当前位置:文档之家› 四年级奥数[1].几何.风筝模型和梯形蝴蝶定理(A级).学生版

四年级奥数[1].几何.风筝模型和梯形蝴蝶定理(A级).学生版

四年级奥数[1].几何.风筝模型和梯形蝴蝶定理(A级).学生版
四年级奥数[1].几何.风筝模型和梯形蝴蝶定理(A级).学生版

板块一风筝模型:(又叫任意四边形模型)

S 4

S 3

S 2

S 1O D

C

B

A

①1243::S S S S =或者1324S S S S ?=?②()()1243::AO OC S S S S =++

风筝模型为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系.

板块二梯形模型的应用

梯形中比例关系(“梯形蝴蝶定理”):

A B

C

D

O b

a

S 3

S 2

S 1S 4

①2213::S S a b =

②221324::::::S S S S a b ab ab =; ③S 的对应份数为()2

a b +.

梯形蝴蝶定理给我们提供了解决梯形面积与上、下底之间关系互相转换的渠道,通过构造模型,直接应用结论,往往在题目中有事半功倍的效果.(具体的推理过程我们可以用将在第九讲所要讲的相似模型进行说明)

知识框架

风筝模型和梯形蝴蝶定理

【例 1】 图中的四边形土地的总面积是52公顷,两条对角线把它分成了4个小三角形,其中2个小三角

形的面积分别是6公顷和7公顷.那么最大的一个三角形的面积是多少公顷?

7

6

E

D

C

B

A

7

6

【巩固】 如图,某公园的外轮廓是四边形ABCD ,被对角线AC 、BD 分成四个部分,△AOB 面积为1平方千

米,△BOC 面积为2平方千米,△COD 的面积为3平方千米,公园由陆地面积是6.92平方千米和人工湖组成,求人工湖的面积是多少平方千米?

O

C

D

B

A

【例 2】 如图,四边形被两条对角线分成4个三角形,其中三个三角形的面积已知,求:⑴三角形BGC

的面积;⑵:AG GC ?

C

B

【巩固】 在△ABC 中

DC BD =2:1, EC AE =1:3,求OE

OB

=? 例题精讲

【例 3】 如图相邻两个格点间的距离是1,则图中阴影三角形的面积为.

【巩固】 如图,每个小方格的边长都是1,求三角形ABC 的面积.

【例 4】 如图,平行四边形ABCD 的对角线交于O 点,CEF △、OEF △、ODF △、BOE △的面积依次

是2、4、4和6.求:⑴求OCF △的面积;⑵求GCE △的面积.

O

G

F E

D

C B

A

【巩固】 如右上图,已知BO=2DO ,CO=5AO ,阴影部分的面积和是11平方厘米,求四边形ABCD 的面积。

【例 5】 如图,22S =,34S =,求梯形的面积.

【巩固】 如下图,梯形ABCD 的AB 平行于CD ,对角线AC ,BD 交于O ,已知AOB △与BOC △的面积

分别为25平方厘米与35平方厘米,那么梯形ABCD 的面积是________平方厘米.

35

25O

A

B

C

D

【例 6】 梯形ABCD 的对角线AC 与BD 交于点O ,已知梯形上底为2,且三角形ABO 的面积等于三角形

BOC 面积的

2

3

,求三角形AOD 与三角形BOC 的面积之比. O A B

C D

【巩固】 如下图,四边形ABCD 中,对角线AC 和BD 交于O 点,已知1AO =,并且

3

5

ABD CBD =三角形的面积三角形的面积,

那么OC 的长是多少?

A

B

C

D

O

【例 7】 梯形的下底是上底的1.5倍,三角形OBC 的面积是29cm ,问三角形AOD 的面积是多少?

A

B

C

D

O

【巩固】 如图,梯形ABCD 中,AOB ?、COD ?的面积分别为1.2和2.7,求梯形ABCD 的面积.

O

D

C

B

A

【例 8】 如下图,一个长方形被一些直线分成了若干个小块,已知三角形ADG 的面积是11,三角形BCH

的面积是23,求四边形EGFH 的面积.

H

G F

E

D

C

B A

【巩固】 如图,长方形中,若三角形1的面积与三角形3的面积比为4比5,四边形2的面积为36,则三

角形1的面积为________.

小学奥数之几何蝴蝶定理问题完整版

小学奥数之几何蝴蝶定 理问题 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

C F E A D B C B E F D A 几何之蝴蝶定理 一、 基本知识点 定理1:同一三角形中,两个三角形的高相等,则面积之比 等于对应底边之比。 S 1 : S 2 = a : b 定理2:等分点结论( 鸟头定理) 如图,三角形△AED 的面积占三角形△ABC 的面积的 定理3:任意四边形中的比例关系( 蝴蝶定理) 1) S 1∶S 2 =S 4∶S 3 或 S 1×S 3 = S 2×S 4 上、下部分的面积之积等于左、右部分的面积之积 2)AO ∶OC = (S 1+S 2)∶(S 4+S 3) 梯形中的比例关系( 梯形蝴蝶定理) 1)S 1∶S 3 =a 2∶b 2 上、下部分的面积比等于上、下边的平方比 2)左、右部分的面积相等 3)S 1∶S 3∶S 2∶S 4 =a 2∶b 2 ∶ab ∶ab 4)S 的对应份数为(a+b )2 定理4:相似三角形性质 1) H h C c B b A a === 2) S 1 ∶S 2 = a 2 ∶A 2 定理5:燕尾定理 S △ABE ∶ S △AEC = S △BGE ∶ S △GEC = BE ∶EC S △BGA ∶ S △BGC = S △AGF ∶ S △GFC = AF ∶FC S △ADC ∶ S △DCB = S △ADG ∶ S △DGB = AD ∶DB 二、 例题 例1、如图,AD DB =,AE EF FC ==,已知阴影部分面积为5平方厘米,ABC 的面积是多少平方厘米? 1 2 AD AB = ,例2、有一个三角形ABC 的面积为1,如图,且 13BE BC =,1 4 CF CA =,求三角形DEF 的面积. 例3、如图,在三角形ABC 中,,D 为BC 的中点,E 为 AB 上的一点,且BE=1 3 AB,已知四边形 EDCA 的面积 是35,求三角形ABC 的面积. 例4 如图,ABCD 是直角梯形,求阴影部分的面积 和。(单位:厘米) 例5、两条对角线把梯形ABCD 分割成四个三角 形。已知

五年级下册数学竞赛试题- 14讲 图形-五大模型 全国通用(含答案)

五年下册奥数试题-图形-五大模型(一) 姓名 得分 【名师解析】 一、等积变换模型 1、等底等高的两个三角形面积相等。 2、两个三角形高相等,面积比等于它们的底之比。 3、两个三角形底相等,面积比等于它的的高之比。 二、共角定理模型(共角定理) 两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。 共角三角形的面积比等到于对应角(相等角或互补角)两夹边的乘积之比。如: 依次称之为A 字型鸟头、X 字型鸟头、歪脖型鸟头、直脖型鸟头。 如图在ABC △中,,D E 分别是,AB AC 上的点如图(或D 、E 分别在BA 、CA 延长线上。 则有:ADE ABC S AD AE AD AE S AB AC AB AC ?=?=?△△ 三、蝴蝶定理模型(风筝模型) (说明:任意四边形与四边形、长方形、梯形,连接对角线所成四部的比例关系是一样的。) 四、相似三角形模型(沙漏模型) 五、燕尾定理模型 【例题精讲】 例1、三角形ABC 中,BD 是DC 的2倍,AE 是EC 的3倍。三角形DEC 的面积为3平方厘米,求三角形ABC 的面积是多少平方厘米? E A D C B 练习、在下图中,已知CF=2DF ,DE=EA ,△BCF 的面积为2,四边形BFDE 的面积为4,求△ABE 的面积。

F E D C B A 例2、(1)在下图中,2AB BD AC CE ==,,如果29ADE S cm D =,求ABC S D ? E D C B A 练习、如图在ABC △中,D 在BA 的延长线上,E 在AC 上,且:5:2AB AD =, :3:2AE EC =,12ADE S =△平方厘米,求ABC △的面积. D E A B C 例3、正方形ABCD 边长为6 厘米,BC CF AC AE 3131 == ,.三角形DEF 的面积为 多少平方厘米? A B C D E F 练习、如图,1ABC S =△,5BC BD =,4AC EC =,DG GS SE ==,AF FG =.求F G S S .

小学奥数-几何五大模型(蝴蝶模型)整理版

任意四边形、梯形与相似模型 卜亠\ 模型三蝴蝶模型(任意四边形模型) 任意四边形中的比例关系(“蝴蝶定理”): D S1: S2 = S4: S3或者S S3 =S2 S4 ② AO : OC =[S S2 : S4 S3 蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径。通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系。 【例1】(小数报竞赛活动试题)如图,某公园的外轮廓是四边形ABCD被对角线AC BD分成四个部分,△ AOB面积为1平方千米,△ BOC面积为2平方千米,△ COD勺面积为3平方千米,公园由陆地面积是 6. 92平方千米和人工湖组成,求人工湖的面积是多少平方千米? 【分析】根据蝴蝶定理求得S^AOD=3 1-'2=1.5平方千米,公园四边形ABCD的面积是12 3 45 = 7.5平方千米,所以人工湖的面积是7.5-6.92=0.58平方千米 【巩固】如图,四边形被两条对角线分成4个三角形,其中三个三角形的面积已知, 求:⑴三角形BGC的面积:⑵AG:GC= ? 【解析】⑴根据蝴蝶定理,S BGC 1=2 3,那么S BGC=6 ; ⑵根据蝴蝶定理,AG:G^ 1 2 : 3 6 =1:3 . (? ??) 【例2】四边形ABCD的对角线AC与BD交于点0(如图所示)。如果三角形ABD的面积等于三角形BCD的

面积的 1 ,且AO =2 , DO =3,那么CO的长度是DO的长度的_____________ 倍。 3 【解析】在本题中,四边形ABCD为任意四边形,对于这种”不良四边形”,无外乎两种处理方法:⑴利用已知条件,向已有模型靠拢,从而快速解决;⑵通过画辅助线来改造不良四边形。看到题目中给出条件S A BD : S BCD =1:3,这可以向模型一蝴蝶定理靠拢,于是得出一种解法。又观察题目中给出的已知条件是面积的关系,转化为边的关系,可以得到第二种解法,但是第二种解法需要一个中介来改造这个”不良四边形”,于是可以作AH垂直BD于H , CG垂直BD于G,面积比转化为高之比。再应用结论:三角形高相同,则面积之比等于底边之比,得出结果。请老师注意比较两种解法,使学生体会到蝴蝶定理的优势,从而主观上愿意掌握并使用蝴蝶定理解决问题。 解法一:T AO :OC = S ABD: S BDC =1 : 3 , 二OC =2 3 =6 , ??? OC:OD =6:3 2:1 . 解法二:作AH _BD 于H , CG_BD 于G . ?- AH」CG , 3 1 ?- AO CO , 3 ?OC =2 3=6 , ?OC:OD =6:3 =2:1 ? 【例3】如图,平行四边形ABCD的对角线交于O点,A CEF、△OEF、△ODF、△BOE的面积依次是2、 4、4和6。求:⑴求A OCF的面积;⑵求A GCE的面积。 【解析】⑴根据题意可知,△BCD的面积为2 4 4 ^16,那么△BCO和:CDO的面积都是16亠2=8 , 所以A OCF 的面积为8—4=4; ⑵由于△ BCO的面积为8, △BOE的面积为6,所以A OCE的面积为8-6=2 , 根据蝴蝶定理,EG:FG 二 Sg E:S.COF =2:4 =1:2,所以S.GCE:S.GCF = EG : FG =1:2 , 1 1 2 那么S GCE S CEF 2 ~~? 1+2 3 3 【例4】图中的四边形土地的总面积是52公顷,两条对角线把它分成了4个小三角形,其中2个小三角形的面积分别是6公顷和7公顷。那么最大的一个三角形的面积是多少公顷? S 'ABD S BCD 3审 S AOD =—S DOC 3

小学奥数几何篇 五大模型——蝴蝶定理(附答案)

五大模型——蝴蝶模型 例1. 四边形ABCD的对角线AC与BD交于点O,如果三角形ABD 1,且AO=2,DO=3,那么CO的长的面积等于三角形BCD的面积 3 度是DO的长度的倍

例2. 如图,平行四边形ABCD的对角线交与点O点,△CEF、△OEF、△ODF、△BOE的面积依次是2、4、4和6 求:(1)△OCF 的面积;(2)求△GCE的面积 例3.如图,边长为1的正方形ABCD中,BE=3EC,CF=FD,求三角形AEG的面积。

例4. 如图,边长为1的正方形ABCD的边长为10厘米,E为AD 中点,F为CE中点,G为BF中点,求三角形BDG的面积

例5. 如下图,梯形ABCD的AB平行于CD,对角线AC,BD交于O,已知AOB于BOC的面积分别为25平方厘米于35平方厘米,那么梯形ABCD的面积是平方厘米 例6.梯形ABCD的对角线AC与BD交与点O,已知梯形上底为2, 2,求三角形AOD与且三角形ABO的面积等于三角形BOC面积的 3 三角形BOC的面积之比。 例7. 如下图,一个长方形一些直线分成了若干个小块,已知三角形ADG的面积是11,三角形BCH的面积是23,求四边形EGFH 的面积。

例8. 右图中ABCD是梯形,ABED是平行四边形,已知三角形面积如图所示(单位:平方厘米),阴影部分的面积是平方厘米 例9. 如图,长方形ABCD被CE、DF分成四块,已知期中3块的面积分别为2、5、8平方厘米,那么余下的四边形OFBC的面积为平方厘米 例10. 如图,正六边形面积为6,那么阴影部分面积为多少?

蝴蝶模型习题 1、如图,长方形ABCD中,BE:EC=2:3,DF:FC=1:2,三角形DFC面积为2平方厘米,求长方形ABCD的面积. 2、梯形的下底是上底的1.5倍,三角形OBC的面积是9cm2,问三角形AOD的面积是多少? 3、如图,长方形中,若三角形1的面积与三角形3的面积比为4:5,四边形2的面积为36,则三角形1的面积为 4、如图,长方形ABCD中,阴影部分是直角三角形且面积为54,OD的长是16,OB的长是9,那么四边形OECD的面积是多少? 5、如图,△ABC是等腰三角形,DEFG是正方形,线段AB与CD相较于K点,已知正方形DEFG的面积48,AK:KB=1:3,则△BKD的面积是多少?

椭圆中的蝴蝶定理及其应用

2003年北京高考数学卷第18(III)题考查了椭圆内的蝴蝶定理的证明,本文给出了一般圆锥曲线的蝴蝶定理的两种形式,并由它们得到 圆锥曲线的若干性质. 定理1:在圆锥曲线中,过弦AB中点M任作两条弦CD和EF,直线CE与DF 交直线AB于P,Q,则有. 证明:如图1,以M为原点,AB所在的直线为y轴,建立直角坐标系. 设圆锥曲线的方程为(*),设A(0,t),B(0,-t),知t,-t是的两个根,所以. 若CD,EF有一条斜率不存在,则P,Q与A,B重合,结论成立. 若CD,EF斜率都存在,设C(x1,k1x1), D(x2,k1x2),E(x3,k2x3), F(x4,k2x4),P(0,p),Q(0, q),, ,同理, 所以 将代入(*)得,又得 , , 同理 , ,所以,即 .

注:2003年高考 数学北京卷第18 (III)题,就是定理1中取圆锥曲线为椭圆,AB为平行长轴的弦的特殊情形. 定理2:在圆锥曲线中,过弦AB端点的切线交于点M,过M的直线l∥AB,过M任作两条弦CD和EF,直线CE与DF交直线l于P,Q,则有. 证明:如图2,以M为原点,AB所在的直线为y轴,建立直角坐标系. 设圆锥曲线的方程为(*),设A(),B(),则切线MA的方程是,切线MB的方程是 ,得,所以.(下面与定理1的证明相同,略) 特别的,当弦AB垂直圆锥曲线的对称轴时,点M在圆锥曲线的该对称轴上. 性质1:过点M(m,0)做椭圆、双曲线的弦CD,EF是其焦点轴, 则直线CE、DF的连线交点G在直线l:上.特别的,当M为焦点时,l就是准线.当M为准线与焦点轴所在直线的交点时,l就是过焦点的直线. 证明:如图3,过M做直线AB垂直焦点轴所在的直线,直线CE与DF交直线AB于P,Q,则根据定理1,定理2得.

四年级奥数风筝模型和梯形蝴蝶定理(C级)

板块一风筝模型:(又叫任意四边形模型) ①1243::S S S S =或者1324S S S S ?=?②()()1243::AO OC S S S S =++ 风筝模型为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系. 板块二梯形模型的应用 梯形中比例关系(“梯形蝴蝶定理”): ①2213::S S a b = ②221324::::::S S S S a b ab ab =; ③S 的对应份数为()2 a b +. 梯形蝴蝶定理给我们提供了解决梯形面积与上、下底之间关系互相转换的渠道,通过构造模型,直接应用结论,往往在题目中有事半功倍的效果.(具体的推理过程我们可以用将在第九讲所要讲的相似模型进行说明) S 4 S 3 S 2 S 1O D C B A A B C D O b a S 3 S 2 S 1S 4 知识框架 风筝模型和梯形蝴蝶定理

【例 1】 如图,四边形被两条对角线分成4个三角形,其中三个三角形的面积已知,求:⑴三角形BGC 的 面积;⑵:AG GC ? 【巩固】 在△ABC 中 DC BD =2:1, EC AE =1:3,求OE OB =? 【例 2】 如图,平行四边形ABCD 的对角线交于O 点,CEF △、OEF △、ODF △、BOE △的面积依次 是2、4、4和6.求:⑴求OCF △的面积;⑵求GCE △的面积. 【巩固】 如右上图,已知BO=2DO ,CO=5AO ,阴影部分的面积和是11平方厘米,求四边形ABCD 的面积。 321G D C B A O G F E D C B A 例题精讲

四年级下册数学竞赛试题-几何.风筝模型和梯形蝴蝶定理C级.学生版-全国通用

【例 1】 如图,四边形被两条对角线分成4个三角形,其中三个三角形的面积已知,求:⑴三角形BGC 的面积;⑵:AG GC ? C B 【巩固】 在△ABC 中 DC BD =2:1, EC AE =1:3,求OE OB =? 【例 2】 如图,平行四边形ABCD 的对角线交于O 点,CEF △、OEF △、ODF △、BOE △的面积依次 是2、4、4和6.求:⑴求OCF △的面积;⑵求GCE △的面积. O G F E D C B A 例题精讲 风筝模型和梯形蝴蝶定理

【巩固】 如右上图,已知BO=2DO ,CO=5AO ,阴影部分的面积和是11平方厘米,求四边形ABCD 的面积。 【例 3】 如图,边长为1的正方形ABCD 中,2BE EC =,CF FD =,求三角形AEG 的面积. A B C D E F G 【巩固】 如图,长方形ABCD 中,:2:3BE EC =,:1:2DF FC =,三角形DFG 的面积为2平方厘米,求 长方形ABCD 的面积. A B C D E F G 【例 4】 如图,在ABC ?中,已知M 、N 分别在边AC 、BC 上,BM 与AN 相交于O ,若AOM ?、ABO ?和BON ?的面积分别是3、2、1,则MNC ?的面积是 . O M N C B A 【巩固】 如图4,在三角形ABC 中,已知三角形ADE 、三角形DCE 、三角形BCD 的面积分别是89、28、26, 那么三角形DBE 的面积是 。

【例 5】 已知ABCD 是平行四边形,:3:2BC CE =,三角形ODE 的面积为6平方厘米。则阴影部分的面 积是 平方厘米。 E 【巩固】 在梯形ABCD 中,上底长5厘米,下底长10厘米,20=?BOC S 平方厘米,则梯形ABCD 的面积是 平方厘米。 【例 6】 如下图,一个长方形被一些直线分成了若干个小块,已知三角形ADG 的面积是11,三角形BCH 的面积是23,求四边形EGFH 的面积. H G F E D C B A 【巩固】 如图,长方形中,若三角形1的面积与三角形3的面积比为4比5,四边形2的面积为36,则三

小学五年级平面几何必会的思想方法(典藏版)

平面几何必会的思想方法(典藏版) 1.转化思想: 【要点】求一些不规则图形的面积,重点在于把不规则图形转化为规则图形。 【例题】如图所示,两个相同的直角梯形重叠在一起,求阴影部分的面积。(单位:厘米) 【答案】140平方厘米 【解析】可以将不规则图形面积转化成规则图形的面积来求。题目中阴影部分的面积与下图中阴影部分的面积都等于大梯形面积减去中间重叠的小梯形面积,所以下图中阴影部分的面积等于题目中阴影部分面积,那么阴影部分面积为(20-5+20)×8÷2=140(平方厘米)。

2.分割法: 【要点】把组合图形分割为常见的几何图形,以便利用面积公式计算。 【例题1】将两个相等的长方形重合在一起,求组合图形的面积.(单位:厘米) 【解析】将图形分割成两个全等的梯形. (7-2+7)×2÷2×2=24(平方厘米) 【例题2】如图所示,两个正方形并排放置,求阴影部分的面积是多少? 【解析】将阴影部分分割成两个三角形. 5×(5-3)÷2+3×3÷2=9.5 【例题3】左图中两个正方形的边长分别为8厘米和6厘米.求阴影部分面积. 解:将阴影部分分割成两个三角形. 8×(8+6)÷2+8×6÷2=80(平方厘米) 3.添补法: 【要点】通过添补的方法,把不规则图形转化为能直接计算的图形 【例题】AD垂直于DC,AB垂直于BC, 其余条件如图所示,求四边形ABCD的面积.(单位:厘米)

【答案】32平方厘米 【解析】尝试进行分割会发现,分割后仍然无法计算四边形的面积,所以考虑进行添补,如图所示.补上三角形ADE后,整个图形变成了等腰直角三角形,而且三角形ADE也是等腰直角三角形,四边形ABCD的面积:10×10÷2-6×6÷2=32(平方厘米)。 4.割补法: 【要点】割下图形的一部分,通过旋转、平移等方法补成常见的几何图形。 【例题】如图所示,这个四边形的面积等于多少?(单位:厘米) 【答案】144平方厘米。 【解析】如图所示,割下右边的直角三角形,移动到左上角,根据原图中边角关系可以看出,经过割补后图形变为一个边长为12厘米的正方形,所以原图形面积为12×12=144(平方厘米)。 5.整体-空白: 【要点】不直接计算阴影部分的面积,而是求出整个图形的面积和空白部分的面积,整体减去空白部分算出阴影部分的面积,体现了转化的思想。 【例题】求下图的面积。(单位:厘米) 【答案】108平方厘米 【解析】整体减空白:10×12-(4+8)×2÷2=108 (平方厘米)。

蝴蝶定理的证明

图 5 蝴蝶定理的证明 定理:设M 为圆内弦PQ 的中点,过M 作弦AB 和CD 。设AD 和BC 各相交PQ 于点E 和F ,则M 是EF 的中点。 在蝴蝶定理的证明中有各种奇妙的辅助线,同时诞生了各种美妙的思想,蝴蝶定理在这些辅助线的帮助下,翩翩起舞! 证法1 如图2,作OU AD OV BC ⊥⊥,,则垂足U V ,分别为AD BC 、的中点,且由于 EUO EMO 90∠=∠=? FVO FMO 90∠=∠=? 得M E U O 、、、共圆;M F V O 、、、共圆。 则AUM=EOM MOF MVC ∠∠∠=∠, 又MAD MCB ,U V 、为AD BC 、的中点,从而MUA MVC ??,AUM MVC ∠=∠ 则 EOM MOF ∠=∠,于是ME=MF 。 证法2 过D 作关于直线OM 的对称点D',如图3所示,则 FMD'EMD MD=MD'∠=∠, ○ 1 联结D'M 交圆O 于C',则C 与C'关于OM 对称,即 PC'CQ =。又 111CFP=QB+PC =QB+CC'+CQ =BC'=BD'C'222 ∠∠()() 故M F B D'、、、四点共圆,即MBF MD'F ∠=∠ 而 MBF EDM ∠=∠ ○2 由○1、○2知,DME D'MF ???,故ME=MF 。 证法 3 如图4,设直线DA 与BC 交于点N 。对NEF ?及截线AMB ,NEF ?及截线CMD 分别应用梅涅劳斯定理,有 FM EA NB 1ME AN BF ??=,FM ED NC 1ME DN CF ??= 由上述两式相乘,并注意到 NA ND NC NB ?=? 得 2 2 FM AN ND BF CF BF CF ME AE ED BN CN AE ED ?=???=? ()()()()2 2 22 PM MF MQ MF PM MF PM ME MQ+ME PM ME -= =-+-- 化简上式后得ME=MF 。 [2] 2 不使用辅助线的证明方法 单纯的利用三角函数也可以完成蝴蝶定理的证明。 证法 4 (Steven 给出)如图5,并令 图 2 图 3 图 4

小学奥数-几何五大模型(蝴蝶模型)知识讲解

小学奥数-几何五大模型(蝴蝶模型)

模型三 蝴蝶模型(任意四边形模型) 任意四边形中的比例关系(“蝴蝶定理”): S 4 S 3 S 2 S 1O D C B A ①1243::S S S S =或者1324S S S S ?=? ②()()1243::AO OC S S S S =++ 蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径。通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系。 【例 1】 (小数报竞赛活动试题)如图,某公园的外轮廓是四边形ABCD ,被对角线AC 、BD 分成四 个部分,△AOB 面积为1平方千米,△BOC 面积为2平方千米,△COD 的面积为3平方千米,公园由陆地面积是6.92平方千米和人工湖组成,求人工湖的面积是多少平方千米? O D C B A 【分析】 根据蝴蝶定理求得312 1.5AOD S =?÷=△平方千米,公园四边形ABCD 的面积是 123 1.57.5+++=平方千米,所以人工湖的面积是7.5 6.920.58-=平方千米 【巩固】如图,四边形被两条对角线分成4个三角形,其中三个三角形的面积已知, 求:⑴三角形BGC 的面积;⑵:AG GC =? 任意四边形、梯形与相似模 型

B 【解析】 ⑴根据蝴蝶定理,123BGC S ?=?V ,那么6BGC S =V ; ⑵根据蝴蝶定理,()():12:361:3AG GC =++=. (???) 【例 2】 四边形ABCD 的对角线AC 与BD 交于点O (如图所示)。如果三角形ABD 的面积等于三角 形BCD 的面积的1 3 ,且2AO =,3DO =,那么CO 的长度是DO 的长度的_________倍。 A B C D O H G A B C D O 【解析】 在本题中,四边形ABCD 为任意四边形,对于这种”不良四边形”,无外乎两种处理方 法:⑴利用已知条件,向已有模型靠拢,从而快速解决;⑵通过画辅助线来改造不良四边形。看到题目中给出条件:1:3ABD BCD S S =V V ,这可以向模型一蝴蝶定理靠拢,于是得出一种解法。又观察题目中给出的已知条件是面积的关系,转化为边的关系,可以得到第二种解法,但是第二种解法需要一个中介来改造这个”不良四边形”,于是可以作AH 垂直BD 于H ,CG 垂直BD 于G ,面积比转化为高之比。再应用结论:三角形高相同,则面积之比等于底边之比,得出结果。请老师注意比较两种解法,使学生体会到蝴蝶定理的优势,从而主观上愿意掌握并使用蝴蝶定理解决问题。 解法一:∵::1:3ABD BDC AO OC S S ??==, ∴236OC =?=, ∴:6:32:1OC OD ==. 解法二:作AH BD ⊥于H ,CG BD ⊥于G . ∵1 3 ABD BCD S S ??=, ∴13 AH CG =, ∴13 AOD DOC S S ??=, ∴13 AO CO =, ∴236OC =?=, ∴:6:32:1OC OD ==. 【例 3】 如图,平行四边形ABCD 的对角线交于O 点,CEF △、OEF △、ODF △、BOE △的面积 依次是2、4、4和6。求:⑴求OCF △的面积;⑵求GCE △的面积。

风筝模型和梯形蝴蝶定理

风筝模型和梯形蝴蝶定理 知识框架 板块一 风筝模型:(又叫任意四边形模型) S 4 S 3 S 2 S 1O D C B A ①1243::S S S S =或者1324S S S S ?=?②()()1243::AO OC S S S S =++ 风筝模型为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系. 板块二 梯形模型的应用 梯形中比例关系(“梯形蝴蝶定理”): A B C D O b a S 3 S 2 S 1S 4 ①2213::S S a b = ②221324::::::S S S S a b ab ab =; ③S 的对应份数为()2 a b +. 梯形蝴蝶定理给我们提供了解决梯形面积与上、下底之间关系互相转换的渠道,通过构造模型,直接应用结论,往往在题目中有事半功倍的效果.(具体的推理过程我们可以用将在第九讲所要讲的相似模型进行说明) 例题精讲 【例 1】 图中的四边形土地的总面积是52公顷,两条对角线把它分成了4个小三角形,其中2个小三角 形的面积分别是6公顷和7公顷.那么最大的一个三角形的面积是多少公顷?

7 6 E D C B A 7 6 【巩固】 如图,某公园的外轮廓是四边形ABCD ,被对角线AC 、BD 分成四个部分,△AOB 面积为1平方千 米,△BOC 面积为2平方千米,△COD 的面积为3平方千米,公园由陆地面积是6.92平方千米和人工湖组成,求人工湖的面积是多少平方千米? O C D B A 【例 2】 如图,四边形被两条对角线分成4个三角形,其中三个三角形的面积已知,求:⑴三角形BGC 的面积;⑵:AG GC ? C B 【巩固】 在△ABC 中 DC BD =2:1, EC AE =1:3,求OE OB =?

(完整word版)蝴蝶定理的八种证明及三种推广

蝴蝶定理的证明 定理:设M 为圆内弦PQ 的中点,过M 作弦AB 和CD 。设AD 和BC 各相交PQ 于点E 和F ,则M 是EF 的中点。 在蝴蝶定理的证明中有各种奇妙的辅助线,同时诞生了各种美妙的思想,蝴蝶定理在这些辅助线的帮助下,翩翩起舞! 证法1 如图2,作OU AD OV BC ⊥⊥,,则垂足U V ,分别为AD BC 、的中点,且由于 EUO EMO 90∠=∠=? FVO FMO 90∠=∠=? 得M E U O 、、、共圆;M F V O 、、、共圆。 则AUM=EOM MOF MVC ∠∠∠=∠, 又MAD MCB ,U V 、为AD BC 、的中点,从而MUA MVC ??,AUM MVC ∠=∠ 则 EOM MOF ∠=∠,于是ME=MF 。 证法2 过D 作关于直线OM 的对称点D',如图3所示,则 FMD'EMD MD=MD'∠=∠, ○ 1 联结D'M 交圆O 于C',则C 与C'关于OM 对称,即 PC'CQ =。又 111CFP=QB+PC =QB+CC'+CQ =BC'=BD'C'222 ∠∠()() 故M F B D'、、、四点共圆,即MBF MD'F ∠=∠ 而 MBF EDM ∠=∠ ○2 由○1、○2知,DME D'MF ???,故ME=MF 。 证法 3 如图4,设直线DA 与BC 交于点N 。对NEF ?及截线AMB ,NEF ?及截线CMD 分别应用梅涅劳斯定理,有 FM EA NB 1ME AN BF ??=,FM ED NC 1ME DN CF ??= 由上述两式相乘,并注意到 NA ND NC NB ?=? 得 2 2 FM AN ND BF CF BF CF ME AE ED BN CN AE ED ?=???=? ()()()()2 2 22 PM MF MQ MF PM MF PM ME MQ+ME PM ME -= =-+-- 化简上式后得ME=MF 。[2] 2 不使用辅助线的证明方法 单纯的利用三角函数也可以完成蝴蝶定理的证明。 图 2 图 3 图 4

蝴蝶定理

一、蝴蝶定理的发展历程简介:。 蝴蝶定理最先是作为一个征求证明的问题,刊载于1815年的一份通俗杂志《男士日记》上。由于其几何图形形象奇特、貌似蝴蝶,便以此命名,定理内容:圆O中的弦PQ的中点M,过点M任作两弦AB,CD,弦AD与BC分别交PQ于X,Y,则M为XY之中点。 如图,过圆中弦AB的中点作M引任意两弦CD和EF,连结CF和ED,分别交AB于P、Q,则PM=QM 由于此图形似只蝴蝶飞舞,故此定理因此而得名:蝴蝶定理。此定理早在1815年在英国杂志《男士日记》上见刊,征求证明,有意思的是,迟到1972年以前,人们的证明都并非初等,且十分繁琐。然近些年来,证明者不乏其人,使得这只翩翩起舞的蝴蝶栖止不定,变化多端。笔者结合自己的证明和收集别人的研究,整理证法十种,以飨读者。 证法1 (证∠POM=∠QOM) 作CF、DE的弦心距OG、OH,连OM,则OM⊥AB且OGPM四点共圆。 ∴∠POM=∠PGM…①。同理,∠QOM=∠QHM…② ∵△MFC∽MDE,∴MF﹕FC=MD﹕DE ∴MF﹕2FG=MD﹕2DH,∴MF﹕FG=MD﹕DH ∠F=∠D ∴△MFG∽△MDH,∴∠MGF=∠MHD…③

由①②③得:∠POM=∠QOM ∴PM=QM 证法2 (作△PMD′≌△QM D) 作C关于直线OM的对称点C'连C'M交⊙O于D',则AC弧=BC'弧,MD'=MD,∠PMD'=∠QMD ∠CPM=0.5AF弧+0.5BC'C弧=0.5AF弧+0.5AC弧+0.5CC'弧=0.5FCC'弧=∠FD'M 从而PFD’M四点共圆。 ∴∠PD’M=∠PFM=∠D ∴在△PD’M与△QDM中 ∠PD’M=∠D MD’=MD ∠PMD’=∠QMD ∴△PMD’≌△QMD ∴PM=QM 证法3 (利用梅氏定理) 延长CF、ED相交于G点。

小学奥数几何五大模型(蝴蝶模型)

模型三蝴蝶模型(任意四边形模型) 任意四边形中的比例关系 (“蝴蝶定理”):S 4S 3 S 2S 1O D C B A ①12 43::S S S S 或者1324S S S S ②124 3::AO OC S S S S 蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径。通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系。 【例1】(小数报竞赛活动试题)如图,某公园的外轮廓是四边形ABCD ,被对角线AC 、BD 分成四个部分,△ AOB 面积为1平方千米,△BOC 面积为2平方千米,△COD 的面积为3平方千米,公园由陆地面积是 6.92平方千米和人工湖组成,求人工湖的面积是多少平方千米? O D C B A 根据蝴蝶定理求得312 1.5AOD S △平方千米,公园四边形ABCD 的面积是123 1.57.5平方千米,所以人工湖的面积是7.5 6.920.58平方千米 【巩固】如图,四边形被两条对角线分成4个三角形,其中三个三角形的面积已知, 求:⑴三角形BGC 的面积;⑵ :AG GC ?A B C D G 321 ⑴根据蝴蝶定理,123BGC S ,那么6BGC S ;⑵根据蝴蝶定理,:12:361:3AG GC .(???)任意四边形、梯形与相似模型

【例2】四边形ABCD 的对角线AC 与BD 交于点O (如图所示)。如果三角形ABD 的面积等于三角形 BCD 的面积的1 3,且2AO ,3DO ,那么CO 的长度是DO 的长度的_________倍。A B C D O H G A B C D O 在本题中,四边形ABCD 为任意四边形,对于这种”不良四边形” ,无外乎两种处理方法:⑴利用已知条件,向已有模型靠拢,从而快速解决;⑵通过画辅助线来改造不良四边形。看到题目中给出条件 :1:3ABD BCD S S ,这可以向模型一蝴蝶定理靠拢,于是得出一种解法。又观察题目中给出的已知 条件是面积的关系,转化为边的关系,可以得到第二种解法,但是第二种解法需要一个中介来改造 这个”不良四边形”,于是可以作AH 垂直BD 于H ,CG 垂直BD 于G ,面积比转化为高之比。再应用结论:三角形高相同,则面积之比等于底边之比,得出结果。请老师注意比较两种解法,使学 生体会到蝴蝶定理的优势,从而主观上愿意掌握并使用蝴蝶定理解决问题。 解法一:∵::1:3ABD BDC AO OC S S ,∴236OC , ∴:6:32:1OC OD . 解法二:作AH BD 于H ,CG BD 于G .∵1 3 ABD BCD S S ,∴1 3AH CG ,∴13AOD DOC S S ,∴13AO CO ,∴236OC , ∴:6:32:1OC OD . 【例3】如图,平行四边形ABCD 的对角线交于O 点,CEF △、OEF △、ODF △、BOE △的面积依次是 2、4、4和6。求:⑴求OCF △的面积;⑵求GCE △的面积。 O G F E D C B A ⑴根据题意可知,BCD △的面积为244616,那么BCO △和CDO 的面积都是162 8,所以OCF △的面积为844;⑵由于BCO △的面积为8,BOE △的面积为6,所以OCE △的面积为862, 根据蝴蝶定理, ::2:41:2COE COF EG FG S S ,所以::1:2GCE GCF S S EG FG ,那么1 1 2 21233 GCE CEF S S .【例4】图中的四边形土地的总面积是52公顷,两条对角线把它分成了4个小三角形,其中2个小三角形的

小学奥数之几何蝴蝶定理问题

几何之蝴蝶定理 一、 基本知识点 定理1:同一三角形中,两个三角形的高相等,则面积之比 等于对应底边之比。 S 1 : S 2 = a : b 定理2:等分点结论( 鸟头定理) 如图,三角形△AED 的面积占三角形△ABC 的面积的 20 3 4153= ? 定理3:任意四边形中的比例关系( 蝴蝶定理) 1) S 1∶S 2 =S 4∶S 3 或 S 1×S 3 = S 2×S 4 上、下部分的面积之积等于左、右部分的面积之积 2)AO ∶OC = (S 1+S 2)∶(S 4+S 3) 梯形中的比例关系( 梯形蝴蝶定理) 1)S 1∶S 3 =a 2∶b 2 上、下部分的面积比等于上、下边的平方比 2)左、右部分的面积相等 3)S 1∶S 3∶S 2∶S 4 =a 2∶b 2 ∶ab ∶ab 4)S 的对应份数为(a+b )2 定理4:相似三角形性质

C B E F D A 1) H h C c B b A a === 2) S 1 ∶S 2 = a 2 ∶A 2 定理5:燕尾定理 S △ABE ∶ S △AEC = S △BGE ∶ S △GEC = BE ∶EC S △BGA ∶ S △BGC = S △AGF ∶ S △GFC = AF ∶FC S △ADC ∶ S △DCB = S △ADG ∶ S △DGB = AD ∶DB 二、 例题 例1、如图,AD DB =,AE EF FC ==,已知阴影部分面积为5平方厘米,ABC 的面积是多少平方厘米? 例2、有一个三角形ABC 的面积为1,如图,且12AD AB =,13BE BC =,1 4 CF CA =,求三角形DEF 的面积. 例3、如图,在三角形ABC 中,,D 为BC 的中点,E 为AB 上的一点,且BE= 1 3 AB,已知四边形EDCA 的面积是35,求三角 形ABC 的面积.

五年级奥数蝴蝶模型

蝴蝶模型 知识框架 四边形模型 任意四边形中的比例关系 ( “蝴蝶定理 ”:) ① S 1 :S 2 S 4 : S 3 或者 S 1 S 3 S 2 S 4 ② AO:OC S 1 S 2 : S 4 S 3 蝴蝶定理为我们提供了解决不规则四边形的 面积问题的一个途径.通过构造模型,一方面可以使不规则四 边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系. 梯形中比例关系 ( “梯形蝴蝶定理 ”:) ① S 1 :S 3 a :b ② S 1 :S 3:S 2 :S 4 a 2 :b 2 :ab:ab ; ③ S 的对应份数为 a b 2 . 例题精讲 1 / 11 C S 1 S 3 S2 O S 4

、任意四边形 例1】图中的四边形土地的总面积是 52 公顷,两条对角线把它分成了 4 个小三角形,其中 2 个小三角形的面积分别是 6公顷和 7 公顷.那么最大的一个三角形的面积是多少公 顷? B 巩固】如图,平行四边形ABCD 的对角线交于O 点,△CEF 、△OEF 、△ODF 、△BOE 的面积依次 是 2、4、4 和 6.求:⑴求△ OCF 的面积;⑵求△GCE 的面积. 例2】如图,某公园的外轮廓是四边形 ABCD,被对角线 AC、BD 分成四个部分,△AOB 面积为 1平方千米,△BOC 面积为 2平方千米,△COD 的面积为 3 平方千米,公园由陆 地面积是 6.92平方千米和人工湖组成,求人工湖的面积是多少平方千米? 巩固】一个矩形分成 4 个不同的三角形(如右图),绿色三角形面积占矩形面积的15%,黄色三角形的 面积是 21 平方厘米.问:矩形的面积是多少平方厘米? 面积是 21平方厘米.问:矩形的面积是多少平方厘米?

小学几何之蝴蝶定理大全精编版

小学几何之蝴蝶定理大全 一、 基本知识点 定理1:同一三角形中,两个三角形的高相等,则面积之比 等于对应底边之比。 S 1 : S 2 = a : b 定理2:等分点结论( 鸟头定理) 如图,三角形△AED 的面积占三角形△ABC 的面积的 20 3 4153= ? 定理3:任意四边形中的比例关系( 蝴蝶定理) 1) S 1∶S 2 =S 4∶S 3 或 S 1×S 3 = S 2×S 4 上、下部分的面积之积等于左、右部分的面积之积 2)AO ∶OC = (S 1+S 2)∶(S 4+S 3) 梯形中的比例关系( 梯形蝴蝶定理) 1)S 1∶S 3 =a 2∶b 2 上、下部分的面积比等于上、下边的平方比 2)左、右部分的面积相等 3)S 1∶S 3∶S 2∶S 4 =a 2∶b 2 ∶ab ∶ab 4)S 的对应份数为(a+b )2

定理4:相似三角形性质 1) H h C c B b A a = = = 2)S1∶S2 = a2 ∶A2 定理5:燕尾定理 S△ABG ∶S△AGC = S△BGE ∶S△GEC = BE∶EC S△BGA ∶S△BGC = S△AGF ∶S△GFC = AF∶FC S△AGC ∶S△BCG = S△ADG ∶S△DGB = AD∶DB 二、例题分析 例1、如图,AD DB =,AE EF FC ==,已知阴影部分面积为5平方厘米,ABC的面积是多少平方厘米?

C F E A C B E F D A 例2、有一个三角形ABC 的面积为1,如图,且12AD AB =,13BE BC =,1 4 CF CA =,求三角形DEF 的面积. 例3、如图,在三角形ABC 中,,D 为BC 的中点,E 为AB 上的一点,且BE=1 3 AB,已知四边形EDCA 的面积是35,求三角形ABC 的面积. 例4、例1 如图,ABCD 是直角梯形,求阴影部分的面积和。(单位:厘米) 例5、两条对角线把梯形ABCD 分割成四个三角形。已知两个三角形的面积(如图所示),求另两个三角形的面积各是多少?(单位:平方厘米) 例6、如下图,图中BO=2DO ,阴影部分的面积是4平方厘米,求梯形ABCD 的面积是多少平

五年级奥数.几何.蝴蝶模型(A级).学生版

四边形模型 任意四边形中的比例关系(“蝴蝶定理”): O D C B A s 4 s 3 s 2 s 1 ①1243::S S S S =或者1324S S S S ?=?②()()1243::AO OC S S S S =++ 蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系. 梯形中比例关系(“梯形蝴蝶定理”): ①2213::S S a b = ②221324::::::S S S S a b ab ab =; ③S 的对应份数为()2 a b +. A B C D O b a S 3 S 2 S 1S 4 一、任意四边形 例题精讲 知识框架 蝴蝶模型

【例 1】 图中的四边形土地的总面积是52公顷,两条对角线把它分成了4个小三角形,其中2个小三角 形的面积分别是6公顷和7公顷.那么最大的一个三角形的面积是多少公顷? 7 6 E D C B A 7 6 【巩固】 如图,平行四边形ABCD 的对角线交于O 点,CEF △、OEF △、ODF △、BOE △的面积依次 是2、4、4和6.求:⑴求OCF △的面积;⑵求GCE △的面积. O G F E D C B A 【例 2】 如图,某公园的外轮廓是四边形ABCD ,被对角线AC 、BD 分成四个部分,△AOB 面积为1平 方千米,△BOC 面积为2平方千米,△COD 的面积为3平方千米,公园由陆地面积是6.92平方千米和人工湖组成,求人工湖的面积是多少平方千米? O C D B A

蝴蝶定理的证明及推广

摘要 蝴蝶定理想象洵美,蕴理深刻,近两百年来,关于蝴蝶定理的研究成果不断,引起了许多中外数学家的兴趣。到目前为止,关于蝴蝶定理的证明就有60多种,其中初等证法就有综合证法、面积证法、三角证法、解析证法等。而基于蝴蝶定理的推广与演变,能得到很多有趣与漂亮的结果。 关键词:蝴蝶定理;证明;推广; 一摘要 [1]作者简介:陈富,祖籍江苏泰州,现就读于湖南工业大学机械工程学院机械系。 [2]指导老师简介:刘东南,祖籍湖南邵阳,现任湖南工业大学讲师。

在20世纪20年代时,蝴蝶定理作为一道几何题传到我国中学数学界,严济慈教授在《几何证题法》中有构思奇巧的证明。 如可将蝴蝶定理中的圆“压缩变换”为椭圆,甚至变为双曲线、抛物线、筝形、凸四边形、两直线,都依然成立。另外,如果将蝴蝶定理中的条件一般化,即M 点不再是中点,能得到坎迪定理、若M 、N 点是AB 的三等分点,两次应用坎迪定理,能得到“三翅蝴蝶定理”。 二 蝴蝶定理的证明 (一)运用简单的初中高中几何知识的巧妙证明 蝴蝶定理经常在初中和高中的试卷中出现,于是涌现了很多利用中学简单几何 方法完成蝴蝶定理的方法。 1 带有辅助线的常见蝴蝶定理证明 在蝴蝶定理的证明中有各种奇妙的辅助线,同时诞生了各种美妙的思想,蝴蝶定理在这些辅助线的帮助下,翩翩起舞! 证法1 如图2,作OU AD OV BC ⊥⊥,,则垂足U V ,分别为AD BC 、的中点,且由于 EUO EMO 90∠=∠=? FVO FMO 90∠=∠=? 得M E U O 、、、共圆;M F V O 、、、共圆。 则AUM=EOM MOF MVC ∠∠∠=∠, 又MAD MCB ,U V 、为AD BC 、的中点,从而MUA MVC ?? ,AUM MVC ∠=∠ 则 EOM MOF ∠=∠,于是ME=MF 。[1] 证法2 过D 作关于直线OM 的对称点D',如图3所示,则 FMD'EMD MD=MD'∠=∠, ○1 联结D'M 交圆O 于C',则C 与C'关于OM 对称,即 PC'CQ =。又 111CFP=QB+PC =QB+CC'+CQ =BC'=BD'C'222 ∠∠()() 故M F B D'、、、四点共圆,即MBF MD'F ∠=∠ 而 M B F E D M ∠=∠ ○2 图 2 图 3

相关主题
文本预览
相关文档 最新文档