当前位置:文档之家› 圆锥曲线中的范围问题 - 答案

圆锥曲线中的范围问题 - 答案

圆锥曲线中的范围问题 - 答案
圆锥曲线中的范围问题 - 答案

圆锥曲线大题分类

1.圆锥曲线中的范围问题2.圆锥曲线中的存在性问题3.圆锥曲线中的证明问题4.定点问题

5.定值问题

6.最值问题

热点一 圆锥曲线中的范围问题

(1)解决这类问题的基本思想是建立目标函数和不等关系.

(2)建立目标函数的关键是选用一个合适的变量,其原则是这个变量能够表达要解决的问题;建立不等关系的关键是运用圆锥曲线的几何特征、判别式法或基本不等式等灵活处理.

[例1] 已知点P (4,4),圆C :(x -m )2

+y 2

=5(m <3)与椭圆E :x 2a 2+y 2

b

2=1(a >b >0)有一个公共点A (3,1),

F 1、F 2分别是椭圆的左、右焦点,直线PF 1与圆C 相切.

(1)求m 的值与椭圆E 的方程;

(2)设Q 为椭圆E 上的一个动点,求AP ·AQ 的取值范围. [自主解答] (1)将点A 的坐标代入圆C 方程, 得(3-m )2+1=5, ∵m <3,∴m =1. 故圆C :(x -1)2+y 2=5. 设直线PF 1的斜率为k ,

则PF 1:y =k (x -4)+4,即kx -y -4k +4=0. ∵直线PF 1与圆C 相切,∴|k -0-4k +4|

k 2+1

=5,

解得k =112或k =12

.

当k =112时,直线PF 1与x 轴的交点横坐标为36

11,不合题意,舍去;

当k =1

2时,直线PF 1与x 轴的交点横坐标为-4.

∴c =4,F 1(-4,0),F 2(4,0). 2a =|AF 1|+|AF 2|=52+2=62, a =32,a 2=18,b 2=2. ∴椭圆E 的方程为x 218+y 2

2

=1.

(2) AP =(1,3).设Q (x ,y ),则AQ =(x -3,y -1),

AP·AQ=(x-3)+3(y-1)=x+3y-6.

∵x2

18+

y2

2=1,即x

2+(3y)2=18.

而x2+(3y)2≥2|x|·|3y|,∴-18≤6xy≤18,

则(x+3y)2=x2+(3y)2+6xy=18+6xy的取值范围是[0,36],

即x+3y的取值范围是[-6,6],

又∵AP·AQ=x+3y-6,

∴AP·AQ的取值范围是[-12,0].

——————————规律·总结——————————————————————

解决圆锥曲线中范围问题的方法

一般题目中没有给出明确的不等关系,首先需要根据已知条件进行转化,利用圆锥曲线的几何性质及曲线上点的坐标确定不等关系;然后构造目标函数,把原问题转化为求函数的值域或引入参数根据参数范围求解,解题时应注意挖掘题目中的隐含条件,寻找量与量之间的转化.

[例2].已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个焦点是F (1,0),且离心率为1

2.

(1)求椭圆C 的方程;

(2)设经过点F 的直线交椭圆C 于M ,N 两点,线段MN 的垂直平分线交y 轴于点P (0,y 0),求y 0的取值范围.

解:(1)设椭圆C 的半焦距是c .依题意,得c =1. 因为椭圆C 的离心率为1

2,

所以a =2c =2,b 2=a 2-c 2=3. 故椭圆C 的方程为x 24+y 2

3=1.

(2)当MN ⊥x 轴时,显然y 0=0.

当MN 与x 轴不垂直时,可设直线MN 的方程为 y =k (x -1)(k ≠0). 由?????

y =k (x -1),x 24+y 23

=1,

消去y 并整理得(3+4k 2)x 2-8k 2x +4(k 2-3)=0, 则x 1+x 2=8k 2

3+4k 2

.

设M (x 1,y 1),N (x 2,y 2),线段MN 的中点为Q (x 3,y 3), 则x 3=x 1+x 22=4k 2

3+4k 2,y 3=k (x 3-1)=-3k 3+4k 2. 线段MN 的垂直平分线的方程为 y +3k 3+4k 2

=-1k ????x -4k 23+4k 2.

在上述方程中,令x =0,得y 0=k 3+4k 2=1

3

k +4k . 当k <0时,3k +4k ≤-43;当k >0时,3

k +4k ≥4 3.

所以-

312≤y 0<0或0

?-312,312. [例3].已知F 1,F 2分别为椭圆x 2a 2+y 2

b 2=1(a >b >0)的左、右焦点,M ,N 分别为其左、右顶点,过F 2

的直线l 与椭圆相交于A ,B 两点.当直线l 与x 轴垂直时,四边形AMBN 的面积等于2,且满足|2MF |=

2|AB |+|2F N |. (1)求此椭圆的方程;

(2)当直线l 绕着焦点F 2旋转但不与x 轴重合时,求AM ·

AN +BM ·BN 的取值范围. 解:(1)当直线l 与x 轴垂直时, 由S 四边形AMBN =12·2a ·2b 2

a =2,得

b =1.

又|2MF |=2|AB |+|2F N |, 所以a +c =2·2b 2

a

+a -c ,

即ac =2,又a 2=c 2+1,解得a = 2. 因此该椭圆的方程为x 22

+y 2

=1.

(2)设A (x 1,y 1),B (x 2,y 2),而M (-2,0),N (2,0),所以AM =(-2-x 1,-y 1),AN =(2-x 1,-y 1),

BM =(-2-x 2,-y 2),BN =(2-x 2,-y 2).

从而有AM ·AN +BM ·BN =(-2-x 1)(2-x 1)+y 21+(-2-x 2)(2-x 2)+y 22=x 21+x 22+y 21+y 2

2-4

=(x 1+x 2)2-2x 1x 2+(y 1+y 2)2-2y 1y 2-4.

因为直线l 过椭圆的焦点F 2(1,0),

所以可以设直线l 的方程为x =ty +1(t ∈R), 则由?????

x 2

2+y 2=1,

x =ty +1消去x 并整理,

得(t 2+2)y 2+2ty -1=0(Δ>0恒成立), 所以y 1+y 2=-2t t 2+2,y 1y 2=-1t 2+2.

从而x 1+x 2=t (y 1+y 2)+2=4

t 2+2,

x 1x 2=(ty 1+1)(ty 2+1)=2-2t 2

t 2+2

可得AM ·AN +BM ·BN =????4t 2+22-2? ????2-2t 2

t 2+2+? ????-2t t 2+22-2? ????-1t 2+2-4=8(t 2+2)2-6

t 2

+2. 令t 2+2=m ,则m ≥2.

从而有AM ·AN +BM ·

BN =8m 2-6m =8????1m -382-98,而0<1m ≤12

,所以可以求得AM ·AN +BM ·BN 的取值范围是????-9

8,0.

练习

1.已知椭圆2

2

14

y x +=的左、右两个顶点分别为A 、B .曲线C 是以A 、B 两点为顶点,离心率为5的双曲线.设点P 在第一象限且在曲线C 上,直线AP 与椭圆相交于另一点T . (1)求曲线C 的方程;

(2)设点P 、T 的横坐标分别为1x 、2x ,证明:121x x ?=;

(3)设T A B ?与POB ?(其中O 为坐标原点)的面积分别为1S 与2S ,且PA PB uu r uu r

g ≤15,求2212S S -

的取值范围

解:(1)由题意可设曲线C 的方程为2

2

21y x b

-=,由于该双曲线的离心率为

5,故

222

2

154c b b a =+=?=,所以曲线C 的方程为2214y x -=; (2)由题意可设直线AP 方程为(1),(0,2)y k x k =+∈,由(1)知曲线C 方程为2

2

14y x -=,故22(1)14

y kx y x =+

???-

=??消去y 得2

2

2

2

(4)2(4)0k x k x k ---+=,故2124(1)4k x k +-=--即21244k x k +=-,同理可得2

22

44k x k

-=+,故121x x =;

(3)设1122(,),(,)P x y T x y ,则由22

22121

21,144

y y x x -=+=得,2222

11224(1),4(1)y x y x =-=- 由15PA PB ≤得,2

221111111(1,)(1,)15(1)15x y x y x y x +-=-+=-≤即214x ≤ ①;

由(1)知2122

48

11(02)44k x k k k

+==-><<--②,故2114x <≤; 由题意可知,22222

211221122211,5(4)24

y S y S y S S y x x ==?-=-

=-+,又121x x = 所以2

2

21212145(

)S S x x -=-+,因为2121

44x x +≥仅当212(1,4]x =∈时,等号成立,故22121S S -≤,又当214x =时,2212

S S -取得最小值0,所以22

12S S -的取值范围为[0,1]。

2.已知椭圆的一个顶点为()0,1A -,焦点在x 轴上,中心在原点.若右焦点到直线

022=+-y x 的距离为3.

(1)求椭圆的标准方程;

(2)设直线)0(≠+=k m kx y 与椭圆相交于不同的两点,M N .当AN AM =时,求m 的取值范围.

【答案】解:(1)依题意可设椭圆方程为 1222=+y a

x ,则右焦点(

)21,0

F

a -,

由题设

32

2

212=+-a ,解得32=a ,…4分

故所求椭圆的方程为13

22

=+y x 。……………5分

设()()()P P M M N N P x y M x y N x y ,

、,、,,P 为弦MN 的中点, 由?????=++=13

2

2y x m kx y 得 0)1(36)13(222=-+++m mkx x k , 直线与椭圆相交,

()()()2

226431310mk k m ∴?=-+?->?1322+

2

3231M N P x x mk x k +∴=

=-+,从而231P P m

y kx m k =+=+,

2131

3P AP

P y m k k x mk

+++∴==-

,又,AM AN AP MN =∴⊥,则: k

mk k m 1

3132-=++- ,即 1322+=k m , ②………………………10分

把②代入①得 22m m < ,解得 20<

由②得03122>-=

m k ,解得2

1

>m .…… ……………………………13分 综上求得m 的取值范围是1

22

m <<. ………………………………14分

3.已知椭圆C :)0( 12222>>=+b a b

y a x 的离心率为23,过坐标原点O 且斜率为21

的直线

l 与C 相交于A 、B ,102||=AB . (1)求a 、b 的值; (2)若动圆1)

(22

=+-y m x 与椭圆C 和直线 l 都没有公共点,试求m 的取值范围.

【答案】(1)依题意, l :2

x

y =

,不妨设设) , 2(t t A 、) , 2(t t B --(0>t ) 由102||=AB 得40202

=t ,2=t ………………(3分)

所以????

???=-==+23 128

2

222a b a a

c b a

解得4=a

,2=b ………………(6分)

(2)由??

???=+-=+1)( 14

16222

2y m x y x 消去y 得0124832

2=++-m mx x , 动圆与椭圆没有公共点,当且仅当

014416)124(34)8(222<-=+??--=?m m m 或

5||>m ……9分,解得3||m ………………(9分)

动圆1)(2

2=+-y m x 与直线2x y =没有公共点当且仅当15

||>m ,即5||>m 。

解???><5||3||m m 或???>>5

||5||m m ,………………(10分) 得m 的取值范围为{}

553535|-<-<<-><

………………(12分)

4.已知抛物线22(0)y px p =>的焦点为F ,过F 的直线交y 轴正半轴于点P ,交抛物线于,A B 两点,其中点A 在第一象限.(Ⅰ)求证:以线段FA 为直径的圆与y 轴相切; (Ⅱ)若1FA AP λ=,2BF FA λ=,1211

[,]42

λλ∈,求2λ的取值范围. 【答案】(Ⅰ)由已知(

,0)2p

F ,设11(,)A x y ,则2112y px =, 圆心坐标为112(,)42

x p y +,圆心到y 轴的距离为124x p

+, ……2分圆的半径为

1

121()2224

FA x p p

x +=?--=, ……4分所以,以线段FA 为直径的圆与y 轴相切. ……5分

(Ⅱ)解法一:设022(0,),(,)P y B x y ,由1FA AP λ=,2BF FA λ=,得

111101(,)(,)2p x y x y y λ-

=--,22211(,)(,)22

p p

x y x y λ--=-,……6分 所以1111101,()2p x x y y y λλ-=-=-,221221(),22

p p

x x y y λλ-=-=-,…8分

由221y y λ=-,得222221y y λ=.又2112y px =,2

222y px =,所以 2221x x λ=. …10分

代入

221()22p p x x λ-=-,得22121()22p p x x λλ-=-,2122(1)(1)2

p

x λλλ+=+, 整理得12

2p x λ=

,…12分代入1112p x x λ-

=-,得122

222p p p

λλλ-=-,所以1

2

2

1

1λλλ=-

,…13分 因为

1211[,]42λλ∈,所以2λ的取值范围是4

[,2]3

. …14分 解法二:设),(),,(2211y x B y x A ,:2p AB x my =+,将2

p x my =+代入2

2y px =,得2

2

20y pmy p --=,

所以212y y p =-(*), ……6分由1FA AP λ=,2BF FA λ=,得

111101(,)(,)2p x y x y y λ-

=--,22211(,)(,)22

p p

x y x y λ--=-, …7分 所以,1111101,()2p x x y y y λλ-=-=-,221221(),22

p p

x x y y λλ-=-=-, (8)

将122y y λ-=代入(*)式,得2

2

1

2

p y λ=, ……10分所以2

12

2p px λ=

,12

2p x λ=

. …

12分 代入1112p x x λ-

=-,得12211λλλ=-.…13分因为1211

[,]42

λλ∈,所以2λ的取值范围是4

[,2]3

. …14分

圆锥曲线中的最值和范围问题

圆锥曲线中的最值和范围问题 一、【基础考点】 与圆锥曲线有关的最值和范围问题在高考中突出考试的知识点: (1)圆锥曲线的定义和方程; (2)点与曲线的位置关系;特别是点在曲线上,点的坐标满足方程; (3)a 、b 、c 、p 、e 的几何意义及相关关系; (4)二次函数、均值不等式及导数的应用。 基础训练: 1.已知双曲线 122 22 =-b y a x (a >0,b >0)的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是(C ) A.( 1,2) B. (1,2) C.[2,)+∞ D.(2,+∞) 2. P 是双曲线 2 2 1916 x y - =的右支上一点,M 、N 分别是圆(x +5)2+y 2=4和(x -5)2+y 2 =1上的点,则|PM| -|PN |的最大值为( D ) A. 6 B.7 C.8 D.9 3.抛物线y=-x 2上的点到直线4x +3y -8=0距离的最小值是( A ) A .43 B .75 C .8 5 D .3 4.已知双曲线 222 2 1,(0,0)x y a b a b - =>>的左、 右焦点分别为F 1、F 2,点P 在双曲线的右支上,且|PF 1|=4|PF 2|,则此双曲线的离心率e 的最大值为:(B ) (A)43 (B)53 (C)2 (D)7 3 5.已知抛物线y 2 =4x ,过点P (4,0)的直线与抛物线相交于A(x 1,y 1),B(x 2,y 2)两点,则y 12+y 22的最小值是 . 32 6.对于抛物线y 2=4x 上任意一点Q ,点P (a ,0)都满足|PQ |≥|a |,则a 的取值范围是( B ) (A )(-∞,0) (B )(-∞,2] (C )[0,2] (D )(0,2) 二、【热点透析】 与圆锥曲线有关的最值和范围问题的讨论常用以下方法解决: (1)结合定义利用图形中几何量之间的大小关系; (2)不等式(组)求解法:利用题意结合图形(如点在曲线内等)列出所讨论的参数适合的不等式(组),通过解不等式组得出参数的变化范围; (3)函数值域求解法:把所讨论的参数作为一个函数、一个适当的参数作为自变量来表示这个函数,通过讨论函数的值域来求参数的变化范围。 (4)利用代数基本不等式。代数基本不等式的应用,往往需要创造条件,并进行巧妙的构思; (5)结合参数方程,利用三角函数的有界性。直线、圆或椭圆的参数方程,它们的一个共同特点是均含有三角式。因此,它们的应用价值在于: ① 通过参数θ简明地表示曲线上点的坐标; ② 利用三角函数的有界性及其变形公式来帮助求解诸如最值、范围等问题; (6)构造一个二次方程,利用判别式?≥0。 突破重难点 【例1】已知点M (-2,0),N (2,0),动点P 满足条件||||P M P N -=记动点P 的轨迹为W . (Ⅰ)求W 的方程; (Ⅱ)若A ,B 是W 上的不同两点,O 是坐标原点,求OA OB ? 的最小值. 解:(Ⅰ)依题意,点P 的轨迹是以M ,N 为焦点的双曲线的右支,

高考圆锥曲线中的最值和范围问题的专题

高考专题圆锥曲线中的最值和范围问题 ★★★高考要考什么 1 圆锥曲线的最值与范围问题 (1)圆锥曲线上本身存在的最值问题: ①椭圆上两点间最大距离为2a (长轴长). ②双曲线上不同支的两点间最小距离为2a (实轴长). ③椭圆焦半径的取值范围为[a -c ,a +c ],a -c 与a +c 分别表示椭圆焦点到椭圆上的点的最小距离与最大距离. ④抛物线上的点中顶点与抛物线的准线距离最近. (2)圆锥曲线上的点到定点的距离的最值问题,常用两点间的距离公式转化为区间上的二次函数的最值问题解决,有时也用圆锥曲线的参数方程,化为三角函数的最值问题或用三角形的两边之和(或差)与第三边的不等关系求解. (3)圆锥曲线上的点到定直线的距离的最值问题解法同上或用平行切线法. (4)点在圆锥曲线上(非线性约束条件)的条件下,求相关式子(目标函数)的取值范围问题,常用参数方程代入转化为三角函数的最值问题,或根据平面几何知识或引入一个参数(有几何意义)化为函数进行处理. (5)由直线(系)和圆锥曲线(系)的位置关系,求直线或圆锥曲线中某个参数(系数)的范围问题,常把所求参数作为函数,另一个元作为自变量求解. 与圆锥曲线有关的最值和范围问题的讨论常用以下方法解决: (1)结合定义利用图形中几何量之间的大小关系; (2)不等式(组)求解法:利用题意结合图形(如点在曲线内等)列出所讨论的参数适合的不等式(组),通过解不等式组得出参数的变化范围; (3)函数值域求解法:把所讨论的参数作为一个函数、一个适当的参数作为自变量来表示这个函数, 通过讨论函数的值域来求参数的变化范围。 (4)利用代数基本不等式。代数基本不等式的应用,往往需要创造条件,并进行巧妙的构思; (5)结合参数方程,利用三角函数的有界性。直线、圆或椭圆的参数方程,它们的一个共同特点是 均含有三角式。因此,它们的应用价值在于: ①通过参数θ简明地表示曲线上点的坐标; ②利用三角函数的有界性及其变形公式来帮助求解诸如最值、范围等问题; (6)构造一个二次方程,利用判别式?≥0。 ★★★突破重难点 【练习】1、点A (3,2)为定点,点F 是抛物线y 2=4x 的焦点,点P 在抛物线y 2=4x 上移动,若|P A|+|PF| 取得最小值,求点P 的坐标。若A (1,3)为定点,点F 是抛物线y 2=4x 的焦点,点P 在抛物线y 2=4x 上移动,若|P A|+d|取得最小值,其中d 是点P 到准线的距离,求点P 的坐标 2.已知A (3,2)、B (-4,0),P 是椭圆x y 22 259 1+=上一点,则|P A |+|PB|的最大值为() A .10 B .105- C .105+D .1025+ 3.已知双曲线22 1169 x y -=,过其右焦点F 的直线l 交双曲线于AB ,若|AB |=5,则直线l 有() A .1条 B .2条 C .3条 D .4条 4.已知点P 是抛物线y 2=4x 上一点,设P 到此抛物线的准线的距离为d 1,到直线x +2y+10=0的距离为d 2,则d 1+d 2的最小值为()

圆锥曲线解题技巧和方法综合(方法讲解+题型归纳,经典)

圆锥曲线解题方法技巧归纳 第一、知识储备: 1. 直线方程的形式 (1)直线方程的形式有五件:点斜式、两点式、斜截式、截距式、一般式。 (2)与直线相关的重要内容 ①倾斜角与斜率tan ,[0,)k ααπ=∈ ②点到直线的距离d = ③夹角公式:2121 tan 1k k k k α-= + (3)弦长公式 直线 y kx b =+上两点1122(,),(,)A x y B x y 间的距离:12AB x =- = 或12AB y y =- (4)两条直线的位置关系 ①1212l l k k ⊥?=-1 ② 212121//b b k k l l ≠=?且 2、圆锥曲线方程及性质 (1)、椭圆的方程的形式有几种?(三种形式) 标准方程:22 1(0,0)x y m n m n m n +=>>≠且 2a = 参数方程:cos ,sin x a y b θθ== (2)、双曲线的方程的形式有两种 标准方程:22 1(0)x y m n m n +=?< 距离式方程: 2a = (3)、三种圆锥曲线的通径你记得吗?

22 222b b p a a 椭圆:;双曲线:;抛物线: (4)、圆锥曲线的定义你记清楚了吗? 如:已知21F F 、是椭圆13 42 2=+y x 的两个焦点,平面内一个动点M 满足221=-MF MF 则 动点M 的轨迹是( ) A 、双曲线; B 、双曲线的一支; C 、两条射线; D 、一条射线 (5)、焦点三角形面积公式:1 2 2tan 2 F PF P b θ ?=在椭圆上时,S 1 2 2cot 2 F PF P b θ ?=在双曲线上时,S (其中222 1212121212||||4,cos ,||||cos |||| PF PF c F PF PF PF PF PF PF PF θθθ+-∠==?=?) (6)、记住焦半径公式:(1)00;x a ex a ey ±±椭圆焦点在轴上时为焦点在y 轴上时为,可简记为 “左加右减,上加下减”。 (2)0||x e x a ±双曲线焦点在轴上时为 (3)11||,||22 p p x x y ++抛物线焦点在轴上时为焦点在y 轴上时为 (6)、椭圆和双曲线的基本量三角形你清楚吗? 第二、方法储备 1、点差法(中点弦问题) 设() 11,y x A 、()22,y x B ,()b a M ,为椭圆13 42 2=+y x 的弦AB 中点则有 1342 12 1=+y x ,1342 22 2=+y x ;两式相减得( )()03 4 2 2 2 1 2 2 21=-+-y y x x ? ()() ()() 3 4 21212121y y y y x x x x +-- =+-?AB k =b a 43- 2、联立消元法:你会解直线与圆锥曲线的位置关系一类的问题吗?经典套路是什 么?如果有两个参数怎么办? 设直线的方程,并且与曲线的方程联立,消去一个未知数,得到一个二次方程,

圆锥曲线大题(有答案)

三、解答题 1.( 2013年上海市春季高考数学试卷 (含答案))本题共有2个小题,第1小题满分 已知椭圆C 的两个焦点分别为 只(1,0)、F 2(1, 0),短轴的两个端点分别为 B (1) 若RBB2为等边三角形,求椭圆c 的方程; ujir (2) 若椭圆C 的短轴长为2 ,过点F 2的直线I 与椭圆C 相交于P 、Q 两点,且F 1P 2 2 【答案】[解](1)设椭圆C 的方程为x 2 y 2 1(a b 0). a b a 2b 2 4 2 1 根据题意知。… ,解得a 2 4, b 2 ' a 2 b 2 1 3 3 2 2 故椭圆C 的方程为X y 1. 4 1 3 3 2 ⑵ 容易求得椭圆C 的方程为X y 2 1. 2 当直线I 的斜率不存在时,其方程为x 1,不符合题意; 当直线I 的斜率存在时,设直线I 的方程为y k(x 1). 设 P(X 1,yJ ,Q(X 2, y 2),则 unr uuir uir uur 因为F 1P F 1Q ,所以F 1P FQ 0,即 4分,第2小题满分9分. B 2 uur FQ ,求直线I 的方程? y k(x 由x 2 2 — y 2 1)x 2 4k 2x 2(k 2 1) 0. x X 2 4k 2 2k 2严 2(k 2 2k 1) uir uuir (X 1 1,yJ, FQ (X 2 1小) 1) 得(2k 2 1

解得k 2 1 ,即k 7 所以,a 2. 又由已知,c 1, 所以椭圆C 的离心率e C 1 2 a V 2 2 2 X 2 由 知椭圆C 的方程为—y 1. 设点Q 的坐标为(x,y). ⑵ 当直线l 与x 轴不垂直时,设直线l 的方程为y kx 2 . 因为M,N 在直线I 上,可设点M,N 的坐标分别为(石,心 2),(x 2,kx 2 2),则 2 2 (k 1)x 1x 2 (k 2 1)(x 1 x 2) k 1 7 k 2 1 2 k 2 1 0, 故直线l 的方程为x 7y 1 0 或 x 7y 2. (2013年高考四川卷(理)) 2 已知椭圆 C : x 2 a 2 y 2 1,(a b 0)的两个焦点分别为 R( b 1,0),F 2(1,0),且椭圆 (I )求椭圆 C 的离心率; (n )设过点 A(0,2)的直线 I 与椭圆C 交于M 、N 两点,点Q 是线段MN 上的点,且 1 ,2 2 | AQ|2 | AM | 2 ,求点 Q 的轨迹方程? |AN |2 【答案】解:2a PF 1 PF 2 (1)当直线l 与x 轴垂直时,直线l 与椭圆C 交于 0,1 , 0, 1两点,此时Q 点坐标为 0,2

(完整版)高考圆锥曲线经典真题

高考圆锥曲线经典真题 知识整合: 直线与圆锥曲线联系在一起的综合题在高考中多以高档题、压轴题出现,主要涉及位置关系的判定,弦长问题、最值问题、对称问题、轨迹问题等.突出考查了数形结合、分类讨论、函数与方程、等价转化等数学思想方法,要求考生分析问题和解决问题的能力、计算能力较高,起到了拉开考生“档次”,有利于选拔的功能. 1.(江西卷15)过抛物线22(0)x py p =>的焦点F 作倾角为30o 的直线,与抛物线 分别交于A 、B 两点(A 在y 轴左侧),则 AF FB = .1 3 2 (2008年安徽卷)若过点A(4,0)的直线l 与曲线 22 (2)1x y -+=有公共点,则直线l 的斜率的取值范围为 ( ) A. [3,3] B. (3,3) C. 33[33- D. 33 (,33- 3(2008年海南---宁夏卷)设双曲线22 1916x y -=的右顶点为A,右焦点为F,过点F 平行双曲线的一条渐近线的直线与双曲线交于点B,则三角形AFB 的面积为-___________. 热点考点探究: 考点一:直线与曲线交点问题 例1.已知双曲线C :2x2-y2=2与点P(1,2) (1)求过P(1,2)点的直线l 的斜率取值范围,使l 与C 分别有一个交点,两个交点,没有交点. 解:(1)当直线l 的斜率不存在时,l 的方程为x=1,与曲线C 有一个交点.当l

的斜率存在时,设直线l 的方程为y -2=k(x -1),代入C 的方程,并整理得 (2-k2)x2+2(k2-2k)x -k2+4k -6=0 (*) (ⅰ)当2-k2=0,即k=± 2 时,方程(*)有一个根,l 与C 有一个交点 (ⅱ)当2-k2≠0,即k ≠±2 时 Δ=[2(k2-2k)]2-4(2-k2)(-k2+4k -6)=16(3-2k) ①当Δ=0,即 3-2k=0,k=23 时,方程(*)有一个实根,l 与C 有一个交点. ②当Δ>0,即k <23 ,又 k ≠± 2 ,故当k <- 2 或-2 <k < 2 或 2<k <2 3 时,方程(*)有两不等实根,l 与C 有两个交点. ③当Δ<0,即 k >23 时,方程(*)无解,l 与C 无交点. 综上知:当k=±2,或k=23 ,或 k 不存在时,l 与C 只有一个交点; 当2<k <23 ,或-2<k <2,或k <- 2 时,l 与C 有两个交点; 当 k >23 时,l 与C 没有交点. (2)假设以Q 为中点的弦存在,设为AB ,且A(x1,y1),B(x2,y2),则2x12-y12=2,2x22-y22=2两式相减得:2(x1-x2)(x1+x2)=(y1-y2)(y1+y2) 又∵x1+x2=2,y1+y2=2 ∴2(x1-x2)=y1-y1 即kAB= 2 121x x y y --=2 但渐近线斜率为±2,结合图形知直线 AB 与C 无交点,所以假设不正确,即以 Q 为中点的弦不存在.

圆锥曲线大题专题训练答案和题目

圆锥曲线大题专题训练 1.如图,曲线G 的方程为22(0)y x y =≥.以原点为圆心.以(0)t t >为半径的圆分别 与曲线G 和y 轴的正半轴相交于点A 与点B .直线AB 与x 轴相交于点C . (Ⅰ)求点A 的横坐标a 与点C 的横坐标 c 的关系式 (Ⅱ)设曲线G 上点D 的横坐标为2a +, 求证:直线CD 的斜率为定值. 1.解: (Ⅰ)由题意知,(A a . 因为OA t =,所以2 2 2a a t +=.由于0t > 由点(0)(0)B t C c ,,,的坐标知,直线BC 的方程为 1c t +=. 又因点A 在直线BC 上,故有 1a c +=,将(1)代入上式,得1a c =, 解得2c a =+ (Ⅱ)因为(2D a +,所以直线CD 的斜率为 1CD k = ===-. 所以直线CD 的斜率为定值. 2.设F 是抛物线2 :4G x y =的焦点. (I )过点(04)P -,作抛物线G 的切线,求切线方程; (II )设A B ,为抛物线G 上异于原点的两点,且满足0FA FB =u u u r u u u r g ,延长AF ,BF 分别交抛物线G 于点C D ,,求 四边形ABCD 面积的最小值. 2.解:(I )设切点2 004x Q x ?? ???,.由2x y '=,知抛物线在Q 点处的切线斜率为02x ,故所求切线方程为 2000()42x x y x x -=-. 即2 04 24x x y x =-. 因为点(0)P -4,在切线上. 所以2 044 x -=-,2 016x =,04x =±.所求切线方程为24y x =±-. (II )设11()A x y ,,22()C x y ,. 由题意知,直线AC 的斜率k 存在,由对称性,不妨设0k >.

求圆锥曲线中离心率取值范围方法举例

圆锥曲线中离心率取值范围的求解 范围问题是数学中的一大类问题,在高考试题中占有很大的比重,圆锥曲线中离心率取值范围问题也是高考中解析几何试题的一个倍受青睐的考查点,其求解策略的关键是建立目标的不等式,建立不等式的方法一般有:利用曲线定义,曲线的几何性质,题设指定条件等. 策略一:利用曲线的定义 例1若双曲线22221(0,0)x y a b a b -=>>横坐标为32 a 的点到右焦点的距离大于它到左准线的距离,则双曲线的离心率的取值范围是( ) A.(1,2) B.(2,)+∞ C.(1,5) D.(5,)+∞ 【解析】B 22033352022 a ex a e a a a e e c -=?->+?-->, 2e ∴>或13 e <-(舍去),(2,)e ∴∈+∞. 例2双曲线22 221(0,0)x y a b a b -=>>的右支上存在一点,它到右焦点及左准线的距离相等,则双曲线离心率的取值范围是( ) A. B.)+∞ C.1]+ D.1,)++∞ 【解析】C 222 000(1)(1),a a a ex a x e x a a e a c c c -=+?-=+?+≥- 2111121011a e e e e c e ∴-≤+=+?--≤?≤≤+ 而双曲线的离心率1e >,1],e ∴∈故选C. 【点评】例1、例2均是利用第二定义及焦半径公式列出方程.例1根据题设列出不等式;例 2是根据0x 的范围将等式转化为不等式,从而求解.这种利用、x y 的范围将等式转化为不等式求参数范围的方法是解析几何常用的方法. 策略二:利用曲线的几何性质 例已知12、F F 是椭圆的两个焦点,满足120MF MF =的点M 总在椭圆内部,则椭圆离心率 的取值范围是( ) A.(0,1) B.1(0,]2 C. D. 【解析】C 由题,M 的轨迹为以焦距为直径的圆,由M 总在椭圆内部,知: 2222212c b c b a c e >时M 点有4个在椭圆上;c b =时M 有2个在椭圆上,就是椭圆短轴的两个端点. 例4已知双曲线22 221(0,0)x y a b a b -=>>的右焦点为F ,若过点F 且倾斜角为60的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是( ) A.(1,2] B.(1,2) C.[2,)+∞ D.(2,)+∞

与圆锥曲线有关取值范围与最值问题

与圆锥曲线有关取值围与最值问题 一、利用圆锥曲线定义求最值 . )1,3(,14 5,.122 221的最小值求在双曲线上,为双曲线内一点,点右焦点,的左是双曲线已知AF AP A P y x F F +=- . 19 25)2,2(),0,4(.22 2的最大值和最小值求是椭圆上的动点,内的两个点,是椭圆已知MB MA M y x B A +=+ . )2,3()2(.)2,0()1(. 2.32的最小值,求点和的最小值到抛物线准线的距离之的距离与到点求点为焦点上的一个动点,是抛物线已知PF PA A P P F x y P += .5 3)2,9(1169.42 2值的值最小,并求此最小使,点,在这个双曲线上求一,点的右焦点为已知双曲线MF MA M A F y x +=-

二、单变量最值问题——化为函数最值 .)2(;123),()1(.,,,123)07.(520 200021212 2的面积的最小值求四边形,证明 点的坐标为设,垂足为两点,且的直线交椭圆于过两点,的直线交椭圆于,过的左、右焦点分别为已知椭圆全国ABCD y x y x P P BD AC C A F D B F F F y x <+⊥=+ . 012,,,.62 2 值的面积的最小值与最大,求四边形共线,且与共线,与知轴正半轴上的焦点,已为椭圆在上,四点都在椭圆PMQN MF PF FN MF FQ PF y F y x N M Q P =?=+ .24 3,2tan 12 11. 1)0(1.722 22方程的最小值,并写出椭圆时,求,当)设(的取值范围;,求的夹角为与,向量)若(,且的面积为记△为椭圆上的点,的焦点,为椭圆如图,OQ c c S c OF FQ OF S FQ OF S OFQ Q b a b y a x F ≥==<<=?>>=+θθ

圆锥曲线经典例题及总结(全面实用)

圆锥曲线经典例题及总结 1.圆锥曲线的两定义: 第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。 2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程): (1)椭圆:焦点在x 轴上时12222=+b y a x (0a b >>),焦点在y 轴上时22 22b x a y +=1(0a b >>)。 方程2 2 Ax By C +=表示椭圆的充要条件是什么?(ABC ≠0,且A ,B ,C 同号,A ≠B )。 (2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:22 22b x a y -=1(0,0a b >>)。方程 22Ax By C +=表示双曲线的充要条件是什么?(ABC ≠0,且A ,B 异号)。 (3)抛物线:开口向右时2 2(0)y px p =>,开口向左时2 2(0)y px p =->,开口向上时 22(0)x py p =>,开口向下时22(0)x py p =->。 3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断): (1)椭圆:由x 2 ,y 2 分母的大小决定,焦点在分母大的坐标轴上。 (2)双曲线:由x 2,y 2 项系数的正负决定,焦点在系数为正的坐标轴上; (3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。 提醒:在椭圆中,a 最大,2 2 2 a b c =+,在双曲线中,c 最大,2 2 2 c a b =+。

圆锥曲线中的最值、范围问题

圆锥曲线中的最值、范围问题 圆锥曲线中最值问题的两种类型和两种解法 (1)两种类型 ① 涉及距离、面积的最值以及与之相关的一些问题; ② 求直线或圆锥曲线中几何元素的最值以及这些元素存在最值时确定与之有关的一些 问题. (2)两种解法 ① 几何法,若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来 解决; ② 代数法,若题目的条件和结论能体现一种明确的函数关系, 则可先建立起目标函数, 再求这个函数的最值,最值常用基本不等式法、配方法及导数法求解. [典例](2018武昌调研)已知椭圆的中心在坐标原点, A(2,0), B(0,1)是它的两个顶点, 直线y = kx(k>0)与直线AB 相交于点D ,与椭圆相交于 E , F 两点. (1) 若 ED — = 6I D F ,求 k 的值; (2) 求四边形AEBF 的面积的最大值. [思路演示] 2 解:(1)由题设条件可得,椭圆的方程为 X + y 2= 1,直线AB 的方程为x + 2y — 2= 0. 4 设 D(x o , kx o ), E(X 1, kx 1), F(X 2, kx ?),其中 X 1 由 ED — = 6DF ,得 x 0— x 1= 6(x 2— x 0), 解得k = 2或k = 3. 2 由点D 在直线AB 上,得X o + 2kx 0- 2 = x o =百. 2 1 + 2k 10 7 .1 + 4k 2' 化简,得 24k 2— 25k + 6= 0, y = kx , 由 V y 2= 1 得(1 + 4k 2)x 2= 4, X o = ^(6X 2+ X 1) = 5x 2 = _10_ 7 ;1 +

新课标高考《圆锥曲线》大题专题含答案

新课标高考《圆锥曲线》大题专题含答案

全国高考理科数学试题分类汇编9:圆锥曲线 一、选择题 1 .(2013年高考江西卷(理)) 过点2,0) 引直线l 与曲线2 1y x = +相交于 A,B 两点,O 为坐标原点,当?AOB 的面积取最大值时,直线 l 的斜 率 等 于 ( ) A .y E B B C CD =++3 B .3 C .3± D .32 .(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版)) 双曲线 2 214 x y -=的顶点到其渐近线的距离等于 ( ) A .25 B .4 5 C 25 D 453 .(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版)) 已知中心在原 点的双曲线C 的右焦点为()3,0F ,离心率等于3 2 ,在双曲线C 的方程 是 ( ) A .22 145 x -= B .22 145 x y -= C . 22 125 x y -= D . 22 125 x -=

4 .(2013年高考新课标1(理)) 已知双曲线C : 22 2 21x y a b -=(0,0a b >>)的离心率为52 ,则C 的渐近 线 方 程为 ( ) A .14y x =± B .13 y x =± C . 12 y x =± D .y x =± 5 .(2013年高考湖北卷(理)) 已知04π θ<<,则双曲线 22 122:1 cos sin x y C θθ -=与22 2222 :1sin sin tan y x C θθθ -=的 ( ) A .实轴长相等 B .虚轴长相等 C .焦 距相等 D .离心率相等 6 .(2013年高考四川卷(理)) 抛物线2 4y x =的焦点到双曲线 2 21 3 y x -=的渐近线的距 离 是 ( ) A .12 B .3 2 C .1 D 3

圆锥曲线经典例题及总结(全面实用,你值得拥有!)

圆锥曲线 1.圆锥曲线的两定义: 第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。 2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程): (1)椭圆:焦点在x 轴上时12222=+b y a x (0a b >>),焦点在y 轴上时22 22b x a y +=1(0a b >>)。 方程22 Ax By C +=表示椭圆的充要条件是什么?(ABC ≠0,且A ,B ,C 同号,A ≠B )。 (2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:22 22b x a y -=1(0,0a b >>)。方程 22Ax By C +=表示双曲线的充要条件是什么?(ABC ≠0,且A ,B 异号)。 (3)抛物线:开口向右时2 2(0)y px p =>,开口向左时2 2(0)y px p =->,开口向上时 22(0)x py p =>,开口向下时22(0)x py p =->。 3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断): (1)椭圆:由x 2 ,y 2 分母的大小决定,焦点在分母大的坐标轴上。 (2)双曲线:由x 2,y 2 项系数的正负决定,焦点在系数为正的坐标轴上; (3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。 提醒:在椭圆中,a 最大,2 2 2 a b c =+,在双曲线中,c 最大,2 2 2 c a b =+。 4.圆锥曲线的几何性质: (1)椭圆(以122 22=+b y a x (0a b >>)为例):①范围:,a x a b y b -≤≤-≤≤;②焦点:两 个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),四个顶点(,0),(0,)a b ±±,其中长轴长为2a ,短轴长为2b ;④准线:两条准线2a x c =±; ⑤离心率:c e a =,椭圆?01e <<, e 越小,椭圆越圆;e 越大,椭圆越扁。 (2)双曲线(以22 2 21x y a b -=(0,0a b >>)为例):①范围:x a ≤-或,x a y R ≥∈;②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),两个顶点(,0)a ±,其中实轴长为2a ,虚轴长为2b ,特别地,当实轴和虚轴的长相等时,称为等轴双曲线,其方程可设为 22 ,0x y k k -=≠;④准线:两条准线2a x c =±; ⑤离心率:c e a =,双曲线?1e >,等轴双曲线 ?e =e 越小,开口越小,e 越大,开口越大;⑥两条渐近线:b y x a =±。 (3)抛物线(以2 2(0)y px p =>为例):①范围:0,x y R ≥∈;②焦点:一个焦点(,0)2 p ,其中p 的几何意义是:焦点到准线的距离;③对称性:一条对称轴0y =,没有对称中心,只有一个顶点(0,0);

专题圆锥曲线中的最值与范围问题

高三数学专题复习 圆锥曲线中的最值问题和范围的求解策略 最值问题是圆锥曲线中的典型问题,它是教学的重点也是历年高考的热点。解决这类问题不仅要紧紧把握圆锥曲线的定义,而且要善于综合应用代数、平几、三角等相关知识。以下从五个方面予以阐述。 一.求距离的最值或范围: 例1.设AB 为抛物线y=x 2 的一条弦,若AB=4,则AB 的中点M 到直线y+1=0的最短距离为 , 解析:抛物线y=x 2 的焦点为F (0 , 41),准线为y=41-,过A 、B 、M 准线y=4 1-的垂线,垂足分别是A 1、B 1、M 1,则所求的距离d=MM 1+43=21(AA 1+BB 1) +43=21(AF+BF) +4 3 ≥ 21AB+43=21×4+43=411,当且仅当弦AB 过焦点F 时,d 取最小值4 11, 评注:灵活运用抛物线的定义和性质,结合平面几何的相关知识,使解题简洁明快,得心应手。 练习: 1、(2008海南、宁夏理)已知点P 在抛物线y 2 = 4x 上,那么点P 到点Q (2,-1)的距离与点P 到抛物线焦点距离之 和取得最小值时,点P 的坐标为( A )A. ( 4 1 ,-1) B. ( 4 1 ,1) C. (1,2) D. (1,-2) 2、(2008安徽文)设椭圆22 22:1(0)x y C a b a b +=>>其相应于焦点(2,0)F 的准线方程为4x =. (Ⅰ)求椭圆C 的方程; (Ⅱ)已知过点1(2,0)F -倾斜角为θ的直线交椭圆C 于,A B 两点,求证:242 2AB COS θ =-; (Ⅲ)过点1(2,0)F -作两条互相垂直的直线分别交椭圆C 于,A B 和,D E ,求AB DE + 的最小值 解 :(1)由题意得: 2 22 2222 8 44c a a c b a b c =???=??=??=????=+?∴ ∴椭圆C 的方程为22 184 x y += (2)方法一: 由(1)知1(2,0)F -是椭圆C 的左焦点,离心率2 2 e = 设l 为椭圆的左准线。则:4l x =- 作1111,AA l A BB l B ⊥⊥于于,l 与x 轴交于点H(如图) ∵点A 在椭圆上 112 2AF AA =∴ 112 (cos )2 FH AF θ=+ 12 2cos 2AF θ=+ 12cos AF θ =-∴ 同理 12cos BF θ =+

圆锥曲线历年高考题附答案解析

数学圆锥曲线测试高考题 一、选择题: 1. (2006全国II )已知双曲线x 2a 2-y 2 b 2 =1的一条渐近线方程为y =43x ,则双曲线的离心率为( ) (A )53 (B )43 (C )54 (D )32 2. (2006全国II )已知△ABC 的顶点B 、C 在椭圆 x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( ) (A )2 3 (B )6 (C )4 3 (D )12 3.(2006全国卷I )抛物线2y x =-上的点到直线4380x y +-=距离的最小值是( ) A .43 B .75 C .85 D .3 4.(2006高考卷)已知双曲线2239x y -=,则双曲线右支上的点P 到右焦点的距离与点P 到右准线的距离之比等于( ) B. C. 2 D. 4 5.(2006卷)方程22520x x -+=的两个根可分别作为( ) A.一椭圆和一双曲线的离心率 B.两抛物线的离心率 C.一椭圆和一抛物线的离心率 D.两椭圆的离心率 6.(2006卷)曲线221(6)106x y m m m +=<--与曲线22 1(59)59x y m m m +=<<--的( ) (A)焦距相等 (B) 离心率相等 (C)焦点相同 (D)准线相同 7.(2006高考卷)若抛物线2 2y px =的焦点与椭圆22 162x y +=的右焦点重合,则p 的值为( ) A .2- B .2 C .4- D .4 8.(2006卷)直线2y k =与曲线2222 918k x y k x += (,)k R ∈≠且k 0的公共点的个数为( ) (A)1 (B)2 (C)3 (D)4 二、填空题: 9. (2006全国卷I )双曲线221mx y +=的虚轴长是实轴长的2倍,则m = 。 10. (2006卷)已知在平面直角坐标系xOy 中的一个椭圆,它的中心在原点,左焦点为(F ,右顶点为(2,0)D ,设

圆锥曲线综合试题(全部大题目)含答案

1. 平面上一点向二次曲线作切线得两切点,连结两切点的线段我们称切点弦.设过抛物线 22x py =外一点00(,)P x y 的任一直线与抛物线的两个交点为C 、D ,与抛物线切点弦AB 的交点为Q 。 (1)求证:抛物线切点弦的方程为00()x x p y y =+; (2)求证:112|||| PC PD PQ +=. 2. 已知定点F (1,0),动点P 在y 轴上运动,过点P 作PM 交x 轴于点M ,并延长MP 到点N ,且.||||,0PN PM PF PM ==? (1)动点N 的轨迹方程; (2)线l 与动点N 的轨迹交于A ,B 两点,若304||64,4≤≤-=?AB OB OA 且,求直线l 的斜率k 的取值范围. 3. 如图,椭圆13 4: 2 21=+y x C 的左右顶点分别为A 、B ,P 为双曲线134:222=-y x C 右支上(x 轴上方)一点,连AP 交C 1于C ,连PB 并延长交C 1于D ,且△ACD 与△PCD 的面积 相等,求直线PD 的斜率及直线CD 的倾斜角. 4. 已知点(2,0),(2,0)M N -,动点P 满足条件||||PM PN -=记动点P 的轨迹为W . (Ⅰ)求W 的方程;

(Ⅱ)若,A B 是W 上的不同两点,O 是坐标原点,求OA OB ?的最小值. 5. 已知曲线C 的方程为:kx 2+(4-k )y 2=k +1,(k ∈R) (Ⅰ)若曲线C 是椭圆,求k 的取值范围; (Ⅱ)若曲线C 是双曲线,且有一条渐近线的倾斜角是60°,求此双曲线的方程; (Ⅲ)满足(Ⅱ)的双曲线上是否存在两点P ,Q 关于直线l :y=x -1对称,若存在,求出过P ,Q 的直线方程;若不存在,说明理由。 6. 如图(21)图,M (-2,0)和N (2,0)是平面上的两点,动点P 满足: 6.PM PN += (1)求点P 的轨迹方程; (2)若2 ·1cos PM PN MPN -∠=,求点P 的坐标. 7. 已知F 为椭圆22221x y a b +=(0)a b >>的右焦点,直线l 过点F 且与双曲线 12 2 2=-b y a x 的两条渐进线12,l l 分别交于点,M N ,与椭圆交于点,A B . (I )若3 MON π∠= ,双曲线的焦距为4。求椭圆方程。 (II )若0OM MN ?=(O 为坐标原点),1 3 FA AN =,求椭圆的离心率e 。

(完整版)圆锥曲线经典题目(含答案)

圆锥曲线经典题型 一.选择题(共10小题) 1.直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,则此双曲线离 心率的范围是() A.(1,)B.(,+∞) C.(1,+∞)D.(1,)∪(,+∞)2.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是() A.B.C. D. 3.设F1,F2分别是双曲线(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使得,其中O为坐标原点,且,则该双曲线的离心率为() A.B. C.D. 4.过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D. 5.若双曲线=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相交,则此 双曲线的离心率的取值范围是() A.(2,+∞)B.(1,2) C.(1,)D.(,+∞) 6.已知双曲线C:的右焦点为F,以F为圆心和双曲线 的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()

A.B.C.D.2 7.设点P是双曲线=1(a>0,b>0)上的一点,F1、F2分别是双曲线的 左、右焦点,已知PF1⊥PF2,且|PF1|=2|PF2|,则双曲线的一条渐近线方程是()A.B.C.y=2x D.y=4x 8.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心 率的取值范围是() A.(,+∞) B.(1,)C.(2.+∞)D.(1,2) 9.如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是() A.x2﹣=1 B.﹣=1 C.﹣=1 D.﹣=1 10.已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为() A.B.C.D. 二.填空题(共2小题) 11.过双曲线的左焦点F1作一条l交双曲线左支于P、Q两点,若|PQ|=8,F2是双曲线的右焦点,则△PF2Q的周长是. 12.设F1,F2分别是双曲线的左、右焦点,若双曲线右支上存在一点P,使,O为坐标原点,且,则该双曲线的离心率为. 三.解答题(共4小题)

圆锥曲线练习题附答案

圆锥曲线练习题附答案公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

圆锥曲线 一、填空题 1、对于曲线C ∶1 42 2-+-k y k x =1,给出下面四个命题: ①由线C 不可能表示椭圆; ②当1<k <4时,曲线C 表示椭圆; ③若曲线C 表示双曲线,则k <1或k >4; ④若曲线C 表示焦点在x 轴上的椭圆,则1<k <2 5 其中所有正确命题的序号为_____________. 2、已知椭圆)0(122 22>>=+b a b y a x 的两个焦点分别为21,F F ,点P 在椭圆上, 且满足021=?PF ,2tan 21=∠F PF ,则该椭圆的离心率为 3.若0>m ,点?? ? ??25,m P 在双曲线15422=- y x 上,则点P 到该双曲线左焦点的距离为 . 4、已知圆22:6480C x y x y +--+=.以圆C 与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件的双曲线的标准方程为 . 5、已知点P 是抛物线24y x =上的动点,点P 在y 轴上的射影是M ,点A 的 坐标是(4,a ),则当||a >4时,||||PA PM +的最小值是 . 6. 在ABC 中,7 ,cos 18 AB BC B ==- .若以A ,B 为焦点的椭圆经过点C ,则该椭圆的离心率e = . 7.已知ABC ?的顶点B ()-3,0、C ()3,0,E 、F 分别为AB 、AC 的中点,AB 和AC 边上的中线交于G ,且5|GF |+|GE |=,则点G 的轨迹方程为

8.离心率3 5 = e ,一条准线为x =3的椭圆的标准方程是 . 9.抛物线)0(42<=a ax y 的焦点坐标是_____________; 10将抛物线)0()3(42≠-=+a y a x 按向量v =(4,-3)平移后所得抛物线的焦点坐标为 . 11、抛物线)0(12 <= m x m y 的焦点坐标是 . 12.已知F 1、F 2是椭圆2 2 22)10(a y a x -+=1(5<a <10=的两个焦点,B 是短轴的 一个端点,则△F 1BF 2的面积的最大值是 13.设O 是坐标原点,F 是抛物线)0(22>=p px y 的焦点,A 是抛物线上的一点,与x 轴正向的夹角为60°,则||OA 为 . 14.在ABC △中,AB BC =,7 cos 18 B =- .若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = . 二.解答题 15、已知动点P 与平面上两定点(A B 连线的斜率的积为定值 12 -. (Ⅰ)试求动点P 的轨迹方程C. (Ⅱ)设直线1:+=kx y l 与曲线C 交于M 、N 两点,当|MN |=3 2 4时,求直线l 的方程.

相关主题
文本预览
相关文档 最新文档