以次推动曲轴旋转。它还和气缸壁面一起活动构成密封装置,保证燃烧室的良好密封,这个功能是通过装在活塞头部环槽的一系列带开口的弹性活塞实现的。在高温,高负荷,高速和少量的机油消耗的情况下,它一方面要保证漏气量少,另一方面又要使摩擦损失不大,同时还要保证足够的耐久性。因此设计时要选用热强度好,耐磨,比重小,热膨胀系数小,导热性好,具有良好减磨性,工艺性的材料。目前制造活塞常用的材料有共晶铝硅合金,过晶铝硅合金和铝铜合金。设计选用共晶铝硅合金材料。 1、活塞设计的主要尺寸 [4] (1)活塞高度H: 根据《柴油机设计手册》,对于中小型柴油机而言,H/D范围在 1.0-1.1,而D=110mm,取H=113.5mm。在选择活塞高度时要注意在合理布置的情况下尽量选择小的活塞高度,如果转速越高,要使H越小,尽量减轻活塞重量,从而控制由于转速高而应引的惯性力的增大。(2)压缩高度H1: 根据《柴油机设计手册》,H1/D范围在0.6-0.8,取H1=67mm。HI=H5(换带高度)+H4(上裙高度)+h(顶岸高度)。在保证气环良好良好工作情况下,宜缩短H1高度,以便降低整机的高度尺寸。 (3)顶岸高度h(第一活塞环至活塞顶部距离): 根据《柴油机设计手册》,对铝活塞h/D范围在0.07-0.20,取h=13.4mm。在保证第一道环可靠工作下,也要使h尽量小,降低活塞重量和高度,但h越小,会使第一道环的热负荷越高,。 一般第一道环的温度不应该超过240度,否则润滑油可能粘结甚至结碳,易使活塞环在活塞中失去活动性,散失了密封和传热的功能 (4)活塞环数目及排列: 根据《柴油机设计手册》,中速机气环3-4道,油环1-2道,取气环2道,油环一道。2道气环在上面,1道油环在气环下面。为了降低活塞和整台发动机的高度,减少惯性力和摩擦功率损耗,应该减少环数。 (5)环岸高度:

太阳能热水的一般计算方法

1、真空管数量的计算: 真空管集热器(?47)10根可作为1平方米的集热面积,在一般光照下每天可产生45℃--65℃的热水90千克。如果每天要用热水X吨,太阳能集热器真空管的根数为Y,那么Y=(1000X÷90)×10。例如需要8吨热水,那么Y=(1000×8÷90)×10=888(根) 2、辅助电加热功率的计算: ①当阴雨天无光照时,需要热水,可通过电辅助加热的办法,其功率大小的运算如下: 一般情况下按每吨水5千瓦计算。例如8吨水需8×5=40千瓦。尽量采用三相电供电.大于10KW的电加热器若采用单相电,极易使供电线路偏相而跳闸断电. ②电加热导线的直径的计算方法( 铜线): 一般每平方3安培。例如42千瓦(三相电)需要16平方的导线。公式:S(平方数)=P(功率)÷3(三相电)÷220(相电压)÷3(每安培平方数)。铝线及导线过长应适当增加直径。 ③防漏电的措施: a、电加热的水箱必须可靠接地,即使潮湿的地面,地线角铁必须打入2米以下。干燥的地面得4米以下,接触潮湿土壤为准。有的人想

用避雷线代替地线,这是绝对不允许的,其做法是,导致引雷,且不能防漏电。但可以用大楼的主地线代替(可以从大楼的配电柜中找)。 b、全自动控制柜里面应安装国家3C认证的名牌漏电断路器。 c、另外,采用加长纯塑料热水出水管道(8米以上PPR或PEX等管),也是提高安全系数的办法。 3、循环泵、电磁阀的选购方法: ①循环泵应在估算每天循环次数和水箱总量的基础上计算出流量,根据流量计算和扬程去选循环泵。一般功率200E—3000W之间。或询问循环泵供应商,大于1KW应采用三相供电。②电磁阀:一般应采用220V交流电压,20W-60W瓦的功率,这样可防止电压波动带来的危害,直径可取?20—32mm。电磁阀一般无漏电之虑。 4、工程造价的计算方法: 1、按真空管的面积计算:一般每平方米1600—1900元左右。 2、按每日产热水(45℃以上)每吨按1.5—2.8万元左右。 管道防冻的方法: 1、定温控制伴热带的供电,当管道温度低于某值时(例如4℃,不要低于0℃再动作,这样费电),给紧贴管道外壁的伴热带通电加温;当管道的温度到达另一值时(例如12℃,可根据实际调整),伴热带断电。伴热带功率的计算方法:宽8mm-20MM,每米15瓦—30瓦,10米

基于三维的柴油机气缸盖组合钻床总体及左主轴箱设计

本科毕业设计(论文)通过答辩 目录 1前言 (1) 2 总体设计 (3) 2.1总体方案论证 (3) 2.1.1 加工对象工艺性的分析 (3) 2.1.2 机床配置型式的选择 (3) 2.1.3 定位基准的选择 (4) 2.2确定切削用量及选择刀具 (4) 2.2.1 选择切削用量,计算切削力、切削扭矩及切削功率 (4) 2.2.2 验证刀具耐用度 (6) 2.2.3刀具耐用度的计算 (7) 2.2.4选择刀具结构 (8) 2.3组合机床总体设计—“三图一卡” (8) 2.3.1 被加工零件工序图 (8) 2.3.2 加工示意图 (8) 2.3.3 机床联系尺寸图 (10) 2.3.4 机床生产率计算卡 (13) 3 组合机床左主轴箱设计 (15) 3.1绘制左主轴箱设计原始依据图 (15) 3.2主轴结构型式的选择及动力计算 (17) 3.2.1 主轴结构型式的选择 (17) 3.2.2 主轴直径和齿轮模数的初步确定 (17) 3.2.3 主轴箱动力计算 (18) 3.3主轴箱传动系统的设计与计算 (18) 3.3.1 计算驱动轴、主轴的坐标尺寸 (18) 3.3.2 拟订主轴箱传动路线 (18) 3.3.3 传动轴的位置和转速及齿轮齿数 (19) 3.4主轴箱中传动轴坐标的计算及传动轴直径的确定 (20) 3.4.1 传动轴坐标的计算 (20) 3.4.2 传动轴轴径的确定 (21) 3.5轴的强度校核 (21) 3.6齿轮校核计算 (23) 3.7主轴箱中传动轴坐标检查图的绘制 (26) 3.8左主轴箱三维建模 (26) 4 结论 (30) 参考文献 (31) 致谢 (32) 附录 (33)

平板太阳能集热器主要参数表

杭州临安乘易太阳能技术有限公司 平板太阳能集热器主要参数表 型号P-G(Y)/1.0-PX/NT-2.0-L 尺寸规格(G/Y)2000*1000*75mm/(Y)2500*800*75mm /Y2000*800*75/Y3000*1000*75 有效吸热面积 1.81㎡ 玻璃低铁超白布纹钢化玻璃,厚度3.2mm。 集热主流道管Φ25*1.2mm 整体吸热芯板口琴式多孔扁铝吸热板(口琴式太阳能集热器板芯实用 新型专利,专利号:201320667926.7) 吸热涂层钛纳米黑基吸热涂层(金属陶瓷纳米基体吸热涂层材料 发明专利,专利号:201310515802.1) 边框铝合金6063 T5 背板0.5mm镀铝锌板(宝钢)/0.5mm彩钢板(宝钢) 组装密封材料太阳能组件专用密封胶,确保25年使用寿命。 底隔热层侧隔热层聚氨酯整体发泡 接口密封圈Φ25mm硅胶圈 管口G1/2内螺纹 重量公斤35Kg 使用寿命20年

决定平板集热器品质的三大要素 一、平板的整体保温功能,是减少热能散发,提高产品热效率极为重要的环节。 二、集热器板芯流道结构设计的合理科学性,能提升热能的快速交换,达到吸收更多的太阳能转换成热能。 三、选择性吸热膜的使用性能致关重要,好的产品能用25年以上,很好地和建筑真正意义上的结合。但有的用3-5年就退色,导致产品无吸热效果,有的甚至1-2年就退色报废了。 结构技术特点 ☆整板吸热芯:板芯流道与膜层采用一体化设计(口琴式太阳能集热器板芯实用新型专利,专利号:201320667926.7、金属陶瓷纳米基体吸热涂层材料发明专利,专利号:201310515802.1)。集热效率高,热损小,吸收率高,发射率低。1㎡的吸热面积相等于进口的吸热面积蓝钛膜1.1㎡。这种结构有别于铜铝复合采用激光或者超声波焊接的结构。(铜铝复合结构传热特点是面与点之间、其最大的缺点会因为设备和人为的原因造成运输过程或使用若干年后铜铝脱开,使集热器的集热效率大大下降而报废。) ☆框体结构:采用四边铝合金型材,底板、玻璃盖板的无螺丝,无铆钉,无橡胶皮条的连接封装技术。外壳机构设计简洁美观,连接灵活,具有防水功能,适用于多种安装方式,易于和建筑结合,实现太阳能与建筑一体化。工业级的铝合金材料(铝合金6063 T5)的设计,结构合理,强度大,表面经氧化处理,耐腐蚀。☆保温措施:采用整体发泡技术处理,边框和背板及保温聚氨酯一体化,加强了防水防潮功能,有效减少集热器吸潮能力,使保温材料长久保持良好的隔热性能、热损小。 ☆玻璃盖板:采用钢化低铁超白布纹玻璃,透光率92%以上。 ☆板芯口琴式多孔流道及主流道管:采用特殊铝材料,耐腐蚀、可承压30kg、

热交换器设计计算

热交换器设计计算 一、基本参数 管板与管箱法兰、壳程圆筒纸之间的连接方式为e 型 热交换器公称直径DN600,即D i =600mm 换热管规格φ38?2,L 0=3000mm 换热管根数n=92 管箱法兰采用整体非标法兰 管箱法兰/壳体法兰外直径D f =760mm 螺柱孔中心圆直径D b =715mm 壳体法兰密封面尺寸D 4=653mm 二、受压元件材料及数据 以下数据查自GB —2011; 管板、法兰材料:16Mn 锻件 NB/T 47008—2010 管板设计温度取 10℃ 查表9,在设计温度100℃下管板材料的许用应力: =t r σ][178Mpa (δ≤100mm ) 查表,在设计温度100℃壳体/管箱法兰/管板材料的弹性模量: Mpa 197000E E E p f f ===’ ’’ 壳程圆筒材料:Q345R GB 713 壳程圆筒的设计温度为壳程设计温度 查表2,在设计温度100℃下壳程圆筒材料的许用应力: =t c σ][189Mpa (3mm <δ≤16mm ) 查表,在设计温度10℃下壳程圆筒材料的弹性模量Mpa 197000E s = 查表在金属温度20℃~80℃范围内,壳程圆筒材料平均线膨胀系数: ℃)(α??=mm /mm 10137.15-s 管程圆筒材料:Q345R GB 713 管程圆筒的设计温度为壳程设计温度 按GB/T 151—2014 中规定,管箱圆筒材料弹性模量,当管箱法兰采用长颈对焊法兰时,取管箱法兰的材料弹性模量,即Mpa 197000E h = 换热管材料:20号碳素钢管 GB 9948 换热管设计温度取100℃ 查表6,在设计温度100℃下换热管材料的许用应力Mpa 147σ][t t =(δ≤16mm ) 查表,设计温度100℃下换热管材料的屈服强度Mpa 220R t eL =(δ≤16mm ) 查表,设计温度100℃下换热管材料的弹性模量Mpa 197000E t =

太阳能热水系统设计计算

.太阳能热水系统设计计算 .1基本参数 (1) 用水人数 404号楼共有住户21户,每户以2.8人计,用水人数共计约59人。 (2) 用水定额(热水定额) 404号楼有集中热水供应和淋浴设备,每人每日用热水定额以60℃热水计算,取100L/人·d。 (3) 用水时间 24小时全日供应热水 2设计计算 (1) 设计小时耗热量的计算 式中:Qh—设计小时耗热量(W) m—用水人数 qr—热水用水定额(L/人·d) Qh—水的比热,c=4187(J/kg·℃) tr—热水温度,tr=60(℃) tL—冷水温度,tL=10(℃) r—热水密度(kg/L),r=0.983kg/L kh—小时变化系数,kh=5.12 Qh=71951(W) (2) 设计小时热水量 式中:qrh—设计小时热水量(L/h) h—设计小时耗热量(W) tr—设计热水温度(℃),tr=55(℃) tL—设计冷水温度(℃),tL=10(℃)

r—热水密度(kg/L),r=0.986(kg/L) qrh=1394.32(L/h) (3) 全日供应热水系统的热水循环流量 式中:qx—全日供应热水的循环流量(L/h) Qs—配水管道的热损失(W),取设计耗热量的5% △t—配水管道的热水温度差(℃),取5℃ qx= 615.6(L/h) (4) 热水供水管的设计秒流量q(L/s) 计算最大用水时卫生器具给水当量平均出流概率 式中:Uo—生活给水管道的最大用水时卫生器具给水当量平均出流概率(%) qr—最高热水用水定额 m—每户用水人数 kh—热水小时变化系数 Ng—每户设置的卫生器具给水当量数 T—用水时数(h) 0.2—一个卫生器具,给水当量的额定流量(L/s) Uo=0.012% 查《建筑给水排水设计规范》(GB50015-2003)得系统热水供水管的设计秒流量为q=2.51(L/s)。 3 设备选取 (1) 蓄水箱 对于太阳能热水系统,由于受自然条件(太阳辐射一天之内随时间变化)的限制,太阳能集热系统,不可能全天24小时满足设计小时用水量(qrh)的要求。为满足使用要求,根据实际情况,考虑蓄热水箱水量、太阳能集热板的功率和用户用水量之间的关系,设计水箱容量为4.5个最大小时用水量(qrh),则必能满足用水量的要求。 水箱的有效容积vk=4.5 qrh≈6.5m3。 (2) 太阳能系统水泵选择:

热交换器设计

热交换器设计 在采用一体化布置的高温气冷堆中,为了使预应力混凝土压力容器体积不致过大,蒸汽发生器应尽量紧凑,严格限制受热面空间布置,并要求其具有较高的功率密度。因此,一体化布置的高温气冷反应堆主要选用直流型多头螺旋管式蒸汽发生器。 本文从实际工程设计出发,对多头螺旋管式蒸汽发生器的设计进行了研究,提出了多头螺旋管束受热面结构的设计方法,推荐了螺旋管内外的传热系数和压降的计算关系式。根据所提出设计方法和螺旋管内外的传热系数和压降的计算关系式对260MW蒸汽发生器进行了设计计算。 由于螺旋管具有占地面积小、传热系数大、结构紧凑、易于清洗、污垢热阻小等优点,不仅在核反应堆,而且在直流锅炉、急冷锅炉、各种石油化工设备中的换热器,热交换器都有相当广泛的应用。因此本文得到的结果不仅适用于高温气冷反应堆的蒸汽发生器,而且适用于各种工业设备中的螺旋管式换热器和螺旋管式热交换器。 - I -

- II - 主要符号表 英 文 字 母 pf c 液体比热,W /kg ℃; D 螺旋直径,m ; c D 中心柱直径,m ; d D 套筒直径,m ; d 管子外径,m ; i d 管子内径,m ; aeff n i F F F ,, 所示的修正系数,无因次; G 质量流速,kg/sm 2; H 管束高度,m ; h 螺旋管导程,m ; mac h 对流放热系数,W/m 2℃; mic h 核沸腾放热系数,W/m 2℃; f K 液体的导热系数,W/m ℃; L 螺旋管长度,m ; M 头数,个; Nu 努塞尔特数,无因次; g Nu 汽相努塞尔特数,无因次; n 轴向方向管子排数,个; w g ,Pr 管壁温度确定的汽相pr 数,无因次; Pr 普朗特数,无因次; Re 雷诺数,无因次;

换热器设计计算步骤

换热器设计计算步骤 1. 管外自然对流换热 2. 管外强制对流换热 3. 管外凝结换热 已知:管程油水混合物流量 G ( m 3/d),管程管道长度 L (m),管子外径do (m), 管子内径di (m),热水温度 t ℃, 油水混合物进口温度 t 1’, 油水混合物出口温度 t 2” ℃。 1. 管外自然对流换热 1.1 壁面温度设定 首先设定壁面温度,一般取热水温度和油水混合物出口温度的平均值,t w ℃, 热水温度为t ℃,油水混合进口温度为'1t ℃,油水混合物出口温度为"1t ℃。 "w 11 t ()2 t t =+ 1.2 定性温度和物性参数计算 管程外为水,其定性温度为1()K -℃ 21 ()2 w t t t =+ 管程外为油水混合物,定性温度为'2t ℃ ''"2111 ()2t t t =+ 根据表1油水物性参数表,可以查得对应温度下的油水物性参数值 一般需要查出的为密度ρ (3/kg m ),导热系数λ(/())W m K ?,运动粘度2(/)m s ,体积膨胀系数a 1()K -,普朗特数Pr 。

表1 油水物性参数表 水 t ρ λ v a Pr 10 999.7 0.574 0.000001306 0.000087 9.52 20 998.2 0.599 0.000001006 0.000209 7.02 30 995.6 0.618 0.000000805 0.000305 5.42 40 992.2 0.635 0.000000659 0.000386 4.31 50 998 0.648 0.000000556 0.000457 3.54 60 983.2 0.659 0.000000478 0.000522 2.99 70 997.7 0.668 0.000000415 0.000583 2.55 80 971.8 0.674 0.000000365 0.00064 2.21 90 965.3 0.68 0.000000326 0.000696 1.95 100 958.4 0.683 0.000000295 0.00075 1.75 油 t ρ λ v a Pr 10 898.8 0.1441 0.000564 6591 20 892.7 0.1432 0.00028 0.00069 3335 30 886.6 0.1423 0.000153 1859 40 880.6 0.1414 9.07E-05 1121 50 874.6 0.1405 5.74E-05 723 60 868.8 0.1396 3.84E-05 493 70 863.1 0.1387 0.000027 354 80 857.4 0.1379 1.97E-05 263 90 851.8 0.137 1.49E-05 203 100 846.2 0.1361 1.15E-05 160 1.3 设计总传热量和实际换热量计算 0m v Q Cq t Cq t ρ=?=?v v C q t C q t αρβρ=?+?油油水水 C 为比热容/()j kg K ?,v q 为总体积流量3 /m s ,αβ分别为在油水混合物中 油和水所占的百分比,t ?油水混合物温差,m q 为总的质量流量/kg s 。 实际换热量Q 0Q Q *1.1/0.9= 0.9为换热器效率,1.1为换热余量。 1.4 逆流平均温差计算

列管式换热器的设计计算

2.4 列管换热器设计示例 某生产过程中,需将6000 kg/h的油从140℃冷却至40℃,压力为0.3MPa;冷却介质采用循环水,循环冷却水的压力为0.4MPa,循环水入口温度30℃,出口温度为40℃。试设计一台列管式换热器,完成该生产任务。 1.确定设计方案 (1)选择换热器的类型 两流体温度变化情况:热流体进口温度140℃,出口温度40℃冷流体(循环水)进口温度30℃,出口温度40℃。该换热器用循环冷却水冷却,冬季操作时进口温度会降低,考虑到这一因素,估计该换热器的管壁温和壳体壁温之差较大,因此初步确定选用带膨胀节的固定管板式式换热器。 (2)流动空间及流速的确定 由于循环冷却水较易结垢,为便于水垢清洗,应使循环水走管程,油品走壳程。选用ф25×2.5的碳钢管,管内流速取u i=0.5m/s。 2.确定物性数据 定性温度:可取流体进口温度的平均值。 壳程油的定性温度为(℃) 管程流体的定性温度为(℃) 根据定性温度,分别查取壳程和管程流体的有关物性数据。 油在90℃下的有关物性数据如下: 密度ρo=825 kg/m3 定压比热容c po=2.22 kJ/(kg·℃) 导热系数λo=0.140 W/(m·℃) 粘度μo=0.000715 Pa·s 循环冷却水在35℃下的物性数据: 密度ρi=994 kg/m3 定压比热容c pi=4.08 kJ/(kg·℃) 导热系数λi=0.626 W/(m·℃) 粘度μi=0.000725 Pa·s 3.计算总传热系数 (1)热流量 Q o=W o c poΔt o=6000×2.22×(140-40)=1.32×106kJ/h=366.7(kW) (2)平均传热温差 (℃) (3)冷却水用量 (kg/h)

6135柴油机设计说明书

题目:6135柴油机结构设计 姓名: 班级学号: 指导教师:

摘要 随着我国工程机械技术水平的不断提高,对工程机械所配套的动力的要求也越来越高,本课题是针对6135型柴油机的结构特点,进行设计及改进,注重提高该机型的动力性能,使其能在工程机械领域发挥作用,提高该机型的经济性能,满足用户的需要,提高排放性能,更好地适应国家对车辆、工程机械发动机排放性能的要求。通过对该机型的改进设计,使其满足系列机型的需要。 本课题主要对6135型柴油机的有关参数进行选择,确定其有效功率,燃油消耗率。6135型柴油机热力计算,得到设计该机型的原始参数;从动力计算,获得设计机型的曲柄销和主轴颈的最大扭矩并绘出扭矩图,从而绘制出曲柄销的预磨损图,以便在最佳处开机油孔。利用现有的实验设备及现代发动机有效参数和现代设计参考文献,对该机型进行一系列有效改进,使其达到设计的最佳设计方案。使该机型能够更好的适应现代工程机械的需要。 通过对该机型有关计算与校核,确定该机型主要技术性能。利用所绘制的总体装配图及零件图,分析该机型的结构特点、确定对该机型的改进设计,为同类产品设计提供有价值的理论参考。 关键词:6135柴油机;热力与动力计算;强度校核;结构设计

Abstract As Chinese technology that is about construction machinery continues to improve, the power requirements of construction machinery is also increasing. the topic is about the design of the 6135 diesel engine overall structure, so that it can meet the needs of the power plant working for the project mechanical better. The main subject of the relevant parameters of the 6135 Diesel to choose, to determine the effective power, fuel consumption rate. 6135 type of diesel engine thermodynamic calculation, the original parameters of the design of the model; from the dynamic calculation, design models of the maximum torque of the crank pin and main journal and draw the torque diagram to draw the crank pin of the pre-wear maps, boot hole so that the best place. Use of existing laboratory equipment and the effective parameters of modern engines and modern design references to the models to a series of effective improvements to make it the best design programs to meet the design. So that the models are better able to adapt to the needs of modern construction machinery . By the models for computing and checking to determine the technical performance of the models. The general assembly drawings and part drawings are drawn to analyze the structural characteristics of the models to determine the design of the model improvements, and provide valuable theoretical reference for the design of similar products . Keywords:6135diesel engine; Heat and power calculation; Checking calculation; Structural design

热辐射实验

1.实验题目:热辐射与红外扫描成像系列实验 2.实验目的 1) 学习热辐射的背景知识及相关定律,理解科学家们创造性的思维方法和相关实验技术。 2) 学习用虚拟仪器研究热辐射基本定律,测量Planck 常数。 3) 了解红外扫描成像的基本原理,掌握扫描成像的实验方法和技术。 4) 培养学生运用热辐射的基本原理和相关技术进行基础研究和应用设计的能力。 3.实验内容 1) 验证热辐射基本定律,用黑体辐射公式测量Planck 常数 2) 研究和测定物体不同表面状态的辐射发射量 3) 研究辐射发射量与距离的关系 4) 红外扫描成像实验研究 5) 红外无损探伤实验研究 6) 红外温度计的设计与材料热性质的研究 7) 运用热辐射基本定律和本实验装置进行自主应用设计性实验 4.实验原理 1. 了解热辐射的基本概念和定律 当物体的温度高于绝对零度时,均有红外光向周围空间辐射出来,红外辐射的物理本质是热辐射。其微观机理是物体内部带电粒子不停的运动导致热辐射效应。热辐射的波长和频率在0.76?100μ之间,与电磁波一样具有反射、透射和吸收等性质。设辐射到物体上的能量为Q ,被物体吸收的能量为Q α,透过物体的能量为Q τ,被反射的能量为Q ρ。 由能量守恒定律可得: Q=Q α+Q τ+Q ρ归一化后可得: +1Q Q Q Q Q Q βαταβτ+=++= (1) 式中α为吸收率,τ为透射率,ρ为反射率。 1.1 基尔霍夫定律 基尔霍夫指出:物体的辐射发射量M 和吸收率α的比值M/α与物体的性质无关,都等同于在同一温度下的绝对黑体的辐射发射量M B ,这就是著名的基尔霍夫定律。

1 212()B M M M f t αα====L (2) 基尔霍夫定律不仅对所有波长的全辐射(或称总辐射)而言是正确的,而且对任意单色波长λ也是正确的。 1.2 绝对黑体 能完全吸收入射辐射,并具有最大辐射率的物体叫做绝对黑体。实验室中人工制作绝对黑体的条件是:1)腔壁近似等温,2)开孔面积<<腔体。 本实验中我们利用红外传感器测量辐射方盒表面的总辐射发射量M 。M 是所有波长的电磁波的光谱辐射发射量的总和,数学表达式为: M M d λλ∞ =∫ (3) 上式被称为斯蒂芬-玻尔兹曼定律。不同的物体,处于不同的温度,辐射发射量都不同,但有一定的规律。 比辐射率ε的定义:物体的辐射发射量与黑体的辐射发射量之比,即 00d =d B B T B M M M M λλλελελ ∞∞??==????∫∫物体辐射发射量黑体辐射发射量 (4) 由基尔霍夫定律可知,辐射发射量M与吸收率α的关系:B M M α= 由能量守恒定律和基尔霍夫定律,即公式(1)和(2)联立求解 1B M M αβτα++=??=? 可得: ()1B M M τρ=?? (5) 由上述知识可知,若我们测出物体的辐射发射量和黑体的辐射发射量,便可求出物体的吸收率,还可以获得物体反射率和透射率的有关信息。 2. 空气中热辐射的传播规律研究 我们知道,许多物理量都与距离 r 的反平方成正比。现代物理学认为,这很大程度上是由空间的几何结构决定的。以天体辐射为例,如果距离 r 的指数比 2 大或者比 2 小,就会影响太阳的辐射场,使地球温度过低或者过高,从而不适合碳基生命形式的存在。那么热源的辐射量与距离的关系是否也遵循这一规律呢?对于球形均值热源和各种不同形状和不同材料构成的热源的辐射量在空气中的衰减规律及其分布是否都遵循反平方定律呢? 我们首先引进几个概念。辐射功率 P :单位时间内传递的辐射能 W ,即

(完整版)L4100柴油机开题报告

河南科技大学毕业设计(论文)开题报告 (学生填表) 学院:车辆与交通工程学院 2016年 3月 24 日

2.国内外同类设计(或同类研究)的概况综述 现代柴油机正朝着高强化、轻质量、低油耗、工作可靠、寿命长、低有害物排放、低噪音、便于使用和维修等方向发展。国内机械配套动力一般要求动力充足、可靠性好、寿命长等。柴油机以其低速扭矩大、经济性好、可靠性高等优点占据了重型机械发动机发动机的主流。近年来,搭配柴油机的轿车也越来越受人们的欢迎。 机体作为体积最大的发动机部件必须要有足够的强度和刚度,此外还需要合理的结构型式以及润滑冷却通道的设计。发动机的发展已有一个多世纪,其基本结构型式已有定论。主流为以曲柄机构输出功,相应的机体结构型式有一般式,龙门式,隧道式。国内外对机体的研究一般集中使用新型材料以减轻发动机的重量,增加刚度和强度,以及运用时效和孕育处理等措施来改善性能,运用有限元分析软件及各种数值计算方法使机体结构更加合理,运用CFD及仿真模拟技术对机体传热凝固过程温度场、流场、应力场等多方面进行分析和模拟仿真计算,并充分考虑到边界条件从而优化设计。比如04年欧洲上市一款新雅阁,用ASCTC 先进的半固体铸造工艺压铸出一种半铝制机体。这种机体相对于传统灰铸铁机体重量减轻33%而且发动机噪声更小。06年OEM南德原设备制造商,增加了机体中镁铝合金比例,这不仅减小了整体质量而且使机体质量分布更加合理。另外现在欧美有些公司研发出用分区铸造的方法来制造机体,如蠕墨铸铁GJV片墨铸铁,GJL组合生产铸造机体。他们将强度较高的GJV材料用在曲轴箱区域将摩擦性能切削加工性能优良的GJL材料用在气缸区域。这样生产出来的机体有很好的综合性能。 近年来有限元法技术在内燃机零部件的结构设计应用方面发展迅速,许多软件已具有优化功能。如Ansys、Tosca Hyperworks、Ideas等,在优化方法上也发展出了形状优化、尺寸优化、拓扑优化等诸多方法。比如使用形貌优化的方法以提高油底壳某阶固有频率为目标,优化油底壳的压痕筋布置,降低油底壳的噪声辐射。随着优化技术的进步不仅应力、变形、频率、材料性能等可以作为响应量还可以考虑加工制造环节及生产成本等因素这都大大拓展了优化设计的应用领域。 参考文献: [1]周龙保内燃机学[M]. 2版. 北京:机械工业出版社,2005 [2]杨连生内燃机设计[M]. 北京:中国农业机械出版社,1981 [3]袁兆成内燃机设计[M].北京:机械工业出版社,2008 [4]柴油机设计手册[M].北京:中国农业机械出版社,1983 [5]陈家瑞汽车构造[M].北京:机械工业出版社,2009 [6]朱仙鼎中国内燃机工程师手册[M].上海科学技术出版社

柴油机齿轮设计

目录 1. 设计题目及参数 (1) 2. 数学模型地建立 (1) 3. 程序框图 (5) 4. 程序清单及结果 (6) 5. 设计总结 (12) 6. 参考文献 (13) 7.中期检查报告 (14) 1.设计题目及参数 已知:齿轮齿数Z 1=22,Z 2=44,m=5mm ,分度圆压力角а=20°; 齿轮为正常齿轮,在闭式的润滑油池中工作。 要求:1)用C 语言编写程序,选择两轮变位系数,计算齿轮各部分尺寸。 2)绘制柴油机机构运动简图 3)编写说明书一份。 2.数学模型的建立 1) 实际中心距a '的确定:2 )(21z z m a +? = ; a '=(a/5+1)?5; 2) 啮合角α': ;)cos(2)()cos(21ααα?'?+= 'z z m

αααinv z z x x inv +++=')/()(tan 22121; 3) 分配变位系数21x x 、; min 1min min 1/)(z z z h x a -=* ;min 2min min 2/)(z z z h x a -=* ; 4)中心距变动系数 y=(a a -')/m ; 5) 齿轮基本参数: 注:下面单位为mm 模数: m=5 压力角: ο20=α 齿数: 1z =22 2z =44 齿顶高系数: 0.1=* a h 齿根高系数: 25.0=*c 传动比: 12/z z i = 齿顶高变动系数: y x x -+=21σ 分度圆直径; 11mz d = 22mz d = 基圆直径; αcos 11mz d b = 齿顶高: )(11σ-+=* x h m h a a

相关主题
文本预览
相关文档 最新文档