当前位置:文档之家› 高考数学冲刺复习资料共分五大专题

高考数学冲刺复习资料共分五大专题

高考数学冲刺复习资料共分五大专题
高考数学冲刺复习资料共分五大专题

高考数学冲刺复习资料(共分五大专题)

专题一:三角与向量的交汇题型分析及解题策略

【命题趋向】

三角函数与平面的向量的综合主要体现为交汇型,在高考中,主要出现在解答题的第一个试题位置上,其难度中等偏下,分值一般为12分,交汇性主要体现在:三角函数恒等变换公式、性质与图象与平面的向量的数量积及平面向量的平行、垂直、夹角及模之间都有着不同程度的交汇,在高考中是一个热点.根据2011年考纲预计在高考中解答题仍会涉及三角函数的基本恒等变换公式、诱导公式的运用、三角函数的图像和性质、向量的数量积、共线(平行)与垂直的充要条件条件.主要考查题型:(1)考查纯三角函数函数知识,即一般先通过三角恒等变换公式化简三角函数式,再求三角函数的值或研究三角函数的图象及性质;(2)考查三角函数与向量的交汇,一般是先利用向量知识建立三角函数关系式,再利用三角函数知识求解;

(3)考查三角函数知识与解三角形的交汇,也就是将三角变换公式与正余弦定理交织在一起. 【考试要求】

1.理解任意角的正弦、余弦、正切的定义.了解余切、正割、余割的定义.掌握同角三角函数的基本关系式.掌握正弦、余弦的诱导公式.了解周期函数与最小正周期的意义.2.掌握两角和与两角差的正弦、余弦、正切公式.掌握二倍角的正弦、余弦、正切公式.3.能正确运用三角公式进行简单三角函数式的化简、求值和恒等式证明.

4.理解正弦函数、余弦函数、正切函数的图像和性质,会用“五点法”画正弦函数、余弦函数和函数y=Asin(ωx+φ)的简图,理解A,ω,φ的物理意义.

5.掌握正弦定理、余弦定理,并能初步运用它们解斜三角形.

6.掌握向量的加法和减法.掌握实数与向量的积,理解两个向量共线的充要条件.

7.了解平面向量的基本定理.理解平面向量的坐标的概念,掌握平面向量的坐标运算.8.掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件.

9.掌握平面两点间的距离公式以及线段的定比分点和中点坐标公式,并且能熟练运用.掌握平移公式.

【考点透视】

向量具有代数运算性与几何直观性的“双重身份”,即可以象数一样满足“运算性质”进行代数形式的运算,又可以利用它的几何意义进行几何形式的变换.而三角函数是以“角”为自变量的函数,函数值体现为实数,因此平面向量与三角函数在“角”之间存在着密切的联系.同时在平面向量与三角函数的交汇处设计考题,其形式多样,解法灵活,极富思维性和挑战性.主要考点如下:

1.考查三角式化简、求值、证明及求角问题.

2.考查三角函数的性质与图像,特别是y=Asin(ωx+?)的性质和图像及其图像变换.

3.考查平面向量的基本概念,向量的加减运算及几何意义,此类题一般难度不大,主要用以解决有关长度、夹角、垂直、平行问题等.

4.考查向量的坐标表示,向量的线性运算,并能正确地进行运算.

5.考查平面向量的数量积及运算律(包括坐标形式及非坐标形式),两向量平行与垂直的充要条件等问题.

6.考查利用正弦定理、余弦定理解三角形问题.

【典例分析】

题型一三角函数平移与向量平移的综合

三角函数与平面向量中都涉及到平移问题,虽然平移在两个知识系统中讲法不尽相同,

但它们实质是一样的,它们都统一于同一坐标系的变化前后的两个图象中.解答平移问题主要注意两个方面的确定:(1)平移的方向;(2)平移的单位.这两个方面就是体现为在平移过程中对应的向量坐标.

【例1】 把函数y =sin2x 的图象按向量→a =(-π

6,-3)平移后,得到函数y =Asin(ωx +?)(A >0,ω>0,|?|=π

2)的图象,则?和B 的值依次为

( )

A .π

12,-3

B .π3,3

C .π

3,-3

D .-π12,3

【分析】 根据向量的坐标确定平行公式为??? x =x '+π

6

y =y '+3

,再代入已知解析式可得.还可以由

向量的坐标得图象的两个平移过程,由此确定平移后的函数解析式,经对照即可作出选择.

【解析1】 由平移向量知向量平移公式??? x '=x -π6y '=y -3,即??? x =x '+π

6

y =y '+3

,代入y =sin2x 得y '+3

=sin2(x '+π6),即到y =sin(2x +π3)-3,由此知?=π

3,B =-3,故选C.

【解析2】 由向量→a =(-π

6,-3),知图象平移的两个过程,即将原函数的图象整体向左平移π6个单位,再向下平移3个单位,由此可得函数的图象为y =sin2(x +π6)-3,即y =sin(2x +π3)-3,由此知?=π

3,B =-3,故选C.

【点评】 此类题型将三角函数平移与向量平移有机地结合在一起,主要考查分析问题、解决问题的综合应用能力,同时考查方程的思想及转化的思想.本题解答的关键,也是易出错的地方是确定平移的方向及平移的大小.

题型二 三角函数与平面向量平行(共线)的综合

此题型的解答一般是从向量平行(共线)条件入手,将向量问题转化为三角问题,然后再利用三角函数的相关知识再对三角式进行化简,或结合三角函数的图象与民性质进行求解.此类试题综合性相对较强,有利于考查学生的基础掌握情况,因此在高考中常有考查.

【例2】 已知A 、B 、C 为三个锐角,且A +B +C =π.若向量→p =(2-2sinA ,cosA +sinA)与向量→q =(cosA -sinA ,1+sinA)是共线向量.

(Ⅰ)求角A ;

(Ⅱ)求函数y =2sin 2B +cos C -3B

2的最大值.

【分析】 首先利用向量共线的充要条件建立三角函数等式,由于可求得A 角的正弦值,再根据角的范围即可解决第(Ⅰ)小题;而第(Ⅱ)小题根据第(Ⅰ)小题的结果及A 、B 、C 三个角的关系,结合三角民恒等变换公式将函数转化为关于角B 的表达式,再根据B 的范围求最值. 【解】 (Ⅰ)∵→p 、→q 共线,∴(2-2sinA)(1+sinA)=(cosA +sinA)(cosA -sinA),则sin 2A =3

4,

又A 为锐角,所以sinA =32,则A =π

3.

(Ⅱ)y =2sin 2B +cos C -3B

2=2sin 2B +cos (π-π

3-B)-3B

2

=2sin 2B +cos(π

3-2B)=1-cos2B +12cos2B +32sin2B

=32sin2B -12cos2B +1=sin(2B -π

6)+1.

∵B ∈(0,π2),∴2B -π6∈(-π6,5π6),∴2B -π6=π2,解得B =π

3,y max =2.

【点评】 本题主要考查向量共线(平行)的充要条件、三角恒等变换公式及三角函数的有界性.本题解答有两个关键:(1)利用向量共线的充要条件将向量问题转化为三角函数问题;(2)根据条件确定B 角的范围.一般地,由于在三角函数中角是自变量,因此解决三角函数问题确定角的范围就显得至关重要了.

题型三 三角函数与平面向量垂直的综合

此题型在高考中是一个热点问题,解答时与题型二的解法差不多,也是首先利用向量垂直的充要条件将向量问题转化为三角问题,再利用三角函数的相关知识进行求解.此类题型解答主要体现函数与方程的思想、转化的思想等.

【例3】 已知向量→a =(3sinα,cosα),→b =(2sinα,5sinα-4c osα),α∈(3π

2,2π),且→a ⊥→b .

(Ⅰ)求tanα的值; (Ⅱ)求cos(α2+π

3)的值.

【分析】 第(Ⅰ)小题从向量垂直条件入手,建立关于α的三角方程,再利用同角三角函数的基本关系可求得tanα的值;第(Ⅱ)小题根据所求得的tanα的结果,利用二倍角公式求得tan α

2的值,再利用两角和与差的三角公式求得最后的结果.

【解】 (Ⅰ)∵→a ⊥→b ,∴→a ·→b =0.而→a =(3sinα,cosα),→b =(2sinα, 5sinα-4cosα),

故→a ·→b =6sin 2α+5sinαcosα-4cos 2α=0. 由于cosα≠0,∴6tan 2α+5tanα-4=0.解之,得tanα=-43,或tanα=12. ∵α∈(3π2,2π),tanα<0,故tanα=12(舍去).∴tanα=-4

3. (Ⅱ)∵α∈(3π2,2π),∴α2∈(3π4,π).

由tanα=-43,求得tan α2=-12,tan α2=2(舍去).∴sin α2=55,cos α2=-255,

∴cos(α2+π3)=cos α2cos π3-sin α2sin π3=-255×12-55×3

2=-25+1510

【点评】 本题主要考查向量垂直的充要条件、同角三角函数的基本关系、二倍角公式及两角和与差的三角函数.同时本题两个小题的解答都涉及到角的范围的确定,再一次说明了在解答三角函数问题中确定角的范围的重要性.同时还可以看到第(Ⅰ)小题的解答中用到“弦化切”的思想方法,这是解决在一道试题中同时出现“切函数与弦函数”关系问题常用方法.

题型四 三角函数与平面向量的模的综合

此类题型主要是利用向量模的性质|→a |2=→a 2,如果涉及到向量的坐标解答时可利用两种

方法:(1)先进行向量运算,再代入向量的坐标进行求解;(2)先将向量的坐标代入向量的坐标,再利用向量的坐标运算进行求解.

【例3】 已知向量→a =(cosα,sinα),→b =(cosβ,sinβ),|→a -→b |=2

5 5.(Ⅰ)求cos(α-β)的值;(Ⅱ)若-π2<β<0<α<π

2,且sinβ=-513,求sinα的值.

【分析】 利用向量的模的计算与数量积的坐标运算可解决第(Ⅰ)小题;而第(Ⅱ)小题则可变角α=(α-β)+β,然后就须求sin(α-β)与cos β即可.

【解】 (Ⅰ)∵|→a -→b |=255,∴→a 2-2→a ·→b +→b 2=45, 将向量→a =(cosα,sinα),→b =(cosβ,sinβ)代入上式得 12-2(cosαcosβ+sinαsinβ)+12=45,∴cos(α-β)=-3

5. (Ⅱ)∵-π2<β<0<α<π

2,∴0<α-β<π, 由cos(α-β)=-35,得sin(α-β)=4

5, 又sinβ=-513,∴cos β=12

13,

∴sin α=sin [(α-β)+β]=sin(α-β)cosβ+cos(α-β)sinβ=33

65.

点评:本题主要考查向量的模、数量积的坐标运算、和角公式、同角三角函数的基本关系.本题解答中要注意两点:(1)化|→a -→b |为向量运算|→a -→b |2=(→a -→b )2;(2)注意解α-β的范围.整个解答过程体现方程的思想及转化的思想.

题型五 三角函数与平面向量数量积的综合

此类题型主要表现为两种综合方式:(1)三角函数与向量的积直接联系;(2)利用三角函数与向量的夹角交汇,达到与数量积的综合.解答时也主要是利用向量首先进行转化,再利用三角函数知识求解.

【例5】 设函数f(x)=→a ·→b .其中向量→a =(m ,cosx),→b =(1+sinx ,1),x ∈R ,且f(π2)=2.(Ⅰ)求实数m 的值;(Ⅱ)求函数f(x)的最小值.

分析:利用向量内积公式的坐标形式,将题设条件中所涉及的向量内积转化为三角函数中的“数量关系”,从而,建立函数f(x)关系式,第(Ⅰ)小题直接利用条件f(π

2)=2可以求得,而第(Ⅱ)小题利用三角函数函数的有界性就可以求解.

解:(Ⅰ)f(x)=→a ·→b =m(1+sinx)+cosx , 由f(π2)=2,得m(1+sin π2)+cos π

2=2,解得m =1. (Ⅱ)由(Ⅰ)得f(x)=sinx +cosx +1=2sin(x +π

4)+1, 当sin(x +π

4)=-1时,f(x)的最小值为1- 2.

点评:平面向量与三角函数交汇点较多,向量的平行、垂直、夹角、数量积等知识都可以与三角函数进行交汇.不论是哪类向量知识与三角函数的交汇试题,其解法都差不多,首先都是利用向量的知识将条件转化为三角函数中的“数量关系”,再利用三角函数的相关知识进行求解.

六、解斜三角形与向量的综合

在三角形的正弦定理与余弦定理在教材中是利用向量知识来推导的,说明正弦定理、余弦定理与向量有着密切的联系.解斜三角形与向量的综合主要体现为以三角形的角对应的三角函数值为向量的坐标,要求根据向量的关系解答相关的问题.

【例6】 已知角A 、B 、C 为△ABC 的三个内角,其对边分别为a 、b 、c ,若→m =(-cos A

2,sin A 2),→n =(cos A 2,sin A 2),a =23,且→m·→n =12.

(Ⅰ)若△ABC 的面积S =3,求b +c 的值. (Ⅱ)求b +c 的取值范围.

【分析】 第(Ⅰ)小题利用数量积公式建立关于角A 的三角函数方程,再利用二倍角公式求得A 角,然后通过三角形的面积公式及余弦定理建立关于b 、c 的方程组求取b +c 的值;第(Ⅱ)小题正弦定理及三角形内角和定理建立关于B 的三角函数式,进而求得b +c 的范围.

【解】 (Ⅰ)∵→m =(-cos A 2,sin A 2),→n =(cos A 2,sin A 2),且→m·→n =12,

∴-cos 2A 2+sin 2A 2=12,即-cosA =1

2,

又A ∈(0,π),∴A =2π

3.

又由S △ABC =1

2bcsinA =3,所以bc =4,

由余弦定理得:a 2=b 2+c 2-2bc·cos 2π

3=b 2+c 2+bc ,∴16=(b +c)2,故b +c =4.

(Ⅱ)由正弦定理得:b sinB =c sinC =a sinA =23sin 2π3=4,又B +C =π-A =π

3,

∴b +c =4sinB +4sinC =4sinB +4sin(π3-B)=4sin(B +π

3),

∵0<B <π3,则π3<B +π3<2π3,则32<sin(B +π

3)≤1,即b +c 的取值范围是(23,4].

[点评] 本题解答主要考查平面向量的数量积、三角恒等变换及三角形中的正弦定理、余弦定理、面积公式、三角形内角和定理等.解答本题主要有两处要注意:第(Ⅰ)小题中求b +c 没有利用分别求出b 、c 的值为解,而是利用整体的思想,使问题得到简捷的解答;(2)第(Ⅱ)小题的求解中特别要注意确定角B 的范围.

【专题训练】 一、选择题

1.已知→a =(cos40?,sin40?),→b =(cos20?,sin20?),则→a ·→b = ( )

A .1

B .3

2

C .12

D .22

2.将函数y =2sin2x -π2的图象按向量(π2,π

2)平移后得到图象对应的解析式是 ( )

A .2cos2x

B .-2cos2x

C .2sin2x

D .-2sin2x

3.已知△ABC 中,=,=,若·<0,则△ABC 是

( )

A .钝角三角形

B .直角三角形

C .锐角三角形

D .任意三角形 4.设→a =(32,sin α),→b =(cos α,1

3),且→a ∥→b ,则锐角α为

( )

A .30?

B .45?

C .60?

D .75?

5.已知→a =(sin θ,1+cosθ),→b =(1,1-cosθ),其中θ∈(π,3π2),则一定有 ( )

A .→a ∥→b

B .→a ⊥→b

C .→a 与→b 夹角为45°

D .|→a |=|→b |

6.已知向量a →=(6,-4),b →=(0,2),c →=a →+λb →,若C 点在函数y =sin π

12x 的图象上,实数λ

= ( )

A .5

2

B .32

C .-52

D .-32

7.由向量把函数y =sin(x +5π

6)的图象按向量→a =(m ,0)(m >0)平移所得的图象关于y 轴对称,则m 的最小值为 ( )

A .π

6

B .π3

C .2π3

D .5π6

8.设0≤θ≤2π时,已知两个向量=(cos θ,sin θ),=(2+sin θ,2-cos θ),则向量长度的最大值

是 ( ) A . 2 B . 3 C .3 2 D .2 3 9.若向量→a =(cos α,sin α),→b =(cos β,sin β),则→a 与→b 一定满足

( )

A .→a 与→b 的夹角等于α-β

B .→a ⊥→b

C .→a ∥→b

D .(→a +→b )⊥(→a -→b )

10.已知向量→a =(cos25?,sin25?),→b =(sin20?,cos20?),若t 是实数,且→u =→a +t →b ,则|→u |的最小值为 ( )

A . 2

B .1

C .2

2

D .12

11.O 是平面上一定点,A 、B 、C 是该平面上不共线的3个点,一动点P 满足:→OP

=→OA +λ(→AB +→AC),λ∈(0,+∞),则直线AP 一定通过△ABC 的 ( )

A .外心

B .内心

C .重心

D .垂心

12.对于非零向量→a 我们可以用它与直角坐标轴的夹角α,β(0≤α≤π,0≤β≤π)来表示它的方向,称α,β为非零向量→a 的方向角,称cos α,cos β为向量→a 的方向余弦,则cos 2α+cos 2β=( ) A .1 B .3

2

C .12

D .0

二、填空题

13.已知向量→m =(sin θ,2cos θ),→n =(3,-1

2).若→m ∥→n ,则sin2θ的值为____________.

14.已知在△OAB(O 为原点)中,→OA

=(2cos α,2sin α),→OB =(5cos β,5sin β),若→OA·→OB =-5,则S △AOB 的值为_____________.

15.将函数f (x )=tan(2x +π

3)+1按向量a 平移得到奇函数g(x ),要使|a |最小,则a =

____________.

16.已知向量=(1,1)向量与向量夹角为3π

4,且·=-1.则向量=__________. 三、解答题

17.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若→AB·

→AC =→BA·→BC =k(k ∈R). (Ⅰ)判断△ABC 的形状; (Ⅱ)若c =2,求k 的值.

18.已知向量→m =(sinA,cosA),→n =(3,-1),→m·→n =1,且A 为锐角.(Ⅰ)求角A 的大小;(Ⅱ)

求函数f(x)=cos2x +4cosAsinx(x ∈R)的值域.

19.在△ABC 中,A 、B 、C 所对边的长分别为a 、b 、c ,已知向量→m =(1,2sinA),→n =(sinA ,

1+cosA),满足→m ∥→n ,b +c =3a.(Ⅰ)求A 的大小;(Ⅱ)求sin(B +π

6)的值.

20.已知A 、B 、C 的坐标分别为A (4,0),B (0,4),C (3cosα,3sinα).

(Ⅰ)若α∈(-π,0),且|→AC|

=|→BC|,求角α的大小; (Ⅱ)若→AC ⊥→BC ,求2sin 2α+sin2α1+tanα

的值.

21.△ABC 的角A 、B 、C 的对边分别为a 、b 、c ,→m =(2b -c ,a),→n =(cosA ,-cosC),且→m

⊥→n .

(Ⅰ)求角A 的大小;

(Ⅱ)当y =2sin 2B +sin(2B +π

6)取最大值时,求角B 的大小.

22.已知→a =(cosx +sinx ,sinx),→b =(cosx -sinx ,2cosx),

(Ⅰ)求证:向量→a 与向量→b 不可能平行;

(Ⅱ)若f(x)=→a ·→b ,且x ∈[-π4,π4]时,求函数f(x)的最大值及最小值.

【专题训练】参考答案 一、选择题

1.B 解析:由数量积的坐标表示知→a ·→b =cos40?sin20?+sin40?cos20?=sin60?=32

.

2.D 【解析】y =2sin2x -π2→y =2sin2(x +π

2)-π2+π2,即y =-2sin2x. 3.A 【解析】因为cos ∠BAC ==<0,∴∠BAC 为钝角.

4.B 【解析】由平行的充要条件得32×1

3-sin αcos α=0,sin2α=1,2α=90?,α=45?. 5.B 【解析】→a ·→b =sin θ+|sin θ|,∵θ∈(π,3π2

),∴|sin θ|=-sin θ,∴→a ·→b =0,∴→a ⊥→b . 6.A 【解析】c →=a →+λb →=(6,-4+2λ),代入y =sin π12x 得,-4+2λ=sin π

2=1,解得λ =52.

7.B 【解析】考虑把函数y =sin(x +5π6)的图象变换为y =cosx 的图象,而y =sin(x +5π

6)=cos(x +π3),即把y =cos(x +π3)的图象变换为y =cosx 的图象,只须向右平行π3个单位,所以m =π3,故选B.

8.C 【解析】||=(2+sin θ-cos θ)2+(2-cos θ-sin θ)2=10-8cosθ≤3 2. 9.D 【解析】→a +→b =(cos α+cos β,sin α+sin β),→a -→b =(cos α+cos β,sin α-sin β),∴(→a +

→b )·(→a -→b )=cos 2α-cos 2β+sin 2α-sin 2β=0,∴(→a +→b )⊥(→a -→b ).

10.C 【解析】|→u |2=|→a |2+t 2|→b |2+2t →a ·→b =1+t 2+2t(sin20?cos25?+cos20?sin25?)=t 2

+2t +1=(t +22)2+12,|→u |2

min =12,∴|→u |min =22.

11.C 【解析】设BC 的中点为D ,则→AB

+→AC =2→AD ,又由→OP =→OA +λ(→AB +→AC),→AP =2λ→AD ,所以→AP

与→AD 共线,即有直线AP 与直线AD 重合,即直线AP 一定通过△ABC 的重心. 12.A 【解析】设→a =(x,y),x 轴、y 轴、z 轴方向的单位向量分别为→i =(1,0),→j =(0,1),

由向量知识得cos α=→i ·→a |→i |·|→a |=x x 2+y 2,cos β=→j ·→a |→j |·|→a |=y x 2+y 2,则cos 2α+cos 2β

=1.

二、填空题

13.-8349 【解析】由→m ∥→n ,得-12sin θ=23cos θ,∴tan θ=-43,∴sin2θ=2sin θcos θsin 2

θ+cos 2θ

2tan θtan 2

θ+1

=-83

49. 14.532 【解析】→OA·

→OB =-5?10cos αco βs +10sin αsin β=-5?10cos(α-β)=-5?cos(α-β)=-12,∴sin ∠AOB =32,又|→OA|=2,|→OB|=5,∴S △AOB

=12×2×5×32=532. 15.(π6,-1) 【解析】要经过平移得到奇函数g(x),应将函数f(x)=tan(2x +π

3)+1的图象向下平移1个单位,再向右平移-kπ2+π6(k ∈Z)个单位.即应按照向量→a =(-kπ2+π6,-1) (k

∈Z)进行平移.要使|a|最小,

16.(-1,0)或(0,-1) 【解析】设=(x ,y),由·=-1,有x +y =-1 ①,由与夹角为3π

4

有·=||·||cos 3π4,∴||=1,则x 2+y 2=1 ②,由①②解得??? x=﹣1y=0或??? x =0

y =-1

∴即=(-1,

0)或=(0,-1) . 三、解答题

17.【解】(Ⅰ)∵→AB·→AC =bccosA ,→BA·→BC =cacosB , 又→AB·

→AC =→BA·→BC ,∴bccosA =cacosB , ∴由正弦定理,得sinBcosA =sinAcosB ,即sinAcosB -sinBcosA =0,∴sin(A -B)=0 ∵-π<A -B <π,∴A -B =0,即A =B ,∴△ABC 为等腰三角形.

(Ⅱ)由(Ⅰ)知b a =,∴→AB·→AC =bccosA =bc·b 2+c 2-a 22bc =c 22,

∵c =2,∴k =1.

18.【解】(Ⅰ)由题意得→m·→n =3sinA -cosA =1,2sin(A -π6)=1,sin(A -π6)=12,

由A 为锐角得A -π6=π6,A =π

3.

(Ⅱ)由(Ⅰ)知cosA =12,所以f(x)=cos2x +2sinx =1-2sin 2x +2sinx =-2(sinx -12)2+3

2,

因为x ∈R ,所以sinx ∈[-1,1],因此,当sinx =12时,f (x )有最大值3

2.

当sinx =-1时,f(x)有最小值-3,所以所求函数f(x)的值域是[-3,3

2]. 19.【解】(Ⅰ)由→m ∥→n ,得2sin 2A -1-cosA =0,即2cos 2A +cosA -1=0,∴cosA =1

2或cosA

=-1.

∵A 是△ABC 内角,cosA =-1舍去,∴A =π

3.

(Ⅱ)∵b +c =3a ,由正弦定理,sinB +sinC =3sinA =3

2,

∵B +C =2π3,sinB +sin(2π3-B)=3

2,

∴32cosB +32sinB =32,即sin(B +π

6)=32.

20.【解】(Ⅰ)由已知得:(3cosα-4)2+9sin 2α=9cos 2α+(3sinα-4) 2,则s inα=cosα,

因为α∈(-π,0),∴α=-3π

4.

(Ⅱ)由(3cosα-4)·3cosα+3sinα·(3sinα-4)=0,得

sinα+cosα=34,平方,得sin2α=-7

16. 而2sin 2α+sin2α1+tanα=2sin 2αcosα+2sinαcos 2αsinα+cosα

=2sinαcosα=sin2α=-716.

21.【解】(Ⅰ)由→m ⊥→n ,得→m·→n =0,从而(2b -c)cosA -acosC =0,

由正弦定理得2sinBcosA -sinCcosA -sinAcosC =0

∴2sinBcosA -sin(A +C)=0,2sinBcosA -sinB =0,

∵A 、B ∈(0,π),∴sinB≠0,cosA =12,故A =π

3.

(Ⅱ)y =2sin 2B +2sin(2B +π6)=(1-cos2B)+sin2Bcos π6+cos2Bsin π

6

=1+32sin2B -12 cos2B =1+sin(2B -π

6).

由(Ⅰ)得,0<B <2π3,-π6<2B -π6<7π

6,

∴当2B -π6=π2,即B =π

3时,y 取最大值2.

22.【解】(Ⅰ)假设→a ∥→b ,则2cosx(cosx +sinx)-sinx(cosx -sinx)=0,

∴2cos 2x +sinxcosx +sin 2x =0,2·1+cos2x 2+12sin2x +1-cos2x

2=0, 即sin2x +cos2x =-3,

∴2(sin2x +π4)=-3,与|2(sin2x +π

4)|≤2矛盾, 故向量→a 与向量→b 不可能平行.

(Ⅱ)∵f(x)=→a ·→b =(cosx +sinx)·(cosx -sinx)+sinx·2cosx =cos 2x -sin 2x +2sinxcosx =cos2x +sin2x =2(22cos2x +22sin2x)=2(sin2x +π4),

∵-π4≤x≤π4,∴-π4≤2x +π4≤3π4,∴当2x +π4=π2,即x =π

8时,f(x)有最大值2; 当2x +π4=-π4,即x =-π

4时,f(x)有最小值-1.

全国统一高考数学试卷(理科)(全国一卷)

绝密★启用前 全国统一高考数学试卷(理科)(新课标Ⅰ) 一、选择题:本题共12小题, 每小题5分, 共60分。在每小题给出的四个选项中, 只 有一项是符合题目要求的。 1.已知集合}242{60{}M x x N x x x =-<<=--<,, 则M N I = A .}{43x x -<< B .}42{x x -<<- C .}{22x x -<< D .}{23x x << 2.设复数z 满足=1i z -, z 在复平面内对应的点为(x , y ), 则 A .22 +11()x y += B .221(1)x y +=- C .22(1)1y x +-= D .2 2(+1)1y x += 3.已知0.20.32 log 0.220.2a b c ===,,, 则 A .a b c << B .a c b << C .c a b << D .b c a << 4.古希腊时期, 人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是 512-( 51 2 -≈0.618, 称为黄金分割比例), 著名的“断臂维纳斯”便是如此.此外, 最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是 51 -.若某人满足上述两个黄金分割比例, 且腿长为105 cm, 头顶至脖子下端的长度为26 cm, 则其身高可能是

A .165 cm B .175 cm C .185 cm D .190 cm 5.函数f (x )= 2 sin cos ++x x x x 在[,]-ππ的图像大致为 A . B . C . D . 6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个 爻组成, 爻分为阳爻“——”和阴爻“— —”, 如图就是一重卦.在所有重卦中随机取一重卦, 则该重卦恰有3个阳爻的概率是 A . 516 B . 1132 C . 2132 D . 1116 7.已知非零向量a , b 满足||2||=a b , 且()-a b ⊥b , 则a 与b 的夹角为 A . π6 B . π3 C . 2π3 D . 5π6 8.如图是求 112122 + +的程序框图, 图中空白框中应填入

最新高考数学压轴题专题训练(共20题)[1]

1.已知点)1,0(F ,一动圆过点F 且与圆8)1(2 2 =++y x 内切. (1)求动圆圆心的轨迹C 的方程; (2)设点)0,(a A ,点P 为曲线C 上任一点,求点A 到点P 距离的最大值)(a d ; (3)在10<

3.已知点A (-1,0),B (1,0),C (- 5712,0),D (5712 ,0),动点P (x , y )满足AP →·BP → =0,动点Q (x , y )满足|QC →|+|QD →|=10 3 ⑴求动点P 的轨迹方程C 0和动点Q 的轨迹方程C 1; ⑵是否存在与曲线C 0外切且与曲线C 1内接的平行四边形,若存在,请求出一个这样的平行四边形,若不存在,请说明理由; ⑶固定曲线C 0,在⑵的基础上提出一个一般性问题,使⑵成为⑶的特例,探究能得出相应结论(或加强结论)需满足的条件,并说明理由。 4.已知函数f (x )=m x 2+(m -3)x +1的图像与x 轴的交点至少有一个在原点右侧, ⑴求实数m 的取值范围; ⑵令t =-m +2,求[1 t ];(其中[t ]表示不超过t 的最大整数,例如:[1]=1, [2.5]=2, [-2.5]=-3) ⑶对⑵中的t ,求函数g (t )=t +1t [t ][1t ]+[t ]+[1t ]+1的值域。

高中数学解题思想之分类讨论思想

分类讨论思想方法 在解答某些数学问题时,有时会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论法。分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法。有关分类讨论思想的数学问题具有明显的逻辑性、综合性、探索性,能训练人的思维条理性和概括性,所以在高考试题中占有重要的位置。 引起分类讨论的原因主要是以下几个方面: ①问题所涉及到的数学概念是分类进行定义的。如|a|的定义分a>0、a=0、a<0三种情况。这种分类讨论题型可以称为概念型。 ②问题中涉及到的数学定理、公式和运算性质、法则有范围或者条件限制,或者是分类给出的。如等比数列的前n项和的公式,分q=1和q≠1两种情况。这种分类讨论题型可以称为性质型。 ③解含有参数的题目时,必须根据参数的不同取值范围进行讨论。如解不等式ax>2时分a>0、a=0和a<0三种情况讨论。这称为含参型。 另外,某些不确定的数量、不确定的图形的形状或位置、不确定的结论等,都主要通过分类讨论,保证其完整性,使之具有确定性。 进行分类讨论时,我们要遵循的原则是:分类的对象是确定的,标准是统一的,不遗漏、不重复,科学地划分,分清主次,不越级讨论。其中最重要的一条是“不漏不重”。 解答分类讨论问题时,我们的基本方法和步骤是:首先要确定讨论对象以及所讨论对象的全体的范围;其次确定分类标准,正确进行合理分类,即标准统一、不漏不重、分类互斥(没有重复);再对所分类逐步进行讨论,分级进行,获取阶段性结果;最后进行归纳小结,综合得出结论。 Ⅰ、再现性题组: 1.集合A={x||x|≤4,x∈R},B={x||x-3|≤a,x∈R},若A?B,那么a的范围是_____。 A. 0≤a≤1 B. a≤1 C. a<1 D. 00且a≠1,p=log a (a3+a+1),q=log a (a2+a+1),则p、q的大小关系是 _____。 A. p=q B. pq D.当a>1时,p>q;当0

【典型题】高考数学试卷(含答案)

【典型题】高考数学试卷(含答案) 一、选择题 1.从分别写有数字1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数字不大于第二张卡片的概率是( ) A . 110 B . 310 C . 35 D . 25 2.给出下列说法: ①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线; ②有一个面是多边形,其余各面都是三角形的几何体是棱锥; ③棱台的上、下底面可以不相似,但侧棱长一定相等. 其中正确说法的个数是( ) A .0 B .1 C .2 D .3 3.如果 4 2 π π α<< ,那么下列不等式成立的是( ) A .sin cos tan ααα<< B .tan sin cos ααα<< C .cos sin tan ααα<< D .cos tan sin ααα<< 4.已知命题p :若x >y ,则-x <-y ;命题q :若x >y ,则x 2>y 2.在命题①p ∧q ;②p ∨q ; ③p ∧(?q );④(?p )∨q 中,真命题是( ) A .①③ B .①④ C .②③ D .②④ 5.如图是某高三学生进入高中三年来的数学考试成绩茎叶图,第1次到第14次的考试成 绩依次记为1214,, A A A ,下图是统计茎叶图中成绩在一定范围内考试次数的一个算法流 程图,那么算法流程图输出的结果是( ) A .7 B .8 C .9 D .10

6.在下列区间中,函数()43x f x e x =+-的零点所在的区间为( ) A .1,04?? - ??? B .10,4?? ??? C .11,42?? ??? D .13,24?? ??? 7.设i 为虚数单位,复数z 满足21i i z =-,则复数z 的共轭复数等于( ) A .1-i B .-1-i C .1+i D .-1+i 8.在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为 A . 2 2 B . 3 C . 5 D . 72 9.已知i 为虚数单位,复数z 满足(1)i z i +=,则z =( ) A . 14 B . 12 C . 22 D .2 10.已知某几何体的三视图(单位:cm )如图所示,则该几何体的体积是( ) A .108cm 3 B .100cm 3 C .92cm 3 D .84cm 3 11.在ABC ?中,A 为锐角,1lg lg()lgsin 2b A c +==-,则ABC ?为( ) A .等腰三角形 B .等边三角形 C .直角三角形 D .等腰直角三角形 12.已知a R ∈,则“0a =”是“2 ()f x x ax =+是偶函数”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 二、填空题 13.若三点1 (2,3),(3,2),( ,)2 A B C m --共线,则m 的值为 . 14.函数()22,0 26,0x x f x x lnx x ?-≤=?-+>? 的零点个数是________. 15.若过点()2,0M 3()2 :0C y ax a =>的准线l 相交于点

高考数学数列大题专题

高考数学数列大题专题 1. 已知等比数列432,,,}{a a a a n 中分别是某等差数列的第5项、第3项、第2项,且1,641≠=q a 公比 (Ⅰ)求n a ;(Ⅱ)设n n a b 2log =,求数列.|}{|n n T n b 项和的前 2.已知数列}{n a 满足递推式)2(121≥+=-n a a n n ,其中.154=a (Ⅰ)求321,,a a a ; (Ⅱ)求数列}{n a 的通项公式; (Ⅲ)求数列}{n a 的前n 项和n S 3.已知数列{}n a 的前n 项和为n S ,且有12a =,11353n n n n S a a S --=-+(2)n ≥ (1)求数列n a 的通项公式; (2)若(21)n n b n a =-,求数列n a 的前n 项的和n T 。 4.已知数列{n a }满足11=a ,且),2(22*1N n n a a n n n ∈≥+=-且. (Ⅰ)求2a ,3a ;(Ⅱ)证明数列{n n a 2}是等差数列; (Ⅲ)求数列{n a }的前n 项之和n S

5.已知数列{}n a 满足31=a ,1211-=--n n n a a a . (1)求2a ,3a ,4a ; (2)求证:数列11n a ??? ?-?? 是等差数列,并写出{}n a 的一个通项。 622,,4,21121+=-===++n n n n n b b a a b a a . 求证: ⑴数列{b n +2}是公比为2的等比数列; ⑵n a n n 221-=+; ⑶4)1(2221-+-=++++n n a a a n n Λ. 7. .已知各项都不相等的等差数列}{n a 的前六项和为60,且2116a a a 和为 的等比中项. (1)求数列}{n a 的通项公式n n S n a 项和及前; (2)若数列}1{,3),(}{11n n n n n b b N n a b b b 求数列且满足=∈=-*+的前n 项和T n .

2018上海高考数学大题解题技巧

上海高考数学大题解题技巧 一、立体几何题 1.证明线面位置关系,一般不需要去建系,更简单; 2.求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,最好要建系; 3.注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。 二、三角函数题 注意归一公式、二倍角公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!),正弦定理,余弦定理的应用。 三、函数(极值、最值、不等式恒成立(或逆用求参)问题) 1.先求函数的定义域,单调区间一般不能并,用“和”或“,”隔开(知函数求单调区间,不带等号;知单调性,求参数范围,带等号); 2.注意最后一问有应用前面结论的意识; 3.注意分论讨论的思想; 4.不等式问题有构造函数的意识; 5.恒成立问题(分离常数法、利用函数图像与根的分布法、求函数最值法); 四、圆锥曲线问题 1.注意求轨迹方程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得最多,方法上有直接法、定义法、交轨法、参数法、待定系数法; 2.注意直线的设法(法1分有斜率,没斜率;法2设x=my+b(斜率不为零时),知道弦中点时,往往用点差法);注意判别式;注意韦达定理;注意弦长公式;注意自变量的取值范围等等; 3.战术上整体思路要保10分,争12分,想16分。 五、数列题 1.证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列; 2.最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用数列的单调性(或者放缩法);如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证; 3.如果是新定义型,一定要严格的套定义做题(仔细理解新定义)。 4.战术上整体思路要保10分,争12分,想16分。

2011 英国高考数学试卷之一

Centre Number Candidate Number Surname Other Names Candidate Signature General Certificate of Education Advanced Level Examination January2011 Mathematics MPC4 Unit Pure Core4 Monday24January20119.00am to10.30am For this paper you must have: *the blue AQA booklet of formulae and statistical tables. You may use a graphics calculator. Time allowed *1hour30minutes Instructions *Use black ink or black ball-point pen.Pencil should only be used for drawing. *Fill in the boxes at the top of this page. *Answer all questions. *Write the question part reference(eg(a),(b)(i)etc)in the left-hand margin. *You must answer the questions in the spaces provided.Do not write outside the box around each page. *Show all necessary working;otherwise marks for method may be lost. *Do all rough work in this book.Cross through any work that you do not want to be marked. Information *The marks for questions are shown in brackets. *The maximum mark for this paper is75. Advice *Unless stated otherwise,you may quote formulae,without proof, from the booklet. For Examiner’s Use Examiner’s Initials Question Mark 1 2 3 4 5 6 7 8 TOTAL P38267/Jan11/MPC46/6/6/MPC4 (JAN11MPC401)

高考数学19个专题分章节大汇编

高考理科数学试题分类汇编:1集合 一、选择题 1 . (普通高等学校招生统一考试重庆数学(理)试题(含答案))已知全集{}1,2,3,4U =, 集合{}=12A , ,{}=23B ,,则()=U A B e( ) A. {}134, , B. {}34, C. {}3 D. {}4 【答案】D 2 . (普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))已知集合 {}{}4|0log 1,|2A x x B x x A B =<<=≤= ,则 A. ()01, B. (]02, C. ()1,2 D. (]12, 【答案】D 3 . (普通高等学校招生统一考试天津数学(理)试题(含答案))已知集合A = {x ∈R | |x |≤2}, A = {x ∈R | x ≤1}, 则A B ?= (A) (,2]-∞ (B) [1,2] (C) [2,2] (D) [-2,1] 【答案】D 4 . (普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))设S,T,是R 的两个非空子集,如果存在一个从S 到T 的函数()y f x =满足:(){()|};()i T f x x S ii =∈ 对任意 12,,x x S ∈当12x x <时,恒有12()()f x f x <,那么称这两个集合“保序同构”. 以下集合 对不是“保序同构”的是( ) A. *,A N B N == B. {|13},{|8010}A x x B x x x =-≤≤==-<≤或 C. {|01},A x x B R =<<= D. ,A Z B Q == 【答案】D 5 . (高考上海卷(理))设常数a R ∈,集合{|(1)()0},{|1}A x x x a B x x a =--≥=≥-,若A B R ?=,则a 的取值范围为( ) (A) (,2)-∞ (B) (,2]-∞ (C) (2,)+∞ (D) [2,)+∞ 【答案】B. 6 . (普通高等学校招生统一考试山东数学(理)试题(含答案))已知集合A ={0,1,2},则集合B ={} ,x y x A y A -∈∈中元素的个数是

高考数学大题题型解答技巧

高考数学大题题型解答技巧 六月,有一份期待,年轻绘就畅想的星海,思想的热血随考卷涌动,灵魂的脉搏应分 数澎湃,扶犁黑土地上耕耘,总希冀有一眼金黄黄的未来。下面就是小编给大家带来 的高考数学大题题型解答技巧,希望大家喜欢! 高考数学大题必考题型(一) 排列组合篇 1.掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。 2.理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。 3.理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单 的应用问题。 4.掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。 5.了解随机事件的发生存在着规律性和随机事件概率的意义。 6.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件 的概率。 7.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事 件的概率乘法公式计算一些事件的概率。 8.会计算事件在n次独立重复试验中恰好发生k次的概率. 立体几何篇 高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。随着新的 课程改革的进一步实施,立体几何考题正朝着“多一点思考,少一点计算”的发展。从 历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是 常考常新的热门话题。 知识整合 1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺 少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握

高三数学复习专题讲座

2010届高三数学复习专题讲座 数列复习建议 江苏省睢宁高级中学北校袁保金 数列是高中数学的重点内容之一,是初等数学与高等数学的重要衔接点,由于它既具有函数特征,又能构成独特的递推关系,使得它既与高中数学其他部分的知识有着密切的联系,又有自己鲜明的特点.而且具有内容的丰富性、应用的广泛性和思想方法的多样性,所以数列一直是高考考查的重点和热点.纵观江苏省近几年高考数学试卷,数列都占有相当重要的地位,一般情况下都是以一道填空题和一道解答题形式出现,填空题主要考查等差、等比数列的概念、性质、通项公式、前n项和公式等内容,对基本的计算技能要求比较高,具有“小、巧、活、新”的特点,解答题属于中高档难度的题目,甚至是压轴题.具有综合性强、变化多、难度较大特点,重点以等差数列和等比数列内容为主,考查数列内在的本质的知识和推理能力,运算能力以及分析问题和解决问题的能力. 一、考纲解读 2、考纲解读(1)考纲中对数列的有关概念要求为A级,也就是说只要了解数列概念的基本含义,并能解决相关的简单问题.(2)等差数列和等比数列要求都为C级,2010年数学科考试说明中共列出八个C级要求的知识点,等差数列、等比数列占了其中两个,说明这两个基本数列在高考中的地位相当重要.具体要求我们对这两个数列的定义、性质、通项公式以及前n项和公式需要有深刻的认识,能够

系统地掌握知识的内在联系,并能解决综合性较强的或较为困难的问题.这也说明涉及等差数列和等比数列的综合题在高考中一定出现.(3)由于数列这一章含有两个C级要求的知识点,可以命制等差数列、等比数列以及它们之间相互联系的综合题,也可以命制数列与函数、方程、不等式等知识点相融合的综合题,以及数列应用问题,着重考查思维能力、推理论证能力以及分析问题,解决实际问题的能力. 二、考题启示1、考题分布 自2004年江苏省单独命题以来,对数列知识的考查一直是命题的重 2、考题启示(1)数列在高考试卷中占的比重较大,分值约为13%左右,呈一大一小趋势,对等差数列和等比数列都有考查,纵观近几年江苏省高考试题,我们会发现江苏考题与全国卷、其他省市卷数列题有很大区别,具有十分明显的特色,对数列的考查不与其他知识综合,同时也回避了递推数列和不等式,主要揭示等差数列和等比数列内在的本质性的知识,形成江苏卷的一大特色.因此复习中在递推数列方面,特别是利用递推数列求通项,要大胆取舍,不要深挖.(2)客观题主要考查了等差、等比数列的基本概念和性质,突出了“小、巧、活、新”的特点,属容易题或中档题.主观题年年都考,且以中等和难度较大的综合题出现,常放在压轴题的位置.回顾江苏省单独命题以来,对数列的考查可以称得上到了极致.如2007年、2008年在倒数第二题,2005年、2006年在最后一题,2009年数列题前移到第17题,以中等题形式出现,这一显著地变化似乎一种信号,具有一定的导向作用.

(完整)2019-2020年高考数学大题专题练习——圆锥曲线(一).doc

2019-2020 年高考数学大题专题练习——圆锥曲线(一) x 2 y2 2 的直线与 12 1.设 F , F为椭圆的左、右焦点,动点P 的坐标为 ( -1,m),过点 F 4 3 椭圆交于 A, B 两点 . (1)求 F1,F 2的坐标; (2)若直线 PA, PF 2, PB 的斜率之和为 0,求 m 的所有 整数值 . x2 2 2.已知椭圆y 1,P是椭圆的上顶点.过P作斜率为 4 k(k≠0)的直线l 交椭圆于另一点A,设点 A 关于原点的 对称点为 B. (1)求△PAB 面积的最大值; (2)设线段 PB 的中垂线与 y 轴交于点 N,若点 N 在椭圆内 部,求斜率 k 的取值范围 . 2 2 5 x y = 1 a > b > 0 ) 的离心率为,定点 M ( 2,0 ) ,椭圆短轴的端点是 3.已知椭圆 C : 2 + 2 a b ( 3 B1, B2,且MB1 MB 2. (1)求椭圆C的方程; (2)设过点M且斜率不为0 的直线交椭圆C于 A, B 两点,试问 x 轴上是否存在定点P ,使 PM 平分∠APB ?若存在,求出点P 的坐标,若不存在,说明理由.

x2 y2 4.已知椭圆C 的标准方程为 1 ,点 E(0,1) . 16 12 (1 )经过点 E 且倾斜角为3π 的直线 l 与椭圆 C 交于A、B两点,求 | AB | .4 (2 )问是否存在直线p 与椭圆交于两点M 、 N 且 | ME | | NE | ,若存在,求出直线p 斜率 的取值范围;若不存在说明理由. 5.椭圆 C1与 C2的中心在原点,焦点分别在x 轴与y轴上,它们有相同的离心率e= 2 ,并 2 且 C2的短轴为 C1的长轴, C1与 C2的四个焦点构成的四边形面积是2 2 . (1)求椭圆 C1与 C2的方程; (2) 设P是椭圆 C2上非顶点的动点,P 与椭圆C1长轴两个顶点 A , B 的连线 PA , PB 分别与椭圆 C1交于E,F点 . (i)求证:直线 PA , PB 斜率之积为常数; (ii) 直线AF与直线BE的斜率之积是否为常数?若是,求出该值;若不是,说明理由.

高中数学知识点以及解题方法大全

前言 (2) 第一章高中数学解题基本方法 (3) 一、配方法 (3) 二、换元法 (7) 三、待定系数法 (14) 四、定义法 (19) 五、数学归纳法 (23) 六、参数法 (28) 七、反证法 (32) 八、消去法……………………………………… 九、分析与综合法……………………………… 十、特殊与一般法……………………………… 十一、类比与归纳法………………………… 十二、观察与实验法………………………… 第二章高中数学常用的数学思想 (35) 一、数形结合思想 (35) 二、分类讨论思想 (41) 三、函数与方程思想 (47) 四、转化(化归)思想 (54) 第三章高考热点问题和解题策略 (59) 一、应用问题 (59) 二、探索性问题 (65) 三、选择题解答策略 (71) 四、填空题解答策略 (77) 附录……………………………………………………… 一、高考数学试卷分析………………………… 二、两套高考模拟试卷………………………… 三、参考答案…………………………………… 前言 美国著名数学教育家波利亚说过,掌握数学就意味着要善于解题。而当我们解题时遇到一个新问题,总想用熟悉的题型去“套”,这只是满足于解出来,只有对数学思想、数学方法理解透彻及融会贯通时,才能提出新看法、巧解法。高考试题十分重视对于数学思想方法的考查,特别是突出考查能力的试题,其解答过程都蕴含着重要的数学思想方法。我们要有意识地应用数学思想方法去分析问题解决问题,形成能力,提高数学素质,使自己具有数学头脑和眼光。 高考试题主要从以下几个方面对数学思想方法进行考查: ①常用数学方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去 法等; ②数学逻辑方法:分析法、综合法、反证法、归纳法、演绎法等; ③数学思维方法:观察与分析、概括与抽象、分析与综合、特殊与一般、类比、 归纳和演绎等; ④常用数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化 归)思想等。 数学思想方法与数学基础知识相比较,它有较高的地位和层次。数学知识是数学内容,可以用文字和符号来记录和描述,随着时间的推移,记忆力的减退,将来可能忘记。而数学思想方法则是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,掌握数学思想方法,不是受用一阵子,而是受用一辈子,即使数学知识忘记了,数学思想方法也还是对你起作用。 数学思想方法中,数学基本方法是数学思想的体现,是数学的行为,具有模式化与可操作性的特征,可以选用作为解题的具体手段。数学思想是数学的灵魂,它与数学基本方法常常在学习、掌握数学知识的同时获得。 可以说,“知识”是基础,“方法”是手段,“思想”是深化,提高数学素质的核心就是提高学生对数学思想方法的认识和运用,数学素质的综合体现就是“能力”。 为了帮助学生掌握解题的金钥匙,掌握解题的思想方法,本书先是介绍高考中常用的数学基本方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法、反证法、分析与综合法、特殊与一般法、类比与归纳法、观察与实验法,再介绍高考中常用的数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化( 第一章高中数学解题基本方法 一、配方法 配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。有时也将其称为“凑配法”。 最常见的配方是进行恒等变形,使数学式子出现完全平方。它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy项的二次曲线的平移变换等问题。 配方法使用的最基本的配方依据是二项完全平方公式(a+b) 2 =a 2 +2ab+b 2 ,将这个公式灵活运用,可得到各种基本配方形式,如: a 2 +b 2 =(a+b) 2 -2ab=(a-b) 2 +2ab; a 2 +ab+b 2 =(a+b) 2 -ab=(a-b) 2 +3ab=(a+ b 2) 2 +( 3 2b) 2 ; a 2 +b 2 +c 2 +ab+bc+ca= 1 2[(a+b) 2 +(b+c) 2 +(c+a) 2 ] a 2 +b 2 +c 2 =(a+b+c) 2 -2(ab+bc+ca)=(a+b-c) 2 -2(ab-bc-ca)=… 结合其它数学知识和性质,相应有另外的一些配方形式,如: 1+sin2α=1+2sinαcosα=(sinα+cosα) 2 ; x 2 + 1 2 x=(x+ 1 x) 2 -2=(x- 1 x) 2 +2 ;……等等。 Ⅰ、再现性题组: 1. 在正项等比数列{a n}中,a1?a5+2a3?a5+a3?a7=25,则 a3+a5=_______。 2. 方程x 2 +y 2 -4kx-2y+5k=0表示圆的充要条件是_____。 A. 1 41 C. k∈R D. k= 1 4或k=1 3. 已知sin 4 α+cos 4 α=1,则sinα+cosα的值为______。 A. 1 B. -1 C. 1或-1 D. 0 4. 函数y=log1 2 (-2x 2 +5x+3)的单调递增区间是_____。 A. (-∞, 5 4] B. [ 5 4,+∞) C. (- 1 2, 5 4] D. [ 5 4,3) 5. 已知方程x 2 +(a-2)x+a-1=0的两根x1、x2,则点P(x1,x2)在圆x 2 +y 2 =4上,则实数a=_____。 【简解】 1小题:利用等比数列性质a m p -a m p +=a m 2 ,将已知等式左边后配方(a3+a5) 2 易求。答案是:5。 2小题:配方成圆的标准方程形式(x-a) 2 +(y-b) 2 =r 2 ,解r 2 >0即可,选B。 3小题:已知等式经配方成(sin 2 α+cos 2 α) 2 -2sin 2 αcos 2 α=1,求出sinαcosα,然后求出所求式的平方值,再开方求解。选C。 4小题:配方后得到对称轴,结合定义域和对数函数及复合函数的单调性求解。选D。 5小题:答案3-11。 Ⅱ、示范性题组: 例1.已知长方体的全面积为11,其12条棱的长度之和为24,则这个长方体的一条对角线长为_____。 A. 23 B. 14 C. 5 D. 6 【分析】先转换为数学表达式:设长方体长宽高分别为x,y,z,则211 424 () () xy yz xz x y z ++= ++= ? ? ? ,而欲求对角线长x y z 222 ++,将其配凑成两已知式的组合形式可得。

高考数学二轮总复习专题训练一 综合测试题 理

专题一综合测试题 (时间:120分钟 满分:150分) 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合U ={1,2,3,4,5,6},集合M ={1,3},N ={2,3,4},则(?U M )∩(?U N )=( ) A .{3} B .{4,6} C .{5,6} D .{3,6} 解析:?U M ={2,4,5,6},?U N ={1,5,6},∴(?U M )∩(?U N )={5,6},故选C. 答案:C 2.已知全集I =R ,若函数f (x )=x 2-3x +2,集合M ={x |f (x )≤0},N ={x |f ′(x )<0},则M ∩?I N =( ) A .[3 2,2] B .[3 22) C .(3 2 ,2] D .(3 2 2) 解析:由f (x )≤0解得1≤x ≤2,故M =[1,2];f ′(x )<0,即2x -3<0,即x <3 2,故N =(-∞,32),?I N =[32M ∩?I N =[3 2 ,2]. 答案:A 3.设某种蜡烛所剩长度P 与点燃时间t 的函数关系式是P =kt +b .若点燃6分钟后,蜡烛的长为17.4 cm ;点燃21分钟后,蜡烛的长为8.4 cm ,则这支蜡烛燃尽的时间为( ) A .21分钟 B .25分钟 C .30分钟 D .35分钟 解析:由? ?? ?? 17.4=6k +b 8.4=21k +b ,解得k =-0.6,b =21,由0=-0.6t +21,解得t =35. 答案:D 4.已知命题p :“?x ∈[1,2],x 2-a ≥0”,命题q :“?x ∈R ,x 2+2ax +2-a =0”.若命题“綈p 且q ”是真命题,则实数a 的取值范围为( ) A .a ≤-2或a =1 B .a ≤-2或1≤a ≤2 C .a ≥1 D .a >1 解析:命题p :“?x ∈[1,2],x 2-a ≥0”,∴a ≤x 2在[1,2]上恒成立,∴a ≤1,∴綈 p 为a >1.

高中数学解题的思想方法

高中数学解题的思想方法(经典) 美国著名数学教育家波利亚说过,掌握数学就意味着要善于解题。而当我们解题时遇到一个新问题,总想用熟悉的题型去“套”,这只是满足于解出来,只有对数学思想、数学方法理解透彻及融会贯通时,才能提出新看法、巧解法。高考试题十分重视对于数学思想方法的考查,特别是突出考查能力的试题,其解答过程都蕴含着重要的数学思想方法。我们要有意识地应用数学思想方法去分析问题解决问题,形成能力,提高数学素质,使自己具有数学头脑和眼光。 高考试题主要从以下几个方面对数学思想方法进行考查: ① 常用数学方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法等; ② 数学逻辑方法:分析法、综合法、反证法、归纳法、演绎法等; ③ 数学思维方法:观察与分析、概括与抽象、分析与综合、特殊与一般、类比、归纳和演绎等; ④ 常用数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思想等。 数学思想方法与数学基础知识相比较,它有较高的地位和层次。数学知识是数学内容,可以用文字和符号来记录和描述,随着时间的推移,记忆力的减退,将来可能忘记。而数学思想方法则是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,掌握数学思想方法,不是受用一阵子,而是受用一辈子,即使数学知识忘记了,数学思想方法也还是对你起作用。 数学思想方法中,数学基本方法是数学思想的体现,是数学的行为,具有模式化与可操作性的特征,可以选用作为解题的具体手段。数学思想是数学的灵魂,它与数学基本方法常常在学习、掌握数学知识的同时获得。 可以说,“知识”是基础,“方法”是手段,“思想”是深化,提高数学素质的核心就是提高学生对数学思想方法的认识和运用,数学素质的综合体现就是“能力”。 为了帮助大家掌握解题的金钥匙,掌握解题的思想方法,咱们就先介绍高考中常用的数学基本方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法、反证法、分析与综合法、特殊与一般法、类比与归纳法、观察与实验法,再介绍高考中常用的数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思想。最后谈谈解题中的有关策略和高考中的几个热点问题。 在每一个方法,先是对方法或者问题进行综合性的叙述,再以三种题组的形式出现。再现性题组是一组简单的选择填空题进行方法的再现,示范性题组进行详细的解答和分析,对方法和问题进行示范。巩固性题组旨在检查学习的效果,起到巩固的作用。每个题组中习题的选取,又尽量综合到代数、三角、几何几个部分重要章节的数学知识。 一、配方法 从而化繁为简。何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。有时也将其称为“凑配法”。

最新1992年全国统一高考数学试卷(理科)

1992年全国统一高考数学试卷(理科) 一、选择题(共18小题,每小题3分,满分54分) 1.(3分) 的值是( ) A . B . 1 C . D . 2 2.(3分)如果函数y=sin (ωx )cos (ωx )的最小正周期是4π,那么常数ω为( ) A . 4 B . 2 C . D . 3.(3分)极坐标方程分别是ρ=cosθ和ρ=sinθ的两个圆的圆心距是( ) A . 2 B . C . 1 D . 4.(3分)方程sin4xcos5x=﹣cos4xsin5x 的一个解是( ) A . 10° B . 20° C . 50° D . 70° 5.(3分)已知轴截面是正方形的圆柱的高与球的直径相等,则圆柱的全面积与球的表面积的比是( ) A . 6:5 B . 5:4 C . 4:3 D . 3:2 6.(3分)图中曲线是幂函数y=x n 在第一象限的图象.已知n 取±2,±四个值,则相应于曲线c 1、c 2、c 3、c 4的n 依次为( ) A . ﹣2,﹣,,2 B . 2,,﹣,﹣2 C . ﹣,﹣2,2, D . 2,,﹣2, ﹣ 7.(3分)若log a 2<log b 2<0,则( ) A . 0<a <b <1 B . 0<b <a <1 C . a >b >1 D . b >a >1 8.(3分)直线 (t 为参数)的倾斜角是( )

A . 20° B . 70° C . 45° D . 135° 9.(3分)在四棱锥的四个侧面中,直角三角形最多可有( ) A . 1个 B . 2个 C . 3个 D . 4个 10.(3分)圆心在抛物线y 2=2x 上,且与x 轴和该抛物线的准线都相切的一个圆的方程是( ) A . x 2+y 2﹣x ﹣2y ﹣=0 B . x 2+y 2+x ﹣2y+1=0 C . x 2+y 2﹣x ﹣2y+1=0 D . x 2+y 2﹣x ﹣ 2y+=0 11.(3分)在(x 2+3x+2)5的展开式中x 的系数为( ) A . 160 B . 240 C . 360 D . 800 12.(3分)若0<a <1,在[0,2π]上满足sinx≥a 的x 的范围是( ) A . [0,arcsina ] B . [arcsina ,π﹣arcsina ] C . [π﹣arcsina ,π] D . [arcsina ,+arcsina ] 13.(3分)已知直线l 1和l 2的夹角平分线为y=x ,如果l 1的方程是ax+by+c=0,那么直线l 2的方程为( ) A . b x+ay+c=0 B . a x ﹣by+c=0 C . b x+ay ﹣c=0 D . b x ﹣ay+c=0 14.(3分)在棱长为1的正方体ABCD ﹣A 1B 1C 1D 1中,M 和N 分别为A 1B 1和BB 1的中点,那么直线AM 与CN 所成角的余弦值是( ) A . B . C . D . 15.(3分)已知复数z 的模为2,则|z ﹣i|的最大值为( ) A . 1 B . 2 C . D . 3 16.(3分)函数y=的反函数( ) A . 是奇函数,它在(0,+∞) 上是减函数 B . 是偶函数,它在(0,+∞)上是减函数 C . 是奇函数,它在(0,+∞) 上是增函数 D . 是偶函数,它在(0,+∞)上是增函数 17.(3分)如果函数f (x )=x 2+bx+c 对任意实数t 都有f (2+t )=f (2﹣t ),那么( )

高中数学复习专题讲座(第42讲)应用性问题

题目高中数学复习专题讲座应用性问题 高考要求 数学应用题是指利用数学知识解决其他领域中的问题 高考对应用题的考查已逐步成熟,大体是三道左右的小题和一道大题,注重问题及方法的新颖性,提高了适应陌生情境的能力要求 重难点归纳 1 解应用题的一般思路可表示如下: 数学解答 数学问题结论 问题解决数学问题实际问题 2 解应用题的一般程序 (1)读 阅读理解文字表达的题意,分清条件和结论,理顺数量关系,这一关是基础 (2)建 将文字语言转化为数学语言,利用数学知识,建立相应的数学模型 熟悉基本数学模型,正确进行建“模”是关键的一关 (3)解 求解数学模型,得到数学结论 一要充分注意数学模型中元素的实际意义,更要注意巧思妙作,优化过程 (4)答 将数学结论还原给实际问题的结果 3 中学数学中常见应用问题与数学模型 (1)优化问题 实际问题中的“优选”“控制”等问题,常需建立“不等式模型”和“线性规划”问题解决 (2)预测问题 经济计划、市场预测这类问题通常设计成“数列模型”来解决 (3)最(极)值问题 工农业生产、建设及实际生活中的极限问题常设计成“函数模型”,转化为求函数的最值 (4)等量关系问题 建立“方程模型”解决 (5)测量问题 可设计成“图形模型”利用几何知识解决 典型题例示范讲解 例1为处理含有某种杂质的污水,要制造一个底宽为2米的无盖长方体沉淀箱(如图),污水从A 孔流入,经 沉淀后从B 孔流出,设箱体的长度为a 米,高度为b 米, 已知流出的水中该杂质的质量分数与a 、b 的乘积ab 成反 比,现有制箱材料60平方米,问当a 、b 各为多少米时, 经沉淀后流出的水中该杂质的质量分数最小(A 、B 孔的 面积忽略不计)? B A

相关主题
文本预览
相关文档 最新文档