当前位置:文档之家› 实验十一 误码率与接收机灵敏度

实验十一 误码率与接收机灵敏度

实验十一 误码率与接收机灵敏度
实验十一 误码率与接收机灵敏度

实验十一误码率与接收机灵敏度

1. 实验目的

掌握误码率和灵敏度的概念,了解误码率估计方法。

2. 仿真模块与系统

仿真系统包括NRZ 光发射机、SSMF、DCF、OOK 光接收机和SignalAnalyzer 模块,仿真系统如图所示:

3. 实验内容与步骤

1、设置SSMF 光纤长度为90km,DCF 模块完全补偿SSMF 色散,使得系统成为功率受限传输系统。

2、设置OOK 光接收机中光探测类型为PIN,响应度为1A/W,IncludeShotNoise 为Yes,Thermal noise 为3.0e-12A/Hz1/2,设置BER 的估计方法为“Gauss”(

与教材上误码率计算模型抑制)。

3、点击Run,系统自动增加光发射机功率,同时计算接收机误码率大小,观察误码率随发射机功率的变化情况,以及接收机输出信号波形和眼图变化,记

录BER=1E-9 时的发射机功率大小。

4. 数据分析与讨论:

由于实验要求DCF模块完全补偿SSMF色散,所以设置的参数如下:

SSMF模块:光纤长度90Km,色散为16e-6 s/m^2;

DCF模块:光纤长度16Km,色散为90e-6 s/m^2。

(1)误码率和光发射机功率的关系图如下:

通过放大可以找出误码率在1e-9时对应的光发射机功率,如下图所示:

结论:通过第一个图可以发现,在功率受限传输系统中,误码率和光发射机功率近似成指数下降的关系,光发射机功率越高,误码率越低。但是由于非线性效应的影响,光发射机功率不可能无限增大。在此系统中,BER=1e-9时,光发射机功率近似等于1.9uw。

(2)光接收机输出波形和眼图的变化

脚本文件如下:

# start value for laser power in W

setstartPower 0.05e-3

# power difference between two iterations in W

setdeltaPower 0.05e-3

# maximum number of iterations

setmaxIterations 40

我们设置的起始点是0.05e-3,步距是0.05e-3,最大步数设置的是40。当光发射机功率为0.05e-3时,光接收机的接收波形和眼图如下:

当光发射机功率为(0.05e-3)*10时,光接收机的接收波形和眼图如下:

当光发射机功率为(0.05e-3)*20时,光接收机的接收波形和眼图如下:

当光发射机功率为(0.05e-3)*30时,光接收机的接收波形和眼图如下:

当光发射机功率为(0.05e-3)*40时,光接收机的接收波形和眼图如下:

分析与结论:对比上面几张图很容易发现,光功率很小的时候,眼图形状杂论无章,上眼皮和下眼皮基本上都重叠在一起,反映到误码率上就是误码率特别大,波形的整体幅值都很小,由于功率小,信噪比小,受噪声的影响大,所以看起来波形很密集。随着光发射机功率的一步步提升,眼图的上下眼皮逐渐分离,体现在误码率上就是误码率逐渐减小,虽然上下眼皮都比较厚,那是因为噪声的影响,但是上下眼皮分的比较开,这也是易于判决的,在波形方面,由于功率逐渐增大,信噪比增大,波形逐渐变得清晰,整体幅值上升。

5. 思考题

请比较分析PIN 和APD 接收机灵敏度的差异。

答:

设置PIN管的暗电流为1e-9 A,这是一般Si材料制作的PIN光电二极管的参数同样也设置APD光电二极管的暗电流1e-9 A(网上查资料一般小于这个值)。得到PIN管的误码率与光发射机功率的曲线。以误码率为1e-9作为判定点,此时,光发射机功率为1.89316uw

APD管的误码率与光发射机功率的曲线:

误码率为1e-9作为判定点,此时,光发射机功率为1.89314uw。

由于灵敏度可以用在达到相同误码率要求下的最小光功率来进行判定,理论上,APD具有雪崩增益,所以它的灵敏度应比PIN的灵敏度高,在此次仿真中,两个管子的误码率差别不大。但是只要给定PIN和APD的参数,就能有所比较。

浅谈接收设备灵敏度

浅谈接收设备灵敏度 灵敏度介绍及计算 接收灵敏度是检验基站接收机接收微弱信号的能力,我们经常谈及的某产品或者某设备的灵敏度,其实是最大可用灵敏度,即指保证接收设备正常工作所需输出信号电平或信噪比。 信噪比(S/N)是电子设备或者电子系统中信号与噪声的比例。信噪比的计量单位是dB,计算公式如下: S/N=10lg(PS/PN)= 20Lg(VS/VN) Ps: 信号的有效功率 Pn:噪声的有效功率 Vs:信号电压的“有效值” Vn:噪声电压的“有效值” 设备的信噪比越高表明它产生的噪声越少。一般来说,信噪比越大,说明混在信号里的噪声越小,声音回放的音质量越高。 信噪比是接收设备的关键指标,也是计算灵敏度的直接参数。灵敏度的计算公式如下,单位是dBm。 Si = -173.93 dBm + 10lgBW + NFSYS + (S/N) BW:信号带宽(Hz) NFSYS:收信机噪声系数 S/N:信噪比 从以上公式可以看出为提高接收机灵敏度也即使Si小,可以从以下方面着手, a)降低系统噪声系数, b)提高信噪比 c)减小信号的带宽 SX1278灵敏度的分析 我们为了计算其灵敏度,只需要测量信噪比和噪声系数即可。在SX1278的数据手册中我们查询到了以下的数据。 不同扩频因子SF下,信道的信噪比:

不同链路增益下的噪声系数 由此我们可以计算出不同带宽的灵敏度: BW=125K参考值: 计算值: RFS_L125_HF RFsensitivity, Long-Range Mode, highest LNA gain, Band1, 125kHz bandwidth SF=6-123dBm SF=7-125dBm SF=8-128dBm SF=9-130dBm SF=10-133dBm SF=11-135dBm SF=12-138dBm BW=250K参考值:

lingo灵敏度分析实例

一个实例理解Lingo的灵敏性分析 线性规划问题的三个重要概念: 最优解就是反应取得最优值的决策变量所对应的向量。 最优基就是最优单纯形表的基本变量所对应的系数矩阵如果其行列式是非奇异的,则该系数矩阵为最优基。 最优值就是最优的目标函数值。 Lingo的灵敏性分析是研究当目标函数的系数和约束右端项在什么范围(此时假定其它系数不变)时,最优基保持不变。灵敏性分析给出的只是最优基保持不变的充分条件,而不一定是必要条件。下面是一道典型的例题。 一奶制品加工厂用牛奶生产A1,A2两种奶制品,1桶牛奶可以在甲车间用12小时加工成3公斤A1,或者在乙车间用8小时加工成4公斤A2。根据市场需求,生产的A1,A2全部能售出,且每公斤A1获利24元,每公斤A2获利16元。现在加工厂每天能得到50桶牛奶的供应,每天正式工人总的劳动时间480小时,并且甲车间每天至多能加工100公斤A1,乙车间的加工能力没有限制。试为该厂制订一个生产计划,使每天获利最大,并进一步讨论以下3个附加问题: 1)若用35元可以买到1桶牛奶,应否作这项投资?若投资,每天最多购买多少桶牛奶?2)若可以聘用临时工人以增加劳动时间,付给临时工人的工资最多是每小时几元? 3)由于市场需求变化,每公斤A1的获利增加到30元,应否改变生产计划? 模型代码: max=72*x1+64*x2; x1+x2<=50; 12*x1+8*x2<=480; 3*x1<=100; 运行求解结果: Objective value: 3360.000 Variable Value Reduced Cost X1 20.00000 0.000000 X2 30.00000 0.000000 Row Slack or Surplus Dual Price 1 3360.000 1.000000 2 0.000000 48.00000 3 0.000000 2.000000 4 40.00000 0.000000 这个线性规划的最优解为x1=20,x2=30,最优值为z=3360,即用20桶牛奶生产A1, 30桶牛奶生产A2,可获最大利润3360元。输出中除了告诉我们问题的最优解和最优值以外,还有许多对分析结果有用的信息。 其中,“Reduced Cost”列出最优单纯形表中判别数所在行的变量的系数,表示当变量有微小变动时, 目标函数的变化率。其中基变量的reduced cost值应为0,对于非基变量Xj, 相应的reduced cost值表示当某个变量Xj 增加一个单位时目标函数减少的量( max型问题)。本例中X1,X2均为基变量。 “Slack or Surplus”给出松驰变量的值,模型第一行表示目标函数,所以第二行对应第一个约束。3个约束条件的右端不妨看作3种“资源”:原料、劳动时间、车间甲的加工能力。输出中Slack or Surplus给出这3种资源在最优解下是否有剩余:原料、劳动时间的剩余均为

光纤通信_实验3实验报告 接收机灵敏度和动态范围测量实验

课程名称:光纤通信 实验名称:实验3 接收机灵敏度和动态范围测量实验 姓名: 班级: 学号: 实验时间: 指导教师: 得分:

一、实验目的 1、了解和掌握光收端机灵敏度的指标要求和测试方法。 2、掌握误码仪的使用方法。 二、实验器材 主控&信号源模块 25 号光收发模块 23 号光功率计&误码仪模块 三、实验原理 光接收机的性能指标主要包括灵敏度和动态范围。 (1)灵敏度 灵敏度是光端机的重要特性指标之一,它表示了光接收机接收微弱信号的能力,是系统设计的重要依据。光接收机灵敏度的定义是:在给定误码率或信噪比条件下,光接收机所能接收的最小平均光功率。在测灵敏度时应注意 3 点: 1、在测量光接收机灵敏度时,首先要确定系统所要求的误码率指标。对不同长度和不同应用的光纤数字通信系统,其误码率指标是不一样的。例如,在短距离光纤数字通信系统中,要求误码率一般为,而在420km 数字段中,则要求每个中继器的误码率为。对同一个光接收机来说,当要求的误码率指标不同时,其接收机的灵敏度也就不同。要求误码率越小,则灵敏度就越低,即要求接收的光功率就越大。因此,必须明确,对某一接收机来说,灵敏度不是一个固定不变的值,它与误码率的要求有关。测量时,首先要确定系统设计要求的误码率,然后再测该误码率条件下的光接收机灵敏度的数值。 2、要注意光接收机灵敏度定义中的光功率是指最小平均光功率,而不是指任何一个在达到系统要求的误码率时所对应的光功率。因此,要特别注意“最小”的概念。所谓“最小”,就是指当接收的光功率只要小于此值,误码率立即增加而达不到要求。应该指出,对某一接收机来说,光功率只要在它的动态范围内变化,都能保证系统要求的误码率。但灵敏度只有一个,即接收机所能接收的最小光功率。 3、灵敏度指的是平均光功率,而不是光脉冲的峰值功率。这样,光接收机的灵敏度就与传输信号的码型有关。码型不同,占空比不同,平均光功率也不同,即灵敏度不同。在光纤数字传输系统中常用的 2 种码型NRZ 码和RZ 码的占空比分别为

GPS接收机灵敏度解析

1 GPS接收机的灵敏度定义 随着GPS应用范围的不断扩展,对GPS接收机的灵敏度要求也越来越高,高灵敏度的接收性能可以令接收机在室内或其它卫星信号较弱的场景下仍然能够实现定位和跟踪,大大拓展了GPS的使用范围。 作为GPS接收机最为重要的性能指标之一,高灵敏度一直是各个GPS接收模块孜孜以求的目标。对于GPS接收系统而言,灵敏度指标包括多个场景下的指标,分别为:跟踪灵敏度、冷启动灵敏度、温启动灵敏度。目前业界已经可以实现跟踪灵敏度在-160dBm以下,冷启动灵敏度和温启动灵敏度也分别可以达到-145dBm和-158dBm以下,其中冷启动灵敏度和温启动灵敏度分别表示的是在两种不同场景下的捕获灵敏度。 GPS接收机首先需要完成对卫星信号的捕捉,完成捕捉所需要的最低信号强度为捕捉灵敏度;在捕捉之后能够维持对卫星信号跟踪所需要的最低信号强度为跟踪灵敏度。 2 GPS接收模块的灵敏度性能分析 从系统级的观点来看,GPS接收机的灵敏度主要由两个方面决定:一是接收机前端整个信号通路的增益及噪声性能,二是基带部分的算法性能。其中,接收机前端决定了接收信号到达基带部分时的信噪比,而基带算法则决定了解调、捕捉、跟踪过程所能容忍的最小信噪比。 2.1接收机前端电路性能对灵敏度的影响 GPS信号是从距地面20000km的LEO(Low Earth Orbit,低轨道卫星)卫星上发送到地面上来的,其L1频段(f L1=1575.42MHz)自由空间衰减为: (1) 按照GPS系统设计指标,L1频段的C/A码信号的发射EIRP(Effective Isotropic Radiated Power,有效通量密度)为P=478.63W(26.8dBw)([1][2]),若大气层衰减为A=2.0dB,则GPS系统L1频段C/A码信号到达地面的强度为: (2) GPS ICD(Interface Control Document,接口控制文档)文件([3])中给出的GPS系统L1频段C/A码信号强度最小值为-160dBw,和上述结果一致。在实际场景中,由于卫星仰角的不同、以及受树木、建筑物等的遮挡,L1频段 C/A信号到达地面的强度可能会低于-160dBw。

实验三灵敏度分析的应用

实验三灵敏度分析的应用 「、实验目的 (1) 掌握数学建模和用软件求解数学模型。 (2) 掌握在软件上分析问题和改进数学模型的方法。二、实验内容 1、(工作安排问题)人员在时段开始上班,连续工作8小时问该公交线路至少需要多少人。 问:要求在第5,6时段不能有多余人员上班,如何排班

在第i时段开始上班的人数为X i 。 模型: min Z 6 X i i 1 X6X160 ; X i X 70 ; X2X3 60 ; X3X4 50 ; X4X5 20 ; X5X6 30 ; X i0

min x1+x2+x3+x4+x5+x6 subject to x6+x1>60 x1+x2>70 x2+x3>60 x3+x4>50 x4+x5=20 x5+x6=30 end gin x1 gin x2 gin x3 gin x4 gin x5 gin x6 问:要求在第5,6时段不能有多余人员上班,如何排班。

保本点 盈亏平衡点又称零利润点、保本点、盈亏临界点、损益分歧点、收益转折点。通常是指全部销售收入等于全部成本时(销售收入线与总成本线的交点)的产量。 以盈亏平衡点的界限,当销售收入高于盈亏平衡点时企业盈利,反之,企业就亏损。盈亏平衡点可以用销售量来表示,即盈亏平衡点的销售量;也可以用销售额来表示,即盈亏平衡点的销售额。 单位售价-单位销售成本=单位毛利 可变成本=0时,保本点=每月固定成本/单位毛利(每月销售量)(不亏不赚) 可变成本0时, 估计的单位可变成本=每月可变成本/每月销售量 保本点=每月固定成本/ (单位毛利-估计的单位可变成本) 产品1销量50;每月固定成本=1000;计算保本点 产品利润贡献率的计算 对产品1的利润贡献率的计算:1,求解模型A的最优解X1,及最优解值Z1 2,增加约束X 0,得到模型B o 3,求解模型B的最优解X2,及最优解值Z24,设X1中分量X1的值为X*,贝V产品1的利润贡献率: Z1 Z2 * X 例如,(4280-3600) /20=34 2、(2)计算产品利润贡献率

接收灵敏度指标分析

接收灵敏度指标分析 本文对接收机设计、测试一些会遇到的问题比如噪声系数对接收机灵敏度的影响;本振频率误差与接收机灵敏度的影响;接收机灵敏度的两种表达方法有何联系等进行了一些较为接近理论的分析。由于本人理论水平的限制一定会有很多理解不正确的地方,不当之处还请大家讨论。 接收灵敏度是检验基站接收机接收微弱信号的能力,它是制约基站上行作用距离的决定性技术指标,也是RCR STD-28协议中,空中接口标准要求测试的技术指标之一。合理地确定接收灵敏度直接地决定了大基站射频收发信机的性能及其可实现性。它是对CSL系统的接收系统总体性能的定量衡量。接收灵敏度是指在确保误比特率(BER)不超过某一特定值的情况下,在用户终端天线端口测得的最小接收功率,这里BER通常取为0.01。接收机的接收灵敏度可以用下列推导得出: 根据噪声系数的定义,输入信噪比应为: (S/N)i=NF(S/N)o 其中NF为噪声系数,输入噪声功率Ni=kTB。当(S/N)o为满足误码率小于10-2时,即噪声门限,则输入信号的功率Si即为接收灵敏度: Si=kTBNFSYS(S/N)o (1) 其中: k:波尔兹曼常数(1.38×10-23 J/K); T:绝对温度(K); B:噪声带宽(Hz); NFSYS:收信机噪声系数; (S/N)o:噪声门限。 k、T为常数,故接收机灵敏度以对数形式表示,则有: Si=-174dBm+10lg B+ NFSYS+(S/N)o (2) 举例来说,对于一个噪声系数为3dB的PHS系统,其带宽计为300KHz,如果系统灵敏度为-107dBm,则该系统的噪声门限为: (S/N)o=174-107-10lg(3×105)-3=9.2 从以上公式可以看出为提高接收机灵敏度也即使Si小,可以从两个方面着手,一是降低系统噪声系数,另一个是使噪声门限尽可能的小。 π/4DQPSK有三种解调方式:基带差分检测、中频差分检测、鉴频器检测。可以证明[1]三种非相干解调方式是等价的,我们以基带差分检测为例进行分析。在具有理想传输特性的稳态高斯信道,基带差分检测的误比特率曲线表示于图1实线[2]所示,由图可以查出在误比特率BER为0.01时,噪声门限(S/N)o为6dB,对于上述例子来说,其噪声门限还有可以再开发的潜力。

接收灵敏度指标分析

接收灵敏度 Rx 是接收( Receive )的简称。无线电波的传输是“有去无回”的,当接收端的信号能量小于标称的接收灵敏度时,接收端将不会接收任何数据,也就是说接收灵敏度是接收端能够接收信号的最小门限。 接收灵敏度仍然用 dBm 表示,通常 WiFi 无线网络设备所标识的接收灵敏度(如 -83dBm) ,是指在 11Mbps 的速率下,误码率( Bit Error Rate )为 10 -5 (99.999%) 的灵敏度水平。 无线网络的接收灵敏度非常重要,例如,发射端的发射能量为 100mW 或 20dBm 时,如果 11Mb 速率下接收灵敏度为- 83dBm ,理论上传输的无遮挡视距为 15Km ,而接收灵敏度为- 77dBm 时,理论上传输的无遮挡视距仅为 15Km 的一半( 7.5Km ),或者相当于发射端能量减少了 1/4 ,既相当于 25mW ,或 14dBm 。 因此在无线网络系统中提高接收端的接收灵敏度,相当于提高发射端的发射能量。 802.11b/g 要求的接收灵敏度如下: 调制方式 OFDM OFDM OFDM OFDM CCK CCK DQPSK DBPSK 传输速率 54 Mb/s 48 Mb/s 36 Mb/s 24 Mb/s 11 Mb/s 5.5 Mb/s 2 Mb/s 1 Mb/s 接收灵敏度 -68 -69 -75 -79 -83 -87 -91 -94 dBm (for BER = 10 -5 ) 从表中看出 802.11b/g 对不同的速率要求不同的接收灵敏度,意味着接收端的信号强度越小,速率越低,直至无法接收。 由此看到,在无线网络系统中,提高接收端的接收灵敏度与提高发射端的发射功率同等重要

GPS的接收机灵敏度测试

接收机灵敏度分析 时间:2010-01-19 13:05:49 来源:作者: 1 GPS 接收机的灵敏度定义 随着GPS 应用范围的不断扩展,业界对GPS 接收机的灵敏度要求也越来越高,高灵敏度的接收性能可以令接收机在室内或其它卫星信号较弱的场景下仍然能够实现定位和跟踪,大大拓展了GPS 的使用范围。作为GPS 接收机最为重要的性能指标之一,高灵敏度一直是各个GPS 接收模块孜孜以求的目标。对于GPS 接收系统而言,灵敏度指标包括多个场景下的指标,分别为:跟踪灵敏度、捕获灵敏度、初始启动灵敏度。目前业界已经可以实现跟踪灵敏度在-160dBm 以下的接收机,同时,初始启动的灵敏度和捕获灵敏度也分别可以达到-142dBm 和-148dBm 以下。GPS 接收机首先需要完成对卫星信号的捕获,完成捕获所需要的最低信号强度为捕获灵敏度;在捕获之后能够维持对卫星信号跟踪所需要的最低信号强度为跟踪灵敏度。为了实现定位,GPS 接收机还需要解调GPS 卫星发送的导航电文,相应的,解调导航电文所需要的最低信号强度为初始启动灵敏度。根据上述定义可知,跟踪灵敏度最高,捕获灵敏度次之,初始启动灵敏度最差。 2 GPS 接收模块的灵敏度性能分析 从系统级的观点来看,GPS 接收机的灵敏度主要由两个方面决定:一是接收机前端整个信号通路的增益及噪声性能,二是基带部分的算法性能。其中,接收机前端决定了接收信号到达基带部分时的信噪比,而基带算法则决定了解调、捕获、跟踪过程所能容忍的最小信噪比。 2.1 接收机前端电路性能对灵敏度的影响 GPS 信号是从距地面20000km 的LEO(Low Earth Orbit,低轨道卫星)卫星上发送到地面上来的,其L1 频段(fL1=1575.42MHz)自由空间衰减为: 按照GPS 系统设计指标,L1 频段的C/A 码信号的发射EIRP(Effective Isotropic RadiatedPower,有效通量密度)为P=478.63W(26.8dBw)([1][2]),若大气层衰减为A=2.0dB,则GPS 系统L1 频段C/A 码信号到达地面的强度为: GPS ICD(Interface Control Document,接口控制文档)文件([3])中给出的GPS 系L1 频段C/A 码信号强度最小值为-160dBw,和上述结果一致。在实际场景中,由于卫星仰角的不同、以及受树木、建筑物等的遮挡,L1 频段C/A 信号到达地面的强度可能会低于-160dBw。 一般GPS 接收机的结构如下图所示: GPS 信号被天线接收下来后,如果天线有源,则经过滤波器和低噪放,再通过电缆接到接收机部分,接收

GPS接收机的灵敏度分析

最近,GPS导航系统已被全球的消费市场广泛采用。GPS不仅被用于专业或商业应用,如军事跟踪、运输车队、科技探索,而且还普遍用于许多消费类产品,如手机和个人数字助理(PDA)设备。 实际上,车载GPS导航系统近几年来已经成为美国、欧洲和日本市场上中高端汽车的标准配备。GPS售后市场同样火爆,因为车载娱乐信息系统,如具备大屏幕液晶显示器的DVD影院将很有可能带有GPS功能。 中国现在是备受关注的最重要的新兴市场之一。2005年底,中国配备GPS的汽车不到10万辆,市场渗透率不及2%,远远低于成熟市场的渗透率。预计从2006年至2009年,中国的GPS市场每年将以至少50%的增长率迅速发展。到2009年,GPS产品总销售额将为大约100亿元人民币。这就是GPS成为RF领域成长最快速的市场的原因所在。 此外,对GPS接收器灵敏度的严格要求(特别在高楼大厦林立的城市地区)也推动了外部低噪放大器(LNA)应用市场的发展。英飞凌科技公司(Infineon Technologies)的BGA615L7是为数不多的、即使在弱信号条件下也能提高接收器灵敏度并兼具优异RF性能的GPS LNA之一。 在电气特征方面,BGA615L7具有18dB的系统增益,系统噪声系数低至0.9dB。它的RF输出在内部进行了50欧姆的匹配,更重要的是,它可以承受基于人体模型的1kV静电放电(ESD)。本文将讨论利用BGA615L7来提高GPS RF系统性能。 GPS系统已得到广泛使用,但GPS应用目前还面临一些技术挑战。GPS信号的强弱取决于信号带宽和噪声基底。但无线环境非常复杂,一方面,GPS噪声基底约为111dBm/MHz且必须被防护,另一方面,来自导航卫星的弱信号易受到树叶、多通道干扰以及天气状况的影响,而且在室内还会被进一步削弱,因此单芯片GPS接收器在如此苛刻条件下,若没有外部LNA几乎无法工作。图1给出了GPS接收机系统的总体框图。 为提高GPS接收器的灵敏度,可以将单片微波集成电路(MMIC)或射频(RF)晶体管用作GPS接收器中的LNA。性能良好的RF晶体管具有非常低的噪声系数和非常高的增益,但为获得最佳RF性能,需要进行非常复杂的RF设计。 MMIC LNA的工作原理与RF晶体管相似,但它采用不同的RF设计方法。与RF晶体管LNA相比,MMIC LNA易于使用且RF设计复杂度低,外部器件数量少,能节省PCB空间并且缩短产品开发周期,因此现在MMIC以RF LNA形式广泛用于许多无线应用。 BGA615L7是一种专门为GPS设计的硅锗(SiGe)LNA MMIC,采用了英飞凌的B7HF技术。BGA615L7能经受基于人体模型的1kV静电放电,增益高达18dB,噪声系数低至0.9dB,输入三阶截止点(IIP3)在1.575GHz 处为-1dBm。此外,BGA615L7还具有预匹配输入、预匹配输出和片上关断功能,而待机电流低至3uA。BGA617L7采用小型P-TSLP-7-1无铅封装,非常适用于便携式设备和PCB空间受限的设备,如手机、PDA 和GPS模块。(以上数据的测试条件为TA=25℃,Vcc=2.8V,频率=1575MHz) 1. 低噪声系数和高增益特性

LINGO软件灵敏度分析灵敏度分析实验报告

. . . .. . . . 2011——2012学年第二学期 合肥学院数理系 实验报告 课程名称:运筹学 实验项目:线性规划的灵敏度分析 实验类别:综合性□设计性□验证性□√ 专业班级: 09级数学与应用数学(1)班 姓名:王秀秀学号: 0907021006 实验地点: 9#503 实验时间: 2012-4-25 指导教师:管梅成绩:

一.实验目的 熟悉LINDO软件的灵敏度分析功能; 二.实验内容 1、求解线性规划 。 12 12 12 12 max z x2x 2x5x12 s.t.x2x8 x,x0 =+ +≥ ? ? +≤ ? ?≥ ? 并对价值系数、右端常量进行灵敏度分析 2、已知某工厂计划生产I,II,III三种产品,各产品需要在A、B、C设备上加工,有关数据如下: 试问答: (1)如何发挥生产能力,使生产盈利最大? (2)若为了增加产量,可租用别工厂设备B,每月可租用60台时,租金1.8万元,租用B设备是否合算?

(3)若另有二种新产品IV 、V ,其中新产品IV 需用设备A 为12台时、B 为5台时、C 为10台时,单位产品盈利2.1千元;新产品V 需用设备A 为4台时、B 为4台时、C 为12台时,单位产品盈利1.87千元。如A 、B 、C 的设备台时不增加,这两种新产品投产在经济上是否划算? (4)对产品工艺重新进行设计,改进结构。改进后生产每件产品I 需用设备A 为9台时、设备B 为12台时、设备C 为4台时,单位产品盈利4.5千元,这时对原计划有何影响? 三. 模型建立 1、数学模型为 12121212 max z x 2x 2x 5x 12 s.t.x 2x 8x ,x 0=++≥?? +≤??≥? 2、设分别生产I ,II ,III 三种产品1x ,2x ,3x 件, (1)数学模型为: 123122123123123 123max z 3x 2x 2.9x 8x 2x 10x 30010x 5x 8x 400s.t.2x 13x 10x 420x x x 0 x ,x x =++++≤?? ++≤?? ++≤??≥???,,,,为整数 (2)数学模型为: 123122123123123123max z 3x 2x 2.9x 188x 2x 10x 30010x 5x 8x 460s.t.2x 13x 10x 420x x x 0x ,x x =++-++≤?? ++≤?? ++≤??≥???,,,,为整数

Zigbee 灵敏度测试具体步骤

Zigbee灵敏度测试具体步骤 宗伟誉、李建宇 2012-12-07

注:文中所使用的测试设备为ESG E4438C,其它信号源在操作上会有些许差别,但是具 体需要设置的步骤是相同的。 对于ZigBee设备的生产厂家而言接收机的灵敏度测试是必不可少的,灵敏度高代表 接收信号的幅度可以更低,能通信的距离更远。 对于信号源而言,测试ZigBee的灵敏度需要满足通信协议的要求。为此Agilent专 门为ZigBee的用户针对芯片厂家的解决方案(如TI的CC2530)开发相应的波形文件, 满足客户的测试需求。 下面介绍具体的操作步骤。 1、导入波形以及Marker文件 如果需要波形文件请联系安捷伦宗伟誉(weiyu_zong@https://www.doczj.com/doc/ad16192824.html,),在得到波形文 件以后,需要用FTP或者USB的方式将波形文件、Marker文件放置到信号源的相应位置。 接下来选择FTP的方式,首先需要对信号源的IP地址进行设置,文中将IP地址设置 为192.168.0,38。设置相应的操作为 Utilities->GPIB/RS232/LAN-> LAN Setup->IP Address-> 192.168.0.38->Proceed with Reconfiguration->Confirm change (Instrument will reboot) 设置好的截图界面如下:

设置PC端的IP地址为192.168.0.1: 配置好的相应的IP地址在IO Library(Agilent Connection Expert)找到相应的信号源。 之后在PC端打开“我的电脑”,在地址栏输入“ftp://192.168.0.38”并按回车确认,之后 可以看到信号源的文件夹如下图所示。

GPS接收机的灵敏度分析

GPS接收机的灵敏度分析 根据GPS 接收机的定位原理和GPS 接收机灵敏度分析接收机性能,发现灵敏度主要与前端电路和基带有着密切关系。据此对GPS 的天线前端电路设计滤波器和低噪声放大器,并对电路的其他方面提出要求,考虑包含处理器和大量逻辑门电路的Cyclo ne 器件,并通过配置嵌入式软核处理设计GPS 接收机。 GPS 系统在海运方面因能够提供连续、高精度的船位,在保证船舶安全经济方面和保证在计划航线上航行有着极为重要的作用。高灵敏度的GPS 接收机要求接收机在卫星信号较弱的场景下仍然能够实现定位和跟踪。GPS 接收系统的灵敏度指标包括跟踪灵敏度、捕获灵敏度和初始启动灵敏度。目前GPS 接收机基本上可以实现跟踪灵敏度在- 160 dBm 以下,同时初始启动的灵敏度和捕获灵敏度也分别可以达到- 142dBm 和- 148 dBm 以下。 1 GPS 接收机灵敏度分析GPS 接收机的灵敏度主要由两个方面决定: 一是接收机前端信号通路的增益及噪声性能,二是基带部分的算法性能。接收机前端决定了接收信号到达基带部分时的信噪比; 基带算法则决定了解调、捕获、跟踪过程需要最小信噪比。 GPS 卫星的导航载波信号是L 频段(L 1 :19cm; L2 :24 cm)的电波信号,现行GPS 工作卫星采用L 波段的三种导航信号,分别为L 1、L2、L3 ,其载波频率分别为:1 575 42、1 227 60 和1 381. 05 MHzGPS 信号是从距地面20 000 km 的卫星发送到地面,其L 1频段(f L1 = 1 575. 42 MHz)自由空间衰减为: 根据GPS 接口控制文档(interface cONt ro ldocument ,ICD)规定GPS 系统L 1频段C/ A 码信号强度的最小值为- 160 dBW,而GPS 系统设计该频段中C/ A 码信号发射的有效通量密度(effect ive isot ro pic radiated pow er,EIRP)为P=478. 63 W(26. 8 dBW)[4],若大气层衰减为2. 0dBW,那么GPS 系统L 1 频段C/ A 码信号到达地面的强度为:

灵敏度分析5种实例

Max 123234z x x x =++ S.t 123412351523234,,0x x x x x x x x x x +++=?? -+-=??≥? 基变量x1=2,x2=3;非基变量x3=x4= x5=0; 由约束条件得基变量用非基变量表示为71112 1345 2121 23455555x x x x x x x x =--+??=+--? 目标函数中基变量用非基变量代入后981 345 14z x x x =---。 (1)当目标函数中系数i c 变化时(只要考虑最优性条件): 设目标函数变为Max 123'34z cx x x =++ 目标函数中基变量用非基变量代入672361111234555555555()()()z c c x c x c x =+---+-- 所以如果72355c -,6155c +,1 2 55c -0≥,则符合最优解判别条件,所以目标函数最优性不变611'z c =+,由723c -,6155c +,1 2 55c -0≥解得最优性不变的c 的范围。 否则,即如果超出该范围,则重新用单纯形法求解。 (2)当约束条件右边常数i b 变化时(先考虑可行性条件看最优基是否变化,再考虑): 设约束条件变为12341235152234,,0x x x x b x x x x x x +++=?? -+-=??≥? 先假设基没有变,所以令非基变量x3=x4= x5=0代入约束条件解得为8 15 8 2 24b b x x ++=??=-? 根据可行性条件,必须12,0x x ≥,解得b 的范围,即在此范围内最优基不变(最优解可能变化,要另外去求)。 否则,即如果超出该范围,则重新用单纯形法求解。 (3)当约束条件中价值系数ij a 变化时(先看可行性条件看最优基是否变化,再考虑最优值): 设约束条件变为11123412351523 234,,0a x x x x x x x x x x +++=?? -+-=??≥?

数学建模五步法与灵敏度分析

灵敏度分析 简介: 研究与分析一个系统(或模型)的状态或输出变化对系统参数或周围条件变化的敏感程度的方法。在最优化方法中经常利用灵敏度分析来研究原始数据不准确或发生变化时最优解的稳定性。通过灵敏度分析还可以决定哪些参数对系统或模型有较大的影响。因此,灵敏度分析几乎在所有的运筹学方法中以及在对各种方案进行评价时都是很重要的。 用途: 主要用于模型检验和推广。简单来说就是改变模型原有的假设条件之后,所得到的结果会发生多大的变化。 举例(建模五步法): 一头猪重200磅,每天增重5磅,饲养每天需花费45美分。猪的市场价格为每磅65美分,但每天下降1美分,求出售猪的最佳时间。 建立数学模型的五个步骤: 1.提出问题 2.选择建模方法 3.推到模型的数学表达式 4.求解模型 5.回答问题 第一步:提出问题 将问题用数学语言表达。例子中包含以下变量:猪的重量w(磅),从现在到出售猪期间经历的时间t(天),t天内饲养猪的花费C(美元),猪的市场价格p(美元/磅),出售生猪所获得的收益R(美元),我们最终要获得的净收益P(美元)。还有一些其他量,如猪的初始重量200磅。 (建议先写显而易见的部分) 猪从200磅按每天5磅增加 (w磅)=(200磅)+(5磅/天)*(t天) 饲养每天花费45美分 (C美元)=(0.45美元/天)*(t天) 价格65美分按每天1美分下降 (p美元/磅)=(0.65美元/磅)-(0.01美元/磅)*(t天) 生猪收益 (R美元)=(p美元/磅)*(w磅) 净利润 (P美元)=(R美元)-(C美元) 用数学语言总结和表达如下: 参数设定: t=时间(天)

w=猪的重量(磅) p=猪的价格(美元/磅) C=饲养t天的花费(美元) R=出售猪的收益(美元) P=净收益(美元) 假设: w=200+5t C=0.45t p=0.65-0.01t R=p*w P=R-C t>=0 目标:求P的最大值 第二步:选择建模方法 本例采用单变量最优化问题或极大—极小化问题 第三步:推导模型的数学表达式子 P=R-C (1) R=p*w (2) C=0.45t (3) 得到R=p*w-0.45t p=0.65-0.01t (4) w=200+5t (5) 得到P=(0.65-0.01t)(200+5t)-0.45t 令y=P是需最大化的目标变量,x=t是自变量,现在我们将问题转化为集合S={x:x>=0}上求函数的最大值: y=f(x)=(0.65-0.01x)(200+5x)-0.45x (1-1) 第四步:求解模型 用第二步中确定的数学方法解出步骤三。例子中,要求(1-1)式中定义的y=f (x)在区间x>=0上求最大值。下图给出了(1-1)的图像和导数(应用几何画板绘制)。在x=8为全局极大值点,此时f(8)=133.20。因此(8,133.20)为f在整个实轴上的全局极大值点,同时也是区间x>=0上的最大值点。 第五步:回答问题 根据第四步,8天后出售生猪的净收益最大,可以获得净收益133.20美元。只要第一步中的假设成立,这一结果正确。

光模块灵敏度

Quidway ME60 高端路由器硬件描述目录 目录 附录C LPU板接口属性速查表...............................................................................................C-1 C.2 千兆以太网电接口属性......................................................................................................C-2 C.1 千兆以太网光接口属性......................................................................................................C-2 C.2 万兆以太网光接口属性......................................................................................................C-3 C.3 OC-48c/STM-16c POS光接口属性...................................................................................C-4 C.4 OC-192c/STM-64c POS光接口属性.................................................................................C-5

lingo灵敏度分析实例

一个实例理解Lingo 的灵敏性分析 线性规划问题的三个重要概念: 最优解就是反应取得最优值的决策变量所对应的向量。最优基就是最优单纯形表的基本变量所对应的系数矩阵如果其行列式是非奇异的,则该系数矩阵为最优基。 最优值就是最优的目标函数值。 Lingo 的灵敏性分析是研究当目标函数的系数和约束右端项在什么范围(此时假定其它系数不变)时,最优基保持不变。灵敏性分析给出的只是最优基保持不变的充分条件,而不一定是必要条件。下面是一道典型的例题。 一奶制品加工厂用牛奶生产A1,A2 两种奶制品,1 桶牛奶可以在甲车间用12小时加工成3 公斤A1,或者在乙车间用8小时加工成4公斤A2。根据市场需求,生产的A1,A2全部能售出,且每公斤A1 获利24 元,每公斤A2 获利16 元。现在加工厂每天能得到50 桶牛奶的供应,每天正式工人总的劳动时间480小时,并且甲车间每天至多能加工100公斤A1,乙 车间的加工能力没有限制。试为该厂制订一个生产计划,使每天获利最大,并进一步讨论以下3 个附加问题: 1 )若用35 元可以买到1 桶牛奶,应否作这项投资?若投资,每天最多购买多少桶牛奶? 2)若可以聘用临时工人以增加劳动时间,付给临时工人的工资最多是每小时几元? 3)由于市场需求变化,每公斤A1 的获利增加到30 元,应否改变生产计划?模型代码: max=72*x1+64*x2; x1+x2<=50; 12*x1+8*x2<=480; 3*x1<=100; 运行求解结果: Objective value: 3360.000 Variable Value Reduced Cost X120.000000.000000 X230.000000.000000 Row Slack or Surplus Dual Price 13360.000 1.000000 0.00000048.00000 2 30.000000 2.000000 440.000000.000000 这个线性规划的最优解为x1=20,x2=30,最优值为z=3360,即用20桶牛奶生产A1, 30 桶牛奶生产A2 ,可获最大利润3360 元。输出中除了告诉我们问题的最优解和最优值以外,还有许多对分析结果有用的信息。 其中,“ Reduced Cost列'出最优单纯形表中判别数所在行的变量的系数,表示当变量有微 小变动时,目标函数的变化率。其中基变量的reduced cost值应为0,对于非基变量Xj,相应的reduced cost值表示当某个变量Xj增加一个单位时目标函数减少的量(max型问题)。本例中X1 , X2 均为基变量。 “ Slack or Surplus给出松驰变量的值,模型第一行表示目标函数,所以第二行对应第一个约束。3个约束条件的右端不妨看作3种“资源”:原料、劳动时间、车间甲的加工能力。输出中Slack or Surplus 给出这3 种资源在最优解下是否有剩余:原料、劳动时间的剩余均为零,车间甲尚余40(公斤)加工能力。 “DUAL PRICE”(对偶价格)表示当对应约束有微小变动时,目标函数的变化率。输出结 果中对应于每一个约束有一个对偶价格。若其数值为p,表示对应约束中不等式右端项若 增加1个单位,目标函数将增加p个单位(max型问题)。显然,如果在最优解处约束正好取等号(也就是“紧约束”,也称为有效约束或起作用约束),对偶价格值才可能不是0。上 例中,第一、二个约束是紧约束”。当“x1+x2<=50'改为“x1+x2<=51"时,目标函数的值为

光接收机总结

光接收机总结 1,普通PIN接收机和APD接收机(直接检测) PIN光电二极管是在普通光电二极管的PN结中加入低掺杂的近乎本征半导体的I区形成的,用以加宽PN结的耗尽层(电子移动快)而减小扩散区(电子扩散慢),使电子空穴能够快速通过耗尽层到达P和N区,大大加快响应速度。PIN的探测效率也很高。 PIN探测器拥有极宽的带宽,商业化的超过了50GHz。PIN探测器的结构也非常简单,如图所示是PIN接受机的基本结构,光信号经过PIN光电探测器后经射频放大器,在通过窄带滤波器滤波,采样后经阈值判决得到数据。 图1 PIN接收机 PIN的噪声来源主要是散弹噪声,但是比APD的噪声小得多。PIN是无增益器件,一个光子至多产生一个电子空穴对,不适合用来检测微弱信号。对于 10Gbps的OOK信号,若BER要达到10^-9,这种接收机要求需要6200PPB[1]。 APD是利用雪崩特性制成的高增益光电二极管,APD接收机原理图与PIN接收机一致。一个光子产生一个电子空穴对后发生碰撞电离效应产生了大量电子空穴对,因此能够探测很微弱的信号。APD接收机灵敏度一般比PIN接收机好5~10dB,对于10Gbps的信号,误码率达到10^-9需要1000PPB[2]。 APD的噪声很大,主要是倍增噪声,而且APD一般需要很高的反向偏压来产生雪崩效应。同时,和PIN相比,APD只有很窄的线性效应(光电流和光功率成比例)。 2,光电倍增管PMT(单光子检测) 光电倍增管是利用外光电效应和二次电子发射效应来探测光信号的电真空器件,由阴极、电子倍增极、打拿极和收集极阳极等构成。阴极和阳极之间加上高压,光子在阴极表面产生光电子,这些光电子被电场加速后通过倍增系统产生大量二次电子,经阳极吸收形成输出电流。 PMT的计数频率可以达到几十MHz,具有高灵敏度和低噪声的特点,同时探测面积大直径可达几英寸、响应速度快上升时间小于1ns、高增益超过以及 宽谱宽等特点。PMT的量子效率受阴极材料和工作频率的影响:在紫外和可见光谱范围中,材料是GaAsP时,量子效率可以达到40%,在近红外区域,材料为GaAsInP时,量子效率小于1%,限制了PMT的使用。 LCTSX的LCT终端的接收机用的是PMT,碲镉汞APD作为备份接收机。 3,APD接收机(单光子检测) APD单光子检测器的原理是让偏置电压大于雪崩电压(即盖革模式),当有光子进入时,会产生uA甚至mA级别的光电流。由于任何光子或噪声都将产生

接收灵敏度影响分析和计算

资料编码产品名称CDMA2000 使用对象内部工程师产品版本 编写部门无线网络系统部资料版本V1.0 CDMA2000-450MHz与GSM-900MHz共站址干 扰分析指导书 拟制:天馈组日期:2002/11/04 审核:孙璟日期:2002年11月 审核:曾淑慧日期:2003/01/07 批准:日期: 华为技术有限公司 版权所有侵权必究

修订记录

目录 第1章引言 (1) 第2章 CDMA2000-450MHz、GSM900MHz基站系统相关指标 (2) 2.1CDMA2000-450MHz 相关指标 (2) 2.2GSM 900MHz相关指标 (3) 2.2.1GSM相关指标 (3) 第3章我司CDMA2000-450MHz、GSM基站的射频前端组成方式和滤波特性 (5) 3.1CDMA2000-450MHz基站前端 (5) 3.2GSM 900MHz 基站前端 (7) 第4章干扰分析 (9) 4.1CDMA2000-450MHz和GSM900之间的干扰分析 (9) 4.1.1CDMA2000-450MHz对GSM900的干扰分析 (9) 4.1.2GSM900对CDMA2000-450MHz的干扰 (10) 第5章噪声(或干扰)对GSM、CDMA2000-450MHz接收灵敏度影响分析和计算 (12) 5.1干扰底噪分析 (12) 第6章天线安装间距的计算 (14) 6.1水平面方向天线隔离度分析 (14) 6.2垂直方向隔离度分析 (16) 6.3天线任意指向增益 (17)

关键词:杂散互调阻塞接收机灵敏度天线隔离度干扰 摘要:本文从杂散、阻塞和互调方面分析了CDMA2000-450MHz与GSM-900MHz共站址的情况下的相互干扰能力,并根据干扰分析给出了共址情况下对基站天线的安装要求。 缩略语清单:PA:功率放大器 LNA:低噪声放大器 TTA:塔顶放大器 参考资料清单:

GPS收机灵敏度分析

GPS 接收机的灵敏度分析 1 GPS 接收机的灵敏度定义 随着GPS 应用范围的不断扩展,业界对GPS 接收机的灵敏度要求也越来越高,高灵敏度的接收性能可以令接收机在室内或其它卫星信号较弱的场景下仍然能够实现定位和跟踪,大大拓展了GPS 的使用范围。作为GPS 接收机最为重要的性能指标之一,高灵敏度一直是各个GPS 接收模块孜孜以求的目标。对于GPS 接收系统而言,灵敏度指标包括多个场景下的指标,分别为:跟踪灵敏度、捕获灵敏度、初始启动灵敏度。目前业界已经可以实现跟踪灵敏度在-160dBm 以下的接收机,同时,初始启动的灵敏度和捕获灵敏度也分别可以达到-142dBm 和-148dBm 以下。GPS 接收机首先需要完成对卫星信号的捕获,完成捕获所需要的最低信号强度为捕获灵敏度;在捕获之后能够维持对卫星信号跟踪所需要的最低信号强度为跟踪灵敏度。为了实现定位,GPS 接收机还需要解调GPS 卫星发送的导航电文,相应的,解调导航电文所需要的最低信号强度为初始启动灵敏度。根据上述定义可知,跟踪灵敏度最高,捕获灵敏度次之,初始启动灵敏度最差。 2 GPS 接收模块的灵敏度性能分析 从系统级的观点来看,GPS 接收机的灵敏度主要由两个方面决定:一是接收机前端整个信号通路的增益及噪声性能,二是基带部分的算法性能。其中,接收机前端决定了接收信号到达基带部分时的信噪比,而基带算法则决定了解调、捕获、跟踪过程所能容忍的最小信噪比。 2.1 接收机前端电路性能对灵敏度的影响 GPS 信号是从距地面20000km 的LEO(Low Earth Orbit,低轨道卫星)卫星上发送到地面上来的,其L1 频段(fL1=1575.42MHz)自由空间衰减为:

相关主题
文本预览
相关文档 最新文档