当前位置:文档之家› 转盘萃取塔的构造

转盘萃取塔的构造

转盘萃取塔的构造

转盘萃取塔的构造

转盘萃取塔的构造见图,她又带有水平静挡板的垂直的圆筒构成。静环挡板为中心开孔的平板,静环挡板将圆筒分成一系列萃取室。萃取室中心有一转盘,转盘的直径略小于静环挡板的开孔直径。一系列转盘平行地安装在转轴上。这样,转盘和轴可以方便地装入塔内。最上面的静环挡板和最下面的静环挡板和塔顶以及最下面的静环挡板和塔底之间形成两个澄清段,分别用于澄清轻相和重相。

在萃取段和澄清段之间装有大孔筛板,轻相从筛板下方进入塔内,重相则从筛板上方进入塔内。筛板的作用是减少液体的搅动,以增强澄清段的分相效果。

和其他塔式萃取设备一样,工作时轻相和重相分别由塔底和塔顶进入转盘塔,在萃取塔内两相逆流接触。在转盘的作用下,分散相形成小液滴,增加两液间的传质面积。完成萃取过程的轻相和重相再分别由塔顶和塔底流出。

转盘萃取塔实验装置实验指导书

化工原理实验装置系列之 转盘萃取塔实验装置实验指导书 杭州言实科技有限公司 2006.4

目录 一、实验目的 (3) 二、实验原理 (3) 三、实验装置 (5) 四、实验方法 (6) 五、注意事项 (7) 六、报告内容 (7) 七、思考题 (7) 八、附录 (8)

转盘萃取塔实验 一、实验目的 ⒈了解液--液萃取塔的结构及特点。 ⒉掌握液--液萃取塔的操作。 ⒊掌握传质单元高度的测定方法,并分析外加能量对液--液萃取塔传质单元高度和量的影响。 二、实验原理 1、液—液萃取设备的特点 液--液相传质和气液相传质均属于相同传质过程。因此这两类传质过程具有相似之处,但也有相当差别。在液液系统中,两相间的重度差较小,界面张力也不大:所以从过程进行的流体力学条件看,在液液相的接触过程中,能用于强化过程的惯性力不大,同时已分行的流体力学条件看,在液液相的接触过程中,能用于强化过程的惯性力不大,同时已分散的两相,分层分离能力也不高。因此,对于气液接触效率较高的设备,用于液液接触就显得效率不高。为了提高液液相传质设备的效率。常常补给能量,如搅拌、脉动、振动等。为使两相逆流和两相分离,需要分层段,以保证有足够的停留时间,让分散的液相凝聚,实现两相的分离。 2、液—液萃取塔的操作 (1)分散相的选择 在萃取设备中,为了使两相密切接触,其中一相充满设备中的主要空间,并呈连续流动,称为连续相kl一相以液滴的形式,分散在连续相中,称为分散相,哪一相作为相对设备的操作性能、传质效果有显著的影响。分散相的选择可通过小试或中试确定,也可根据以下几方面考虑。 1)为了增加相际接触面积,一般将流量大的一相作为分散相;但如果两相的流量相差很大,并且所选用的萃取设备具有较大的轴向混合现象,此时应将流量小的一相作为分散相,以减小轴向混合。 2)应充分考虑界面张力变化对传质面积的影响,对于>0系统,即系统的界面张力随溶质浓度增加而增加的系统;当溶质从液滴向连续相传递时,液滴的稳定性较差,容易破碎,而液膜的稳定性较好,液滴不易合并,所以形成的液滴平均直径较小,相际接触表面较大;当溶质从连续相向液滴传递时,情况刚好相反。在设计液液传质设备时,根据系统性质正确选择作为分散相的液体,可在同样条件下获得较大的相际传质表面积,强化传质进程。 3)对于某些萃取设备,如填料塔和筛板塔等,连续相优先润湿填料或筛板是相当重要的。此时,宜将不易润湿填料或筛板的一相作为分散相。 4)分散相液滴连续相中的沉降速度,与连续相的粘度有很大的关系。为了减小塔径,提高二相分离的效果,应将粘度大的一相作为分散相。 5)此外,从成本、安全考虑,应将成本高的、易燃、易爆物料作为分散相。 (2)液滴的分散 为了使其中一相作为分散相,必须将其分散为液滴的形式,一相液体的分散,亦即液滴的形成,必须使液滴有一个适当的大小。因为液滴的尺寸不仅关系到相际接触面积,而且影响传质系数和塔的流通量。 较小的液滴,固然相际接触面积较大,有利于传质;但是过小的液滴,其内循环消失,液滴的行为趋于固体球,传质系数下降,对传质不利。所以,液滴尺寸对传质的影响必须同时考虑这两方面的因素。

各种桥梁构造图解

各种桥梁构造图解 箱型梁桥:(xiang xing liang qiao) box-girder bridge 箱梁结构的基本概念在于全部上部结构变为整体的空心梁,而当主要荷载通过桥上的任何位置时,空心梁的所有各部分(梁肋,顶板和底板)作为整体同时参加受力。其结果可节省材料,成为薄壁结构,提高了抗扭强度。箱梁桥可分为单室,双室,多室几种。 组合梁桥:(zhu he liang qiao) composite beam bridge指以梁式桥跨作为基本结构的组合结构桥,既两种以上体系重叠后,整体结构的反力性质仍与以受弯作用负载的梁的特点相同。这类桥的特点主要表现在设计计算工作繁重,构造细节及内力复杂。 空腹拱桥:(kong fu gong qiao) open spandrel arch bridge 在拱桥拱圈上设置小拱,横墙或支柱来支撑桥面系,从而减轻桥梁恒载并增大桥梁泻水面积者称为空腹拱桥。 实腹拱桥:(shi fu gong qiao)filled spandrel arch bridge

在拱桥拱圈上腹部两侧填实土壤或粒料后铺装路面,这种拱桥称为实腹拱桥。小跨径的砖,石,混凝土拱常采用这种构造形式。 无铰拱桥:(wu jiao gong qiao)hingless arch bridge如图,在整个拱上不设铰,属外部三次超静定结构。由于无铰,结构整体钢度大,构造简单,施工方便,维护费用少,因此在实际中使用最广泛。但由于超静定次数高,温度变化,材料收缩,结构变形,特别是墩台位移会产生较大附加应力。 混凝土空腹无铰拱桥 三铰拱桥:(san jiao gong qiao)three-hinged arch bridge 如图,在拱桥的两个拱脚和拱的中间各设一铰称为三铰拱。属外部静定结构构。因而温度变化,支座沉陷等不会在拱内产生附加应力,故当地质条件不良,可以采用三铰拱,但铰的存在使其构造复杂,施工困难,维护费用高,而且减小了整体刚度降低了抗震能力,因此一般较少使用。 刀形上承式三铰拱桥(跨径90m) 两铰拱桥:(liang jiao gong qiao) two-hinged arch bridge 当拱桥的两个拱脚皆设为铰支座时称为两铰拱桥。属外部

萃取塔(转盘塔)操作及体积传质系数测定2

实验报告 课程名称: 过程工程原理实验(甲)指导老师: 叶向群 成绩:_______________ 实验名称: 萃取塔(转盘塔)操作及体积传质系数测定 同组学生姓名: 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 萃取塔(转盘塔)操作及体积传质系数测定 1、实验目的: 了解转盘萃取塔和脉冲萃取塔的基本结构、操作方法及萃取的工艺流程。 观察转盘萃取塔转盘转速变化时或脉冲萃取塔的脉冲强度(脉冲幅度及脉冲频率)变化时,萃取塔内轻、重两相流动状况,了解萃取操作的主要影响因素,研究萃取操作条件对萃取过程的影响。 测量每米萃取高度的传质单元数、传质单元高度和体积传质系数YV K ,关联传质单位高度与脉冲萃取过程操作 变量的关系。 计算萃取率 实验装置流程: 转盘萃取塔 主要设备是转盘萃取塔,塔体是内径为50mm 玻璃管,塔顶电机连接转轴,转轴上固定有圆盘,塔壁固定有圆环,圆环与圆盘交错布置,转盘萃取流程图见下图1 1.原料贮槽(苯甲酸-煤油) 2.收集槽(萃余液) 3.电机 4.控制柜 5.转盘萃取塔 .转子流量计 专业: 姓名: 学号 : 日期:__ ___ 地点:

7.萃取剂贮罐(水). 输送泵11.排出液(萃取液)管12.转速测定仪取样口 图1 转盘萃取实验流程图 脉冲萃取塔 主要设备是脉冲萃取塔,塔体是内径为50mm玻璃管,内装不锈钢丝网填料,脉冲萃取流程图见下图 1.原料贮槽(苯甲酸-煤油) 2.收集槽(萃余液) 3.脉冲系统 4.控制柜 5.填料(脉冲)萃取塔 .转子流量计7.萃取剂贮罐(水)输送泵11.排出液(萃取液)管取样口 图2 脉冲萃取实验流程图 3、实验内容和原理: 萃取是分离和提纯物质的重要单元操作之一,是利用混合物中各个组分在外加溶剂中的溶解度的差异而实现组分分离的单元操作。进行液-液萃取操作时,两种液体在塔内作逆流流动,其中一液体作为分散相,以液滴的形式通过另一作为连续相的液体,两种液相浓度在设备内作微分式的连续变化,并依靠密度差在塔的两端实现两液相的间的分离。当轻相作为分散相时,相界面出现在塔的上部;反之相界面出现在塔的下端。本实验以轻相为分散相,相界面出现在塔的上部。 计算微分逆流萃取塔的塔高时,主要是采取传质单元法。即以传质单元数和传质单元高度来表征,传质单元数表示过程分离程度的难易,传质单元高度表示设备传质性能的好坏。 萃取的基本符号 名称符号流量单位组成符号 原料液F kg/s X F或x F 萃余相R kg/s X R或x R 萃取剂S kg/s Y S或y S 萃取相E kg/s Y E或y E 萃取的物料衡算

萃取操作步骤

六、实训操作步骤 (一)开车准备 1. 了解萃取操作基本原理; 2. 了解萃取塔的基本构造,熟悉工艺流程和主要设备; 3. 熟悉各取样点及温度和压力测量与控制点的位置,熟悉用涡轮流量计计量液体流量; 4. 检查公用工程(电、压缩空气)是否处于正常供应状态; 5. 设备上电,检查流程中各设备、仪表是否处于正常开车状态,动设备试车; 6. 检查流程中各阀门是否处于正常开车状态: 阀门V A101、V A102、V A103、V A104、V A105、V A106、V A107、V A109、V A110、V A114、V A116、V A120、V A121、V A123、V A124、V A125、V A126、V A128、V A130、V A132、V A133、V A135关闭; 阀门V A111、V A113、V A115、V A117、V A119、V A122、V A127、V A129、V A134全开。 7. 了解本实训所用分离物系(水-煤油-苯甲酸)。 8. 检查萃取相储槽和萃余相储槽,是否有足够空间贮存实验产生的产品;如萃取相储槽空间不够,打开阀门V A110将萃取相排出;如萃余相储槽空间不够,关闭阀门V A124、V A126,打开阀门V A125、V A128,启动轻相泵P102将煤油从萃余相储槽倒入轻相液储槽V103。 9. 检查重相液储槽和轻相液储槽,是否有足够原料供实验使用;如重相的量不够实验使用,打开阀门V A105将纯水引入重相液储槽至液位LI02的3/4(注意,实验过程中要经常检查液位LI02,当其低于1/4时,打开阀门V A101将水引入使液位LI02达到3/4);如轻相的量不够实验使用,打开阀门V A127,将煤油加入储槽V103至液位LI04的3/4。 10. 了解实验用压缩空气的来源及引入方法。 11. 按照要求制定操作方案。 (二)正常开车 开车操作的目的是将重相液和轻相液按规定流量引入萃取塔进行质量传递。

萃取塔实验讲义

萃取塔实验讲义 一、 实验目的 1. 了解脉冲填料萃取塔的结构。 2. 掌握填料萃取塔的性能测定方法。 3. 掌握萃取塔传质效率的强化方法。 二、 实验原理 1.填料萃取塔是石油炼制、化学工业和环境保护部分广泛应用的一种萃取设备,具有结构简单、便于安装和制造等特点。塔内填料的作用可以使分散相液滴不断破碎和聚合,以使液滴表面不断更新,还可以减少连续相的轴相混合。本实验采用连续通入压缩空气向填料塔内提供外加能量,增加液体滞动,强化传质。在普通填料萃取塔内,两相依靠密度差而逆相流动,相对密度较小,界面湍动程度低,限制了传质速率的进一步提高。为了防止分散相液滴过多聚结,增加塔内流动的湍动,可采用连续通入或断续通入压缩空气(脉冲方式)向填料塔提供外加能量,增加液体湍动。当然湍动太厉害,会导致液液两相乳化,难以分离。 2.萃取塔的分离效率可以用传制单元高度HOE 和理论级当量高度he 来表示,影响脉冲填料萃取塔分离效率的因素主要有:填料的种类、轻重两相的流量以及脉冲强度等。对一定的实验设备,在两相流量固定条件下,脉冲强度增加,传制单元高度降低,塔的分离能力增加。 3.本实验以水为萃取剂,从煤油中萃取苯甲酸,苯甲酸在煤油中的浓度约为0.2%(质量)。水相为萃取相(用字母E 表示,在本实验中又称连续相、重相),煤油相为萃余相(用字母R 表示,在本实验中又称分散相)。在萃取过程中苯甲酸部分地从萃余相转移至萃取相。萃取相及萃余相的进出口浓度由容量分析法测定之。考虑水与煤油是完全不互溶的,且苯甲酸在两相中的浓度都很低,可认为在萃取过程中两相液体的体积流量不发生变化。 (1) 按萃取相计算的传质单元数OE N 计算公式为: ()?-= E b E t Y Y E E E OE Y Y dY N * 式中:Y Et ─苯甲酸在进入塔顶的萃取相中的质量比组成,kg 苯甲酸/kg 水; 本实验中Y Et =0。 Y Eb ─苯甲酸在离开塔底萃取相中的质量比组成,kg 苯甲酸/kg 水; Y E ─苯甲酸在塔内某一高度处萃取相中的质量比组成,kg 苯甲酸/kg 水;

萃取塔(转盘塔)操作及体积传质系数测定2

课程名称:过程工程原理实验(甲)指导老师:叶向群成绩:_______________ 实验名称: 萃取塔(转盘塔)操作及体积传质系数测定同组学生姓名: 一、实验目的和要求(必填)二、实验内容和原理(必填) 三、主要仪器设备(必填)四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 萃取塔(转盘塔)操作及体积传质系数测定 1、实验目的: 1)了解转盘萃取塔和脉冲萃取塔的基本结构、操作方法及萃取的工艺流程。 2)观察转盘萃取塔转盘转速变化时或脉冲萃取塔的脉冲强度(脉冲幅度及脉冲频率)变化时,萃取 塔内轻、重两相流动状况,了解萃取操作的主要影响因素,研究萃取操作条件对萃取过程的影响。 3)测量每米萃取高度的传质单元数、传质单元高度和体积传质系数 K,关联传质单位高度与脉冲 YV 萃取过程操作变量的关系。 4)计算萃取率 2、实验装置流程: 2.1 转盘萃取塔 主要设备是转盘萃取塔,塔体是内径为50mm玻璃管,塔顶电机连接转轴,转轴上固定有圆盘,塔壁 固定有圆环,圆环与圆盘交错布置,转盘萃取流程图见下图1

1.原料贮槽(苯甲酸-煤油) 2.收集槽(萃余液) 3.电机 4.控制柜 5.转盘萃取塔 6.9.转子流量计 7.萃取剂贮罐(水)8.10. 输送泵11.排出液(萃取液)管12.转速测定仪A.B.C 取样口 图1 转盘萃取实验流程图 2.2 脉冲萃取塔 主要设备是脉冲萃取塔,塔体是内径为50mm玻璃管,内装不锈钢丝网填料,脉冲萃取流程图见下图 1.原料贮槽(苯甲酸-煤油) 2.收集槽(萃余液) 3.脉冲系统 4.控制柜 5.填料(脉冲)萃取塔 6.9.转子流量计 7.萃取剂贮罐(水) 8.10 输送泵11.排出液(萃取液)管 A.B.C 取样口 图2 脉冲萃取实验流程图 3、实验内容和原理: 萃取是分离和提纯物质的重要单元操作之一,是利用混合物中各个组分在外加溶剂中的溶解度的差异而实现组分分离的单元操作。进行液-液萃取操作时,两种液体在塔内作逆流流动,其中一液体作为分散相,以液滴的形式通过另一作为连续相的液体,两种液相浓度在设备内作微分式的连续变化,并依靠密度差在塔的两端实现两液相的间的分离。当轻相作为分散相时,相界面出现在塔的上部;反之相界面出现在塔的下端。本实验以轻相为分散相,相界面出现在塔的上部。 计算微分逆流萃取塔的塔高时,主要是采取传质单元法。即以传质单元数和传质单元高度来表征,传质单元数表示过程分离程度的难易,传质单元高度表示设备传质性能的好坏。 3.1 萃取的基本符号

ZST振动筛板萃取塔

液-液萃取实验 一、实验目的 1.了解液-液萃取设备的结构和特点; 2.掌握液-液萃取塔的操作; 3.掌握传质单元高度的测量方法,并分析外加能量对液-液萃取塔传质单元高度和通量的影响。 二、实验原理 液液相传质和气液相传质均属于相间传质过程。因此这两类传质过程具有相似之处,但也有相当差别。在液液系统中,两相间的重量差较小,界面张力也不大,所以从过程进行的流体力学条件看,在液液相的接触过程中,能用于强化过程的惯性力不大,同时已分散的两相,分层分离能力也不高。因此,对于气液接触效率较高的设备,用于液液接触就显的效率不高。为了提高液液相传质设备的效率,常常补给能量,如搅拌、脉动、振动等。为使两相逆流和两相分离,需要分层段,以保证有足够的停留时间,让分散的液相凝聚,实现两相的分离。 在液-液萃取塔的操作过程中,首先要确定哪一相作为分散相,本装置选用煤油(苯甲酸)-水系统,以水作为萃取剂,萃取煤油中的苯甲酸,根据分散相选择的原则选煤油作为分散相为宜,液液的分散借助往复振动的筛板,液滴尺寸的大小不仅关系到相际接触面积,而且影响传质系数和塔的流通量,较小的液滴,其内循环消失,液滴的行为趋势于固体球,传质系数下降,对传质不利。所以,液滴尺寸对传质的影响必须同时考虑这两方面的因素。 此外,萃取塔内连续相所允许的极限速度(泛点速度)与液滴的运动速度有关,而液滴的运动速度与液滴的尺寸有关,一般较大的液滴,其泛点速度较高。那么塔的通量较大。反之则通量较低。 萃取过程一般采用传质单元数和传质单元高度来处理,用传质单元数来表示过程分离程度的难易,用传质单元高度来表示设备传质性能的好坏。 H=H OR ·N OR N OR :萃取相为基准的总传质单元数。 H OR :萃余相为基准的总传质单元高度。 H :萃取塔的有效接触高度。 ) (* -??= X X X dX X N R f OR X :萃余相中溶解溶质的浓度,以质量分数来表示: X*:与相应萃余相浓度成平衡的萃取相中的溶质的浓度质量分率。 X f X R :分别表示两相进塔和出塔的萃余液浓度,质量分率;

化工基础仿真萃取实验

实验八 仿真萃取实验 一、实验目的 1 了解转盘萃取塔的结构和特点; 2 掌握液—液萃取塔的操作; 3 掌握传质单元高度的测定方法,并分析外加能量对液液萃取塔传质单元高度和通量的影响。 二、实验原理 萃取是利用原料液中各组分在两个液相中的溶解度不同而使原料液混合物得以分离。 将一定量萃取剂加入原料液中,然后加以搅拌使原料液与萃取剂充分混合,溶质通过相界面由原料液向萃取剂中扩散,所以萃取操作与精馏、吸收等过程一样,也属于两相间的传质过程。 与精馏,吸收过程类似,由于过程的复杂性,萃取过程也被分解为理论级和级效率;或传质单元数和传质单元高度,对于转盘塔,振动塔这类微分接触的萃取塔,一般采用传质单元数和传质单元高度来处理。传质单元数表示过程分离难易的程度。 对于稀溶液,传质单元数可近似用下式表示: ? -=1 2 x x *OR x x dx N 式中 N OR ------萃余相为基准的总传质单元数; x------萃余相中的溶质的浓度,以摩尔分率表示; x*------与相应萃取浓度成平衡的萃余相中溶质的浓度,以摩尔分率表示。 x 1、x 2------分别表示两相进塔和出塔的萃余相浓度传质单元高度表示设备传质性能的好坏,可由下式表示: OR OR N H H = Ω= OR x H L a K

式中 H OR ------以萃余相为基准的传质单元高度,m; H------ 萃取塔的有效接触高度,m; Kxa------萃余相为基准的总传质系数,kg/(m3?h?△x); L------萃余相的质量流量,kg/h; ------塔的截面积,m2; 已知塔高度H和传质单元数N OR 可由上式取得H OR 的数值。H OR 反映萃取设备传 质性能的好坏,H OR 越大,设备效率越低。影响萃取设备传质性能H OR 的因素很多, 主要有设备结构因素,两相物质性因素,操作因素以及外加能量的形式和大小。 三、实验设备 图1-1 四、实验步骤 1 点击开始实验(8);打开一起总电源开关与电压调节开关(1 7);并调节电压(2)至40 2 调节上图中4处进样阀至50%处,待液面升高至柱高的一半时,调节(5)号阀门至40%处。

萃取塔(转盘塔)操作及体积传质系数测定2

实验报告 课程名称: 过程工程原理实验(甲)指导老师: 叶向群 成绩:_______________ 实验名称: 萃取塔(转盘塔)操作及体积传质系数测定 同组学生姓名: 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 萃取塔(转盘塔)操作及体积传质系数测定 1、实验目的: 1) 了解转盘萃取塔和脉冲萃取塔的基本结构、操作方法及萃取的工艺流程。 2) 观察转盘萃取塔转盘转速变化时或脉冲萃取塔的脉冲强度(脉冲幅度及脉冲频率)变化时,萃取 塔内轻、重两相流动状况,了解萃取操作的主要影响因素,研究萃取操作条件对萃取过程的影响。 3) 测量每米萃取高度的传质单元数、传质单元高度和体积传质系数YV K ,关联传质单位高度与脉冲 萃取过程操作变量的关系。 4) 计算萃取率 2、实验装置流程: 2.1 转盘萃取塔 主要设备是转盘萃取塔,塔体是内径为50mm 玻璃管,塔顶电机连接转轴,转轴上固定有圆盘,塔壁固定有圆环,圆环与圆盘交错布置,转盘萃取流程图见下图1 专业: 姓名: 学号: 日期:__ ___ 地点:

1.原料贮槽(苯甲酸-煤油) 2.收集槽(萃余液) 3.电机 4.控制柜 5.转盘萃取塔 6.9.转子流量计 7.萃取剂贮罐(水) 8.10. 输送泵 11.排出液(萃取液)管 12.转速测定仪 A.B.C 取样口 图1 转盘萃取实验流程图 2.2 脉冲萃取塔 主要设备是脉冲萃取塔,塔体是内径为50mm玻璃管,内装不锈钢丝网填料,脉冲萃取流程图见下图 1.原料贮槽(苯甲酸-煤油) 2.收集槽(萃余液) 3.脉冲系统 4.控制柜 5.填料(脉冲)萃取塔 6.9.转子流量计 7.萃取剂贮罐(水) 8.10 输送泵 11.排出液(萃取液)管 A.B.C 取样口 图2 脉冲萃取实验流程图

萃取塔操作导则

萃取塔单元 一、工作原理简述 利用化合物在两种互不相溶(或微溶)的溶剂中溶解度或分配系数的不同,使化合物从一种溶剂内转移到另外一种溶剂中。经过反复多次萃取,将绝大部分的化合物提取出来。 分配定律是萃取方法理论的主要依据,物质对不同的溶剂有着不同的溶解度。在两种互不相溶的溶剂中,加入某种可溶性的物质时,它能分别溶解于两种溶剂中,实验证明,在一定温度下,该化合物与此两种溶剂不发生分解、电解、缔合和溶剂化等作用时,此化合物在两液层中之比是一个定值。不论所加物质的量是多少,都是如此。用公式表示。 C A/C B=K C A.C B分别表示一种化合物在两种互不相溶地溶剂中的摩尔浓度。K是一个常数,称为“分配系数”。 有机化合物在有机溶剂中一般比在水中溶解度大。用有机溶剂提取溶解于水的化合物是萃取的典型实例。在萃取时,若在水溶液中加入一定量的电解质(如氯化钠),利用“盐析效应”以降低有机物和萃取溶剂在水溶液中的溶解度,常可提高萃取效果。 要把所需要的化合物从溶液中完全萃取出来,通常萃取一次是不够的,必须重复萃取数次。利用分配定律的关系,可以算出经过萃取后化合物的剩余量。 设:V为原溶液的体积 w0为萃取前化合物的总量 w1为萃取一次后化合物的剩余量 w2为萃取二次后化合物的剩余量

w 3为萃取n 次后化合物的剩余量 S 为萃取溶液的体积 经一次萃取,原溶液中该化合物的浓度为w 1/V ;而萃取溶剂中该化合物的浓度为(w 0-w 1)/S ;两者之比等于K ,即: w1/V =K w 1=w 0 KV (w 0-w 1)/S KV+S 同理,经二次萃取后,则有 w2/V =K 即 (w 1-w 2)/S w 2=w 1KV =w 0 KV KV+S KV+S 因此,经n 次提取后: w n =w 0 ( KV ) KV+S 当用一定量溶剂时,希望在水中的剩余量越少越好。而上式KV/(KV+S)总是小于1,所以n 越大,wn 就越小。也就是说把溶剂分成数次作多次萃取比用全部量的溶剂作一次萃取为好。但应该注意,上面的公式适用于几乎和水不相溶地溶剂,例如苯,四氯化碳等。而与水有少量互溶地溶剂乙醚等,上面公式只是近似的。但还是可以定性地指出预期的结果。 二、工艺流程简介 本装置是通过萃取剂(水)来萃取丙烯酸丁酯生产过程中的催化剂(对甲苯磺酸)。具体工艺如下: 将自来水(FCW )通过阀V4001或者通过泵P425及阀V4002送进催化剂萃取塔C-421,当液位调节器LIC4009为50%时,关闭阀V4001或者泵P425及阀V4002;开启泵P413将含有产品和催化剂的R-412B 的流出物在被E-415冷

萃取的的课程设计

《食品工程原理》 课程设计 题目用无水乙醚从醋酸水溶液中萃取醋酸装置设计姓名 学号 专业班级食品科学与工程1101班 指导教师叶盛权 设计时间2012年12月24日

目录 一设计任务书 (3) 二设计方案简介 (3) 三萃取塔的工艺设计 (4) 四设计结果一览表 (12) 五结构设计说明 (12) 六符号说明 (14) 七设计的心得与体会 (14) 八参考文献 (15)

一、设计任务简介 用无水乙醚以萃取过程从醋酸水溶液中萃取醋酸。水溶液中含醋酸30%(质量分数),处理量为4000kg/h。由于萃取剂循环使用,无水乙醚溶液为分散相,要求最后的萃余相中醋酸的组成低于2% 2、设计任务及操作条件 ⑴、设计任务: 处理量:4000kg/h 原料组成:30%(质量分数) 分离要求:萃余相中醋酸质量分数低于2% ⑵、操作条件 操作温度:25℃ 操作压力:常压 ⑶、设备型式:转盘萃取塔 3 设计萃取塔 萃取塔类型和规格:自选。 (4)设计内容: 1)萃取塔的物料衡算; 2)萃取塔的工艺尺寸计算; 3)绘制萃取塔生产工艺流程图; 4)绘制萃取塔设计条件图; 对设计过程的评述和有关问题的讨论 二、概述与设计方案简介 1、概述 萃取的基本原理是:向待分离溶液(料液)中加入与之不相互溶解(至多是部分互溶)的萃取剂,形成共存的两个液相。利用原溶剂与萃取剂对各组分的溶解度(包括经化学反应后的溶解)的差别,使它们不等同地分配在两液相中,然后通过两液相的分离,实现组分间的分离。 最基本的操作有是单级萃取。单级萃取对给定组分所能达到的萃取率(被萃组分在萃取液中的量与原料液中的初始量的比值)较低,往往不能满足工艺要求,为了提高萃取率,可以采用多种方法:①多级错流萃取②多级逆流萃取③连续逆流萃取

各种桥梁构造图解

各种桥梁构造图解 各种桥梁构造图解各种桥梁构造图解 2011年09月15日各种桥梁构造图解 箱型梁桥 xiang xing liang qiao box-girder bridge 箱梁结构的基本概念在于全部上部结构变为整体的空心梁而当主要荷载通过桥上的任何位置时空心梁的所有各部分梁肋顶板和底板作为整体同时参加受力。其结果可节省材料成为薄壁结构提高了抗扭强度。箱梁桥可分为单室双室多室几种。组合梁桥 zhu he liang qiao composite beam bridge 指以梁式桥跨作为基本结构的组合结构桥既两种以上体系重叠后整体结构的反力性质仍与以受弯作用负载的梁的特点相同。这类桥的特点主要表现在设计计算工作繁重构造细节及内力复杂。空腹拱桥 kong fu gong qiao open spandrel arch bridge 在拱桥拱圈上设置小拱横墙或支柱来支撑桥面系从而减轻桥梁恒载并增大桥梁泻水面积者称为空腹拱桥。实腹拱桥 shi fu gong qiao filled spandrel arch bridge 在拱桥拱圈上腹部两侧填实土壤或粒料后铺装路面这种拱桥称为实腹拱桥。小跨径的砖石混凝土拱常采用这种构造形式。无铰拱桥 wu jiao gong qiao hingless arch bridge 如图在整个拱上不设铰属外部三次超静定结构。由于无铰结构整体钢度大构造简单施工方便维护费用少因此在实际中使用最广泛。但由于超静定次数高温度变化材料收缩结构变形特别是墩台位移会产生较大附加应力。混凝土空腹无铰拱桥三铰拱桥 san jiao gong qiao three-hinged arch bridge 如图在拱桥的两个拱脚和拱的中间各设一铰称为三铰拱。属外部静定结构构。因而温度变化支座沉陷等不会在拱内产生附加应力故当地质条件不良可以采用三铰拱但铰的存在使其构造复杂施工困难维护费用高而且减小了整体刚度降低了抗震能力因此一般较少使用。刀形上承式三铰拱桥跨径90m 两铰拱桥 liang jiao gong qiao two-hinged arch bridge 当拱桥的两个拱脚皆设为铰支座时称为两铰拱桥。

萃取塔操作手册

萃取塔操作手册

萃取塔单元 一、工作原理简述 利用化合物在两种互不相溶(或微溶)的溶剂中溶解度或分配系数的不同,使化合物从一种溶剂内转移到另外一种溶剂中。经过反复多次萃取,将绝大部分的化合物提取出来。 分配定律是萃取方法理论的主要依据,物质对不同的溶剂有着不同的溶解度。在两种互不相溶的溶剂中,加入某种可溶性的物质时,它能分别溶解于两种溶剂中,实验证明,在一定温度下,该化合物与此两种溶剂不发生分解、电解、缔合和溶剂化等作用时,此化合物在两液层中之比是一个定值。不论所加物质的量是多少,都是如此。用公式表示 。 C A /C B =K C A .C B 分别表示一种化合物在两种互不相溶地溶剂中的摩尔浓度。K是一 个常数,称为“分配系数”。 有机化合物在有机溶剂中一般比在水中溶解度大。用有机溶剂提取溶解于水的化合物是萃取的典型实例。在萃取时,若在水溶液中加入一定量的电解质(如氯化钠),利用“盐析效应”以降低有机物和萃取溶剂在水溶液中的溶解度,常可提高萃取效果。 要把所需要的化合物从溶液中完全萃取出来,通常萃取一次是不够的,必须重复萃取数次。利用分配定律的关系,可以算出经过萃取后化合物的剩余量。 设:V为原溶液的体积 w 为萃取前化合物的总量 w 1 为萃取一次后化合物的剩余量

w 2 为萃取二次后化合物的剩余量 w 3 为萃取n次后化合物的剩余量 S为萃取溶液的体积 经一次萃取,原溶液中该化合物的浓度为w 1 /V;而萃取溶剂中该化合物 的浓度为(w 0-w 1 )/S;两者之比等于K,即: w1/V =K w 1=w KV (w 0-w 1 )/S KV+S 同理,经二次萃取后,则有 w2/V =K 即 (w 1-w 2 )/S w 2 =w 1 KV =w KV KV+S KV+S 因此,经n次提取后: w n =w ( KV ) KV+S 当用一定量溶剂时,希望在水中的剩余量越少越好。而上式KV/(KV+S)总是小于1,所以n越大,wn就越小。也就是说把溶剂分成数次作多次萃取比用全部量的溶剂作一次萃取为好。但应该注意,上面的公式适用于几乎和水不相溶地溶剂,例如苯,四氯化碳等。而与水有少量互溶地溶剂乙醚等,上面公式只是近似的。但还是可以定性地指出预期的结果。 二、工艺流程简介 本装置是通过萃取剂(水)来萃取丙烯酸丁酯生产过程中的催化剂(对甲苯磺酸)。具体工艺如下: 将自来水(FCW)通过阀V4001或者通过泵P425及阀V4002送进催化剂

萃取塔(转盘塔)操作及体积传质系数测定2

文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持. 实验报告 课程名称: 过程工程原理实验(甲)指导老师: 叶向群 成绩:_______________ 实验名称: 萃取塔(转盘塔)操作及体积传质系数测定 同组学生姓名: 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 萃取塔(转盘塔)操作及体积传质系数测定 1、实验目的: 1) 了解转盘萃取塔和脉冲萃取塔的基本结构、操作方法及萃取的工艺流程。 2) 观察转盘萃取塔转盘转速变化时或脉冲萃取塔的脉冲强度(脉冲幅度及脉冲频率)变化时,萃取 塔内轻、重两相流动状况,了解萃取操作的主要影响因素,研究萃取操作条件对萃取过程的影响。 3) 测量每米萃取高度的传质单元数、传质单元高度和体积传质系数YV K ,关联传质单位高度与脉冲 萃取过程操作变量的关系。 4) 计算萃取率 2、实验装置流程: 2.1 转盘萃取塔 主要设备是转盘萃取塔,塔体是内径为50mm 玻璃管,塔顶电机连接转轴,转轴上固定有圆盘,塔壁固定有圆环,圆环与圆盘交错布置,转盘萃取流程图见下图1 1.原料贮槽(苯甲酸-煤油) 2.收集槽(萃余液) 3.电机 4.控制柜 5.转盘萃取塔 6.9.转子流量计 7.萃取剂贮罐(水) 8.10. 输送泵 11.排出液(萃取液)管 12.转速测定仪 A.B.C 取样口 图1 转盘萃取实验流程图 2.2 脉冲萃取塔 主要设备是脉冲萃取塔,塔体是内径为50mm 玻璃管,内装不锈钢丝网填料,脉冲萃取流程图见下图 1.原料贮槽(苯甲酸-煤油) 2.收集槽(萃余液) 3.脉冲系统 4.控制柜 5.填料(脉冲)萃取塔 6.9.转子流量计 7.萃取剂贮罐(水) 8.10 输送泵 11.排出液(萃取液)管 A.B.C 取样口 图2 脉冲萃取实验流程图 3、实验内容和原理: 萃取是分离和提纯物质的重要单元操作之一,是利用混合物中各个组分在外加溶剂中的溶解度的差异而实现组分分离的单元操作。进行液-液萃取操作时,两种液体在塔内作逆流流动,其中一液体作为分散相,以液滴的形式通过另一作为连续相的液体,两种液相浓度在设备内作微分式的连续变化,并依靠密度差在塔的两端实现两液相的间的分离。当轻相作为分散相时,相界面出现在塔的上部;反之相界面出现在塔的下端。本实验以轻相为分散相,相界面出现在塔的上部。 计算微分逆流萃取塔的塔高时,主要是采取传质单元法。即以传质单元数和传质单元高度来表征,传 专业: 姓名: 学号: 日期:__ ___ 地点:

实验七 转盘萃取塔实验讲义

实验七液-液萃取塔的操作及其传质单元高度的测定 转盘塔是一种外输入能量的液—液萃取设备,具有结构简单、生产能力大、 功率小等优点,广泛应用于食物油纯化,核燃料处理、原油净化、维生素净化、 废水处理等方面。 一、实验目的 1.掌握萃取塔传质单元高度的测定方法,学会分析外加能量对液-液萃取塔传质单元的影响; 2.了解引起萃取塔液泛不正常现象出现的原因以及处理方法; 3.了解液-液萃取设备的结构和特点。 二、实验原理 萃取是分离混合液体的一种方法,它是一种弥补精馏操作无法实现分离的方法之一,特别适用于稀有分散昂贵金属的冶炼和高沸点多组分分离,它是依据液体混合物各组分在溶剂中溶解度的差异而实现分离的。但是,萃取单元操作得不到高纯物质,它只是将难以分离的混合液转化为容易分离的混合液,增加了分离设备和途径,导致成本提高。所以,经济效益是评价萃取单元操作成功于否的标准。 1.萃取和吸收的区别 ⑴相同之处: 两者均是利用混合物中的各组分在某溶剂中溶解度的不同而达到分离的。吸收是气液接触传质,萃取是液-液接触传质,两者同属相际传质,因此两者的速率表达式和传质推动力的表达式是相同的。 图1. 萃取和吸收的区别 ⑵不同之处: 由于液-液萃取体系的特点,两相的密度比较接近,界面张力较小,所以,能用

于强化过程的推动力不大,加上分散的一相,凝聚分层能力不高;而气液吸收两相密度相差很大,界面张力较大,气液两相分离能力很大,由此,对于气液接触效率较高的设备,用于液-液接触效率不一定高。为了提高液-液相际传质设备的效率,常常需外加能量,如搅拌、脉动、振动等。另外,为了让分散的液滴凝聚,实现两相的分离,需要有足够的停留时间也即凝聚空间,简称分层分离空间。 2.萃取塔结构特征 由于液-液萃取体系的特点,从而使萃取塔的结构发生了根本性变化: ⑴需要适度的外加能量; ⑵需要足够大的分层分离空间。 3.萃取塔的操作特点 ⑴分散相的选择 a.容易分散的一相为分散相:在现实操作过程中,很易转相,为了避免此类情况发生,宜选择容易分散的一相为分散相。 b.不易润湿材质的一相作为分散相:对某些没有外加能量的萃取设备,像填料塔和筛板塔等,使连续相优先润湿塔器内壁,对萃取效率的提高相当重要。 c.根据界面张力理论:由于界面张力变化对传质面积影响很大,对正系统 dx d >0,传质方向如图2所示,此时的液滴稳定性较差,容易破碎,而液膜的稳定性较好,液 滴不易合并,所形成的液滴平均直径较小,相际接触表面较大。 图2. 表面张力理论图 d.粘度大的、含放射性的、成本高的、易燃易爆的物料选为分散相。本次实验所选用的物系是清水萃取煤油中的苯甲酸,它正好符合上面a 、b 、c 、d 四项依据,因此选油相为分散相。 ⑵外加能量的大小

MTBE装置萃取塔的操作与优化

MTBE装置萃取塔的操作与优化 李金柱 (中国石油化工股份有限公司镇海炼化分公司,镇海315207) 摘要针对MTBE装置扩能改造后萃取塔塔顶碳四出料甲醇含量偏高的问题.以萃取塔的实际运行工况为参考,利用HYSYS流程模拟软件建立计算模型,对萃取塔操作温度、压力、料水比等参数进行计算分析,确定萃取塔操作优化方案并组织实施。实施结果表明,萃取塔碳四出料甲醇含量基本得到控制。 关键词:萃取塔操作优化模型 1前言 萃取是利用混合物中各组分对另一种物质溶解度的差异将不同物质分离的技术,在石油化工生产过程中得到了广泛的应用。在实际生产过程中,技术人员或操作人员对操作过程中的各种控制参数对萃取效果的影响均有较为清楚的认识,但是随着装置运行时间的延长,萃取塔的各种操作参数的影响也会发生变化,如果技术人员对这种变化没有定量的掌握,没有对操作参数进行相应调整,将会大大增加装置的运行能耗,影响装置运行的经济性。在计算机性能大幅度提升的今天,各种化工行业专业模拟软件为装置操作性能定量分析提供了极大便利,也为技术人员及时发现装置的变化和改善装置运行参数提供了理论支持。 目前流行的各种流程模拟软件中,HYPR0TEC公司的HYSYS流程模拟软件具有强大的热力学方程及化工原料物性数据库,广泛应用于化工企业工艺流程优化及装置工艺设计计算,利用该软件可以较为方便地得到炼油过程中主要操作单元的运行参数,利用其内建的优化器等工具可以估算装置最优运行状态及操作费用,为调整操作指出方向。 本研究以MTBE装置中萃取塔实际运行工况为参考。采用HYSYS流程模拟软件建立计算模型,对萃取塔操作温度、压力、料水比等参数进行计算分析,确定萃取塔操作优化方案并组织实施。 2萃取塔工艺流程模拟及分析 2.1工艺流程模拟 MTBE装置反应产物在经过共沸塔将MTBE产品分离出来后,甲醇与碳四混合物由于形成共沸物无法再用蒸馏的方法进行分离,为了回收未反应碳四中的甲醇,改善装置运行的经济性,采用了与甲醇能完全互溶、与碳四基本不互溶的水为萃取剂,将未反应碳四中的甲醇萃取出来,再用蒸馏的方法对甲醇进行提纯回收。在实际装置中,萃取塔顶有扩大段以减少塔顶物料中水的夹带量,甲醇精馏塔进料前也有一个闪蒸罐,利用较低的压力分离出甲醇水溶液中溶解的少量碳四。因此在流程模拟时,萃取塔顶设有分水器,萃取塔底料先经过分离器进行分离后作为甲醇塔进料。 MTBE装置萃取分离部分模拟流程见图1。按照12块理论板的设计参数,萃取塔模拟计算结果与设计汁算结果对比见表1。由表1可以看出,设计参数下计算结果与设计结果吻合较好。 根据装置实际运行参数调整模型后计算结果见表2。由表2可以看出,碳四出料中甲醇含量计算结果与实际测定数据最大误差在20μg/g 左右,说明所建模型可用于指导装置实际操作。 2.2萃取塔影响因素分析 2.2.1萃取塔理论塔板数对碳四产品质量的影 响在甲醇回收塔塔底萃取水中甲醇含量为0、萃取水流量7.2t/h、萃取塔碳四进料量60t/h、碳四进料中甲醇质量分数为0.64%、操作温度40℃的条件下,塔盘数由3块增加到7块,得到的萃取塔塔顶碳四出料甲醇含量的变化见表3。由表3可以看出,在萃取水纯度为100%的情况下,

液液转盘萃取实验

化工原理实验报告学院:专业:班级:

由于不同转速下采用的原料是相同的,因此萃取相浓度只需取一次样进行滴定,原料体积VF= ml , 滴定所耗NaOH-CH3CH2OH 溶液体积V ?= ml 。 2、萃余相浓度滴定记录 转速n 萃余相体积V R /ml 滴定所耗NaOH-CH 3CH 2OH 溶液体 积V ?/ml 250 25 0.9 300 25 0.4 六、数据处理 1、组成浓度的计算 本实验采用酸碱中和滴定的方法测定原料液、萃余相中苯甲酸的质量分率x ,具体计算公式如下: 当n=250时 x R =0.9ml x= = 当n=300时 x R =0.4ml x = 2、传质单元数NOR 、传质单元高度HOR 的计算 当n=250时;x F =1.4ml x R =0.9ml 总传质单元数 F R OR m x x N x -= ? Δx m ∴ OR OR N H H ?=

∴N OR = 2.06m 当n=300时;x F =1.4ml x R =0.4ml 总传质单元数 F R OR m x x N x - = ? Δx m 0.639 ∴ ∴N OR = 3、萃取率的计算 萃取率 η为被萃取剂萃取的组分A的量与原料液中组分A的量之比: 本实验是稀溶液的萃取过程,因此有F=R,所以有: F R F x x x η -= 当n=250时;x F =1.4ml x R =0.9ml η==0.357 当n=300时;x F =1.4ml x R =0.4ml η==0.714 编号转速 原料液 浓度 萃余相 浓度 平均 推动力 传质 单元数 传质单 元高度 效率n хF хR Δxm NOR HOR η 1 250 1.4 0.9 1.03 0.485 2.06 0.357 2 300 1.4 0.4 0.639 1.565 0.69 0.714 七、实验结果及讨论 1、实验结果: (1)本实验利用转盘萃取塔做液液萃取实验。当增加水流量时,传质系数增加,塔顶轻相的苯甲酸浓度明显增大,而塔底重相苯甲酸浓度明显降低。当其余条件不变时,增大转速时,传质系数减小,塔顶轻相的苯甲酸浓度降低,而塔底重相的苯甲酸浓度增大。

桥梁构造与识图

一、识图分析题 图1某大桥总体布置图 (1)桥梁全长为:米,标准跨径为米。(2)上部结构梁体按照静力体系分为(简支梁还是连续梁),梁体横截面形式为。 (3)桥面总宽为米,净宽为米。(4)箱梁高度米,盖梁厚度为米。 (5)下部结构结构形式为:桥墩,桥台,基础。(6)桥墩基础厚度为米、长度米、宽度米;礅柱高度为米(不含盖梁),直径米。

图2 箱梁预应力钢束构造图

图3墩柱钢筋构造图 2.图2为某大桥箱梁预应力钢筋图,读图回答: (1)预应力钢束共有 束。梁端伸缩缝宽度为 。 (2)钢束1N 、2N 、3N 、4N 在跨中截面距离梁底面的距离分别为 、 、 、 。在支点截面距离梁底的距离分别为 、 、 、 。 (3)箱梁跨中截面顶板厚度 ,腹板厚度 ,底板厚度 。 (4)材料表中预应力钢束规格符号2.155s 的意思是 。 (5)预应力钢束为什么要在梁两端逐渐弯起? 3、图3为某大桥桥墩钢筋构造图,读图回答问题。 (1)①号钢筋作用 ,直径 ,根数 , 长度 。 (2)②号钢筋名称 ,直径 ,如何布置 。 (3)③号钢筋名称 ,作用 , 间距: 。 (4)④号钢筋名称 ,作用 , 如何布置: 。 (5)钢筋保护层厚度为 。

4.下图为某大桥的桥台盖梁钢筋构造图,识图完成下表(共15分)。 5.下图为某涵洞一般构造图,识图回答问题(共9分)。

(1)洞口属于形式,采用的材料为。 (2)帽石的尺寸为(长、宽、高)。 (3)盖板一共有块,盖板的尺寸为(长、宽、高),盖板采用的材料为。 (4)涵台的尺寸为,涵台采用的材料为。 (5)涵洞净空高度为,涵洞净跨为。 (6)洞身设计流水坡度为。 (7)涵台基础尺寸为(长、宽、高),涵台基础采用的材料为。 (8)铺底的尺寸为(长、宽、高)。 (9)路基的宽度为,涵洞的总长度为。

相关主题
文本预览
相关文档 最新文档