当前位置:文档之家› 无感无刷直流电机之电调设计全攻略

无感无刷直流电机之电调设计全攻略

无感无刷直流电机之电调设计全攻略
无感无刷直流电机之电调设计全攻略

无感无刷直流电机之电调设计全攻略

前 言 (1)

1. 无刷直流电机基础知识 (2)

1.1 三个基本定则 (2)

1. 左手定则 (2)

2. 右手定则(安培定则一) (3)

3. 右手螺旋定则(安培定则二) (3)

1.2 内转子无刷直流电机的工作原理 (3)

1. 磁回路分析法 (4)

2. 三相二极内转子电机结构 (5)

3. 三相多绕组多极内转子电机的结构 (7)

1.3外转子无刷直流电机的工作原理 (8)

1. 一般外转子无刷直流电机的结构 (8)

2. 新西达2212外转子电机的结构 (8)

1.4 无刷直流电机转矩的理论分析 (14)

1. 传统的无刷电机绕组结构 (14)

2. 转子磁场的分布情况 (15)

3. 转子的受力分析 (16)

4. 一种近似分析模型 (18)

1.5 换相与调速 (19)

1. 换相基本原理 (19)

2. 新西达2212电机的换相分析 (24)

3. 调速 (28)

2. 无感无刷电调的驱动电路设计 (30)

2.1 电池电压监测电路 (30)

2.2 换相控制电路 (30)

1. 六臂全桥驱动电路原理 (31)

2. 功率场效应管的选择 (33)

2.3 电流检测电路 (45)

2.4 反电势过零检测电路 (49)

2.5 制作你自己的电调线路板 (50)

3. 无感无刷电调的软件设计 (52)

3.1 电流检测 (52)

3.2 定时器延时与PWM信号 (53)

1. 定时器初始化 (54)

2. 定时器T0的溢出中断服务程序 (54)

3. 利用T0延时(毫秒极) (54)

4. 利用T0延时(微秒极) (55)

5. PWM信号的产生 (55)

3.3 过零事件检测与电机换相 (56)

1. BLMC.h中定义的宏 (56)

2. 过零检测与换相代码分析 (59)

3.4 启动算法 (63)

1. 函数Anwerfen启动流程分析 (63)

2. 启动算法机理探究 (65)

3.5 上电时的MOSFET自检 (68)

1. 函数Delay和DelayM (68)

2. 函数MotorTon自检流程分析 (68)

3.6 让你的电机演奏音乐 (70)

3.7 通信模块 (72)

1. PPM解码 (72)

2. TWI总线通信 (74)

3. 串口通信 (74)

4. 指令的收入函数SollwertErmittlung (75)

4. 德国MicroKopter项目BL-Ctrl电调程序主程序代码流程分析(V0.41版本) (77)

5.1 全局变量列表 (78)

5.2 main主函数流程分析 (80)

1. 进入while(1)前的准备工作 (80)

2. while(1)主循环内容分析 (81)

5. 高级话题 (86)

5.1 电机的控制模型 (86)

5.2 四轴上的校正策略 (87)

附录一 (88)

附录二 (89)

附录三 (93)

附录四 (94)

前 言

关注开源四轴项目也有近一年了,前期都以潜水为主,业余时间主要是在啃那些控制和导航的理论书籍。最近开始动手做了,打算先从电调开始,发现真要做起来问题还真是一大堆。所幸有论坛这么好一个交流平台,很多问题其实前人都已经碰到过了,参考前人的经验,让我少走了很多弯路。在此要感谢论坛各位前辈大侠和阿莫的ourdev。:-) 前人种树、后人乘凉,既然受惠于前人,怎好意思独享,当然也应该帮助一下新入门的开发者。由于四轴分论坛的帖子数量已经很多了,光搜一下无刷电机和电调也有近百来篇帖子,次序和深浅程度不一,想要看完并完全理解这些帖子对新人来说不啻是一个艰巨的任务。而且很多帖子的发帖时间都比较久远了,回帖提问也未必能得到原作者的回答。我写这篇文档的目的,就在于做一个整理和汇编,把很多零散的、前人已解答过的问题分门别类整理出来,并添加一些自己制作电调时的经验和总结。

在参考一些关于无刷电机驱动的书籍和帖子的时候,发现高手或是大师好像都比较惜字如金,一些问题往往点到为止或者一笔带过,有些看似简单的问题会让像我这样的电调DIYer 困惑很久。所以在本文行文时,笔者力图把问题以大白话的形式说明白,如果各位有觉得哪里看得不明不白的,可以回帖提出(时限一个月,呵呵),我会修改文档以试图将问题讲清楚。如果有些问题我无法回答,我会老老实实跟你说我也没搞清楚,还要请高手来解惑啊。如果发现我哪些内容讲错了,也请不吝指正。

最后还将附上德国MK项目电调代码(V0.41版本)的全代码分析,这件事可能以前没人做过吧,我就来揭晓一下答案好了^ ^。同时我也参照他的程序,自己写了一个可供mega8和mega32使用的电调驱动程序,将一些结构作了优化,所有变量名都从德语改成了英语,添加了比较完备的中文注释,通讯规约也做了一些整理和改动,并附带上位机调试程序。也希望大家能多多把自己的一些心得体会和经验拿出来,建立好一个基础的知识平台后,可以让后来的开发者少走很多初期摸索的弯路,而专心于攻克我们未能解决的难点。衷心希望后来的开发者能站在我们的肩膀上,走得比我们更远。

timegate墨鸢

2010年7月

1. 无刷直流电机基础知识

关于无刷直流电机的驱动的基本原理,很多教材和文档都已经讲得很清楚了,特别是坛

上网友提供的:《无刷直流(BLDC )电机基础》(MicroChip 公司,编号AN885)、《Brushless

DC Motors Made Easy 》(Freescale 公司,编号PZ104)和Atmel 公司的编号为:A VR194、

A VR491、A VR492的几篇文档,都写得很不错,深入浅出,很适合入门的初学者学习。稍

后我会给出它们的下载链接(见附录一)。

不过一上来就让读者自己去看文档,貌似不太厚道,那我这里还是辛苦一下,把各篇文

档的精华部分抽取出来,重新组织一下,给大家一个关于无刷电机的比较概要的认识。

1.1 三个基本定则

首先要搞清楚一件基本的事情:我们只是来搞电调的,而不是去设计电机的。所以不要

被一些无刷电机教材一上来那些林林总总的关于什么磁路、磁导率、气隙饱和、去磁曲线等

基础知识给吓倒,那些东西是给设计电机的人看的,对我们这种仅仅以弄出一个电调为目标

的人来讲,意义不大(不过你如果打算以此为职业的话,这些东西还是建议深入学习一下的)。

对于入门开发者来说,只需要记牢三个基本定则:左手定则,右手定则,右手螺旋定则。

1. 左手定则

位于磁场中的载流导体,会受到力的作用,力的

方向可按左手定则确定,如右图所示:伸开左手,使

大拇指和其余四指垂直,把手心面向N 极,四指顺

着电流的方向,那么大拇指所指方向就是载流导体在

磁场中的受力方向。

力的大小为:sin F BIL θ=

其中:B 为磁感应强度(单位T ),I 为电流大小(单

位A ),为导体有效长度(单位m ),为力的大

L F

图1-1 左手定则

小(单位N ),θ为:和B I 的夹角。

2. 右手定则(安培定则一)

在磁场中运动的导体因切割磁力线会感生出

电动势,其示意见右图:

E 其大小为:sin E vBL θ=

其中:v 为导体的运动速度(单位m/s ),B 为磁感

应强度(单位T ),L 为导体长度(单位m )

,θ为:B 和的夹角。

L

图1-2 右手定则

3. 右手螺旋定则(安培定则二)

用右手握住通电螺线管,使四指弯曲与电流方

向一致,那么大拇指所指的那一端就是通电螺旋管

的N 极。

图1-3 右手螺旋定则

1.2 内转子无刷直流电机的工作原理

一般的教材或是文档,介绍的多半都是内转子无刷电机的工作原理。按理说,资料已经

这么多了,学习起来不应该有什么困难,其实不然。以笔者亲身经历,无刷电机的资料看得

多了,反而会产生困惑。究其原因,是因为它们分别采用了两种不同的方法进行描述,同样

是比较简单的三相二极无刷电机,这两种描述方法所采用的绕组结构其实是不太一样的。

1.磁回路分析法

在MicroChip, Freescale和Atmel三家公司的文档中,都不约而同地采用了这种方法来说明无刷电机的工作原理,其原理说明见图1-4:

图1-4 (摘自Freescale PZ104文档)

在图1-4中,当两头的线圈通上电流时,根据右手螺旋定则,会产生方向指向右的外加磁感应强度B(如粗箭头方向所示),而中间的转子会尽量使自己内部的磁力线方向与外磁力线方向保持一致,以形成一个最短闭合磁力线回路,这样内转子就会按顺时针方向旋转了。

顺便提一句,有网友曾经提到说不太理解这句话的含义:“当转子磁场方向与外部磁场方向垂直时,转子所受的转动力矩最大”。注意这里说的是“力矩”最大,而不是“力”最大。诚然,在转子磁场与外部磁场方向一致时,转子所受磁力最大,但此时转子呈水平状态,力臂为0,当然也就不会转动了。

当转子转到水平位置时,虽然不再受到转动力矩的作用,但由于惯性原因,还会继续顺时针转动,这时若改变两头螺线管的电流方向,如下图所示,转子就会继续顺时针向前转动,见图1-5所示:

图1-5 (摘自Freescale PZ104文档)

如此不断改变两头螺线管的电流方向,内转子就会不停转起来了。改变电流方向的这一动作,就叫做换相(commutation)。注意:何时换相只与转子的位置有关,而与转速无关。

这一点是初学者比较容易混淆的概念,应当注意。

以上是最简单的两相两级无刷电机的工作原理,仅仅用来说明概念用,下面我们来看比较普遍的三相两极无刷电机的构造。

2. 三相二极内转子电机结构

一般来说,定子的三相绕组有星形联结方式和三角联结方式,而“三相星形联结的二二导通方式”最为常用,故这里只对这种情况作详细分析。

图1-6 (修改自Freescale PZ104文档)

图1-6显示了定子绕组的联结方式(转子未画出),三个绕组通过中心的连接点以“Y”型的方式被联结在一起。整个电机就引出三根线A, B, C。当它们之间两两通电时,有6种情况,分别是AB, AC, BC, BA, CA, CB,图1-7(a)~(f)分别描述了这6种情况下每个通电线圈产生的磁感应强度的方向(红、兰色表示)和两个线圈的合成磁感应强度方向(绿色表示)。

在图(a)中,AB相通电,中间的转子(图中未画出)会尽量往绿色箭头方向对齐,当转子到达图(a)中绿色箭头位置时,外线圈换相,改成AC相通电,这时转子会继续运动,并尽量往图(b)中的绿色箭头处对齐,当转子到达图(b)中箭头位置时,外线圈再次换相,改成BC 相通电,再往后以此类推。当外线圈完成6次换相后,内转子正好旋转一周(即36)。再

次重申一下:何时换相只与转子位置有关,而与转速无关。

图1-8中画出了换相前和换相后合成磁场方向的比较与转子位置的变化。一般来说,换相时,转子应该处于,比与新的合成磁力线方向垂直的位置不到一点的钝角位置,这样可以使产生最大的转矩的垂直位置正好处于本次通电的中间时刻。

(a) AB 相通电情形 (b) AC 相通电情形

(c) BC 相通电情形 (d) BA 相通电情形

(e) CA 相通电情形 (f) CB 相通电情形

图1-7 星形绕组两两通电的6种情形

图1-8 换相前和换相后的情形(摘自Freescale PZ104文档)

3. 三相多绕组多极内转子电机的结构

搞清了最简单的三相三绕组二极电机,我们再来看一个复杂点的,图1-9(a)是一个三相九绕组六极(三对极)内转子电机,它的绕组连线方式见图1-9(b)。从图(b)可见,其三相绕组也是在中间点连接在一起的,也属于星形联结方式。一般而言,电机的绕组数量都和永磁极的数量是不一致的(比如用9绕组6极,而不是6绕组6极),这样是为了防止定子的齿与转子的磁钢相吸而对齐,产生类似步进电机的效果,此种情况下转矩会产生很大波动。

(a)电机定子与转子结构(b) 绕组联结方式(摘自5iMX论坛)

图1-9 三相9绕组3对极内转子无刷直流电机结构

其二二导通时的6种通电情况读者可自行分析,原则是转子的N极与通电绕组的S极有对齐的运动趋势,而转子的S极与通电绕组的N极有对齐的运动趋势。为便于读者理解,图1-10给出了一个对齐的运动趋势的图例。

图1-10 某2相通电时的转子磁极和定子磁极对齐运动的最终位置

1.3外转子无刷直流电机的工作原理

看完了内转子无刷直流电机的结构,我们来看外转子的。其区别就在于,外转子电机将

原来处于中心位置的磁钢做成一片片,贴到了外壳上,电机运行时,是整个外壳在转,而中

间的线圈定子不动。外转子无刷直流电机较内转子来说,转子的转动惯量要大很多(因为转

子的主要质量都集中在外壳上),所以转速较内转子电机要慢,通常KV 值在几百到几千之

间,用在航模上可以直接驱动螺旋桨,而省去了机械减速机构。

噢,这里顺便解释一下KV 值的含义,网上其实一搜一大把啦,这里为了文档的完整性,

也啰嗦一下吧。无刷电机KV 值定义为:转速/V ,意思为输入电压每增加1伏特,无刷电机

空转转速增加的转速值。比如说,标称值为1000KV 的外转子无刷电机,在11伏的电压条

件下,最大空载转速即为:11rpm (rpm 的含义是:转/分钟)

。 100011000×= 同系列同外形尺寸的无刷电机,根据绕线匝数的多少,会表现出不同的KV 特性。绕线

匝数多的,KV 值低,最高输出电流小,扭力大;绕线匝数少的,KV 值高,最高输出电流

大,扭力小。

1. 一般外转子无刷直流电机的结构

下面是一些常见的外转子无刷电机的结构:

图1-11 一些常见外转子无刷电机结构(摘自Freescale PZ104文档)

其分析方法也和内转子电机类似,这里再唐僧一遍吧:转子永磁体的N 极与定子绕组

的S 极有对齐的趋势,转子永磁体的S 极与定子绕组的N 极有对齐的趋势。

2. 新西达2212外转子电机的结构

坛子里做四轴用得比较多的是新西达的KV 值为1000的XXD2212电机。其结构为

12绕组14极(即7对极),见图1-12。其结构如下:定子绕组固定在底座上,转轴和外壳固定在一起形成转子,插入定子中间的轴承。由于各种资料上很少有描述12绕组的线圈是怎么绕的,为此笔者专门破坏性地拆解了一个XXD2212电机(见图1-13),终于搞清楚了其绕组是怎么绕的,看在损失一个电机的份上,阿莫也该给个酷字,呵呵。图1-14画出了XXD2212电机的绕组绕法,跟我们想象的都不太一样,是吧?(注意圆心处三根导线是互相绝缘的,并不像普通星形方式是连在一起的)

图1-12 XXD2212电机结构(摘自网友liuliu443所发帖子)

图1-13 被笔者拆解的定子绕组

图1-14 XXD2212电机的绕线方式(注意圆心处三根线是互相绝缘的)图1-15详细画出了6种两相通电的情形,可以看出,尽管绕组和磁极的数量可以有许多种变化,但从电调控制的角度看,其通电次序其实是相同的,也就是说,不管外转子还是内转子电机,都遵循AB->AC->BC->BA->CA->CB的顺序进行通电换相。当然,如果你想让电机反转的话,可以按倒过来的次序通电:)。要说明一下的是,由于每根引出线同时接入两个绕组,所以电流是分两路走的。这里为使问题尽量简单化,下面几个图中只画出了主要

一路的电流方向,还有一路电流未画出,另一路电流的具体情况放到1.5小节再作详细分析。

(a) AB相通电情形

(b) AC相通电情形

图1-15 XXD2212电机两两通电的6种情形

(c) BC相通电情形

(d) BA相通电情形

图1-15 XXD2212电机两两通电的6种情形(续)

(e) CA相通电情形

(f) CB相通电情形

图1-15 XXD2212电机两两通电的6种情形(续)

1.4 无刷直流电机转矩的理论分析

我们再回到最简单的三相二极内转子电机。以上的磁回路分析方法对于一般的感性认识来讲是足够了,但如果你翻阅的无刷电机的教材书够多的话,你会发现,几乎没有哪本教材是采用上面这种结构来说明无刷电机的工作原理的,这些教材中用的都是类似图1-17所示的结构来研究无刷电机的。究其原因,是因为上两小节示例的那种电机绕组结构,从严格上来说,并不是传统的经典的工业用无刷直流电机的结构,而是属于一种叫做“开关磁阻电机”(Switched Reluctance Motor)结构的变种(原始的开关磁阻电机的转子上是没有永磁体的)。由于它的控制方式很类似于无刷直流电机的6步二二导通控制方式,所以直接把它当无刷直流电机来用也没问题。真正的工业用无刷直流电机的定子绕组实物图见图1-18。顺便说一句,笔者遍查还施水阁中关于无刷电机的典藏古今中外约十来本(80年代的书应该算古了吧,呵呵),愣是没找到专门分析上两节那种电机结构和原理的著作,憾甚。如果哪位高人知道有相关的文献,还请指点一二,不胜感激。

1. 传统的无刷电机绕组结构

其线圈形状见图1-16,线圈包围整个转子。电机三相绕组示意图见图1-17。

图1-16 磁场中的线圈

图1-17 电机绕组和转子抽象示意图

图1-17中为简略示意起见,每相只画出了一个线圈,其实每相应该有N匝线圈。其绕组联结方式为:A’、B’、C’端通过星形联结在一起,A、B、C为电机的三根引出线。其实物外形见图1-18。(注意辨别图1-18和图1-12的绕组形式的区别)

图1-18 无刷直流电机定子绕组结构(摘自松晓的blog)

2. 转子磁场的分布情况

绕组形式变成这个样子后,就可以用“左手定则”来分析啦。不过在此之前,还要搞清楚一件事情,就是在这种绕组结构下,磁感应强度B的分布情况。

关于这个问题,在夏长亮的《无刷直流电机控制系统》一书中,开门见山地就讲清楚了,在此小赞一下,呵呵。现将这段论述摘抄如下:(不要问偶要电子书,没有,本书是从市立图书馆借的,各位想省点银子的也可以去图书馆借:)

“目前,国内外对无刷直流电机(Brushless DC motor, BLDCM)定义一般有两种:一种定义认为只有梯形波/方波无刷直流电机才可以被称为无刷直流电机,而正弦波无刷电机则被称为永磁同步电机(permanent magnet synchronous motor, PMSM);另一种定义则认为梯形波/方波无刷电机和正弦波无刷电机都是无刷直流电机。迄今为止,还没有一个公认的统一标准对无刷直流电机进行准确的分类和定义。本书将采用第一种定义,把具有串励直流电机启动特性和并励直流电机调速特性的梯形波/方波无刷直流电机称为无刷直流电机。”

好了,现在来解释一下上面说的“梯形波/方波”是什么意思。图1-19展示了内转子磁极的磁感应强度B的分布情况。我们预定义磁感应强度方向向外为正,从图中可以看出,在0°的时候,处于正反方向交界处,磁感应强度为零,然后开始线性增加,在A点时达到最大,然后一直保持恒定值不变,直到B点开始下降,到180°的时候下降到零。然后开始负向增长,在C点处达到负值最大,然后保持恒定负值不变,直到D点强度开始减弱,到

0°时又回到零。至于A点到底在几度的位置,不同的电机不一样。如果A非常接近0°的位置,上升和下降直线就会非常陡峭,“梯形波”就变成了“方波”。根据右手定则E=BLV 的公式,在匀速转动下,各绕组产生的反电动势波形也呈梯形波/方波。

图1-19 转子磁感应强度分布情况

与此类似,上文提到的另一种“正弦波”电机就是一种磁感应强度呈正弦波图形分布的直流无刷电机,也叫永磁同步电机。这种电机的绕组结构和我们的梯形波电机的绕组结构不太相同,进而驱动方式也不太相同,需要用到矢量分析法,由于本文只关注于梯形波的无刷直流电机,故对这种正弦波电机就不展开讨论了。需要研究的朋友可以查看专门文献。

3. 转子的受力分析

同样,我们仿照前面的做法,画出6种通电方式情形下,转子的受力情况,这里只用“左手定则”作一个定性分析。至于定量的计算,我们放到第三章的“启动算法”一小节中讨论。

在下面的图1-20中,除了画出了6种通电情形外,还画出了6个中间过程,这是为了更清楚地说明问题,同时也与下一节将要讨论的换相内容作一个衔接。

在图1-20(a)中,AB相通电,电流处于转子产生的磁场内,根据左手定则,我们判断线圈AA’中的上半部导线A受到一个顺时针方向的电磁力,而AA’的下半部导线A’也受到一个顺时针方向的电磁力。由于线圈绕组在定子上,定子是固定不动的,故根据作用力与反作用力,定子绕组AA’会施加给转子一个逆时针方向的反作用力,转子在这个力的作用下,就转起来了。同理,与AA’的情况类似,BB’也会对转子产生一个逆时针的反作用力。

当转子逆时针转过60°后,到达图1-20(b)的位置,这时线圈BB’已经到达转子磁极的边缘位置了,再转下去就要产生反方向的力了,所以这时就要换相,换成AC相通电,见图1-20(c)。这样,每过60°换相通电,转子就可以一直转下去了。

(a) AB 相通电 (b) 转过60° (c) AC 相通电

(d) 转过60° (e) BC 相通电 (f) 转过60°

(g) BA 相通电 (h) 转过60° (i) CA 相通电

(j) 转过60° (k) CB 相通电 (l) 转过60°

图1-20 转子位置与换相的关系(参考自《电动机的单片机控制》王晓明著)

永磁无刷直流电动机的基本工作原理

永磁无刷直流电动机的基本工作原理 无刷直流电动机由电动机主体和驱动器组成,是一种典型的机电一体化产品。 1. 电动机的定子绕组多做成三相对称星形接法,同三相异步电动机十分相似。电动机的转子上粘有已充磁的永磁体,为了检测电动机转子的极性,在电动机内装有位置传感器。驱动器由功率电子器件和集成电路等构成,其功能是:接受电动机的启动、停止、制动信号,以控制电动机的启动、停止和制动;接受位置传感器信号和正反转信号,用来控制逆变桥各功率管的通断,产生连续转矩;接受速度指令和速度反馈信号,用来控制和调整转速;提供保护和显示等等。 无刷直流电动机的原理简图如图一所示: 永磁无刷直流电动机的基本工作原理 主电路是一个典型的电压型交-直-交电路,逆变器提供等幅等频5-26KHZ调制波的对称交变矩形波。 永磁体N-S交替交换,使位置传感器产生相位差120°的U、V、W方波,结合正/反转信号产生有效的六状态编码信号:101、100、110、010、011、001,通过逻辑组件处理产生T1-T4导通、T1-T6导通、T3-T6导通、T3-T2导通、T5-T2导通、T5-T4导通,也就是说将直流母线电压依次加在A+B-、A+C-、B+C-、B+A-、C+A-、C+B-上,这样转子每转过一对N-S极,T1-T6功率管即按固定组合成六种状态的依次导通。每种状态下,仅有两相绕组通电,依次改变一种状态,定子绕组产生的磁场轴线在空间转动60°电角度,转子跟随定子磁场转动相当于60°电角度空间位置,转子在新位置上,使位置传感器U、V、W按约定产生一组新编码,新的编码又改变了功率管的导通组合,使定子绕组产生的磁场轴再前进60°电角度,如此循环,无刷直流电动机将产生连续转矩,拖动负载作连续旋转。正因为无刷直流电动机的换向是自身产生的,而不是由逆变器强制换向的,所以也称作自控式同步电动机。 2. 无刷直流电动机的位置传感器编码使通电的两相绕组合成磁场轴线位置超前转子磁场轴线位置,所以不论转子的起始位置处在何处,电动机在启动瞬间就会产生足够大的启动转矩,因此转子上不需另设启动绕组。 由于定子磁场轴线可视作同转子轴线垂直,在铁芯不饱和的情况下,产生的平均电磁转矩与绕组电流成正比,这正是他励直流电动机的电流-转矩特性。 电动机的转矩正比于绕组平均电流: Tm=KtIav (N·m) 电动机两相绕组反电势的差正比于电动机的角速度: ELL=Keω (V) 所以电动机绕组中的平均电流为: Iav=(Vm-ELL)/2Ra (A) 其中,Vm=δ·VDC是加在电动机线间电压平均值,VDC是直流母线电压,δ是调制波的占空比,Ra为每相绕组电阻。由此可以得到直流电动机的电磁转矩: Tm=δ·(VDC·Kt/2Ra)-Kt·(Keω/2Ra) Kt、Ke是电动机的结构常数,ω为电动机的角速度(rad/s),所以,在一定的ω时,改变占空比δ,就可以线性地改变电动机的电磁转矩,得到与他励直流电动机电枢电压控制相同的控制特性和机械特性。

直流无刷电机硬件设计文档

硬件电路设计说明书V1 文档版本 1.0 编写人:彭威 编写时间:2015-06-10 部门:研发部 审核人: 审核时间:

1.引言 1.1编写目的 本文档是无刷直流电机风机盘管电源电路及控制驱动电路的硬件设计说明文档,它详细描述了整个硬件模块的设计原理,其主要目的是为无刷直流电机控制驱动电路的原理图设计提供依据,并作为 PCB 设计、软件驱动设计和上层应用软件设计的参考和设计指导。 1.2产品背景 1.3参考资料 Datasheet:Kinetis KE02 Datasheet:MKE02Z16VLC2 Datasheet:MKE02Z64M20SF0RM Datasheet:FSB50760SFT Datasheet:TNY266 Datasheet:FAN7527 2.硬件电路概述 2.1电源部分 电源部分主要功能是提供400V直流电供给电机,另外提供15V直流电给电机驱动芯片供电。采用反激式开关电源设计。 2.1.1总体方案

设计一款 100W驱动开关电源。给定电源具体参数如下: (1)输入电压:AC 85V~265V (2)输入频率:50Hz (3)工作温度:-20℃~+70℃ (4)输出电压/电流:400V/0.25A (5)转换效率:≧85% (6)功率因数:≧90% (7)输出电压精度:±5% 系统整体框架如下 如图所示为电源的整体架构框图,主要目的是在输入的85~265V、50Hz交流电下,输出稳定的恒压电机驱动直流电。由图可知,电源电路主要包括了前级保护电路模块、差模共模滤波模块、整流模块、功率因数校正模块、DC/DC模块。其中EMI滤波电路能够抑制自身和电源线产生的电磁污染,功率因数校正电路采用Boost有源功率因数

无刷直流电动机毕业设计绪论

无刷直流电动机 一、简介: 一种用电子换向的小功率直流电动机。又称无换向器电动机、无整流子直流电动机。它是用半导体逆变器取代一般直流电动机中的机械换向器,构成没有换向器的直流电动机。这种电机结构简单,运行可靠,没有火花,电磁噪声低,广泛应用于现代生产设备、仪器仪表、计算机外围设备和高级家用电器。 同步电动机的定子绕组多做成三相对称星形接法,同三相异步电动机十分相似。而转子上粘有已充磁的永磁体,为了检测电动机转子的极性,在电动机内装有位置传感器。驱动器由功率电子器件和集成电路等构成,其功能是:接受电动机的启动、停止、制动信号,以控制电动机的启动、停止和制动;接受位置传感器信号和正反转信号,用来控制逆变桥各功率管的通断,产生连续转矩;接受速度指令和速度反馈信号,用来控制和调整转速;提供保护和显示等等。无刷电动 机结构如图1。 图1无刷直流电动机结构图 二、特点(优点及意义): 1、全面替代直流电机调速、全面替代变频器+变频电机调速、全面替代异步电机+减速机调速; 2、可以低速大功率运行,可以省去减速机直接驱动大的负载;3 3、具有传统直流电机的所有优点,同时又取消了碳刷、滑环结构; 4、转矩特性优异,中、低速转矩性能好,启动转矩大,启动电流小; 5、无级调速,调速范围广,过载能力强; 6、体积小、重量轻、出力大; 7、软启软停、制动特性好,可省去原有的机械制动或电磁制动装置; 8、效率高,电机本身没有励磁损耗和碳刷损耗,消除了多级减速耗,综合节电率可达20%~60%,仅节电一项一年可收回购置成本;

9、可靠性高,稳定性好,适应性强,维修与保养简单;10、耐颠簸震 动,噪音低,震动小,运转平滑,寿命长;11、没有无线电干扰,不产生火花,特别适合爆炸性场所,有防爆型;12、根据需要可选梯形波磁场电机和正旋波磁场电机。i 三、发展历程: 无刷电动机的诞生标志是1955年美国D.Harrison等人首次申请了用晶体管换相电路代替机械电刷的专利。而电子换相的无刷直流电动机真正进入实用阶段,是在1978年的MAC经典无刷直流电动机及其驱动器的推出。之后,国际上对无刷直流电动机进行了深入的研究,先后研制成方波无刷电机和正弦波直流无刷电机。20多年以来,随着永磁新材料、微电子技术、自动控制技术以及电力电子技术特别是大功率开关器件的发展,无刷电动机得到了长足的发展。无刷直流电动机已经不是专指具有电子换相的直流电机,而是泛指具有有刷直流电动机外部特性的电子换相电机。 直流电动机以其优良的转矩特性在运动控制领域得到了广泛的应用,但普通的直流电动机由于需要机械换相和电刷,可靠性差,需要经常维护;换相时产生电磁干扰,噪声大,影响了直流电动机在控制系统中的进一步应用。为了克服机械换相带来的缺点,以电子换相取代机械换相的无刷电机应运而生。1955年美国D.Harrison等人首次申请了用晶体管换相电路代替机械电刷的专利,标志着现代无刷电动机的诞生。而电子换相的无刷直流电动机真正进入实用阶段,是在1978年的MAC经典无刷直流电动机及其驱动器的推出。之后,国际上对无刷直流电动机进行了深入的研究,先后研制成方波无刷电机和正弦波直流无刷电机。20多年以来,随着永磁新材料、微电子技术、自动控制技术以及电力电子技术特别是大功率开关器件的发展,无刷电动机得到了长足的发展。无刷直流电动机已经不是专指具有电子换相的直流电机,而是泛指具有有刷直流电动机外部特性的电子换相电机。ii 四、国内外无刷电机的发展现状: 1、市场:我国无刷直流电机的研制开发起于70年代初期,主要是为我国自行研制的军事装备和宇航技术发展而配套。由于需要量少,只需由某些科研单位试制提供就能满足要求。经过20多年的发展,虽然在新产品开发方面缩短了与国际先进水平的差距,但由于无刷电机产品是总和了电机、微电子、控制、计算机等技术于一身的高技术产品,受到了我国基础工业落后的制约,因此无论在产量、品种、质量及应用上与国际先进水平差距甚大。目前,国内研制的单位虽然不少,但能有一定批量的单位却屈指可数。当今日本、德国、台湾是无刷电机主要生产国和地区,日本的年产量超过8000万台,其中约50%出口海外,德国年产量约3000万台,台湾主要生产较低档次无刷电机,年产量超过1000万台。iii 2、技术:几乎所有的无刷电动机产品都是为特定用途设计制造的。试图生产一种通用系列无刷电动机来适应千变万化的市场需求,是不可能的。各公司设计制造各种特殊结构、特定用途的无刷直流电动机,在设计、结构和工艺新技术方面不断的革新,以适应不同整机市场的需求。例如: ①永磁材料技术:适应不同性能参数永磁材料,瓦型、环型表面粘接结构和

无刷电机工作及控制原理(图解)

无刷电机工作及控制原理(图解) 左手定则,这个就是电机转动受力分析得基础,简单说就就是磁场中得载流导体,会受到力得作用。 让磁感线穿过手掌正面,手指方向为电流方向,大拇指方向为产生磁力得方向,我相信喜欢玩模型得人都还有一定物理基础得哈哈.

让磁感线穿过掌心,大拇指方向为运动方向,手指方向为产生得电动势方向。为什么要讲感生电动势呢?不知道大家有没有类似得经历,把电机得三相线合在一起,用手去转动电机会发现阻力非常大,这就就是因为在转动电机过程中产生了感生电动势,从而产生电流,磁场中电流流过导体又会产生与转动方向相反得力,大家就会感觉转动有很大得阻力。不信可以试试. 三相线分开,电机可以轻松转动 三相线合并,电机转动阻力非常大 右手螺旋定则,用右手握住通电螺线管,使四指弯曲与电流方向一致,那么大拇指所指得那一端就就是通电螺旋管得N极。

状态1 当两头得线圈通上电流时,根据右手螺旋定则,会产生方向指向右得外加磁感应强度B(如粗箭头方向所示),而中间得转子会尽量使自己内部得磁感线方向与外磁感线方向保持一致,以形成一个最短闭合磁力线回路,这样内转子就会按顺时针方向旋转了。 当转子磁场方向与外部磁场方向垂直时,转子所受得转动力矩最大.注意这里说得就是“力矩”最大,而不就是“力”最大。诚然,在转子磁场与外部磁场方向一致时,转子所受磁力最大,但此时转子呈水平状态,力臂为0,当然也就不会转动了。补充一句,力矩就是力与力臂得乘积。其中一个为零,乘积就为零了. 当转子转到水平位置时,虽然不再受到转动力矩得作用,但由于惯性原因,还会继续顺时针转动,这时若改变两头螺线管得电流方向,如下图所示,转子就会继续顺时针向前转动, 状态2 如此不断改变两头螺线管得电流方向,内转子就会不停转起来了。改变电流方向得这一动作,就叫做换相。补充一句:何时换相只与转子得位置有关,而与其她任何量无直接关系。 第二部分:三相二极内转子电机 一般来说,定子得三相绕组有星形联结方式与三角联结方式,而“三相星形联结得二二导通方式”最为常用,这里就用该模型来做个简单分析。

无刷直流电机的组成及工作原理

无刷直流电机的组成及工作原理 2.1 引言 直流无刷电动机一般由电子换相电路、转子位置检测电路和电动机本体三部分组成,电子换相电路一般由控制部分和驱动部分组成,而对转子位置的检测一般用位置传感器来完成。工作时,控制器根据位置传感器测得的电机转子位置有序的触发驱动电路中的各个功率管,进行有序换流,以驱动直流电动机。下文从无刷直流电动机的三个部分对其发展进行分析。 2.2 无刷直流电机的组成 2.2.1 电动机本体 无刷直流电动机在电磁结构上和有刷直流电动机基本一样,但它的电枢绕组放在定子上,转子采用的重量、简化了结构、提高了性能,使其可*性得以提高。无刷电动机的发展与永磁材料的发展是分不开的,磁性材料的发展过程基本上经历了以下几个发展阶段:铝镍钴,铁氧体磁性材料,钕铁硼(NdFeB)。钕铁硼有高磁能积,它的出现引起了磁性材料的一场革命。第三代钕铁硼永磁材料的应用,进一步减少了电机的用铜量,促使无刷电机向高效率、小型化、节能的方向发展。 目前,为提高电动机的功率密度,出现了横向磁场永磁电机,其定子齿槽与电枢线圈在空间位置上相互垂直,电机中的主磁通沿电机轴向流通,这种结构提高了气隙磁密,能够提供比传统电机大得多的输出转矩。该类型电机正处于研究开发阶段。 2.2.2 电子换相电路 控制电路:无刷直流电动机通过控制驱动电路中的功率开关器件,来控制电机的转速、转向、转矩以及保护电机,包括过流、过压、过热等保护。控制电路最初采用模拟电路,控制比较简单。如果将电路数字化,许多硬件工作可以直接由软件完成,可以减少硬件电路,提高其可靠性,同时可以提高控制电路抗干扰的能力,因而控制电路由模拟电路发展到数字电路。 驱动电路:驱动电路输出电功率,驱动电动机的电枢绕组,并受控于控制电路。驱动电路由大功率开关器件组成。正是由于晶闸管的出现,直流电动机才从有刷实现到无刷的飞跃。但由于晶闸管是只具备控制接通,而无自关断能力的半控性开关器件,其开关频率较低,不能满足无刷直流电动机性能的进一步提高。随着电力电子技术的飞速发展,出现了全控型的功率开关器件,其中有可关断晶体管(GTO)、电力场效应晶体管(MOSFET)、金属栅双极性晶体管IGBT 模块、集成门极换流晶闸管(IGCT)及近年新开发的电子注入增强栅晶体管(IEGT)。随着这些功率器件性能的不断提高,相应的无刷电动机的驱动电路也获得了飞速发展。目前,全控型开关器件正在逐渐取代线路复杂、体积庞大、功能指标低的普通晶闸管,驱动电路已从线性放大状态转换为脉宽调制的开关状态,相应的电路组成也由功率管分立电路转成模块化集成电路,为驱动电路实现智能化、高频化、小型化创造了条件。 2.2.3 转子位置检测电路

无刷直流电机控制系统的设计

1引言无刷直流电机最本质的特征是没有机械换向器和电刷所构成的机械接触式换向机构。现在,无刷直流电机定义有俩种:一种是方波/梯形波直流电机才可以被称为无刷直流电机,而正弦波直流电机则被认为是永磁同步电机。另一种是方波/梯形波直流电机和正弦波直流电机都是无刷直流电机。国际电器制造业协会在1987年将无刷直流电机定义为“一种转子为永磁体,带转子位置信号,通过电子换相控制的自同步旋转电机”,其换相电路可以是独立的或集成于电机本体上的。本次设计采用第一种定义,把具有方波/梯形波无刷直流电机称为无刷直流电机。从20世纪90年代开始,由于人们生活水平的不断提高和现代化生产、办公自动化的发展,家用电器、工业机器人等设备都向着高效率化、小型化及高智能化发展,电机作为设备的重要组成部分,必须具有精度高、速度快、效率高等优点,因此无刷直流电机的应用也发展迅速[1]。 1.1 无刷直流电机的发展概况 无刷直流电动机是由有刷直流电动机的基础上发展过来的。 19世纪40年代,第一台直流电动机研制成功,经过70多年不断的发展,直流电机进入成熟阶段,并且运用广泛。 1955年,美国的D.Harrison申请了用晶体管换相线路代替有刷直流电动机的机械电刷的专利,形成了现代无刷直流电动机的雏形。 在20世纪60年代初,霍尔元件等位置传感器和电子换向线路的发现,标志着真正的无刷直流电机的出现。 20世纪70年代初,德国人Blaschke提出矢量控制理论,无刷直流电机的性能控制水平得到进一步的提高,极大地推动了电机在高性能领域的应用。 1987年,在北京举办的德国金属加工设备展览会上,西门子和博世两公司展出了永磁自同步伺服系统和驱动器,引起了我国有关学者的注意,自此我国开始了研制和开发电机控制系统和驱动的热潮。目前,我国无刷直流电机的系列产品越来越多,形成了生产规模。 无刷直流电动机的发展主要取决于电子电力技术的发展,无刷直流电机发展的初期,由于大功率开关器件的发展处于初级阶段,性能差,价格贵,而且受永磁材料和驱动控制技术的约束,这让无刷直流电动机问世以后的很长一段时间内,都停

自制电调原理说明

无位置传感器直流无刷电机原理 位置传感器的直流无刷电机的换向主要靠位置传感器检测转子的位置,确 定功率开关器件的导通顺序来实现的,由于安装位置传感器增大了电机的体积, 同时安装位置传感器的位置精度要求比较高,带来组装的难度。 研究过程中发现,利用电子线路替代位置传感器检测电机在运行过程中产 生的反电动势来确定电机转子的位置,实现换向。从而出现了无位置传感器的 直流无刷电机,其原理框图如图3.1所示。 武汉理工大学硕士学位论文 图2-1无位置传感器无刷直流电机原理图 无位置传感器无刷直流电机(BLDCM)具有无换向火花、无无线电干扰、寿 命长、运行可靠、维护简便等特点,而且不必为一般无刷直流电机所必须的位 置传感器带来的对电机体积、成本、制造工艺的较高要求和抗干扰性差问题而 担忧,因此应用前景广阔。 由图2-1无刷直流电动机的运行原理图可知,当电机在运行

过程中,总有 一相绕组没有导通,此时可以在该相绕组的端口检测到该绕组产生反电动势, 该反电动势60度的电角度是连续的,由于电机的规格,制造工艺的差别,导致 相同电角度的反电动势值是不同,如要通过检测反电动势的数值来确定转子的 位置难度极大。因此必须找到该反电动势与转子位置的关系,才能确定转子的 位置。 由于BLDCM的气隙磁场、反电势、以及电流波型是非正弦的,因此采用 直交轴坐标变化不是很有效的分析方法。通常直接利用电机本身的相变量来建 立数学模型。假设三相绕组完全对称,磁路不饱和,不计涡流和磁滞损耗,忽 略齿槽相应,则三相绕组的电压平衡方程则可以表示为:根据电压方程得电机的等效电路图,如图2.2所示:

2.3.2反电势法电机控制的原理 无刷直流电机中,受定子绕组产生的合成磁场的作用,转子沿着一定的方 向转动。电机定子上放有电枢绕组,因此,转子一旦旋转,就会在空间形成导 体切割磁力线的情况,根据电磁感应定律可知,导体切割磁力线会在导体中产 生感应电热。所以,在转子旋转的时候就会在定子绕组中产生感应电势,即运 动电势,一般称为反电动势或反电势哺1。· 对于稀土永磁无刷直流电机,其气隙磁场波形可以为方波,也可以是梯形 波或正弦波,与永磁体形状、电机磁路结构和磁钢充磁等有关,由此把无刷直 流电机分为方波电机和正弦波电机。对于径向充磁结构,稀土永磁体直接面对 均匀气隙,由于稀土永磁体的取向性好,所以可以方便的获得具有较好方波形 状的气隙磁场,对于方波气隙磁场的电机,当定子绕组采用集中整距绕组,即 每极每槽数q=l时,定子绕组中感应的电势为梯形波,如图加

无刷直流永磁电动机设计流程和实例

无刷直流永磁电动机设计实例 一. 主要技术指标 1. 额定功率:W 30P N = 2. 额定电压:V U N 48=,直流 3. 额定电流:A I N 1< 3. 额定转速:m in /10000r n N = 4. 工作状态:短期运行 5. 设计方式:按方波设计 6. 外形尺寸:m 065.0036.0?φ 二. 主要尺寸的确定 1. 预取效率63.0='η、 2. 计算功率i P ' 直流电动机 W P K P N N m i 48.4063 .030 85.0'=?= = η,按陈世坤书。 长期运行 N i P P ?'' += 'ηη321 短期运行 N i P P ?'' += 'η η431 3. 预取线负荷m A A s /11000'= 4. 预取气隙磁感应强度T B 55.0'=δ 5. 预取计算极弧系数8.0=i α 6. 预取长径比(L/D )λ′=2

7.计算电枢内径 m n B A P D N s i i i 233 11037.110000 255.0110008.048 .401.61.6-?=?????=''''='λαδ 根据计算电枢内径取电枢内径值m D i 21104.1-?= 8. 气隙长度m 3107.0-?=δ 9. 电枢外径m D 211095.2-?= 10. 极对数p=1 11. 计算电枢铁芯长 m D L i 221108.2104.12--?=??='='λ 根据计算电枢铁芯长取电枢铁芯长L= m 2108.2-? 12. 极距 m p D i 22 1 102.22 104.114.32--?=??==πτ 13. 输入永磁体轴向长m L L m 2108.2-?== 三.定子结构 1. 齿数 Z=6 2. 齿距 m z D t i 22 1 10733.06 104.114.3--?=??==π 3. 槽形选择 梯形口扇形槽,见下图。 4. 预估齿宽: m K B tB b Fe t t 2210294.096 .043.155 .010733.0--?=???==δ ,t B 可由 设计者经验得1.43T ,t b 由工艺取m 210295.0-? 5. 预估轭高: m B K B a K lB h j Fe i Fe j j 211110323.056 .196.0255 .08.02.222-?=????=≈Φ= δδτ

直流无刷电动机及其调速控制

直流无刷电动机及其调速控制 1.直流无刷电动机的发展概况与应用 有刷直流电动机从19世纪40年代出现以来,以其优良的转矩控制特性,在相当长的一段时间内一直在运动控制领域占据主导地位。但是,有机械接触电刷-换向器一直是电流电机的一个致命弱点,它降低了系统的可靠性,限制了其在很多场合中的使用。为了取代有刷直流电动机的机械换向装置,人们进行了长期的探索。早在1917年,Bolgior就提出了用整流管代替有刷直流电动机的机械电刷,从而诞生了无刷直流电机的基本思想。 1955年美国的D.Harrison等首次申请了用晶体管换相线路代替有刷直流电动机的机械电刷的专利,标志着现代无刷直流电动机的诞生。无刷直流电动机的发展在很大程度上取决于电力电子技术的进步,在无刷直流电动机发展的早期,由于当时大功率开关器件仅处于初级发展阶段,可靠性差,价格昂贵,加上永磁材料和驱动控制技术水平的制约,使得无刷直流电动机自发明以后的一个相当长的时间内,性能都不理想,只能停留在实验室阶段,无法推广使用。1970年以后,随着电力半导体工业的飞速发展,许多新型的全控型半导体功率器件(如GTR、MOSFET、IGBT等)相继问世,加之高磁能积永磁材料(如SmCo、NsFeB)陆续出现,这些均为无刷直流电动机广泛应用奠定了坚实的基础。在1978年汉诺威贸易博览会上,前联邦德国的MANNESMANN公司正式推出了MAC无刷直流电动机及其驱动器,引起了世界各国的关注,随即在国际上掀起了研制和生产无刷直流系统的热潮,这业标志着无刷直流电动机走向实用阶段。 随着现代永磁材料和相关电子元器件的性能不断提高,价格不断下降,无刷电动机的到了快速发展,并被广泛应用于各个领域,例如,在数控机床、工业机器人以及医疗器械、仪器仪表、化工、轻纺机械和家用电器等小功率场合,计算

直流无刷电机本体设计解读

电机与拖动基础 课程设计报告 设计题目: 学号: 指导教师: 信息与电气工程学院 二零一六年七月

直流无刷电机本体设计 1. 设计任务 (1) 额定功率 80N P W = (2) 额定电压310N U V ≤ (3) 电动机运行时额定转速 1000/min N n r = (4) 发电机运行时空载转速max 6000/min n r = (5) 最大允许过载倍数 2.5λ= (6) 耐冲击能力21500/m a m s = (7) 机壳外径42D mm ≤ 设计内容: 1. 根据给定的技术指标,计算电机基本尺寸,包括:定子铁心外径、定子铁心内径、铁心长度等。 2. 磁路计算,包括极对选择、磁钢选型、磁钢厚度、气隙长度等方面计算。 3. 定子绕组计算,包括定子绕组形式、定子槽数、绕组节距等计算。 2. 理论与计算过程 2.1 直流无刷电机的基本组成环节 直流无刷电动机的结构原理如图2-1-1所示。它主要由电机本体、位置传感器和电子开关线路三部分组成。电机本体在结构上与永磁同步电动机相似,但没有笼型绕组和其他起动装置。其定子绕组一般制成多相(三相、四相、五相不等),转子由永久磁钢按一定极对数(2p=2,4,……)组成。图中的电机本体为三相电机。三相定子绕组分别与电子开关线路中相应的功率开关器件连接,位置传感器的跟踪转子与电动机转轴相连接。 当定子绕组的某一相通电时,该电流与转子永久磁钢的磁极所产生的磁场相互作用而产生转矩,驱动转子旋转,再由位置传感器将转子磁钢位置变换成电信号,去控制电子开关线路,从而使定子各相绕组按一定次序导通,定子相电流随转子位置的变化而按一定的次序换相。由于电子开关线路的导通次序是与转子转角同步的,因而起到了机械换向器的换向作用。 因此,所谓直流无刷电机,就其基本结构而言,可以认为是一台由电子开关线路、永磁式同步电机以及位置传感器三者组成的“电动机系统”。其原理框图如图2-1-2所示。

无刷电机之无感方案控制难点解析

无刷电机之无感方案控制难点解析 无刷无感控制在实际应用中极为广泛,人们对它的研究也尤为以久,它的控制难点主要有两点:第一,电机的启动;第二,转子位置的检测。 对于高压无感方案来讲,除了软件上的难点之外,硬件设计也不容忽视,如硬件设计稍有不当,会导致整个控制板的干扰很大,从而加大了整个方案成功的难度。 以下我们主要针对低压的无感方案进行讨论,对于低压的无感方案来讲,市面上的硬件设计都大同小异,检测转子的位置的方式也都几乎都采用反电动势检测法。 1、为什么无感方案电机的启动如此困难? 对于无刷电机来讲,电机的运转是靠电子开关控制换相,那么想要电机正常高效的运转,就必须要知道转子的位置之后,才能正常换相,问题来了,电机没有传感器,也没有转起来,所以转子的位置就不得而知了,所以无感的启动就要自转启动,先让电机以一定的速率自转,在电机自动的过程中,我们通过检测反电动势来得知转子的位置,从而得到正确的换相的相位。 电机的自启动说起来简单做起来难,本人在调试众多无感方案的过程中,总结出以下几点经验供参考: (1)、首先是自转,自转一定要让电机运转顺畅,不能打抖,同时也不能造成大电流。这是启动成功的非常关键的一步。具体如何达到这个效果,就要各位在调试的过程中调节PWM占空比以及换相时间的长短了。 (2)、启动步数不能太少,也不要过多,一般十来步就够了,等电机运行十来步后开始检测反电动势,当检测到正确的反电动势后这时候电机就正常运转起来了。 2、如何检测反电动势 检测反电动势的方法有两种,第一是用单片机内部AD采样反电动势信号来进行比较,第二是用比较器直接比较。这两种方法思路都是一样,但依个人的经验来看,用比较器的方案更可靠,性能更好,特别是电机转速要求非常高时,用AD采样方法几乎是行不通的。 虽然用比较器方案更有优势,可为何在市面上用AD采样的方式也非常常见?这个主要是因为产品成本的问题。用比较器方案做,要不在外部加一个比较器IC,不仅增加成本,同时也增大PCB 的布板空间,其二就是找一个内部带AD的单片机,而这种单片机相对来讲通常价格偏高一些。下图为检测反电动势的电路参考图:

无刷直流电机控制系统仿真-毕业设计

毕业论文 课题名称无刷直流电机双闭环PI控制系统仿真 系部 专业 班级 学号 姓名 指导教师

摘要 本设计基于MATLAB/SIMULINK环境,利用其自带模块,编写S-函数程序,建立无刷直流电机的闭环控制系统模型。此系统采用转速-电流PI双闭环控制策略。其中,转速环为控制外环,使用PI控制算法;电流环为控制内环,采用滞环比较PWM控制方式,使得实际电流能跟踪参考电流。在分析了无刷直流电机的物理特性之后,可以建立其数学模型,将它与控制系统数学模型结合,就可以实现电机控制。将仿真结果与理论分析对比之后,可以看到本控制系统具有良好的控制效果。 关键词:无刷直流电机;双闭环控制系统;MATLAB/Simulink;PI控制 Abstract

based on MATLAB/SIMULINK environment, using the automatic module and writing S - function program establish a model of the closed loop control system of brushless dc motor. This system USES PI speed - current double closed-loop control strategy. Among them, the speed loop as the outer ring to use PI control algorithm; Current loop to control the inner ring, using the hysteresis PWM control mode, makes the actual current can track reference current. Physical properties after the analysis of the brushless dc motor, can establish its mathematical model, combined with control system mathematical model, it can achieve motor control. After compare the simulation results and theoretical analysis, you can see this control system has good control effect. Keywords: Brushless DC Motor; double-loop control system; MATLAB/Simulink; PI control

无刷直流永磁电动机设计流程和实例

无刷直流永磁电动机设计实例 一. 主要技术指标 1. 额定功率:W 30P N = 2. 额定电压:V U N 48=,直流 3. 额定电流:A I N 1< 3. 额定转速:m in /10000r n N = 4. 工作状态:短期运行 5. 设计方式:按方波设计 6. 外形尺寸:m 065.0036.0?φ 二. 主要尺寸的确定 1. 预取效率63.0='η、 2. 计算功率i P ' 直流电动机 W P K P N N m i 48.4063 .030 85.0'=?= = η,按陈世坤书。 长期运行 N i P P ?'' += 'ηη321 短期运行 N i P P ?'' += 'η η431 3. 预取线负荷m A A s /11000'= 4. 预取气隙磁感应强度T B 55.0'=δ 5. 预取计算极弧系数8.0=i α 6. 预取长径比(L/D )λ′=2

7.计算电枢内径 m n B A P D N s i i i 233 11037.110000 255.0110008.048 .401.61.6-?=?????=''''='λαδ 根据计算电枢内径取电枢内径值m D i 21104.1-?= 8. 气隙长度m 3107.0-?=δ 9. 电枢外径m D 211095.2-?= 10. 极对数p=1 11. 计算电枢铁芯长 m D L i 221108.2104.12--?=??='='λ 根据计算电枢铁芯长取电枢铁芯长L= m 2108.2-? 12. 极距 m p D i 22 1 102.22 104.114.32--?=??==πτ 13. 输入永磁体轴向长m L L m 2108.2-?== 三.定子结构 1. 齿数 Z=6 2. 齿距 m z D t i 22 1 10733.06 104.114.3--?=??==π 3. 槽形选择 梯形口扇形槽,见下图。 4. 预估齿宽: m K B tB b Fe t t 2210294.096 .043.155 .010733.0--?=???==δ ,t B 可由 设计者经验得1.43T ,t b 由工艺取m 210295.0-? 5. 预估轭高: m B K B a K lB h j Fe i Fe j j 211110323.056 .196.0255 .08.02.222-?=????=≈Φ= δδτ

无刷直流电机软件的设计

4.3 控制器软件设计 软件设计是控制系统最重要的一个组成部分,软件设计的好坏直接关系着整个控制系统性能的优良,控制系统的软件设计一定要具备实时性、可靠性和易维护性,对此,选择一款简单、方便的开发环境对于系统软件的整体优化以及提高整个系统的开发效率有很大的影响。目前支持STM 32系列控制芯片且应用比较广泛的主要有IAR EWARM和KEIL MDK这两个集成开发环境,本文采用的开发环境是KEIL MDK,它是ARM 公司推出的嵌入式微控制器开发软件,集成了业界领先的Vision 4开发平台,具有良好的性能,是ARM开发工具中的最好的选择,适合于不同层次的开发人员使用,尤其是它与我们经常使用的51单片机开发环境Keil C51的整体布局和使用方法类似,只有一些地方不同,操作起来比较熟练,很容易上手,极大的减小了开发人员的使用难度,缩短了开发周期,提高了开发效率,因此这款KEIL MDK得到了很多人的认可。 STM 32的软件开发主要开发方式有2种,就是基于寄存器的开发和基于库函数的开发,其中基于寄存器的开发方式就更51单片机的开发差不多,它是通过直接操作芯片内部的各个寄存器来达到控制芯片的目地,这种方式较直观,程序运行占用的资源少,但对于STM 32这种寄存器数目非常多的芯片来说,采用寄存器的开发方式会减慢开发速度,还让程序可读性降低。而基于库函数的开发方式则是对寄存器的封装,它向下处理与寄存器直接相关的配置,向上为用户提供配置寄存器的接口,这种方式大大降低了使用STM 32的条件,不仅提高了开发效率,而且程序还具有很好的可读性和移植性,因此本文采用的是基于库函数的开发方式,编程语言全采用 C 语言。

基于STM32的直流无刷无感电机的控制系统研究

南阳理工学院 本科生毕业设计(论文) 学院:电子与电气工程学院 专业:电子信息工程 学生: 指导教师:薛晓 完成日期2014 年 5 月

南阳理工学院本科生毕业设计(论文) 直流无刷电机的控制系统设计与实现Design of Brushless DC Motor Controller and Implementation 总计: 21 页 表格: 2 个 插图: 27 幅

南阳理工学院本科毕业设计(论文) 直流无刷电机控制系统设计与实现 Design of Brushless DC Motor Controller and Implementation 学院(系):电子与电气工程学院 专业:电子信息工程 学生姓名: 学号: 指导教师(职称):薛晓(讲师) 评阅教师: 完成日期: 南阳理工学院 Nanyang Institute of Technology

直流无刷电机控制系统设计与实现 电子信息工程专业 [摘要]直流无刷无感直流电机具有体积小、调速性能好、重量轻、效率高等优点,目前在很多领域得到了的应用。本课题设计的是无刷无感直流电机的控制,包括无刷直流电机无位置传感器控制系统和无刷无感直流电机的基本结构、工作原理、数学模型等理论进行了分析和论述,为直流电机的控制提供理论依据。用matlab guide设计了上位机界面来进行PID参数的整定。 本课题设计了直流无刷电机的控制系统并进行了调试。用STM32进行控制。实验结果表明设计的转子位置检测可以很好的检测电机的反电势过零点信号,进而保证电机的正确换相和稳定运行。整个系统可以控制无刷无感直流电机顺利启动,并通过滑动变阻器实现电机的调速。 [关键词] 无刷直流电机;电机驱动;换相;反电势 Design of Brushless DC Motor Controller and Implementation Electronic Information Engineering Specialty Abstract:The brushless DC motors have the advantage of small,good debugging performance,low weight,and high efficiency. So it has been widely used now. And this restricts the industrial drive applications,After the attachment with sensorless control. This paper mainly reserches the sensorless control technology for BLDCM,designs and control BLDCM without position sensor. I use MATLAB guide to debug PID parameter. designing a controller of brushless DC motor and do some experiments for this control system. I use the STM32 MCU as the core microprocessor of hardware system.The results of the experiment show that the rotor position detection system can perfectly detect the location of back-EMF zero-crossing signal,and ensuring the correct motor commutation and stable operation.The whole control system can control the brushless DC motor stating smoothly,and use the Sliding rheostat to achieve speed control. Key words:Brushless dc motor;motor drive;commutation; back-emf

永磁无刷直流电机矢量控制系统实现毕业设计(论文)

摘要 电动汽车具有清洁无污染,能源来源多样化,能量效率高等特点,可以解决能源危机和城市交通拥堵等问题。电动车作为国家“十二五规划”重点发展的节能环保项目,获得了广泛应用和发展。无刷直流电机用电子换向装置取代了普通直流电动机的机械换向装置,消除了普通直流电机在换向过程中存在的换向火花,电刷磨损,维护量大,电磁干扰等问题,成为了电动车驱动电机的主流选择。本文将采用基于空间电压矢量脉宽调制技术(SVPWM)的正弦波驱动无刷直流电机的方法来解决方波控制下的无刷直流电机启动抖动明显,动矩脉动大,噪声大等问题。控制系统实现了永磁无刷直流电机在不同负载下低转矩纹波,运动平滑,噪音小,启动迅速,效率高的运行效果。 本文主要研究内容如下: 1.对永磁无刷直流电机数学模型与矢量控制工作原理分析,首先对永磁无刷直流电机本体及数学模型分析,接着对矢量控制坐标变换和空间电压矢量脉宽调制技术的原理和实现进行分析。 2.电动汽车用永磁无刷直流电机矢量控制系统实现,首先分析电动汽车用永磁无刷直流电机矢量控制系统结构,最后将电动汽车用永磁无刷直流电机矢量控制系统用Matlab/Simulink仿真。 关键词:电动汽车,无刷直流电机,矢量控制,SVPWM,Simulink

ABSTRACT Electric Vehicle has no pollution and it can supply with diversify energy sources.Also it’s energy efficient is high.These advantages can solve the problems of global energy crisis increasing and city’s traffic jam. Electric Vehicle is widely developed and applied which is called as a national ‘five years plan’focused on development of energy conservation and environment protection projects.The brushless DC motor with electronic commutator which replaces the normal DC motor mechanical switchback unit emerged,and it eliminates a few problems such as commutation sparks,brush wear,a large amount of maintenance,electromagnetic interference and so on,becoming the mainstream selection of the Electric Vehicle drive motor selection. The paper adopted the sinusoidal current drive based on space vector pulse with modulation(SVPWM) method was proposed to solve the problems of start shaking ,large torque ripple and loud noise of brushless direct current motor under the control of square-wave.The control system enabled BLDCM with different load operating in the condition of the low torque ripple smooth rotation ,low noise and high efficiency . The main studies were as follows: (1)Analyzing the mathematical model of BLDCM and the principle of the vector control.firstly,to analyze the ontology of the BLDCM and mathematical model,then analyze the vector control coordinate transformation and theory of space vector pulse width modulation. (2)Electric vehicles with a permanent magnet brushless dc motor vector control system implementation. Firstly analyze the electric car with a permanent magnet brushless dc motor vector control system structure, finally to the electric car with permanent magnet brushless dc motor vector control system with Matlab/Simulink.

相关主题
文本预览
相关文档 最新文档