当前位置:文档之家› 荧光共轭聚合物的合成及荧光淬灭研究

荧光共轭聚合物的合成及荧光淬灭研究

荧光共轭聚合物的合成及荧光淬灭研究
荧光共轭聚合物的合成及荧光淬灭研究

几种常见荧光素极其特性介绍

几种常见荧光素极其特性介绍 荧光素(英语:Fluorescein,又称为荧光黄)是一种合成有机化合物,它是具有光致荧光特性的染料,外观为暗橙色/红色粉末,可溶于乙醇,微溶于水,在蓝光或紫外线照射下,发出绿色荧光。荧光染料种类很多,目前常用于标记抗体的荧光素有以下几种:异硫氰酸荧光素,四乙基罗丹明,四甲基异硫氰酸罗丹明,酶作用后产生荧光的物质。目前荧光素广发应用在免疫荧光、免疫荧光染色实验中。 下面介绍几种常用荧光素及其基本生物学特性: 1、异硫氰酸荧光素,简称“FITC”。是一种小分子荧光素,其效率取决于于溶液的pH 值,因此,在使用FITC时应注意溶液的酸碱度。FITC分子量为389.4,最大吸收光波长为490~495nm,最大发射光波长为520~530nm,呈现明亮的黄绿色荧光。 FITC在冷暗干燥处可保存多年,是目前应用最广泛的荧光素。其主要优点是人眼对黄绿色较为敏感,通常切片标本中的绿色荧光少于红色。 2、藻红蛋白,简称“PE”。相对分子质量较大,约为240kD,最大吸收峰为564nm,当使用488nm激光激发时其发射荧光峰值约为576nm,故可能会对其它大探针产生空间位阻。 但PE的化学结构非常稳定,有很高的荧光效率,并易与抗体分子结合。需要注意的是PE作为天然染料,因来源不同可能造成荧光素结构上的微小差别,导致其特征的不一致。 3、PI和EB。两者都具有嵌入到双链DNA和RNA的碱基对中并与碱基对结合的特异性。为了获得特异的DNA分布,染色前必须用RNA酶处理细胞,排除双链RNA的干扰。 PI和EB不能进入完整的细胞膜,因此,又可以用于检测死活细胞。PI和EB各种理化性质相似,但PI比EB的发射光光谱峰向长波方向移动,因而在做DNA和蛋白质双参数测量时,PI的红色荧光和FITC的绿色荧光更易于区分和测量。另外,PI比EB测得的DNA 分布的变异系统(CV值)低,所以PI得到更广泛的应用。

氧化石墨烯荧光淬灭

1我报告的题目是基于碌酸化多肽降解受阻的石墨稀/多肽复合焚光探针用于蛋白激酶活性及抑制作用分析 2蛋白激酶催化作用下的蛋白质憐酸化是生物体内翻译后修饰的重要方式之一。蛋白质的憐酸化和去磷酸化这一可逆过程几调节着细胞的发育、增殖、分化、信号转导、神经活动、肌肉收缩、细胞凋亡及肿瘤发生等过程在内的大部分生命活动。非正常的磷酸化会导致人体产生各种疾病,例如癌症或老年痴呆症等。因此,准确灵敏地检测过度磷酸化、分析蛋白激酶活性和高通量蹄选高效抑制剂对于人类一些重大疾病的早期诊断和治疗极为重要。 传统用于蛋白激酶活性分析的方法依赖于放射性元素标记伽马-32P-ATP法,由于放射性物质对环境及其人体的危害而随之被取代,基于憐酸特异性识别抗体的免疫技术[146]、突光分析方法表面等离子共振技术[184,185]以及质谱等都能有效用于蛋白激酶的活性分析。 石墨稀(Graphene),是从石墨材料中剥离出来的由碳原子组成的二维晶体, 是目前己知世界上强度最高的材料。石墨稀具有独特的电子、机械、热力学特性 在化学、质量、压力等传感应用中独具优势,。与碳纳米管相似,石墨烯对有机 荧光分子表现了有效的突光淬灭效果,这一过程中同时发生了激发态突光分子与 石墨烯表面之间的能量转移和电子转移。2010年诺贝尔物理学奖 氧化石墨烯薄片是石墨粉末经化学氧化及剥离后的产物,氧化石墨烯是单一的原子层,仍然具有淬灭荧光的效果 3本文首次提出了一种基于多肽/石墨烯突光浮灭机制和接肽酶降解作用的激 酶活性分析方法。酪蛋白激酶CKII是一种重要的丝氨酸/苏氨酸选择性蛋白激酶, 能磷酸化160种不同的蛋白质,我们以CKII为蛋白激酶模型。FITC 标记的CKII底物多 肽,FITC-peptide(FITC-RRRADDSDDDDD),能与GO发生有效的突光浮灭。幾肽酶CPY是一类 肽链端解酶,作用于任何一个C-末端残基,从肽链的C端开始逐个降解,释放出 游离氨基酸。FITC-peptide在CPY的消化作用下释放出游离的FITC分子,在 高离子强度环境下,游离FITC分子与GO之间的吸附较小而保持相当强的焚光。 而当FITC-peptide在CKII/ATP催化发生磷酸化,有效地阻碍CPY在憐酸化丝氨 酸位点的降解,使得FITC-多肽更容易与GO结合导致焚光淬灭。 1羧肽酶CPY 作用于任何一个C-末端残基逐个降解释放游离氨基酸,并释放出游离的FITC分子,在高离子强度环境下(猜想,故而加了氯化镁和钾),与GO之间吸附较小保持相当强的荧光 4. 梭肽酶(carboxypeptidase Y, CPY)、Staurosporine、弗斯可林(Fskorlin)和3-异丁基-1-甲基黄嘿呤(IBMX) 购买于西格玛公司(中国上海)。cAMP-依赖型蛋白激酶(PKA,催化亚基)购买 于Promega公司,酷蛋白激酶II (CKII)购买于New England Biolabs公司(美国)。 突光素标记底物多肽:FITC-RRRADDSDDDDD ( FITC-pep )、 FITC-RRRADDpSDDDDD (FITC-Ppep)和FITC-LRRASLG (FITC-kemptide) ATP、蛋白酶抑制剂和改良型Bradford蛋白总浓度检测试剂盒 牛血清蛋白(BSA)、三轻甲基氨基甲焼(Tris)、甘油、DTT、 EDTASynergy Mx酶标仪(BioTek仪器有限公司)进行突光光谱分析,所有样 品用480 nm作为激发波长,从500 nm到700 nm (25 °C)扫描焚光发射谱图。 5氧化石墨稀与多肽FITC-pep之间的劳光淬灭(氧化石墨烯对荧光强度的影响)FlTC-peptide+ TBS+ Tris-HCl+ MgCb+ KCl+氧化石墨稀 在96孔酶标板中加入60 nL浓度为的多肽(FlTC-peptide)溶液(溶 于TBS,即20 mM Tris-HCl,10 mM MgCb, 50 mM KCl, pH 7.5),每孔中加入

不同标记荧光基团的稳定性、半衰期介绍说明

Please refer to STYLE GUIDE.doc for detailed guidelines Color code legene: Red = Proprietary; Pink = Discontinuation; Green = Anecdotal; Blue = Anything else customers will not see Custom Primers – All Modifications TABLE OF CONTENTS PRODUCT DESCRIPTION SHIPPING CONDITIONS STORAGE CONDITIONS STABILITY QC SPECIFICATIONS PROTOCOL & APPLICATION NOTES Modification/scale/purification Manufacturing Details Fluorescein Rhodamine HEX/TET/FAM Phosphate Biotin Amine Gateway Alexa Other dyes Alkaline Phosphatase Horse Radish Peroxidase Phosphorothioate “Fully-Phosphorothioated" Custom Primers Aldehyde Acridine Thiol Delivery Schedule OligoPerfect Designed Primers 3' Modifications of Oligos Reconstitution Protocol A260/A280 ratio of the oligo Oligo Visualization Troubleshooting “Custom Custom” modifications List of current technology limitations COMPETITOR INFORMATION ALTERNATE PRODUCTS & COMPATIBILITY PRODUCT DOCUMENTATION REFERENCES PRODUCT NAME & CATALOG NUMBER COMPONENTS DISCONTINUATION NOTICE ASSOCIATED PRODUCTS PRODUCT QUALITY ISSUES Returning Primers LICENSING INTERNAL CONTACTS

(完整word版)荧光机理

1光致电子转移(PET) 递给荧光基团的键合基团(RecePtor),负责光吸收并产生荧光发射信号的荧光基团(Fluorophorc)—其荧光发射强度反映键合基团的结合状态,以及连接键合集团和荧光基团的连接基团(Spacer)。键合基团和荧光基团通常为电子给体或者电子受体。 光致电子转移是指电子给体或电子受体受光激发后,激发态的电子给体与电子受体之间发生电子转移从而导致荧光的淬灭过程。例如,当荧光分子传感器的键合基团是电子给体,荧光基团是电子受体时,具体PET作过程如下:在光激发下,具有电子给予能力的键合基团能够将其处于最高能级的电子转入激发态下荧光基团空出的电子轨道,使被光激发的电子无法直接跃迁巨}到原基态轨道发射荧光,从而导致荧光的淬灭;当键合基团与底物结合后,降低了键合基团的给电子能力,抑制了PET过程,荧光基团中被光激发的电子可以直接跃迁回到原基态轨道,从而增强了的荧光基团的荧光发射。因此在未结合底物前,传感器分子表现为荧光淬灭,一旦键合基团与底物相结合,荧光基团就会发射荧光(见图) 由于与客底物结合前后的荧光强度差别很大,呈现明显的“关”、“开”状态,因此这类荧光化学传感器又被称为荧光分子开关。PET荧光分子传感器的作用机制可由前线轨道理论“来进一步说明(见图 1.5)。

2分子内电荷转移(ICT) ICT荧光化学传感器由推电子基团、吸电子基团通过p电子体系连接而成,在基态时表现为极化结构,一端为缺电子部分,另一端为富电子部分;而在光激发下,偶极矩增大,强化了这种极化特征,容易发 生ICT过程(如图)。 ICT荧光化学传感器的工作原理有两种(见图l.7a):当底物是缺电子基团(阳离子)时,一种是底物与吸电子基团结合,将增大分子内电荷转移程度,导致荧光光谱红移;一种是底物与推电子基团结合,则使原来向共扼体系转移的孤对电子用于与阳离子形成配位键,导致ICT 推一拉电子的特征下降,导致荧光光谱蓝移。当底物是富电子基团(阴离子)时,情况相反。一般情况下,ICT荧光化学传感器对荧光强度的影响不如PET荧光化学传感器显著。典型例子是同时含有吸电子

水溶性荧光共轭聚合物MPS_PPV的聚合新方法及其荧光波长调控研究

2009年第67卷化学学报V ol. 67, 2009第24期, 2827~2832 ACTA CHIMICA SINICA No. 24, 2827~2832 zhkhe@https://www.doczj.com/doc/ad14060541.html, * E-mail: Received April 27, 2009; revised July 29, 2009; accepted August 21, 2009. 国家自然科学基金(Nos. 90717111, 20621502)资助项目.

2828化学学报V ol. 67, 2009 Scheme 1 但是这种方法所需步骤长[图式2(a)], 合成总产率低, 聚合过程操作复杂、所需时间长[见图式2(c)]. Bazan课题组[17]采用1,4-丁基磺酰内酯为原料, 大大缩短了反应步骤并提高了合成产率[图式2(b)]. 但是迄今为止, 在聚合方式上仍然没有大的改进. 过去几年, 我们一直在从事水溶性荧光共轭聚合物传感器研究[3,7,15,18,19], 发现聚合物的聚合方法及其性能对传感器的影响尤为重要, 因此如何实现单体简单快速的聚合具有很重要的意义. 作者以4-甲氧基苯酚和1,3-丙基磺酰内酯为反应原料, 提出了一种新的单体聚合方法[图式2(d)], 使聚合步骤得到了简化, 缩短了反应时间; 同时, 我们发现改变聚合反应溶液中NaOH的浓度, MPS-PPV的链长有所改变, 导致其紫外吸收和荧光发射峰发生变化. 利用元素分析, IR, 1H NMR和动态光散射对0.5 mol/L NaOH乙醇溶液中生成的聚合物进行表征, 所得结果与文献[13]的结果基本相符, 证实目标产物为MPS-PPV. 研究了聚合物与过氧化氢之间的作用, 结果发现, 过氧化氢可使聚合物原有发射峰(508 nm)蓝移, 并在472 nm处出现新的荧光峰, 进一步验证了聚合物的链长与其荧光发射波长的关系. 同时结合聚合物峰形和强度的变化可以实现过氧化氢选择性的检测, 优于单纯基于聚合物荧光猝灭的传感模式, 此研究无疑为基于荧光聚合物的新型生物化学传感器研制提供了新的思路. 1 实验部分 1.1 仪器和试剂 荧光激发和发射光谱使用Perkin Elmer LS55荧光仪测试; 核磁共振于Variant Mercury UX-300核磁共振仪测定; 红外光谱在Nicolet Magna-IR spectrometer 550红外光谱仪上测定; 紫外光谱使用TU-1901紫外光谱仪测试; 元素分析数据在Perkin-Elmer2400元素分析仪上获得; 分子量在ALV/DLS/SLS-5000动态光散射仪上测定; pH用PHS-3C精密pH计调节. 4-甲氧基苯酚、1,3-丙基磺酰内酯、四氢噻吩、三羟甲基氨基甲烷(Tris)均购于Aldrich公司; 二氧杂环己烷购于百灵威化学技术公司; 无水乙醇、乙醚、氯仿、丙酮、DMF (N,N-二甲基甲酰胺)、二氯亚砜、多聚甲醛、苯、无水甲醇、浓盐酸、浓硫酸、无水硫酸镁、过氧化氢均为国药分析纯试剂, 所用MPS-PPV配成1× 10-4 mol/L(以重复单元的浓度表示, 以下相同); Tris缓冲溶液浓度为20 mmol/L, 用浓盐酸调节至所需pH; 过氧化氢现配; 实验用水为超纯水. 1.2 荧光共轭聚合物MPS-PPV的合成 根据文献以4-甲氧基苯酚和1,3-丙基磺酰内酯为起始原料, 通过四步反应和一步聚合得到MPS-PPV, 具体 图式2 MPS-PPV的合成路线图Scheme 2Synthetic route of the MPS-PPV

共轭聚合物光电材料设计

材料化学专业科研训练 题目:共轭聚合物光电材料设计班级:材化12-3 姓名:丁泽 指导教师:杨照地 哈尔滨理工大学化学与环境工程学院 2014年12月31日

摘要 共轭聚合物是由大量重复基元通过化学键连接的一维体系,具有独特的光、电、电化学等性质,由于共轭聚合物结构( 链段、构象、聚集态) 的复杂性,即使在非常精细的合成条件下,少量结构缺陷的形成也是难免的,本文在前人的基础上设计了在PPV共轭聚合物主链及侧链上添加各种基团或原子后的改性情况。共轭聚合物,特别在其固态状态下激发能量能够有效传递,使得少量缺陷的影响被放大,对其光电性质产生巨大影响。因此对共轭聚合物结构缺陷的研究,包括缺陷成因与控制、缺陷密度的分析、缺陷的分子结构与电子结构特征等,对于高品质材料的研发具有重要的意义。 关键词共轭聚合物,PPV,光电材料,合成改性,修饰改性

目录 摘要...................................................................................................................... I 第1章绪论.. (1) 1.1 共轭聚合物概述 (1) 1.1.1 共轭聚合物的分类 (4) 第2章PPV类共轭聚合物 (5) 2.1 PPV类共轭聚合物简介 (5) 2.2 共轭聚合物的缺陷 (6) 2.2.1 PPV 的四面体缺陷 (8) 2.2.2 PPV的氧化缺陷 (9) 2.2.3 顺式缺陷 (10) 第3章PPV共轭聚合物的改性研究 (13) 3.1 PPV类聚合物的结构修饰 (13) 3.1.1 侧链修饰 (14) 3.1.2 主链修饰 (18) 总结 (20) 参考文献 (21)

共轭聚合物的电学性质

共轭聚合物的电学性质 姓名:周宇班级:10级高分子材料与工程1班学号:201015014021 摘要:共轭导电聚合物是一种极有应用前景的功能高分子材料,简单了解共轭导电聚合 物的导电特性、应用以及共轭导电聚合物在制作二次电池、新型电子器件等方面具有独特的特性和优点。 关键词:共轭聚合物电学性质应用及发展 前言 导电高分子的研究和应用是近年来高分子科学最重要的成就之一。1974年日本白川英树等偶然发现一种制备聚乙炔自支撑膜的方法,得到聚乙炔薄膜不仅力学性能优良,且有明亮金属光泽。而后MacDiarmid、Hedger、白川英树等合作发现聚乙炔膜经过AsF5、I2等掺杂后电导率提高13个数量级,达到103S?cm-1,成为导电材料。这一结果突破了传统的认为高分子材料只是良好绝缘体的认识,引起广泛关注。 由于共轭导电聚合物同时具有聚合物、无机半导体和金属导体的特性,因而具有巨大的潜在的商业应用价值。在这里就聚合物的导电性及共轭聚合物材料的特性及其应用作一扼要介绍。 正文 一.聚合物的电学性质 高分子材料的电学性能是指在外加电场作用下材料所表现出来的介电性能、导电性能、电击穿性质以及与其他材料接触、摩擦时所引起的表面静电性质等。 (一)聚合物的介电性能 聚合物在外电场作用下贮存和损耗电能的性质称介电性,这是由于聚合物分子在电场作 tg表示. 用下发生极化引起的,通常用介电系数ε和介电损耗 1.介电损耗 电介质在交变电场中极化时,会因极化方向的变化而损耗部分能量和发热,称介电损耗。介电损耗产生的原因有两方面:一为电导损耗,是指电介质所含的微量导电载流子在电场作用下流动时,因克服电阻所消耗的电能;二为极化损耗,这是由于分子偶极子的取向极化造成的.对非极性聚合物而言,电导损耗可能是主要的.对极性聚合物的介电损耗而言,其主要部分为

关于荧光染(资料集合)

关于荧光染料(资料集合) ●人肉眼对光源波长的颜色感觉 红色770-622 nm 橙色622~597 nm 黄色597~577 nm 绿色577~492 nm 蓝靛色492~455nm 紫色455~350nm ●理想的荧光染料一般具有以下几个特点: 1.具有高的光子产量,信号强度高; 2.对激发光有较强的吸收,降低背景信号; 3.激发光谱与发射光谱之间距离较大,减少背景信号的干扰; 4.易与被标记的抗原、抗体或其他生物物质结合而不影响被标记物的特异性; 5.稳定性好,不易受光、温度、PH、标本抗凝剂和固定剂的影响。 ●染料在生物化学中最早的应用是直接对切片进行染色,然后进行观察。随着生物技术、计算机技术以及荧光光谱测定技术的不断发展,许多染料尤其是荧光染料在细胞检测、肿瘤基因蛋白分析、毒物分析、临床医疗诊断等方面得到了广泛的应用。 荧光染料泛指吸收某一波长的光波后能发射出另一大于吸收光波长的光波的物质。利用荧光染料进行抗体标记分析在现代生物免疫学领域中应用广泛,并逐步显示出明显的优越性。 下面简要介绍应用于标记抗体的荧光染料及其种类: 1.荧光素类染料,包括异硫氰酸荧光素(FITC)、羟基荧光素(FAM)、四氯荧光素(TET)等及其类似物。这是一类具有较多苯环的化合物。应用最广泛的是FITC(如图为FITC标记的组织荧光图),在488nm 处由氩离子激光激发,发射525nm的蓝绿色荧光。FITC能够与各种抗体蛋白结合,并在碱性溶液中稳定呈现蓝绿色荧光。 2.罗丹明类染料,包括红色罗丹明(RBITC)、四甲基罗丹明(TAMRA)、罗丹明B(TRITC)等。TRITC在550nm处被激发可发射出570nm的黄色荧光。 3.Cy系列菁染料,菁染料通常有两个杂环体系组成,包括Cy2、Cy3、Cy3B、Cy3.5、Cy5、Cy5.5、Cy7及其类似物。 4.Alexa系列染料,它是由MolecularProbes开发的系列荧光染料。其激发光和发射光光谱覆盖大部分可见光和部分红外线光谱区域,应用广泛。以高亮度、稳定性、仪器兼容性、多种颜色、pH值不敏

水溶性共轭聚合物发光材料(精)

水溶性共轭聚合物发光材料 本论文的研究内容主要涉及共轭高分子发光材料领域。上世纪九十年代以来,共轭高分子发光材料的研究开始成为当今高分子科学热点研究领域之一。共轭高分子发光材料在高分子发光二极管方面的应用研究方兴未艾,水溶性共轭高分子发光材料特别是共轭聚电解质的研究又愈来愈引起人们的关注。本课题组长期从事共轭高分子发光材料的研究,在共轭聚电解质的研究方面也已经有一定的工作积累。除了采用传统的经典化学合成即利用共价键连接的合成方法得到水溶性共轭高分子之外,最近我们开始尝试采用共轭高分子非共价键自组装的方法来制备水溶性共轭高分子发光材料。这类材料主要是利用共轭聚合物和水溶性小分子或者高分子之间的非共价键相互作用而得到的,此类材料目前研究较少,但是当材料科学发展到今天,单一材料的性质已具有某种程度的可预测性时,通过分子层次的剪裁或者组装来实现材料应用上的需求将逐渐上升为研究主流。共轭高分子的分子或者聚集态结构及其性能特别是发光性能的关系始终是贯穿我们课题组学术研究的主线之一,结合本课题组与此相关的工作基础,本论文对水溶性共轭聚合物发光材料进行了系列研究,论文工作主要分为四个部分,分别简述如下:第一部分,合成了系列新型阳离子聚对苯乙烯撑类共轭聚电解质,并进行了系列表征;我们合成了系列胺功能化的苯取代PPV类共聚物P1\'— P4\',通过Wittig反应在主链上分别引入了噻吩、芴、烷氧化的苯以及苯取代的苯等组分,经过季胺化以后得到相应的阳离子发光聚合物。从FT-IR以及~1H NMR谱图分析得知,这些聚合物具有不同含量的顺式构型,其含量与PPV主链上 所引入的芳香基类型有关。它们的发光颜色可以通过在PPV共轭主链上引入具有不同光电性能的单元很方便的进行调控。P3和P3\'主链上含有芴以及大体积苯取代的苯单元,在中性聚合物以及季胺化聚合物中分别表现出最高的荧光量子效率。进一步的荧光猝灭行为研究表明,顺式构型含量较少的P4\'荧光表现出 完全猝灭,而顺式构型含量较多的P1\'-P3\'表现出不完全荧光猝灭。第二部分,在第一部分工作基础之上,我们系统研究了系列聚对苯乙烯撑类共轭聚电解质的荧光猝灭行为,发现包括顺反异构在内的分子结构因素是荧光猝灭行为最主要的影响因素。我们研究了具有不同含量顺反构型的系列阳离子型PPV类衍生物与Fe(CN)_6~(4-)之间的荧光猝灭行为。我们发现,采用Wittig反应所合成的顺式构型含量较多的PPV呈现线性下偏型Stern-Volmer曲线,即不完全荧光猝灭;而采用Gilch反应所得到的全反式构型的PPV的Stern-Volmer曲线则为线性上偏型,即完全荧光猝灭。通过对其荧光猝灭行为比较研究,我们发现荧光猝灭主要是通过电子转移而非能量转移而完成的。考虑到被包埋发色团的存在以及“作用范围”的影响,参考前人工作,我们引入了一个经过修正的Stern-Volmer方程,能很好的拟合顺式构型含量较多的PPV所呈现的线性下偏型Stern-Volmer曲线。此外,对比研究发现,分子链中大体积的苯取代基对荧光猝灭行为很可能存在直接的位阻效应,阻止了发色团与猝灭剂之间的静电相互作用,一定程度上影响了荧光猝灭;而在不存在大体积的苯取代基时,顺式构型的存在应该是产生这种不可接触发色团的主要因素。而链间聚集以及季胺化不完全等其它因素对荧光猝灭行为的影响则较小。由于在Wittig反应中分子侧链中的取代基对于最终的顺式构型含量具有较大影响,我们可以把这些聚合物特殊的荧光猝灭性质本质上归因于其分子链上取代基性质的不同(即分子结构的不同)。第三部分,基于上述结论,我们采用Gilch反应合成了一种侧链无大体积取代基的新型阳离子聚对

共轭聚合物合成方法的研究

80 2003年增刊 化学与生物工程 ————一———————一—_—h—一—————●—___-一 共轭聚合物合成方法的研究 王维,张爱清 (中南民族大学化学与生命科学学院,湖北武汉4311074) 摘要:综连了聚芳撑(PPP、PPY、PqP)、聚对苯撑乙烧(PPV)、聚苯胺(PAn)、聚腈(PAZ)几种共轭聚合物的合成 方法,井指出了甚轭聚各物应用中存在问题厦夸后的合成方向。 关键词:典轭聚合物;聚对苯撑}聚吡咯}聚噻吩;聚对苹撑乙烧;聚苯胺;聚腈;合成中图分类号:0631.23 文献标识码:A 文章编号:1672—5425(20(13)增刊一0080一07 聚合物常被认为是绝缘体,但共轭聚合物因其结构特征而具有优良的光电学性能。自1977年白川英 树(K.Shiakawa)和MacDiarmid等人首次用AsF5或 12对聚乙炔(Polyaeetylene,PA)进行P型掺杂,获得 103 s?m1以上的高电导率以来,人们对共轭聚合物 的结构和性能有了新的认识。1990年剑桥大学的Burronghes等用聚对苯撑乙炔(PPV)制备了电致发光器件,引起了世人的关注。共轭聚台物的研究在世 刘丽,路庆华,印杰,朱子康,王宗光.溶胶一凝胶{击制备聚酰亚胺/二氧化钛赙光杂化材料[J].高等学校化学学报,2001.22 (11),1943—1944. JPhotopolSdTechno】,1992-298. KerwlnR E,GodrickMR.Thermally stablephotorejist p。ly— mer[J]PdymEng Sci,1971,8(5)l426—429.YochN.HiramotoH.New photosensitivehigh temperaturepol— ymers forelectric applications[J].JMaeromol Sei Chem,1984, A211I3-14):1641—1663. 攘豪情,李悦生t丁盂贤.新的离子型光敏秉酡亚胺U3.应用化 学,1998.1 8(2).J00—105. WilsonD,Santa Ann.StenzenbergerH D.et a1.Polyimide[M]. Puhllshed r,theUSAChapman andHallNew York.1990:119. Hasegawn M.KoehiM,Mita1,eta1.Moleeulafaggragadonand fluorescencespectraofaromatic I)0lyimides[J].EurPolymJ, 1989,25:349‘354 RubnerR.Kieeberg W,KuhnE.German Patent2 437 348, 1994 界范围内乍l益广泛的开展起来,已逐渐成为一门新型的多学科交叉的研究领域。近些年研究主要集中在聚对苯撑(PPP)、聚吡咯(PPY)、聚噻吩(PTP)、聚苯胺(PAn)和聚苯撑乙炔(PPV),这是因为它们原料易得.合成方法简便、聚合物性能优良等优点,并显示出了广泛的应用前景。其应用领域主要包括:发光材料、非线性光学器件、充电电池、电容器、传感器、液晶材料等,国内外相关研究有不少文献报道[1“…,且部分应用已 [i9]柬普坤,李佐弗,李加深,玛戚,王强.主链古有机硅结构的光敏 聚酰亚胺的研究[J].功能高分子学报,1998.11(1):1998 f20]LinAA,VinodRS,et a1.MaeromoIeeules,1998,21:1165[213 ScaianoJ C.Ferrira J C N。Polym EngSci.1989,29(14);942 [zz3 Chiang wT.MeiwP.Tetrahedmn Letters,199Z,33‘511: 7869-7878. [23]ChiangWT,MeiWP.JApplyPolymSci,1993.50,2191—8195.[24]1wamotoM,KasaharaS?IrayamaK,ct日1.JpnJ Appl phys, 1991.30(2A):L218 [zsJ Jgargoa,MethodsMater,MleroeleetronTechaol(Proc hit. Syrup)。1982:81. [883JoChoi,e1.a1.Polym EngSci,1992.32(21)11632. [273KRCarter.eta1.PMSE,1995t72I 385. [683 E PCassidy,etal Po[ymNews.1989,14:392. 作者简介:扬志兰(1979一),士,硕士研宛生.研究方向:高分子 功能材料。 StudyofPhotosensitivePolyimide YANGZhHan,ZHANGAi-qing (College∥ChemistryandLi尼Science,SouthCentralUniversityforNationalities,Wuhan430074。Chinn) Abstract:Thepresentpaperreviewstheinvestigativeresearchofphotosensitivepolyimides.Thesyntheticmethods,propertiesandapplication arc discussedindetail.Beside,thedevelopmentaldirectionandappliedforegroundo{photosensitivepolyimides in microelectron are included. Keywords:photosensitive;polyimide;syntheticmethod;property;application;microelectron 圮玷钉 q 阳朝 叼 龃 ;  万方数据

共轭聚合物为基础的荧光传感器

第22卷第3期大学化学2007年6月今日化学 共轭聚合物为基础的荧光传感器 赵达慧 (北京大学化学与分子工程学院北京100871) 摘要近年来,借助共轭聚合物的荧光发射与淬灭过程开发化学与生物传感技术成为倍受关注并获得迅速发展的研究领域。由于共轭聚合物能够沿分子链进行能量和电荷传导,从而产生信号放大现象,这类传感器通常都具有较高的灵敏度。本文主要通过对几种具有代表性的此类化学/生物传感器的举例说明,概述荧光共轭聚合物的传感机理,并简要介绍这一领域的发展状况。 化学传感器是指能够利用某一种或某一类分子的特殊物理或化学性质对被检测物进行检测的器件;当用于实现检测的这种(类)分子或被检测对象是存在于生物活体中或本身具有生物活性或生理机能时,这类传感器就成为生物传感器。近年来,化学与生物传感器的研制无论是从检测的准确度、灵敏度还是检测对象的范围来看都取得了重大的进展。这不仅是由于用于信号检测的光/电仪器本身性能的提高,更重要的是经过科学工作者的努力,新的更灵敏、更准确的检测材料及方法、手段不断地被研究开发出来。在化学与生物传感器中,通过光或电信号实现检测的传感器的应用最为广泛,种类与数量也最为繁多。由于荧光检测的灵敏性与便捷性,通过荧光光谱的变化实现的检测又是光电传感器中极为普遍而重要的一类[1~3]。这类传感器利用了被检测物与某种荧光分子或材料之间特定的相互作用引发的荧光强度的增加或降低,或者是所发射的荧光波长的变化来实现对被检测物的检测与信号的传递。在不同的荧光传感材料中,共轭聚合物近年来成为特别吸引研究者注意力的研究对象,以共轭聚合物为基础的荧光传感器因而获得了迅速的发展。形成这种趋势的原因首先在于共轭聚合物通常具有很高的摩尔吸光系数与荧光量子效率,有利于发展高灵敏度的检测技术;另外,共轭聚合物所特有的传感信号的放大功能是它们成为优良的传感活性材料最重要的原因。 1共轭聚合物荧光信号放大的机理 共轭聚合物所实现的传感信号的放大作用是以检测共轭聚合物荧光为基础的传感器的一个重要特点。这种对传感信号的放大是相对于小分子体系而言的;这种现象可以用共轭聚合物的/分子导线0理论来解释[1,4](图1)。对于小分子而言,能够进行荧光传感的分子通常至少具有两种功能:发光功能和与被检测物相互作用的功能。承担这两项功能的结构分别被称为荧光基团(fluorophore)与受体(acceptor);在某些体系中,这两部分结构可以合二为一;并且,分子的发光性质(如发射波长、强度等)在与被检测物相互作用后会产生明显变化,这是体系实现传感功能的基础。如图1(a)所示,由于被检测物(ana l y te)的浓度通常较低,在小分子传感体系中,只有部分荧光分子与被检测物相结合,并且产生荧光传感信号,如荧光的淬灭、产

荧光淬灭

如果这种能量传递不有效的话,可能荧光就强。另外金的plasmon也会增强荧光材料的光吸收,可能会增强荧光总强度。这两个竞争过程除了与波长有关外,朱要与距离有关,一般 5纳米是界限,距离短被淬灭 荧光淬灭有以下几种说法: 1. 动态淬灭(碰撞淬灭,淬灭剂与发光物质的激发态分子之间的相互作用) 2. 静态淬灭(发光分子基态和淬灭剂形成不发光的基态络合物) 3. 转入三重态淬灭 4. 自吸淬灭(浓度高时,自淬灭) 首先确定荧光物质是否有电性,就是说荧光物质是否带有电荷,而且贵金属,例如纳米金,在 制作过程中,表面由于有柠檬酸根而带有负电荷,可以和带正电荷的荧光物质,如带正电荷水 溶性荧光共轭聚合物,通过静电作用,而使荧光猝灭;如果带相同电荷或者一方不带电荷,猝 灭是不怎么明显的。可以这样说,这种猝灭,是通过电荷作用相互吸附在一起,你可以让两者 相互作用后,做一个TEM,就可以判断了。 荧光淬灭有动态淬灭和静态淬灭两种,稳态的荧光强度都显示出荧光强度的衰减,无法分辨, 而动态淬灭至少分裂为2个荧光寿命,意味着能量转移的发生,而静态淬灭只是淬灭剂与荧光 物结合生成非荧光物质,荧光寿命并不发生变化。 Acrylamide和碘离子分别用于疏水淬灭或亲水淬灭,测量蛋白质中Trp残基荧光淬灭的寿命,能够轻易的得知Trp残基是位于蛋白质表面还是内部。 荧光淬灭多用于分析大分子或胶体的结构或构象,用淬灭的方法研究荧光基团在分子内还是分 子表面,有个淬灭的方程,一时写不出来,大概是淬灭剂浓度和荧光变化的关系,有个K常数,和淬灭效率和荧光寿命有关,如果分子构型改变,K会变化,这样就可以用来研究某些化合物 对大分子构型或构象的影响。 荧光漂白,就是用强光把荧光素的激发态全部给消除了,有可逆和不可逆两种,可逆的漂白相 当于清理出一个没有荧光的区域,相当于荧光清零,然后再观察测量某种特定的荧光的扩散、 产生或恢复。漂白是否可以恢复依赖于荧光素的种类和漂白光强,作为副作用,荧光素的漂白 常会发生。 磁性纳米粒子猝灭量子点的荧光很早就有人研究过。 具体原因: 处于导带的电子在回到价带的过程中,由于磁性纳米粒子的存在,发生了电子转移,量子点导带的电子转移到磁性纳米粒子上,结果荧光发生猝灭。因此,通常制备的磁性-荧光双功能纳 米材料都会在量子点表面修饰一层无机壳、聚合物等材料,降低这种电子转移。

PPV共轭聚合物光电材料

P P V共轭聚合物光电材料 PPV共轭聚合物概述 随着社会的发展,显示技术目前已经成为无论是信息化还是人们日常生活都离不开的高科技领域。阴极射线管(CRT)、液晶显示(LCD)、无机LED、等离子体显示(PDP)和荧光管显示(VFD)等显示技术都在不断的被改进和完善,以适应社会和市场的要求。 有机薄膜电致发光(OLED)是近年来发展迅速并且具有巨大应用前景的新型平板显示技术,按材料的分子结构和化学性质可以分为有机小分子材料和聚合物光电材料,此两种材料各有优缺点。 有机小分子发光材料的优点是:材料易提纯、亮度高、发光效率高和易蒸镀成膜,缺点是热稳定性差且易结晶。 聚合物光电材料的优点是:具有良好的热稳定性、优异的成膜性和较好的机械强度,但材料合成复杂,提纯困难,难制成多层器件。其中聚对苯撑乙烯撑PPV [poly(1,4-phenylenevinylene)]以分子结构易于修饰、合成路线多、发光效率高、热稳定性好而成为最有发展前途的一类发光聚合物。 概括起来,有机电致发光显示器具有以下优点; (1)可实现红、绿、蓝多色显示; (2)具有面光源共同的特点,亮度达200cd/m3; (3)不需要背光源,可使器件小型化; (4)驱动电压较低(直流10V左右),节省能源; (5)器件厚度薄,附加电路简单,可用于超小型便携式显示装置;

(6)响应速度快,是液晶显示器(LCD)的1000倍; (7)器件的象元数为320个,显示精度超过液晶显示器的5倍; (8)可制作在柔软的衬底上,器件可弯曲、折叠。 PPV类高分子是典型的空穴传输型发光材料,空穴的传输速度远远大于电子。PPV类共扼高分子的发光是分子从基态被能量激发到激发态,再由激发态回到基态产生的辐射跃迁过程。由于聚合物具有偶数电子,基态时电子成对存在于各分子轨道,根据Pauli不相容原理,同一轨道上的两个电子自旋相反,所以分子中总的电子自旋为零(S),这个分子所处的电子能态为单重态(2S+1=0)。当分子中的一个电子吸收能量被激发时,通常它的自旋不变,则激发态是单重态;如果激发过程中电子发生自旋反转,则激发态为三重态(三重态的能量低于单重态)。当分子在电场(或光能)激发下被激发到激发单重态(S),经振动能级弛豫到最低激发单重态(S1),最后由S1回到基态So,此时产生荧光;或者经系间跨跃至最低激发三重态(Tl)最后产生Tl-So的电子跃迁,此时辐射出磷光。由于PPV类共扼高分子的EL发光光谱和PL发光光谱极其相似,表明二者具有相同的激发态,即主要通过单重态激发而发出荧光。[1] 图1-1 PPV共扼高分子的辐射跃迁过程

共轭聚合物应用研究新进展

1995,N 〇6 材料导报 ? 55 ? 71994-2015 China Academic Journal Electronic Publishing House. All rights reserved, https://www.doczj.com/doc/ad14060541.html, 共轭聚合物应用研究新进展 New Progress in Applications of Conjugated Polymers 金绪刚龚克成 (华南理工大学高分子材料系,广州510641) 摘要 由于具有优异的电活性和光学性能以及可加工性,共轭聚合物有着广 泛的并有希望实现的用途。文中总结和展望了共扼聚合物在应用研究方面的发展现 状 和前景。 关键i 司 共轭聚合物导电聚合物电活性 Abstract In this paper.it is pointed out that the conjugated polymers have a wide range of promising applications because of their excellent electroactive and optical performance and processability. The current status and prospect of their applied research are forecasted. Key Words conjugated polymer,conducting polymer?eiectroactive 1概述 聚乙炔、聚苯胺等共轭聚合物是近十几 年发展起来的具有半导体或金属导电率的本 征型导电聚合物材料,其电活性来源于独特 的共轭电子结构。在分子链中,随着〃电子体 系扩大,出现w 成键态和,反键态,继而形 成能带。n 成键态形成价带,^反键态形成导 电带,其禁带宽度一般在1?4eV 间。由于这 种非定域的《电子结构,通过化学掺杂*聚合 物 可形成P 型或N 型导电态。反式聚乙炔掺 杂态导电率高达l 〇5ScnT l 数量级,许多掺杂 态共轭聚合物在1〇2?lOScm —1。理论和实 验表明,孤子,极子或双极子是掺杂共轭聚合 物导电的主要载流子,跳跃和隧道效应是载 流子主要传递机理。在共轭聚合物中,控制载 流子浓度的方法除化学掺杂外.也可由光激 发或电子器件注入法。在此情况下,由于电子 和声子相互作用,载流子自定域,形成孤子、 极子、双极子或激子,共轭聚合物表现出一些 持别的光电性能,如掺杂引起的强的次能级 光吸收带;激子缔合辐射发光现象;在激光下 非线性光学特性,等等。 导电聚合物合成方法主要有化学法和电 化学法。合成的产物多为不熔不溶的结晶粉 末,不易加工成型。另外,导电聚合物还存在 稳定性问题。未掺杂聚合物的不饱和双键易 受氧化及其它物质的攻击,导致电性能及其 它性能下降。同时,掺杂剂的 作用也影响聚合 物的稳定性。作为实际应用,上述 缺点是必须 克眼的。近年来.国内外工作者在这方面进行 了许多卓有成效的研究工作,可概括如下几 点:①在合成方法和掺杂方式上下功夫,改善 加工性能 和稳定性[1?2];②化学改性W ,如侧 基化或共聚;③ 与高分子材料或无材料等复 合,形成性能优异的新 材料体系[<];④合成新 型的共轭聚合物[5] ? 共轭聚合物独特的电学和光学性能及其 作为高分子材料的特点,决定了共轭聚合物 广泛的应用 前景。这便是共轭聚合物材料突 飞猛进发展的动力源泉。 2典型的共轭聚合物及其复合材料 共轭聚合物发展至今,其品种较多,主要 有聚乙炔(PA )、聚苯胺(PANI )、聚噻吩 (?丁)、聚吡咯(??丫)、聚(对-苯撑)(卩??)、聚 (对-苯撑乙烯)(PPV )、聚二乙炔(PDA )、聚 苯硫醚(PPS )等。其中聚苯胺、聚噻吩和聚吡 咯被公认为最有实用价值的共轭聚合物,也 是研究的热点。 聚苯胺(PANI )的化学稳定性好,电化学 可逆性优异.原料易得,合成方法简便,是最 有希望在实际中应用的导电高分子材料,_ 杂态电导率可达lOOScm —。一般来说,非导 电态PANI 可溶于NMP 、DMAC 等有机溶 剂,但掺杂后变得难溶。

荧光素_GOD_HRP荧光淬灭法测定植物果实组织中的葡萄糖含量

第22卷第1期海南大学学报自然科学版V ol.22N o.1 2004年3月NATURA L SCIENCE JOURNA L OF H AINAN UNIVERSIT Y M ar.2004 文章编号:1004-1729(2004)01-0057-04 荧光素-GOD-HRP荧光淬灭法测定 植物果实组织中的葡萄糖含量 占达东1,王周平2,吕家根3 (1.琼州大学化学系,海南五指山572200;2.西南师范大学化学系,重庆400715; 3.陕西师范大学化学系,西安710062) 摘 要:植物组织中的葡萄糖在葡萄糖氧化酶的作用下产生的过氧化氢可在辣根过氧化物酶的 催化作用下使荧光素褪色并使荧光淬灭,基于这一现象,笔者建立了一种选择性测定植物果实 组织中葡萄糖含量的荧光分析方法,同时利用这种方法对苹果、鸭梨和酥梨组织液中的葡萄糖含 量进行了测定,并与分光光度法检测的结果及文献值进行了比较,结果表明:该方法具有安全、 方便、准确的优点,适合检测复杂样品尤其是植物中的葡萄糖含量. 关键词:G OD;HRP;植物果实组织;荧光素;荧光淬灭法;葡萄糖 中图分类号:Q554 文献标识码:A 葡萄糖在生物体内具有极其重要的生理意义,有关各种动植物体内的葡萄糖含量的测定已有大量的报道[1~8].由于检测的对象多为血液、组织液和细胞液,这些分析对象的组成往往十分复杂,尤其是植物组织液中的果糖和其他还原性物质常常对葡萄糖的分析产生严重的干扰,因此大多数的检测方法都是基于酶反应的高度选择性来消除各种共存物的干扰的.植物组织液中葡萄糖检测的经典方法是利用G OD催化氧化葡萄糖,使其生成过氧化氢,进而利用HRP催化过氧化氢氧化邻连茴香胺或高香草酸,使其生成有色产物,然后再以分光光度法或荧光法进行检测[8].该方法的主要缺点是邻连茴香胺和高香草酸不仅价格较高,而且都是致癌物质,这不仅会危害操作者的身体健康,同时也会对环境造成污染.本文所介绍的方法是在保留经典方法的高度选择性的同时,用廉价、安全的荧光素取代了连苯胺类物质,使过氧化氢在HRP的作用下氧化荧光素并使其褪色,因此以荧光法来检测剩余荧光素的含量便可间接地测定出葡萄糖的含量.由于荧光素在490nm处有很强的吸收,并在514nm处产生很强的荧光,因而对提高分析方法的灵敏度十分有利.为了使这一方法得到广泛的应用,笔者采用该方法分别测定了苹果、鸭梨和酥梨组织中的葡萄糖含量,并与分光光度法[9]的分析结果和文献报道的数值进行了比较,认为三者之间显示了较好的一致性. 1 实 验 1.1 试剂、材料及仪器 配制0、5、20、50、100、200、300、400mg?L-1的葡萄糖(分析纯)标准溶 收稿日期:2003-04-07 作者简介:占达东(1963-),男,海南琼山人,琼州大学化学系副教授.

相关主题
文本预览
相关文档 最新文档