当前位置:文档之家› 换热器基础知识

换热器基础知识

换热器基础知识
换热器基础知识

6.2、传热的基础知识

6.2.1、传热在化工生产中的应用

传热,即热量传递,是自然界中普遍存在的现象。传热与化工过程的关系尤为密切。因为无论生产中的化学过程(化学反应操作),还是物理过程(化工单元操作),几乎都伴有热量的传递。传热在化工生产过程中的应用主要有以下几方面:

(1)、物料的加热、冷却或冷凝,使物料达到指定的温度和相态,以满足反应、加工、储存等的要求;

(2)、在某些单元操作(如蒸发、结晶、蒸馏和干燥等)中,都需要输入或输出热量,才能使这些单元操作正常的进行;

(3)、化工生产中热能的合理利用和废热的回收;

(4)、化工设备和管道的保温,减少热量(或冷量)的损失。

传热设备不仅在化工厂的设备投资中占有相当大的比例,而且它们所消耗的能量也是很大的。

化工生产过程中对传热的要求可分为两种情况:一是强化传热,如各种换热设备中的传热,要求传热速率快,传热效果良好;另一种是削弱传热,如设备和管道的保温,要求传热速率慢,以减小热损失。

传热是一门内容很广的学科,应用于许多工程领域。这里讨论的重点是传热基本原理和典型传热设备在天然气处理厂的应用。

6.2.2、传热的基本方式

根据传热机理的不同,热传递有三种基本方式:热传导、热对流和热辐射。传热可以依靠一种方式进行,也可以以两种或三种方式同时进行。

(1)、热传导

热传导又称导热。由于物质的分子、原子或电子的运动使热量从物体内高温处向低温处的传递过程称为热传导。一切物体,不论其内部有无质点的相对运动,只要存在温度差,就必发生热传导。可见热传导是静止物体内的一种传递方式。气体、液体和固体的热传导各不相同。在气体中,热传导是由分子不规则的热运动引起的;在大部分液体和不良导体的固体中,热传导是由分子的动量传递所致;在金属固体中,热传导起因于自由电子的运动,因此良好的导电体也是良好的导热体。热传导不能在真空中进行。

(2)热对流(对流传热)

热对流是指流体中质点发生相对位移而引起的热量传递。热对流仅发生在液体和气体中。由于引起流体质点相对位移原因的不同,对流可分为强制对流和自然对流。由于泵、风机或其它外力作用而引起的流体流动称为强制对流,在强制对流情况下进行的热量传递过程称为强制对流传热。由于流体各部分温度的不均而形成了密度的差异,使流体发生相对运动而传热,这种过程称为自然对流传热。在流体中发生强制对流传热的同时,往往伴随着自然对流传热。习惯上把流体与固体壁面间的传热,统称为对流传热。

(3)、热辐射(辐射传热)

因热的原因物体发出辐射能的过程,称为热辐射。它是一种通过电磁波传递能量的过程。具体的说,物体将热能转变为辐射能,电磁波的形式在空间传递,当遇到另一个能吸收辐射能的物体时,即被其部分地或全部地吸收而变为热能。辐射传热就是不同物体间相互辐射和吸收能量的总结果。因此辐射传热不仅是能量的传递,还同时伴有能量形式的转换。热辐射不需任何介质作媒介,即可在真空中传播。这是热辐射与其它传热方式不同的特点。应指出,只有在物体的温度较高时辐射传热才能成为主要的传热方式。

实际上,传热过程往往不是以某种传热方式单独出现的,而是两种或三种传热方式的组合。例如化工厂普遍使用的间壁式换热器中冷、热流体间的换热,主要是以热对流和热传导相结合的方式进行传热。

6.2.3、典型的间壁式换热器

化工生产中最常见的是冷、热两种流体间的热交换。一般情况下,两种流体被固体壁面(传热面)所隔开,它们分别在壁面的两侧流动。固体壁面构成间壁式换热器。换热器是实现传热过程的基本设备。

一、套管式换热器

套管式换热器是由直径不同的两根直管同心套在一起组成的,热、冷流体分别流经内管和环隙,进行热的传递。内管壁表面积为传热面积。

二、管壳式换热器

12

图6-5 套管式换热器1—内管2—外管

图6-6 双层管壳式换热器

1—隔板2—壳体3—管束4—管板

管壳式换热器主要由壳体、管束、管板、隔板、防冲板和封头等部件构成。一种流体在换热器的管束内流动,该流体称为管程(或管方)流体;另一种流体在管束外流动,该流体称为壳程(或壳方)流体。若管程流体在管束内只流过过一次,则称为单程管壳式换热器。若流体在管束内来回流过多次,则称为多程(二程、四程等)换热器。图——为双程管壳式换热器,器内隔板将封头与管间板的空间(称为分配室)等分为二,管程流体先流过一半管束,流到另一分配室后折回再流过另一半管束,最后从接管流出换热器。

由于两流体间的传热是通过管壁进行的,故管壳式换热器的传热面积是管束管壁的全部表面积,即:

S=nπdL

式中S——传热面积,m2;

n——管束的管数;

d——管径,m;L——管长,m。

应予指出,因管径d可以分别用管内径d

i 、管外径d

或管平均直径d

m

来表

示,故对应的传热面积分别为管内侧表面积S

i 、管外侧表面积S

和管内、外侧

的平均表面积S

m

。对于一定的传热任务,确定换热器的传热面积是设计换热器的核心。

6.2.4、换热管的排列方式

流体横向流过管束时,由于管与管之间的影响,情况较复杂。管束的几何条件,如管径、管间距、排数及排列方式等都影响对流传热系数。通常管子的排列方式有正三角形、转角正三角形、正方形和转角正方形四种。

300600900450

(a)(b) (c) (d)

(a)正三角形(b)转角正三角形(c)正方形(d)转角正方形

图6-7 管子排列方式

6.2.5、换热器的分类

化工生产中所用的换热器很多,通常可按其用途分类,也可按传热原理及换热方法分类。

(一)、按换热器的用途分类

1、加热器

加热器用于将流体加热到所需的温度,被加热的流体在加热过程中不发生相变化。

2、冷却器

冷却器用于冷却流体至所需的温度,冷却过程中流体无相变化。

3、蒸发器

蒸发器用于加热液体,使之蒸发气化。

4、再沸器

再沸器是蒸馏过程的附属设备,用于加热已被冷凝的液体,使之部分气化。

5、冷凝器和分凝器

冷凝器和分凝器用于冷凝饱和蒸汽,使之放出潜热而凝结或部分凝结为液体。

(二)、按换热器传热原理分类

1、间壁式换热器

间壁式换热器又称间接式换热器或表面式换热器。在此类换热器中,冷、热流体被固体壁面隔开,使它们不互相混合,热量由热流体通过壁面传给冷流体。这类换热器的种类很多,其中管壳式换热器应用最广。

2、混合式换热器

混合式换热器又称直接接触式换热器。在此类换热器中,冷、热流体直接接触,互相混合传递热量。它主要用于气体的冷却和蒸汽的冷凝。该类换热器传热效果好、结构简单、易于防腐蚀,但是它适用于冷、热流体允许混合的场合。

3、蓄热式换热器

蓄热式换热器又称回流式换热器或蓄热器。它是借热容量较大的固体蓄热体,将热量由热流体传给冷流体。通常,在生产中采用两个并联的蓄热器交替的使用。

蓄热器结构简单,可耐高温,因此多用于高温气体热量的回收和冷却。其缺点是设备体积庞大,且不能完全避免两流体的混合,所以这类设备在化工生产中使用较少。

(三)、按换热器所用材料分类

1、金属材料换热器

金属材料换热器由金属材料制成,常用的金属材料有碳钢、合金钢、不锈钢、铜、铝等。因金属材料的导热系数较大,其传热效率较高。

2、非金属材料换热器

非金属材料换热器由非金属材料制成,常用的材料有塑料、石墨、陶瓷、玻璃等。因非金属材料的导热系数较小,其传热效率较低。这类换热器用于具有腐蚀性物系的换热。

6.2.6、间壁式换热器的类型

按照换热面的型式,间壁式换热器主要有管式、板式和翅片式三种类型。

一、管式换热器

(一)、蛇管式换热器

蛇管式换热器可分为两类。

1、沉浸式蛇管换热器

蛇管多以金属管弯制而成,或制成适应容器要求的形状,沉浸在容器中。两种流体分别在蛇管内、外流动进行热量交换。

蛇管换热器的优点是结构简单,造价低廉,能承受高压,可用耐腐蚀材料制造。其缺点是容器内液体湍动程度低,管外对流传热系数较小。为提高传热系数,可在容器内安装搅拌器。

2、喷淋式换热器

喷淋式换热器多用作冷却器。蛇管成行的固定在支架上热流体在蛇管内流动,自最上管进入,由最下管流出。冷水由最上面的淋水管流下,均匀地分布在蛇管上,并沿其两侧下降至下面的管子表面,最后流入水槽而排出。冷水在各管表面上流过时,与管内流体进行热交换。这种设备常放置在室外空气流通处,冷却水在空气中汽化时可带走部分热量,提高了冷却效果。它与沉浸式换热器相比,具有传热效果较好、耐高压、便于检修和清洗等优点,缺点是喷淋不易均匀。

(二)、套管式换热器

套管式换热器是由直径不同的直管制成的同心套管,然后用“U”形弯管将多段套管串联而成。每一段套管称为一程,程数可根据传热要求而增减。每程的有效长度为4m~6m。若管子过长,管中间会向下弯曲,使环隙中的流体分布不匀。套管换热器的优点有:构造简单;能耐高压;传热面积可根据需要增减,应用方便;若适当选择两管的直径,可使两流体的流速增大,且两流体可作逆流,对传热有利。

这种换热器的缺点为:管间接头多,易泄漏;占地较多,单位传热面消耗金属量大。因此它较适用于流量不大、所需传热面积不多而要求压强较高的场合。

(三)、管壳式换热器

管壳式(又称列管式)换热器是目前化工生产中应用最广泛的换热设备。它与前述几种换热器相比,主要优点是:单位体积所具有的传热面积大及传热效果

好;而且结构简单,操作弹性较大,可用多种材料制造,适用性较强等,尤其在高温、高压和大型装置上多采用管壳式换热器。

在管壳式换热器中,由于管内、外流体温度不同,管束和壳体的温度也不同,因此它们的热膨胀程度也有差别。若两流体温度差较大,由于有热应力而可能引起设备变形、管子弯曲,甚至破裂。因此,当两流体的温差超过50℃时,就应采取热补偿的措施。根据热补偿方法的不同管壳式换热器主要有以下几种。

1、固定管板式

固定管板式换热器的两端管板和壳体制成一体,因此它具有结构简单和造价低廉的优点。但是壳程清洗和检修困难,因此要求壳程流体必须是洁净而不易结垢的物料。当两流体的温差较大时,应考虑热补偿。在外壳的适当部位上焊上一个补偿圈当外壳和管束热膨胀不同时,补偿圈发生弹性变形(拉伸或压缩),可以适应外壳和管束不同的热膨胀程度。这种热补偿方法简单,但不宜应用于两流体温差过大(应不大于70℃)和壳程流体压强过高(一般不高于600Pa)的场合。

1—挡板2—补偿圈

图6-8 具有补偿圈的固定管板式换热器

2、“U”管式换热器

“U”管式换热器每根管子弯成“U”形,流体进、出口分别安装在同一端的两侧,封头内用隔板分成两室,因此每根管子可以自由伸缩,与其它管子及壳体均无关。

这种类型换热器的结构也较简单,质量轻,适用于高温和高压的场合。其主要缺点是:管内清洗较困难,因此要求管程流体须是洁净和不易结垢的物料;此外因管子须一定的弯曲半径,故管板的利用率较低。

1—“U”形管2—管程隔板

图6-9 “U”形管式换热器

3、浮头式换热器

浮头式换热器其一端管板不与外壳连为一体,该端称为浮头。当管子受热时,管束连同浮头可以自由伸缩,与外壳的膨胀无关。这种结构不但完全消除了热应力的影响,而且由于固定端的管板以法兰形式与壳体联结,整个管束可以从壳体中抽出,因此便于清洗和检修,故浮头式换热器应用较于普遍,但他的结构较为复杂,造价较高。

1、内浮头

2、换热管

3、隔板

图6-10 浮头式换热器

二、板式换热器

(一)、夹套式换热器

夹套换热器是最简单的板式换热器。它是在容器外壁安装夹套而成,夹套与器壁之间形成的空间为加热介质或冷却介质的通路。

夹套式换热器主要用于反应过程的加热或冷却。在用蒸汽进行加热时,蒸汽由上部接管进入夹套,冷凝水由下部接管流出。作为冷却时,冷却介质(如冷却水)由夹套下部接管进入,由上部接管流出。

这种换热器结构简单,但其传热面受容器壁面的限制,且传热系数也较小。为提高传热系数,可在容器内安装搅拌器,为弥补传热面的不足,也可在容器内安装蛇管。

(二)、螺旋板式换热器

(三)、平板式换热器

三、翅片式换热器

在传热面上加装翅片,不仅增加了传热面积,而且增强流体的扰动程度,故可强化传热过程。

翅片式换热器有翅片管换热器和板翅换热器两类

(一)、翅片管换热器

翅片管换热器的构造特点是,在管子表面上装有径向或轴向翅片。

当两种流体的对流传热系数相差很大时,在传热系数较小的一侧加翅片可以强化传热。例如用水蒸汽加热空气,该过程的热阻主要在空气侧的对流传热方面。因此在空气侧加装翅片,可以强化换热器的传热效果。一般来说,当两种流体的对流传热系数之比为3:1或更大时,宜采用翅片管式换热器。

翅片的种类很多,按翅片的高度可分为低翅片和高翅片两种。低翅片一般为螺纹管,适用于两流体的对流传热系数相差不太大的场合。高翅片适用于管内外对流传热系数相差较大的场合,现已广泛地应用于空气冷却器上。

(二)、板翅式换热器

板翅式换热器是一种更为紧凑、轻巧、高效的换热器。板翅式换热器的结构形式很多,但是基本结构元件相同,即在两块平行的薄金属板间夹入波纹状或其它形状的金属翅片,两边以侧条密封,组成一个换热基本单元。将各基本单元进行不同的叠积和适当的排列,并用钎焊固定,即可制成并流、逆流或错流的板束(又称芯部),然后将带有流体进、出口的集流箱焊到管板上,即成为板翅式换热器。我国目前常用的翅片形式有光直形翅片、锯齿形翅片和多孔形翅片三种。板翅式换热器的主要优点有:

(1)、总传热系数高,传热效果好。由于翅片促进了流体的湍动并破坏了热边界层的发展,故其传热系数很高,并且大部分热量通过翅片传递,因此提高了传热效果。

(2)、结构紧凑,轻巧牢固。单位体积设备提供的传热面积一般能达到2500m2/m3,最高可达4300 m2/m3。它通常用铝合金制造,故质量轻。在相同的传热面积下,其质量约为管壳式换热器的十分之一。波形翅片不单是传热面,又是两板间的支撑,故强度很高。

(3)、适应性强,操作范围广。铝合金不仅导热系数高,而且在零度以下操作时,其延性和抗拉强度都较高,故操作范围广,可在200℃至绝对零度范围内使用,适用于低温和超低温的场合。它既可用于各种情况下的热交换,也可用于蒸发和冷凝。在操作方式上可以为逆流、并流、错流或错、逆流同时并进等。此外还可用于多种介质在同一设备内进行换热。

板翅式换热器的缺点有:

(1)、设备流导小,故易堵塞,压强降也较高,且换热器清洗和检修很困难,故处理的物料应洁净或需预先净制。

(2)、由于隔板和翅片都由薄铝板制成,要求介质对铝不腐蚀。

6.2.7、换热器的基本操作及故障处理

一、换热器的基本操作

1、加热化工生产中所需的热能可由各种不同的热源,采用不同的加热方法获得。物料在换热器内被加热,必须由中间载热体通过传热面把热量传给物料,因此在加热的操作过程中,需要注意以下几点:

(1)、蒸汽加热。蒸汽加热必须不断排除冷凝水,否则冷凝水积于换热器,使传热效果变差,加热不能正常进行。采用蒸汽加热时,还必须经常排出不凝性气体,否则会大大降低蒸汽给热效果。

(2)、热水加热。热水加热一般加热温度不高,加热速度慢,操作稳定。只要定期排出不凝性气,就能保证正常操作。

(3)、烟道气加热。是利用燃料在加热炉或其它炉子中燃烧所产生的烟道气,通过传热面加热物料。特点是加热温度高,热源容易获得,但温度不易调节,大部分热量被废气带走,因此在操作过程中随时注意被加热物料的液位高度、流量和蒸汽产量,做到定期排污。

(4)、导热油加热法。由于蒸汽加热的温度受到一定的限制,当物料加热需

要超过180℃时,一般采用导热油加热,其特点是温度高(可达400℃),黏度较大,热稳定性差,易燃,温度调节较为困难。操作时必须严格控制热油炉出炉温度,定期检查进、出口管及介质流道是否结垢,做到定期排污、定期放空、过滤或更换导热油。

2、冷却在化工生产过程中常用的冷却介质是水、空气、丙烷等。

(1)、水冷却。用水冷却的优点是容易获得。缺点是水温受季节和水源变化的影响,在操作过程中,应定期检查水的温度,根具实际温度调节用水量。

(2)、空气冷却。用空气作为冷却剂的优点是容易获得。缺点是传热系数小,需要大的传热面积,由于水源及水质污染等问题,空气作为冷却剂已日益广泛。在操作上要根据季节气候的变化调节空气用量。

(3)、丙烷冷却。当物料需要的温度用冷却水无法达到时,可采用丙烷作为冷却剂。特点是温度低,无腐蚀性,在操作时应严格控制丙烷介质中进水,防止结冰堵塞介质通道,要定期换热器进、出口温度以及丙烷蒸发器液位、压力等。

3、冷凝被冷却的物质由气态变为液态的过程称为冷凝。如果冷凝操作需在减压下进行须注意蒸汽中不凝性气体的排出。

4、换热器的正确使用换热器是化工生产中的主要设备之一,安全正确的操作才能使其安全运行,发生较大的效能。换热器有多种结构形式,在此,只介绍列管式换热器的使用。

(1)、投产前应检查压力表,温度计,安全液位计以及有关阀门是否齐全好用。

(2)、输进蒸汽前先打开冷凝水排放阀门,排除积水和污垢;打开放空阀,排除空气和不凝性气体。

(3)、换热器投产时,先打开冷态工作液体阀门和放空阀向其注液,当液面达到规定液位时缓慢或分数次开启蒸汽或其它加热剂阀门,做到先预热后加热,防止骤冷骤热损坏换热器,降低使用寿命。

(4)、经常检查冷热两种工作介质的进出口温度、压力变化,发现温度、压力有超限度变化时,要立即查明原因,消除故障。

(5)、定时分析介质成分变化,以确定有无内漏,以便及时处理。

(6)、定时检查换热器有无泄漏,外壳有无变化及震动现象,若有应及时处

理。

(7)、定时排放不凝结气体和冷凝液,根据换热效率下降情况及时除掉污垢,提高传热效率。

二、列管式换热器常见故障与处理方法

表6-2 列管式换热器常见故障与处理方法

故障名称产生原因处理方法

传热效率下降1、列管结垢和堵塞

2、壳体内不凝气或冷凝液增多

3、管路或阀门有堵塞

1、清洗管子

2、排放不凝气或冷凝液

3、检查清理

发生振动1、壳程介质流速太快

2、管路振动所引起

3、管束与折流板结构不合理

4、机座刚度较小

1、调节进气量

2、加固管路

3、改进设计

4、适当加固

管板与壳体

连接处发生裂纹1、焊接质量不好

2、外壳歪斜,连接管路拉力或推力过大

3、腐蚀严重,外壳壁厚减薄

1、清除补焊

2、重新调整找正

3、鉴定后修补

管束和胀口渗漏1、管子被折流板磨破

2、壳体和管束温差过大

3、管口腐蚀或胀接质量差

1、用管堵堵死或换管

2、补胀或焊接

3、换新管或补胀

换热器基础知识测试题

换热器基础知识测试题 姓名:分数: 一、填空题(每空1分,共50分) 1、以在(两种流体)之间用来(传递热量)为基本目的的传热设备装置,称为换热器,又叫做(热交换器)。 2、换热器按作用原理和传热方式分类可分为:(直接接触式换热器)、(蓄热式换热器)(间壁式换热器)。 3、、离心式压缩机可用来(压缩)和(输送)化工生产中的多种气体。它具有:处理量大,(体积小),结构简单,(运转平稳),(维修方便)以及气体不受污染等特点。 4、换热器按传热面形状和结构分类可分为:(管式换热器)、(板式换热器)及特殊形式换热器。 5、管壳式换热器特点是圆形的(外壳)中装有(管束)。一种介质流经(换热管)内的通道及其相贯通部分(称为壳程)。它可分为:(浮头式换热器)、(U 型管式换热器)、套管式换热器、(固定管板式换热器)填料函式换热器等。 6、U型管式换热器不同于固定管板式和浮头式,只有一块(管板),换热管作为(U字形)、两端都固定在(同一块管板)上;管板和壳体之间通过(螺栓)固定在一起。 7、(换热管)是管壳式换热器的传热元件,它直接与两种介质(接触),换热管的形状和(尺寸)对传热有很大的影响。 8、写出下列换热管及其在管板上的排列名称分别为: (a)正三角形(b)转角正三角形(c)正方形(d)转角正方形 9、管壳式换热器流体的流程:一种流体走管内称为(管程),另一种流体走管外称为(壳程)。管内流体从换热管一端流向另一端一次,称为(一程);对U 形管换热器,管内流体从换热管一端经过U形弯曲段流向另一端一次称为(两程)。 10、管板与换热管间的连接方式有(胀接)、(焊接)或二者并用的连接方式。 11、折流板的作用是引导(壳程流体)反复地(改变方向)作错流流动或其他形式的流 动,并可调节(折流板间距)以获得适宜流速,提高(传热效率)。另外,折流板还可起到(支撑管束)的作用。 12、换热器的水压试验压力为最高操作压力的(1.25~1.5)倍。 13、换热器的清洗方法有:(酸洗法)、(机械清洗法)、(高压水冲洗法)、海绵球清洗法。 14、写出下面编号的阀门类型:H(止回阀)、D(蝶阀)、J(截止阀)、A(安全阀)Z(闸阀)、Q(球阀) 15、阀门的密封试验通常为公称压力PN的)(1.1)倍。 二、不定项选择题(每题1分,共10分)

列管式换热器设计方案计算过程参考

根据给定的原始条件,确定各股物料的进出口温度,计算换热器所需的传热面积,设计换热器的结构和尺寸,并要求核对换热器压强降是否符合小于30 kPa的要求。各项设计均可参照国家标准或是行业标准来完成。具体项目如下:设计要求: =0.727Χ10-3Pa.s 密度ρ=994kg/m3粘度μ 2 导热系数λ=62.6Χ10-2 W/(m.K) 比热容Cpc=4.184 kJ/(kg.K) 苯的物性如下: 进口温度:80.1℃出口温度:40℃ =1.15Χ10-3Pa.s 密度ρ=880kg/m3粘度μ 2 导热系数λ=14.8Χ10-2 W/(m.K) 比热容Cpc=1.6 kJ/(kg.K) 苯处理量:1000t/day=41667kg/h=11.57kg/s 热负荷:Q=WhCph(T2-T1)=11.57×1.6×1000×(80.1-40)=7.4×105W 冷却水用量:Wc=Q/[c pc(t2-t1)]=7.4×105/[4.184×1000×(38-30)]=22.1kg/s

4、传热面积的计算。 平均温度差 确定R和P值 查阅《化工原理》上册203页得出温度校正系数为0.8,适合单壳程换热器,平均温度差为 △tm=△t’m×0.9=27.2×0.9=24.5 由《化工原理》上册表4-1估算总传热系数K(估计)为400W/(m2·℃) 估算所需要的传热面积: S0==75m2 5、换热器结构尺寸的确定,包括: (1)传热管的直径、管长及管子根数; 由于苯属于不易结垢的流体,采用常用的管子规格Φ19mm×2mm 管内流体流速暂定为0.7m/s 所需要的管子数目:,取n为123 管长:=12.9m 按商品管长系列规格,取管长L=4.5m,选用三管程 管子的排列方式及管子与管板的连接方式: 管子的排列方式,采用正三角形排列;管子与管板的连接,采用焊接法。(2)壳体直径; e取1.5d0,即e=28.5mm D i=t(n c—1)+2e=19×(—1)+2×28.5=537.0mm,按照标准尺寸进行整圆,壳体直径为600mm。此时长径比为7.5,符合6-10的范围。

换热器热量及面积计算公式

换热器热量及面积计算 一、热量计算 1、一般式Q=Q c=Q h Q=W h(H h,1- H h,2)= W c(H c,2- H c,1) 式中: Q为换热器的热负荷,kj/h或kw; W为流体的质量流量,kg/h; H为单位质量流体的焓,kj/kg; 下标c和h分别表示冷流体和热流体,下标1和2分别表示换热器的进口和出口。 2、无相变化 Q=W h c p,h(T1-T2)=W c c p,c(t2-t1) 式中: c p为流体平均定压比热容,kj/(kg.℃); T为热流体的温度,℃; t为冷流体的温度,℃。 3、有相变化 a.冷凝液在饱和温度下离开换热器,Q=W h r = W c c p,c(t2-t1) 式中: W h为饱和蒸汽(即热流体)冷凝速率(即质量流量)(kg/s)

r为饱和蒸汽的冷凝潜热(J/kg) b.冷凝液的温度低于饱和温度,则热流体释放热量为潜热加显热 Q=W h[r+c p,h(T s-T w)] = W c c p,c(t2-t1) 式中: c p,h为冷凝液的比热容(J/(kg/℃));T s为饱和液体的温度(℃) 二、面积计算 1、总传热系数K 管壳式换热器中的K值如下表: 注:

1 w = 1 J/s = 3.6 kj/h = 0.86 kcal/h 1 kcal = 4.18 kj 2、温差 (1)逆流 热流体温度T:T1→T2 冷流体温度t:t2←t1 温差△t:△t1→△t2 △t m=(△t2-△t1)/㏑(△t2/△t1) (2)并流 热流体温度T:T1→T2 冷流体温度t:t1→t2 温差△t:△t2→△t1 △t m=(△t2-△t1)/㏑(△t2/△t1) 对数平均温差,两种流体在热交换器中传热过程温差的积分的平均值。( 恒温传热时△t=T-t,例如:饱和蒸汽和沸腾液体间的传热。) 对数平均温差因为在冷凝器板换一系列的换热器中温度是变化的为了我们更好的选型计算所以出来一个相对准确的数值, 当△T1/△T2>1.7时用公式: △Tm=(△T1-△T2)/㏑(△T1/△T2). 如果△T1/△T2≤1.7时,△Tm=(△T1+△T2)/2 二种流体在热交换器中传热过程温差的积分的平均值。

课程设计报告,列管式换热器设计

设计(论文)题目: 列管式换热器的设计 目录 1 前言 (3) 2 设计任务及操作条件 (3) 3 列管式换热器的工艺设计 (3) 3.1换热器设计方案的确定 (3) 3.2 物性数据的确定 (4) 3.3 平均温差的计算 (4) 3.4 传热总系数K的确定 (4) 3.5 传热面积A的确定 (6) 3.6 主要工艺尺寸的确定 (6) 3.6.1 管子的选用 (6) 3.6.2 管子总数n和管程数Np的确定 (6) 3.6.3 校核平均温度差 t m及壳程数Ns (7) 3.6.4 传热管排列和分程方法 (7) 3.6.5 壳体径 (7) 3.6.6 折流板 (7)

3.7 核算换热器传热能力及流体阻力 (7) 3.7.1 热量核算 (7) 3.7.2 换热器压降校核 (9) 4 列管式换热器机械设计 (10) 4.1 壳体壁厚的计算 (10) 4.2 换热器封头选择 (10) 4.3 其他部件 (11) 5 课程设计评价 (11) 5.1 可靠性评价 (11) 5.2 个人感想 (11) 6 参考文献 (11) 附表换热器主要结构尺寸和计算结果 (12) 1 前言 换热器(英语翻译:heat exchanger),是将热流体的部分热量传递给冷流体的设备,又称热交换器。换热器是化工、石油、动力、食品及其它许多工业部门的通用设备,在生产中占有重要地位。在化工生产中换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应用更加广泛。换热器种类很多,但根据冷、热流体热量交换的原理和方式基本上可分三大类即:间壁式、混合式和蓄热式。 列管式换热器工业上使用最广泛的一种换热设备。其优点是单位体积的传热面积、处理能力和操作弹性大,适应能力强,尤其在高温、高压和大型装置中采用更为普遍。列管式换热器主要有以下几个类型:固定管板式换热器、浮头式换热器、U形管式换热器等。 设计一个比较完善的列管式换热器,除了能满足传热方面的要求外,还应该满足传热效率高、体积小、重量轻、消耗材料少、制造成本低、清洗维护方便和操作安全等要求。 列管式换热器的设计,首先应根据化工生产工艺条件的要求,通过化工工艺计算,确定换热器的传热面积,同时选择管径、管长,确定管数、管程数和壳程数,

(完整版)化工基础知识题库

化工基础知识题库 一、选择题 1、反应物浓度增大,反应速度常数K值 C 。 A.增大 B.减小 C.不变。 2、温差法计算热负荷的公式,适应于载热体在换热过程中 B 。 A.有相变但无温变 B.无相变但有温变 C.既有相变又有温变。 3、单位时间内流过管道任一截面积的流体质量称为 B。 A.质量流量 B.质量流速 C.体积流量。 4、压力 A 有碍于吸收过程的进行。 A.增大 B.降低 C.不变。 5、润滑油的质量指标中,酸值越 A ,质量越好。 A.低 B.高。 6、仪表输出的变化与引起变化的被测变量之比为仪表的 C 。 A.相对误差 B.灵敏限 C.灵敏度。 7、自动控制系统的过渡过程是控制作用不断克服 B 的过程。 A.随机影响 B.干扰影响 C.设定值变化。 8、选择被控变量原则为 C 。 A.多值对应关系 B.被控变量变化灵敏大 C.单值对应关系,工艺合理性,被控变量变化灵敏度大。 9、相对压强的负值为 C 。 A.表压 B.绝压 C.真空度 D.大气压 10、气体密度与压强,温度有关,什压降温,气体密度 A 。 A.增大 B.减小 C.不变 11、流体的粘度愈大,它的流动性就 B。 A.愈大 B.愈小 C.不变 12、离心泵的叶轮能提高液体的 C 。 A.静压能 B.动能 C.静压能和动能 13、一个满足生产要求的换热器其传热速度 D 热负荷。 A.大于 B.小于 C.等于 D.等于或大于 C.小于或等于 14、许多试验证明,雷诺系数在2000~10000流动类型为 C 。 A.层流 B.湍流 C.过渡流。 15、两种流体在环热器内,两侧分别以相同的方向流动称为A。 A.并流 B.逆流 C.错流 D.折流 16、在流体输送过程中,冬天克服的阻力 B 夏天克服的阻力。 A.小于 B.大于 C.等于 17、许多化学反应中采用催化剂在化学反应中起到的作用是 A 。 A.增加正反应速度 B.降低逆反应速度 C.改变化学平衡 D.降低反应活化能,增大正、逆反应速度。 18、将过热蒸汽冷却当温度降至一定值时混合气开始冷凝,产生第一滴液体,相应的温度称为 C 。 A.饱和温度 B.临界温度 C.露点温度 19、一定质量的气体在恒温下体积膨胀为原来的10倍,下面哪种情况将伴随发生 C 。 A.气体的分子数增加10倍 B.气体分子平均速度的大小减小10倍 C.容器壁所受气体分子平均作用减少为原来的1/10 D.气体分子的密度保持不变。 20、泵的扬程是指 B 。 A.泵的升扬高度 B.泵所提供的总能量 C.泵的静压能和位压能 D.泵出口处压力

换热器计算

换热器计算的设计型和操作型问题--传热过程计算 与换热器 日期:2005-12-28 18:04:55 来源:来自网络查看:[大中小] 作者:椴木杉热度: 944 在工程应用上,对换热器的计算可分为两种类型:一类是设计型计算(或称为设计计算),即根据生产要求的传热速率和工艺条件,确定其所需换热器的传热面积及其他有关尺寸,进而设计或选用换热器;另一类是操作型计算(或称为校核计算),即根据给定换热器的结构参数及冷、热流体进入换热器的初始条件,通过计算判断一个换热器是否能满足生产要求或预测生产过程中某些参数(如流体的流量、初温等)的变化对换热器传热能力的影响。两类计算所依据的基本方程都是热量衡算方程和传热速率方程,计算方法有对数平均温差(LMTD)法和传热效率-传热单元数(e-NTU)法两种。 一、设计型计算 设计型计算一般是指根据给定的换热任务,通常已知冷、热流体的流量以及冷、热流体进出口端四个温度中的任意三个。当选定换热表面几何情况及流体的流动排布型式后计算传热面积,并进一步作结构设计,或者合理地选择换热器的型号。 对于设计型计算,既可以采用对数平均温差法,也可以采用传热效率-传热单元数法,其计算一般步骤如表5-2所示。 表5-2 设计型计算的计算步骤

体进出口温度计算参数P 、R ; 4. 由计算的P 、R 值以及流动排布型式,由j-P 、R 曲线确定温度修正系数j ;5.由热量衡算方程计算传热速率Q ,由端部温度计算逆流时的对数平均温差Δtm ; 6.由传热速率方程计算传热面积 。 体进出口温度计算参数e 、CR ; 4.由计算的e 、 CR 值确定NTU 。由选定的流动排布型式查取 e-NTU 算图。可能需由e-NTU 关系反复计算 NTU ;5.计算所需的传热面积 。 例5-4 一列管式换热器中,苯在换热器的管内流动,流量为 kg/s ,由80℃冷却至30℃;冷却水在管间与苯呈逆流流动,冷却水进口温度为20℃,出口温度不超过50℃。若已知换热器的传热系数为470 W/(m2·℃),苯的平均比热为1900 J/(kg·℃)。若忽略换热器的散热损失,试分别采用对数平均温差法和传热效率-传热单元数法计算所需要的传热面积。 解 (1)对数平均温差法 由热量衡算方程,换热器的传热速率为 苯与冷却水之间的平均传热温差为 由传热速率方程,换热器的传热面积为 A = Q/KΔt m = = m 3 (2)传热效率-传热单元数法 苯侧 (m C ph ) = *1900 = 2375 W/℃ 冷却水侧 (m c C pc ) =(m h C ph )(t h1-t h2)/(t c1-t c2) =2375*(80-30)/(50-20)= W/℃ 因此, (m C p )min=(m h C ph )=2375 W/℃ 由式(5-29),可得

换热器基本知识

一、换热器的结构型式有哪些? 换热器是很多工业部门广泛应用的一种常见设备,通过这种设备进行热量的传递,以满足生产工艺的需要。可按用途、换热方式、结构型式三种不同的方法进行分类。按结构型式分类如下: 换热器分为管式换热器、板式换热器、新型材料换热器和其他型式的换热器。 管式换热器又分为:套管式换热器、管壳式换热器、沉浸式换热器、喷淋式换热器和翅片管式换热器。 板式换热器又分为:夹套式换热器、平板式换热器、伞板式换热器、螺旋板式换热器、板翅式换热器和板壳式换热器。 新型材料换热器分为:石墨换热器、聚四氟乙烯换热器、玻璃换热器和钛材及其他稀有金属材料换热器。 其他形式的换热器包括回转式换热器和热管。 二、换热器管为什么会结垢?如何除垢? 因为换热器大多是以水为载热体的换热系统,由于某些盐类在温度升高时从水中结晶析出,附着于换热管表面,形成水垢。在冷却水中加入聚磷酸盐类缓冲剂,当水的PH值较高时,也可导致水垢析出。初期形成的水垢比较松软,但随着垢层的生成,传热条件恶化,水垢中的结晶水逐渐失去,垢层即变硬,并牢固地附着于换热管表面上。 此外,如同水垢一样,当换热器的工作条件适合溶液析出晶体时,换热管表面上即可积附由物料结晶形成的垢层;当流体所含的机械杂质有机物较多、而流体的流速又较小时,部分机械杂质或有机物也会在换热器内

沉积,形成疏松、多孔或胶状污垢。 换热器管束除垢的方法主要有下列三种。 一、手工或机械方法 当管束有轻微堵塞和积垢时,借助于铲削、钢丝刷等手工或机械方法来进行清理,并用压缩空气,高压水和蒸汽等配合吹洗。当管子结垢比较严重或全部堵死时,可用管式冲水钻(又称为捅管机)进行清理。 二、冲洗法 冲洗法有两种。第一种是逆流冲洗,一般是在运动过程中,或短时间停车时采用,可以不拆开装置,但在设备上要预先设置逆流副线,当结垢情况并不严重时采用此法较为有效。 第二种方法是高压水枪冲洗法。对不同的换热器采用不同的旋转水枪头,可以是刚性的,也可以是绕性的,压力从10MPa至200MPa自由调节。利用高压水除污垢,无论对管间、管内及壳体均适用。高压水枪冲洗换热器效果较好。应用广泛。 三、化学除垢 换热器管程结垢,主要是因为水质不好形成水垢及油垢的结焦沉淀和粘附两种形式,用化学法除垢,首先应对结垢物质化验分析,搞清结垢物性质,就可以决定采用哪种溶剂清洗。一般对硫酸盐和硅酸盐水垢采用碱洗(纯碱、烧碱、磷酸三钠等),碳酸盐水垢则用酸洗(盐酸、硝酸、磷酸、氟氢酸等)。对油垢结焦可用氢氧化钠、碳酸钠、洗衣粉、液体洗涤剂、硅酸钠和水按一定的配比配成清洗液进行清洗。采用化学清洗的办法,现场需要重新配管,比较花费时间。

列管式换热器设计

列管式换热器设计 第一节推荐的设计程序 一、工艺设计 1、作出流程简图。 2、按生产任务计算换热器的换热量Q。 3、选定载热体,求出载热体的流量。 4、确定冷、热流体的流动途径。 5、计算定性温度,确定流体的物性数据(密度、比热、导热系数等)。 6、初算平均传热温度差。 7、按经验或现场数据选取或估算K值,初算出所需传热面积。 8、根据初算的换热面积进行换热器的尺寸初步设计。包括管径、管长、管子数、管程数、管子排列方式、壳体内径(需进行圆整)等。 9、核算K。 10、校核平均温度差D。 11、校核传热量,要求有15-25%的裕度。 12、管程和壳程压力降的计算。 二、机械设计 1、壳体直径的决定和壳体壁厚的计算。 2、换热器封头选择。

3、换热器法兰选择。 4、管板尺寸确定。 5、管子拉脱力计算。 6、折流板的选择与计算。 7、温差应力的计算。 8、接管、接管法兰选择及开孔补强等。 9、绘制主要零部件图。 三、编制计算结果汇总表 四、绘制换热器装配图 五、提出技术要求 六、编写设计说明书 第二节列管式换热器的工艺设计 一、换热终温的确定 换热终温对换热器的传热效率和传热强度有很大的影响。在逆流换热时,当流体出口终温与热流体入口初温接近时,热利用率高,但传热强度最小,需要的传热面积最大。 为合理确定介质温度和换热终温,可参考以下数据: 1、热端温差(大温差)不小于20℃。 2、冷端温差(小温差)不小于5℃。 3、在冷却器或冷凝器中,冷却剂的初温应高于被冷却流体的凝固点;对于含有不凝气体的冷凝,冷却剂的终温要求低于被冷凝气体的露点以下5℃。 二、平均温差的计算 设计时初算平均温差Dtm,均将换热过程先看做逆流过程计算。

压力容器基础知识试题.doc

压力容器基础知识试题 姓名职务得分口期 ?、判断题 1.压力容器的设计总图(底图)上,必须盖有压力容器设计资格印章° () 2.压力容器焊材一级库的相对温度一?般不应大于60%o () 3.压力容器封头拼接焊接缝进行100%射线探伤时,合格级别为II级。() 4.Q235-B用于制造压力容器时,其厚度不得大于16mm。() 5.《容规》适用于最高工作压力大于等于0.1 MPC的压力容器。() 6.用于制造受压元件的材料在切割(或加工)后应进行标记移植。() 7.压力容器组焊时,不允许采用十字焊接。() 8.不锈钢制造的容器表面咬边深度不得大于0.5mm,咬边连续长度不得大于100mm.() 9.有抗晶间腐蚀要求的奥氏体不锈钢制造压力容器,返修部位仍需保证原有的机械性 能() 10.锥形封头与园筒的连接应采用全焊透焊缝。() 11.不锈钢材料下料采用的最好方法是火焰切割。() 12.16mmR钢制压力容器在液压试验时,液体温度不得低于50°() 13.换热气接管安装时宜与壳体内表面平齐。() 14.GB151规定当换热管为U形管时,U形管的直管长度即为公称长度。() 15.GB150、GB151、JB4730标准就材料而言,仅适用于钢制压力容器°() 16.焊工应按焊接工艺评定或焊接工艺施焊,制造单位应建立焊工人员档案。() 17.制造单位对原设计的修改,应取得原设计单位的同意修改的书血证明文件,并对改动 部位作详细记载。() 18.316L 可代替316。() 19.角焊缝焊脚高度,应符合设计图样要求,外形应平缓过渡。() 20.有延迟裂纹倾向的材料应焊后12小时后进行无损检测,有再热裂纹倾向材料,应 在热处理后,再增加一次水压试验。()二、选择题: 1.GB150-98规定,接管和手焊法兰连接的焊缝应是() 1)B类焊缝2)C类焊缝3)D类焊缝 2.按《容规》规定,用于焊接压力容器的碳素钢和纸合金钢,含碳量不应大于() 1) 0.20%2) 0.25% 3)0.30% 3.对接后的换热管,应逐根进行水压试验,试验压力为设计压力的() 1) 1.25 倍2)1.5 倍3)2 倍 4.焊接接头焊后热处理的主要目的是() 1)促使焊缝中扩散氢尽快逸出,防止冷裂纹。 2)降低焊接残余应力。3)改善接头力学性能。 5.奥氏体不锈钢压力容器用水进行液压试验时,应控制水中氯离子含量最高不超过 ()

列管式换热器的设计

化工原理课程设计 学院: 化学化工学院 班级: | 姓名学号: 指导教师: $

目录§一.列管式换热器 ! .列管式换热器简介 设计任务 .列管式换热器设计内容 .操作条件 .主要设备结构图 §二.概述及设计要求 .换热器概述 .设计要求 ~ §三.设计条件及主要物理参数 . 初选换热器的类型 . 确定物性参数 .计算热流量及平均温差 壳程结构与相关计算公式 管程安排(流动空间的选择)及流速确定 计算传热系数k 计算传热面积 ^ §四.工艺设计计算 §五.换热器核算 §六.设计结果汇总 §七.设计评述 §八.工艺流程图 §九.主要符号说明 §十.参考资料

: §一 .列管式换热器 . 列管式换热器简介 列管式换热器又称为管壳式换热器,是最典型的间壁式换热器,历史悠久,占据主导作用,主要有壳体、管束、管板、折流挡板和封头等组成。一种流体在关内流动,其行程称为管程;另一种流体在管外流动,其行程称为壳程。管束的壁面即为传热面。 其主要优点是单位体积所具有的传热面积大,传热效果好,结构坚固,可选用的结构材料范围宽广,操作弹性大,因此在高温、高压和大型装置上多采用列管式换热器。为提高壳程流体流速,往往在壳体内安装一定数目与管束相互垂直的折流挡板。折流挡板不仅可防止流体短路、增加流体流速,还迫使流体按规定路径多次错流通过管束,使湍流程度大为增加。 列管式换热器中,由于两流体的温度不同,使管束和壳体的温度也不相同,因此它们的热膨胀程度也有差别。若两流体温差较大(50℃以上)时,就可能由于热应力而引起设备的变形,甚至弯曲或破裂,因此必须考虑这种热膨胀的影响。 设计任务 ¥ 1.任务 处理能力:3×105t/年煤油(每年按300天计算,每天24小时运行) 设备形式:列管式换热器 2.操作条件 (1)煤油:入口温度150℃,出口温度50℃ (2)冷却介质:循环水,入口温度20℃,出口温度30℃ (3)允许压强降:不大于一个大气压。 备注:此设计任务书(包括纸板和电子版)1月15日前由学委统一收齐上交,两人一组,自由组合。延迟上交的同学将没有成绩。 [ .列管式换热器设计内容 1.3.1、确定设计方案 (1)选择换热器的类型;(2)流程安排 1.3.2、确定物性参数 (1)定性温度;(2)定性温度下的物性参数 1.3.3、估算传热面积 (1)热负荷;(2)平均传热温度差;(3)传热面积;(4)冷却水用量 % 1.3.4、工艺结构尺寸 (1)管径和管内流速;(2)管程数;(3)平均传热温度差校正及壳程数;(4)

压力容器基础知识考试题

压力容器基础知识考试题 压力容器基础知识考试题 姓名得分 一、判断题 1.压力容器的设计、制造(组焊)、安装、使用、检验、修理和改造,均应严格执行《压力容器安全技术监察规程》的规定。(√) 2.内压圆筒强度计算公式的理论依据是第一强度理论。(√) 3.压力容器壳体的最小厚度的规定是为了保证容器的最低强度条件要求。(×)4.压力容器的设计文件至少应包括设计计算书和设计图样。(√) 5.材料抗拉强度sb>540MPa的钢制压力容器的C、D类焊缝必须进行磁粉或渗透探伤检查。(√) 6.对易燃或II、III级毒性的介质,选用管法兰的公称压力不得低于1MPa。()7.公称直径大于等于250mm接管的对接焊接接头须20%无损探伤。(×)8.外压容器因开孔削弱,所须补强面积比内压容器开孔削弱所须的补强面积 大。() 9.金属温度是指受压元件内表面的最高温度。() 10.压力容器的补强圈,应至少设置一个直径不小于M6的泄漏信号指示孔。()11.压力容器设计中,将主要受压元件材料选错,属设计技术性错误。() 12.悬挂式支座设计时仅须考虑重量载荷。() 13.工作压力系指在正常操作情况下,容器顶部可能出现的最高压力。() 14.低温容器是指工作温度低于或等于-20℃的容器。() 15.外压容器圆筒体的不圆度是造成其失稳的主要原因。() 16.压力容器壳体的最小厚度的规定是为了保证容器的最低强度条件要求。()17.换热器的接管法兰在设计温度>300℃,必须采用整体法兰。() 18.裙座壳的有效有效厚度应不小于塔器的圆筒有效厚度。() 19.GB151-89规定当换热管为U型管时,U型管的直管长度即为公称长度。()20.压力容器专用钢板的磷含量不应大于0.03%,硫含量不应大于0.02%。() 二、填空题 1、GB150-1998适用于设计压力不大于35 MPa,不低于0.1MPa的钢制压力容器的设计、制造检验和验收。GB150-1998管辖范围是设计压力不大于35 Mpa不低于0.1MPa及_真空度≥0.02MPa。 2、GB151-1999适用的换热器参数是_ DN≤2600mm,PN≤35M Pa,PN*DN≤1.75×10 4。换热器与管板的连接形式有固定管板_,_浮头式_,U型管板和填料函__。 3、压力容器的压力试验目的是检验容器的宏观强度和致密性能,内压容器的液压试验压力为Pt=1.25Pd X[σ] /[σ]t,液压试验圆筒的强度条件σt≤0.9Φσs (σ0.2)。 4、标准椭圆型封头的有效厚度不小于3mm 主要原因是保证标准椭圆型封头的刚度要求。 5、焊接接头系数φ应根据受压元件焊接接头型式及无损检测的长度比例确定。 6、介质的毒性程度为极度、高度危害或设计上不允许有微量泄漏的压力容器,必须进行气密性试验。

化工基本知识实验试卷

1 化工原理实验试卷 注意事项:1. 考前请将密封线内填写清楚; 2. 所有答案请直接答在试卷上; 3.考试形式:闭卷; 4. 本试卷共四大题,满分100分,考试时间90分钟。 一、填空题 1.在阻力实验中,两截面上静压强的差采用倒U 形压差计测定。 2.实验数据中各变量的关系可表示为表格,图形和公式. 3.影响流体流动型态的因素有流体的流速、粘度、温度、尺寸、形状等. 4.用饱和水蒸汽加热冷空气的传热实验,试提出三个强化传热的方案(1)增加空气流速(2)在空气一侧加装翅片(3)定期排放不 凝气体。 5.用皮托管放在管中心处测量时,其U 形管压差计的读数R 反映管中心处的静压头。 6.吸收实验中尾气浓度采用尾气分析装置测定,吸收剂为稀硫酸,指示剂为甲基

红。 7.在精馏实验数据处理中需要确定进料的热状况参数q 值,实验中需要测定进料量、进料温度、进料浓度等。 8.干燥实验操作过程中要先开鼓风机送风后再开电热器,以防烧坏加热丝。 9.在本实验室中的精馏实验中应密切注意釜压,正常操作维持在0.005mPa,如果达到0.008~0.01mPa,可能出现液泛,应减 少加热电流(或停止加热),将进料、回流和产品阀关闭,并作放空处理,重新开始实验。 10.吸收实验中尾气浓度采用尾气分析装置测定,它主要由取样管、吸收盒和湿式体积流量计组成的,吸收剂为稀硫酸,指示 剂为甲基红。 11.流体在流动时具有三种机械能:即①位能,②动能,③压力能。这三种能量可以互相转换。 12.在柏努利方程实验中,当测压管上的小孔(即测压孔的中心线)与水流方向垂直时,测压管内液柱高度(从测压孔算起) 为静压头,它反映测压点处液体的压强大小;当测压孔由上述方位转为正对水流方向时,测压管内液位将因此上升,所增加的液 位高度,即为测压孔处液体的动压头,它反映出该点水流动能的大小。 13.测量流体体积流量的流量计有转子流量计、孔板流量计和涡轮流量计。 14.在精馏实验中,确定进料状态参数q 需要测定进料温度,进料浓度参数。 15.在本实验室的传热实验中,采用套管式换热器加热冷空气,加热介质为饱和水蒸汽,可通过增加空气流量达到提高传热系

列管式换热器设计

第一章列管式换热器的设计 1.1概述 列管式换热器是一种较早发展起来的型式,设计资料和数据比较完善,目前在许多国家中已有系列化标准。列管式换热器在换热效率,紧凑性和金属消耗量等方面不及其他新型换热器,但是它具有结构牢固,适应性大,材料范围广泛等独特优点,因而在各种换热器的竞争发展中得以继续应用下去。目前仍是化工、石油和石油化工中换热器的主要类型,在高温高压和大型换热器中,仍占绝对优势。例如在炼油厂中作为加热或冷却用的换热器、蒸馏操作中蒸馏釜(或再沸器)和冷凝器、化工厂中蒸发设备的加热室等,大都采用列管式换热器[3]。 1.2列管换热器型式的选择 列管式换热器种类很多,目前广泛使用的按其温度差补偿结构来分,主要有以下几种:(1)固定管板式换热器:这类换热器的结构比较简单、紧凑,造价便宜,但管外不能机械清洗。此种换热器管束连接在管板上,管板分别焊在外壳两端,并在其上连接有顶盖,顶盖和壳体装有流体进出口接管。通常在管外装置一系列垂直于管束的挡板。同时管子和管板与外壳的连接都是刚性的,而管内管外是两种不同温度的流体。因此,当管壁与壳壁温度相差较大时,由于两者的热膨胀不同,产生了很大的温差应力,以致管子扭弯或使管子从管板上松脱,甚至毁坏整个换热器。 为了克服温差应力必须有温度补偿装置,一般在管壁与壳壁温度相差50℃以上时,为安全起见,换热器应有温差补偿装置。 (2)浮头换热器:换热器的一块管板用法兰与外壳相连接,另一块管板不与外壳连接,以便管子受热或冷却时可以自由伸缩,但在这块管板上来连接有一个顶盖,称之为“浮头”,所以这种换热器叫做浮头式换热器。这种型式的优点为:管束可以拉出,以便清洗;管束的膨胀不受壳体的约束,因而当两种换热介质的温差大时,不会因管束与壳体的热膨胀量的不同而产生温差应力。其缺点为结构复杂,造价高。 (3)填料函式换热器:这类换热器管束一端可以自由膨胀,结构与比浮头式简单,造价也比浮头式低。但壳程内介质有外漏的可能,壳程终不应处理易挥发、易爆、易燃和有毒的介质。 (4)U型管换热器:这类换热器只有一个管板,管程至少为两程管束可以抽出清洗,

题库试题-板换1

板式换热机组产品知识试题答案 分公司办姓名得分 一、填空题 1、PUC05H系列板式换热器的型号意义PU熊猫环保熊猫环保科技换热机组、C用途:散热 片采暖、05热负荷0.5MW、H控制模式:集中控制。 2、换热水泵的杨程选择和项目的管阻压力相等,和用户的楼层高度压力上没有直接 关系。 3、板式换热器机组补水时,补水泵的杨程应按照用户楼层高度选择补水泵的杨程。 4、我们熊猫的板式换热器机组主要节能的有点分别是板片节能、水泵节能、管路节能和控制节能。 5、PN型换热器的特点:传热效率高、允许两侧有不同的处理量、阻力低、清洗拆装方便、不易结垢等优点。 6、我们板式换热器垫片的主要材质是丁晴橡胶、三元乙丙橡胶、氟橡胶;安装方式有是挂接、卡接及粘接。 7、我公司换热机组控制方式:模糊控制和矢量控制 二、选择题 1、我公司板式换热机组与同类产品比较有哪些优势 C 。 A、节能10% 以上 B、节能20%以上 C、节能30%以上 D、节能50%以上 2、换热机组配用的循环泵是 B 。 A、FLG水泵 B、FLGR 水泵 C、CK水泵 D、AABS水泵 3、我们板式换热器板片中间垫片材质是 B,C 。 A、硅橡胶 B、丁晴橡胶 C、氟橡胶 D、食品级橡胶 4、换热机组循环泵选型时,水泵流量 C 。 A、根据用户家中暖气片的多少 B、根据供暖管网的直径 C、换热零 5、我公司换热机组温度控制 C 。 A、控制循环泵转速 B、控制二次网的流量 C、控制一次网的热源 三、判断题

1、我们熊猫板式换热机组主要是给小区供暖(×) 2、换热机组循环泵流量越大换热效果越好(×) 3、板式换热机组供暖楼层高度,取决于补水泵的扬程(√) 4、熊猫板式换热机组只能用于水水交换(×) 5、熊猫换热机组可以通过室内外温度补偿来控制循环泵的运行频率(√) 四、问答题 ●板换机组为什么比市场同类产品节能? 循环泵节能:集团公司有同行业最先进的水泵技术。拥有多项专利的轴承冷却热水泵,具有高效、稳定、低噪的卓越性能。 板片节能:针对石油、化工、食品、电力、余热回收、城市供热等各个领域不同使用特点及热工参数,结合国内外领先技术,研究出了高效、节能、低阻板型。尤其为国内暖通行业开发了专用板型。 控制方式节能:将丰富的工业级技术经验,应用到暖通民用领域,针对不同的使用环境和用户要求,对稳定、能耗、效率提出完美的解决方案。 附件节能:低阻力阀门 ●板式换热机组的控制方式?板片的材质、厚耐腐蚀性? 模糊控制:记忆功能 矢量控制:补偿热量多少 厚度: 0.4 ~ 1.2mm 通常采用0.5 ~ 0.6mm. 说明:板片越薄换热系数越高(0.1mm可影响200左右,基础值5000)、成本越低。但是换热器是一个需承压设备,实际经验表明最低0.45到0.6mm可行。板片厚度与腐蚀之间无决定性影响,一旦发生腐蚀,就会加速进行,1mm厚只不过多维持1到几个月而已,与设备整体寿命不成正比。用户对厚度的误解应该予以澄清,只要承压满足最低要求,越薄越好。国外同行可用到0.4mm,对小板幅和浅密波纹来说,我们也可以做到。过薄的板片强度降低,容易引起板片间震动,耗能的同时,也容易发生应力腐蚀。 ●板式换热机组垫片材质? 垫片作为换热器板片间的密封元件,是为了防止板片泄漏的。垫片的质量好坏直观地影响换热器的质量和形象。在暖通行业,垫片主要为橡胶制品,受温度、介质影响大,因此在制作过程中受配方、组分的均匀度、硫化定型的条件影响很大。 1、配方科学,必须具有抗老化、抗撕裂、高回弹的特性(降低弹性引起的反作用力,板片不易变形)。 2、密封接触面尺寸精确,报警信号孔灵敏。 3、免粘接结构,拆装方便。 ☆垫片的品牌:国内用户认可的胶条生产厂家 1、国内品牌:武汉派克(北京市场很认)、西安联谊、江苏启东等。 2、国外品牌:美国杜邦等。

列管式换热器选型设计计算

第一部分列管式换热器选型设计计算 一.列管式换热器设计过程中的常见问题 换热器设计的优劣最终要以是否适用、经济、安全、负荷弹性大、操作可靠、检修清洗方便等为考察原则。当这些原则相互矛盾时,应在首先满足基本要求的情况下再考虑一般原则。 1.流体流动空间的选择原则 (1)不洁净和易结垢的流体宜走管内,因为管内清洗比较方便。 (2)腐蚀性的流体宜走管内,以免壳体和管子同时受腐蚀,而且管子也便于清洗和检修。(3)压强高的流体宜走管内,以免壳体受压,可节省壳体金属消耗量。 (4)饱和蒸气宜走管间,以便于及时排出冷凝液,且蒸气较洁净,它对清洗无要求。(5)有毒流体宜走管内,使泄漏机会较少。 (6)被冷却的流体宜走管间,可利用外壳向外的散热作用,以增强冷却效果。 (7)粘度大的液体或流量较小的流体,宜走管间,因流体在有折流挡板的壳程流动时,由于流速和流向的不断改变,在低Re(Re>100)下即可达到湍流,可以提高对流传热系数。 (8)对于刚性结构的换热器,若两流体的温度差较大,对流传热系数较大者宜走管间,因壁面温度与α大的流体温度相近,可以减少热应力。 在选择流体流径时,上述各点常不能同时兼顾,应视具体情况抓住主要矛盾。2.流体流速的选择 根据管内湍流时对流传热系数αi∝u0.8,流速增大,则αi增大,同时污垢热阻R si 减小,利于传热,从而可减少传热面积,节约设备费用;但同时又使压降增大,加大了动力消耗,提高了操作费用。可见应全面分析权衡比较适宜的流速。 (1)所选流速要尽量使流体湍流,有利传热。 (2)所选流速应使管长或程数恰当。管子过长,不便于清洗管内污垢;而管子过短,管程数增加,使结构复杂化,传热温差减少,均会降低传热效果。 (3)粘度大的流体,流速应小些,可按滞流处理。 (4)高密度流体(液体),阻力消耗与传热速率相比一般较小,可适当提高流速。 在我们教材及换热器设计手册中均给了出一些经验数据,以供参考。 3.管子规格及排列情况 (1)管径选择:国内换热器系列标准件中管子规格为Φ25×2.5mm、Φ19×2mm,在再沸器中可采用Φ38×3mm。 (2)管长:以清洗方便和合理使用管材为原则,系列标准件中采用1.5m,2m,3 m和6m四种。 (3)管子排列方法 管子在管板上的排列方法有三种:正三角形,正方形直列和正方形错列(见化工原理下册,天大版,P256,图4-25)。 正三角形排列使用最普遍,在同一管板面积上可以排列较多传热管,管外流体搅动较大,对流传热系数较高,但相应阻力也较大,管间不易清洗;正方形直列便于清洗管外表面,但传热系数较小;正方形错列介于上述两者之间,对流传热系数高于正方形直列。 (4)管中心距t 管子与管板采用胀管法连接t=(1.3-1.5)d o,管子与管板采用焊管法连接t=1.25d o,相邻两管外壁间距不应小于6mm。 4.折流挡板 前面已述常用的有圆缺形和盘环形挡板(见化工原理下册,天大版,P257,图4-27),而又以缺口面积为壳体内截面积25%的圆缺形折板用的最广泛。 折流挡板间距h:h=0.2~1D(壳内径),系列标准件中采用的板间距为:固定管板式有150、300、600mm三种,浮头式有150、200、300、480和600mm五种。 5.流体流动阻力

化工基础知识考试试卷

化工生产基础考试试题 一、填空题 1.按照检测仪表根据其被测变量不同,根据化工生产五大参量又可分为(温度),(压力),(流量), (液位),分析仪表。 2.测量流体压力用的压力表的读数叫(表)压,如果被测流体的绝对压力低于大气压,则压力表 所测得的值称为(负压或真空度)。 3.压缩机入口应选(气关)式调节阀。加热炉燃料气系统应选用(气开)式调节阀。 4.燃烧应具备的三个条件:————、————、————。 可燃物助燃剂着火源 5.受压容器要严禁:————、————、————。 超温超压超负荷 6.安全生产的方针是————、————。 安全第一、预防为主 7.预防伤亡事故三不伤害————、————、————。 不伤害自己、不伤害他人、不被他人伤害 8.事故处理“四不放过”原则是————、————,————、————。 事故原因不清楚不放过,事故责任者和员工没有受到教育不放过,事故责任者没有处理不放过,没有制定防范措施不放过 9.物质的饱和蒸汽压主要与物质的()()。 答:温度、性质(挥发度、沸点) 10.一种物质的原子或分子附着在另一种物质的表面上的现象叫()。 答:吸附 11.使气体从溶液中解吸出来的方法有()()()()。 答:加热、闪蒸(减压)、气提、蒸馏(精馏) 12.离心泵启动前入口阀必须(),出口阀必须()。 答:全开(打开)、关闭 13.影响换热器换热效果的因素有()()()。 答:换热温差、换热面积、传热系数(材质) 14.1标准大气压等于()MPa,等于()Kg/cm2,()mmHg。 答:1atm=0.1013MPa=1.033 Kg/cm2=760 mmHg 1at=0.09807 MPa=1 Kg/cm2=735.6 mmHg(易) 15.灭火的四种方法是()()()()。 答:冷却法、隔离法、窒息法、抑制法(易) 16.工艺介质三串是()()()。 答:“三串”是指生产工艺介质从高压系统串向低压系统,从生产系统串向生活系统,从易燃易

列管式换热器的设计计算

2.4 列管换热器设计示例 某生产过程中,需将6000 kg/h的油从140℃冷却至40℃,压力为0.3MPa;冷却介质采用循环水,循环冷却水的压力为0.4MPa,循环水入口温度30℃,出口温度为40℃。试设计一台列管式换热器,完成该生产任务。 1.确定设计方案 (1)选择换热器的类型 两流体温度变化情况:热流体进口温度140℃,出口温度40℃冷流体(循环水)进口温度30℃,出口温度40℃。该换热器用循环冷却水冷却,冬季操作时进口温度会降低,考虑到这一因素,估计该换热器的管壁温和壳体壁温之差较大,因此初步确定选用带膨胀节的固定管板式式换热器。 (2)流动空间及流速的确定 由于循环冷却水较易结垢,为便于水垢清洗,应使循环水走管程,油品走壳程。选用ф25×2.5的碳钢管,管内流速取u i=0.5m/s。 2.确定物性数据 定性温度:可取流体进口温度的平均值。 壳程油的定性温度为(℃) 管程流体的定性温度为(℃) 根据定性温度,分别查取壳程和管程流体的有关物性数据。 油在90℃下的有关物性数据如下: 密度ρo=825 kg/m3 定压比热容c po=2.22 kJ/(kg·℃) 导热系数λo=0.140 W/(m·℃) 粘度μo=0.000715 Pa·s 循环冷却水在35℃下的物性数据: 密度ρi=994 kg/m3 定压比热容c pi=4.08 kJ/(kg·℃) 导热系数λi=0.626 W/(m·℃) 粘度μi=0.000725 Pa·s 3.计算总传热系数 (1)热流量 Q o=W o c poΔt o=6000×2.22×(140-40)=1.32×106kJ/h=366.7(kW) (2)平均传热温差 (℃) (3)冷却水用量 (kg/h)

换热器基础知识11条

换热器基础知识11条 日常检查 日常检查是及早发现和处理突发性故障的重要手段。检查内容:运行异声、压力、温度、流量、泄漏、介质、基础支架、保温层、振动、仪表灵敏度等等。 温度 温度是换热器运行中主要的操作指标,测定及检查换热器中各流体的进、出口温度计变化,可以分析判断介质流量的大小及换热情况的好坏。传热效率主要表现在传热系统上,传热系统系数降低,换热器的效率也降低,通常传热系数在短时间变化较小,发生变化时会连续下降,定期测量换热器两种介质的出入口温度、流量,计算传热系数作记录图表,作为判断传热系数变化的依据。若低于某一定值,则应清洗管束以提高传热系数,保证一定的传热效率。 要防止温度的急剧变化,因温度剧变会造成换热器内件,特别是管束与管板的膨胀和收缩不一致,产生温差应力,从而引起管束与管板脱离或局部变形及裂缝,还会加快腐蚀及产生热疲劳裂纹。 用水作为冷却介质时,水的出口温度最好在38℃以下,因为超过38℃,微生物的繁殖加速,腐蚀生产物的分解也加

快,引起管子腐蚀穿孔,同时结垢情况会加重,故出口温度最大不能超过45℃。 压力 通过对流体压力及进出口压差的测定与检查,可判断换热器内部结垢、堵塞情况及流体流量大小或泄漏情况。高压流体往低压流体中泄漏,使低压流体压力很快上升,甚至超压,并可能产生各种不良后果,对运行中的高压换热器应特别警惕这一点。 操作中若发现压力骤变,除检查换热器本身问题以外,还应考虑系统内部其他因素的影响,如系统阀门损坏及输送流体的机械发生故障,等等。 泄漏 换热器在运行中产生外漏是较容易发现的。对低毒介质轻微的气体外漏,可以直接抹上肥皂水或发泡剂来检查,亦可借助试纸变色情况检查。检查换热器外壳体表面涂层的剥落污染情况,来预测壳体的泄漏,是低压换热器检查壳体外泄漏点的一种常用方法。对严禁泄漏的中高毒性介质,最常用的方法是在易泄漏口,如法兰、接管处涂对该毒性介质反应非常灵敏的涂料,有毒介质发生微小泄漏,涂料颜色即会发生明显的变化,以此可作出迅速判断,采取措施。

相关主题
文本预览
相关文档 最新文档