当前位置:文档之家› 中考数学 二次函数综合试题及答案

中考数学 二次函数综合试题及答案

中考数学 二次函数综合试题及答案
中考数学 二次函数综合试题及答案

一、二次函数真题与模拟题分类汇编(难题易错题)

1.童装店销售某款童装,每件售价为60元,每星期可卖100件,为了促销该店决定降价销售,经市场调查发现:每降价1元,每星期可多卖10件,已知该款童装每件成本30元,设降价后该款童装每件售价x元,每星期的销售量为y件.

(1)降价后,当某一星期的销售量是未降价前一星期销售量的3倍时,求这一星期中每件童装降价多少元?

(2)当每件售价定为多少元时,一星期的销售利润最大,最大利润是多少?

【答案】(1)这一星期中每件童装降价20元;(2)每件售价定为50元时,一星期的销售利润最大,最大利润4000元.

【解析】

【分析】

(1)根据售量与售价x(元/件)之间的关系列方程即可得到结论.

(2)设每星期利润为W元,构建二次函数利用二次函数性质解决问题.

【详解】

解:(1)根据题意得,(60﹣x)×10+100=3×100,

解得:x=40,

60﹣40=20元,

答:这一星期中每件童装降价20元;

(2)设利润为w,

根据题意得,w=(x﹣30)[(60﹣x)×10+100]=﹣10x2+1000x﹣21000

=﹣10(x﹣50)2+4000,

答:每件售价定为50元时,一星期的销售利润最大,最大利润4000元.

【点睛】

本题考查二次函数的应用,一元二次不等式,解题的关键是构建二次函数解决最值问题,利用图象法解一元二次不等式,属于中考常考题型.

2.如图1,抛物线C1:y=ax2﹣2ax+c(a<0)与x轴交于A、B两点,与y轴交于点C.已知点A的坐标为(﹣1,0),点O为坐标原点,OC=3OA,抛物线C1的顶点为G.

(1)求出抛物线C1的解析式,并写出点G的坐标;

(2)如图2,将抛物线C1向下平移k(k>0)个单位,得到抛物线C2,设C2与x轴的交点为A′、B′,顶点为G′,当△A′B′G′是等边三角形时,求k的值:

(3)在(2)的条件下,如图3,设点M为x轴正半轴上一动点,过点M作x轴的垂线分别交抛物线C1、C2于P、Q两点,试探究在直线y=﹣1上是否存在点N,使得以P、Q、N 为顶点的三角形与△AOQ全等,若存在,直接写出点M,N的坐标:若不存在,请说明理由.

【答案】(1)抛物线C1的解析式为y=﹣x2+2x+3,点G的坐标为(1,4);(2)k=1;

(3)M1(113

+

,0)、N1(13,﹣1);M2(

113

+

,0)、N2(1,﹣1);M3

(4,0)、N3(10,﹣1);M4(4,0)、N4(﹣2,﹣1).

【解析】

【分析】(1)由点A的坐标及OC=3OA得点C坐标,将A、C坐标代入解析式求解可得;(2)设抛物线C2的解析式为y=﹣x2+2x+3﹣k,即y=﹣(x﹣1)2+4﹣k,′作G′D⊥x轴于点D,设BD′=m,由等边三角形性质知点B′的坐标为(m+1,0),点G′的坐标为(1,

3m),代入所设解析式求解可得;

(3)设M(x,0),则P(x,﹣x2+2x+3)、Q(x,﹣x2+2x+2),根据PQ=OA=1且

∠AOQ、∠PQN均为钝角知△AOQ≌△PQN,延长PQ交直线y=﹣1于点H,证

△OQM≌△QNH,根据对应边相等建立关于x的方程,解之求得x的值从而进一步求解即可.

【详解】(1)∵点A的坐标为(﹣1,0),

∴OA=1,

∴OC=3OA,

∴点C的坐标为(0,3),

将A、C坐标代入y=ax2﹣2ax+c,得:

20

3

a a c

c

++=

?

?

=

?

解得:

1

3

a

c

=-

?

?

=

?

∴抛物线C1的解析式为y=﹣x2+2x+3=﹣(x﹣1)2+4,

所以点G的坐标为(1,4);

(2)设抛物线C2的解析式为y=﹣x2+2x+3﹣k,即y=﹣(x﹣1)2+4﹣k,过点G′作G′D⊥x轴于点D,设BD′=m,

∵△A′B′G′为等边三角形,

∴33,

则点B′的坐标为(m+1,0),点G′的坐标为(13),

将点B′、G′的坐标代入y=﹣(x ﹣1)2+4﹣k ,得:

2

40

43

m k k m

?-+-=??

-=??, 解得:1104m k =??=?(舍),223

1

m k ?=??=??, ∴k=1;

(3)设M (x ,0),则P (x ,﹣x 2+2x+3)、Q (x ,﹣x 2+2x+2), ∴PQ=OA=1,

∵∠AOQ 、∠PQN 均为钝角, ∴△AOQ ≌△PQN ,

如图2,延长PQ 交直线y=﹣1于点H ,

则∠QHN=∠OMQ=90°, 又∵△AOQ ≌△PQN , ∴OQ=QN ,∠AOQ=∠PQN , ∴∠MOQ=∠HQN , ∴△OQM ≌△QNH (AAS ), ∴OM=QH ,即x=﹣x 2+2x+2+1, 解得:x=

113

2

± 当113+HN=QM=﹣x 2131-M 113

+,0), ∴点N 113+131

-1131); 或(

1132+﹣1312

,﹣1),即(1,﹣1); 如图3,

同理可得△OQM≌△PNH,

∴OM=PH,即x=﹣(﹣x2+2x+2)﹣1,

解得:x=﹣1(舍)或x=4,

当x=4时,点M的坐标为(4,0),HN=QM=﹣(﹣x2+2x+2)=6,

∴点N的坐标为(4+6,﹣1)即(10,﹣1),或(4﹣6,﹣1)即(﹣2,﹣1);

综上点M1(113

+

,0)、N1(13,﹣1);M2(

113

+

,0)、N2(1,﹣1);M3

(4,0)、N3(10,﹣1);M4(4,0)、N4(﹣2,﹣1).

【点睛】本题考查的是二次函数的综合题,涉及到的知识有待定系数法、等边三角形的性质、全等三角形的判定与性质等,熟练掌握待定系数法求函数解析式、等边三角形的性质、全等三角形的判定与性质、运用分类讨论思想是解题的关键.

3.如图,已知抛物线经过点A(-1,0),B(4,0),C(0,2)三点,点D与点C关于x轴对称,点P是线段AB上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q,交直线BD于点M.

(1)求该抛物线所表示的二次函数的表达式;

(2)在点P运动过程中,是否存在点Q,使得△BQM是直角三角形?若存在,求出点Q 的坐标;若不存在,请说明理由;

(3)连接AC,将△AOC绕平面内某点H顺时针旋转90°,得到△A1O1C1,点A、O、C的对应点分别是点A、O1、C1、若△A1O1C1的两个顶点恰好落在抛物线上,那么我们就称这样的点为“和谐点”,请直接写出“和谐点”的个数和点A1的横坐标.

【答案】(1)y=-

21x 2+3

2

x+2;(2)存在,Q (3,2)或Q (-1,0);(3)两个和谐点,A 1的横坐标是1,1

2

. 【解析】 【分析】

(1)把点A (1,0)、B (4,0)、C (0,3)三点的坐标代入函数解析式,利用待定系数法求解;

(2)分两种情况分别讨论,当∠QBM=90°或∠MQB=90°,即可求得Q 点的坐标. (3)(3)两个和谐点;AO=1,OC=2,设A 1(x ,y ),则C 1(x+2,y-1),O 1(x ,y-1),

①当A 1、C 1在抛物线上时,A 1的横坐标是1; 当O 1、C 1在抛物线上时,A 1的横坐标是2; 【详解】

解:(1)设抛物线解析式为y=ax 2+bx+c ,

将点A (-1,0),B (4,0),C (0,2)代入解析式,

∴0a b c 016a 4b c 2c =-+??

=++??=?

, ∴1a 23b 2?=-????=??

∴y=-

21x 2+3

2

x+2; (2)∵点C 与点D 关于x 轴对称, ∴D (0,-2).

设直线BD 的解析式为y=kx-2. ∵将(4,0)代入得:4k-2=0, ∴k=

12

. ∴直线BD 的解析式为y=

1

2

x-2. 当P 点与A 点重合时,△BQM 是直角三角形,此时Q (-1,0);

当BQ ⊥BD 时,△BQM 是直角三角形, 则直线BQ 的直线解析式为y=-2x+8, ∴-2x+8=-21x 2+3

2

x+2,可求x=3或x=4(舍) ∴x=3;

∴Q (3,2)或Q (-1,0); (3)两个和谐点; AO=1,OC=2,

设A 1(x ,y ),则C 1(x+2,y-1),O 1(x ,y-1), ①当A 1、C 1在抛物线上时,

∴()2213y x x 22213y 1(x 2)x 22

22?=-++????-=-++++??

∴x 1y 3=??=?

∴A 1的横坐标是1; 当O 1、C 1在抛物线上时,

()2213y 1x x 222

13y 1(x 2)x 22

22?-=-++???

?-=-++++??, ∴1

x 221y 8

?=????=??

, ∴A 1的横坐标是

12

【点睛】

本题是二次函数的综合题,考查了待定系数法求二次函数的解析式,轴对称-最短路线问题,等腰三角形的性质等;分类讨论思想的运用是本题的关键.

4.如图①,在平面直角坐标系xOy 中,抛物线y=ax2+bx+3经过点A(-1,0) 、B(3,0) 两点,且与y轴交于点C

.

(1)求抛物线的表达式;

(2)如图②,用宽为4个单位长度的直尺垂直于x轴,并沿x轴左右平移,直尺的左右两边所在的直线与抛物线相交于P、 Q两点(点P在点Q的左侧),连接PQ,在线段PQ 上方抛物线上有一动点D,连接DP、DQ.

①若点P的横坐标为

1

2

,求△DPQ面积的最大值,并求此时点D 的坐标;

②直尺在平移过程中,△DPQ面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由.

【答案】(1)抛物线y=-x2+2x+3;(2)①点D(315

24

,);②△PQD面积的最大值为8

【解析】

分析:(1)根据点A、B的坐标,利用待定系数法即可求出抛物线的表达式;

(2)(I)由点P的横坐标可得出点P、Q的坐标,利用待定系数法可求出直线PQ的表达式,过点D作DE∥y轴交直线PQ于点E,设点D的坐标为(x,-x2+2x+3),则点E的坐

标为(x,-x+5

4

),进而即可得出DE的长度,利用三角形的面积公式可得出S△DPQ=-

2x2+6x+7

2

,再利用二次函数的性质即可解决最值问题;

(II)假设存在,设点P的横坐标为t,则点Q的横坐标为4+t,进而可得出点P、Q的坐标,利用待定系数法可求出直线PQ的表达式,设点D的坐标为(x,-x2+2x+3),则点E 的坐标为(x,-2(t+1)x+t2+4t+3),进而即可得出DE的长度,利用三角形的面积公式可得出S△DPQ=-2x2+4(t+2)x-2t2-8t,再利用二次函数的性质即可解决最值问题.

详解:(1)将A(-1,0)、B(3,0)代入y=ax2+bx+3,得:

30

9330

a b

a b

-+

?

?

++

?

,解得:

1

2

a

b

-

?

?

?

∴抛物线的表达式为y=-x2+2x+3.

(2)(I)当点P的横坐标为-

1

2

时,点Q的横坐标为

7

2

∴此时点P的坐标为(-

1

2

7

4

),点Q的坐标为(

7

2

,-

9

4

).

设直线PQ的表达式为y=mx+n,

将P(-

1

2

7

4

)、Q(

7

2

,-

9

4

)代入y=mx+n,得:

17

24

79

24

m n

m n

?

-+

??

?

?+-

??

,解得:

1

5

4

m

n

-

?

?

?

??

∴直线PQ的表达式为y=-x+5

4

如图②,过点D作DE∥y轴交直线PQ于点E,

设点D的坐标为(x,-x2+2x+3),则点E的坐标为(x,-x+

5

4

),

∴DE=-x2+2x+3-(-x+5

4

)=-x2+3x+

7

4

∴S △DPQ =

12

DE?(x Q -x P )=-2x 2+6x+72=-2(x-3

2)2+8.

∵-2<0, ∴当x=

32时,△DPQ 的面积取最大值,最大值为8,此时点D 的坐标为(32

,15

4).

(II )假设存在,设点P 的横坐标为t ,则点Q 的横坐标为4+t ,

∴点P 的坐标为(t ,-t 2+2t+3),点Q 的坐标为(4+t ,-(4+t )2+2(4+t )+3), 利用待定系数法易知,直线PQ 的表达式为y=-2(t+1)x+t 2+4t+3.

设点D 的坐标为(x ,-x 2+2x+3),则点E 的坐标为(x ,-2(t+1)x+t 2+4t+3), ∴DE=-x 2+2x+3-[-2(t+1)x+t 2+4t+3]=-x 2+2(t+2)x-t 2-4t , ∴S △DPQ =

1

2

DE?(x Q -x P )=-2x 2+4(t+2)x-2t 2-8t=-2[x-(t+2)]2+8. ∵-2<0,

∴当x=t+2时,△DPQ 的面积取最大值,最大值为8.

∴假设成立,即直尺在平移过程中,△DPQ 面积有最大值,面积的最大值为8. 点睛:本题考查了待定系数法求二次(一次)函数解析式、二次(一次)函数图象上点的坐标特征、三角形的面积以及二次函数的最值,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数表达式;(2)(I )利用三角形的面积公式找出S △DPQ =-2x 2+6x+

7

2

;(II )利用三角形的面积公式找出S △DPQ =-2x 2+4(t+2)x-2t 2-8t .

5.在平面直角坐标系中,有两点(),A a b 、(),B c d ,若满足:当a b ≥时,c a =,

2d b =-;当a b <时,c a <-,d b <,则称点为点的“友好点”.

(1)点()4,1的“友好点”的坐标是_______.

(2)点(),A a b 是直线2y x =-上的一点,点B 是点A 的“友好点”. ①当B 点与A 点重合时,求点A 的坐标.

②当A 点与A 点不重合时,求线段AB 的长度随着a 的增大而减小时,a 的取值范围. 【答案】(1)()41-,;(2)①点A 的坐标是()2,0或()1,1-;②当1a <或3

2

2a ≤<时,AB 的长度随着a 的增大而减小; 【解析】 【分析】

(1)直接利用“友好点”定义进行解题即可;(2)先利用 “友好点”定义求出B 点坐标,A 点又在直线2y x =-上,得到2b a =-;①当点A 和点B 重合,得2b b =-.解出即可,②当点A 和点B 不重合, 1a ≠且2a ≠.所以对a 分情况讨论,1°、当1a <或

2a >时,()2

2231

3224AB b b a a a ??=--=-+=-- ???

,所以当a ≤32时,AB 的长度随

着a 的增大而减小,即取1a <.2°当12a <<时,()2

2231

+3224

AB b b a a a ??

=--=--=--+

?

?

?

,当32a ≥

时,AB 的长度随着a 的增大而减小,即取3

2

2a ≤<. 综上,当1a <或3

2

2a ≤<时,AB 的长度随着a 的增大而减小. 【详解】

(1)点()4,1,4>1,根据“友好点”定义,得到点()4,1的“友好点”的坐标是()41-, (2)

点(),A a b 是直线2y x =-上的一点,

∴2b a =-.

2a a >-,根据友好点的定义,点B 的坐标为()

2

,B a b -,

①当点A 和点B 重合,∴2b b =-. 解得0b =或1b =-. 当0b =时,2a =;当1b =-时,1a =,

∴点A 的坐标是()2,0或()1,1-.

②当点A 和点B 不重合,1a ≠且2a ≠.

当1a <或2a >时,()2

2

2

313224AB b b a a a ??=--=-+=-- ??

?. ∴当a ≤

3

2

时,AB 的长度随着a 的增大而减小, ∴取1a <.

当12a <<时, ()2

2

2

31+3224AB b b a a a ?

?=--=--=--+ ??

? .

∴当3

2

a ≥时,AB 的长度随着a 的增大而减小, ∴取

3

2

2a ≤<. 综上,当1a <或3

2

2a ≤<时,AB 的长度随着a 的增大而减小. 【点睛】

本题属于阅读理解题型,结合二次函数的基本性质进行解题,第二问的第二小问的关键是求出AB 的长用a 进行表示,然后利用二次函数基本性质进行分类讨论

6.如图,抛物线y =﹣x 2+bx +c 与x 轴交于点A 和点B (3,0),与y 轴交于点C (0,3),点D 是抛物线的顶点,过点D 作x 轴的垂线,垂足为E ,连接DB . (1)求此抛物线的解析式及顶点D 的坐标;

(2)点M 是抛物线上的动点,设点M 的横坐标为m . ①当∠MBA =∠BDE 时,求点M 的坐标;

②过点M作MN∥x轴,与抛物线交于点N,P为x轴上一点,连接PM,PN,将△PMN 沿着MN翻折,得△QMN,若四边形MPNQ恰好为正方形,直接写出m的值.

【答案】(1)(1,4)(2)①点M坐标(﹣1

2

7

4

)或(﹣

3

2

,﹣

9

4

);②m的值

为317

±

117

±

【解析】

【分析】

(1)利用待定系数法即可解决问题;

(2)①根据tan∠MBA=

223

3

m m

MG

BG m

-++

=

-

,tan∠BDE=

BE

DE

=

1

2

,由∠MBA=∠BDE,

构建方程即可解决问题;②因为点M、N关于抛物线的对称轴对称,四边形MPNQ是正方形,推出点P是抛物线的对称轴与x轴的交点,即OP=1,易证GM=GP,即|-

m2+2m+3|=|1-m|,解方程即可解决问题.

【详解】

(1)把点B(3,0),C(0,3)代入y=﹣x2+bx+c,

得到

930

{

3

b c

c

-++=

=

,解得

2

{

3

b

c

=

=

∴抛物线的解析式为y=﹣x2+2x+3,

∵y=﹣x2+2x﹣1+1+3=﹣(x﹣1)2+4,

∴顶点D坐标(1,4);

(2)①作MG⊥x轴于G,连接BM.则∠MGB=90°,设M(m,﹣m2+2m+3),

∴MG=|﹣m2+2m+3|,BG=3﹣m,

∴tan∠MBA=

223

3

m m

MG

BG m

-++

=

-

∵DE⊥x轴,D(1,4),∴∠DEB=90°,DE=4,OE=1,∵B(3,0),

∴BE=2,

∴tan∠BDE=BE

DE =

1

2

∵∠MBA=∠BDE,

223

3

m m

m

-++

-

=

1

2

当点M在x轴上方时,

223

3

m m

m

-++

-

=

1

2

解得m=﹣1

2

或3(舍弃),

∴M(﹣1

2,

7

4

),

当点M在x轴下方时,

223

3

m m

m

--

-

=

1

2

解得m=﹣3

2

或m=3(舍弃),

∴点M(﹣3

2,﹣

9

4

),

综上所述,满足条件的点M坐标(﹣1

2

7

4

)或(﹣

3

2

,﹣

9

4

);

②如图中,∵MN∥x轴,

∴点M、N关于抛物线的对称轴对称,

∵四边形MPNQ是正方形,

∴点P是抛物线的对称轴与x轴的交点,即OP=1,易证GM=GP,即|﹣m2+2m+3|=|1﹣m|,

当﹣m2+2m+3=1﹣m时,解得317

±

当﹣m2+2m+3=m﹣1时,解得m=117

2

±

∴满足条件的m 的值为3172±或

117

2

±. 【点睛】

本题考查二次函数综合题、锐角三角函数、正方形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.

7.如图1,在平面直角坐标系中,直线1y x =-与抛物线2y x bx c =-++交于A B 、两点,其中(),0A m ,()4,B n .该抛物线与y 轴交于点C ,与x 轴交于另一点D .

(1)求m

n 、的值及该抛物线的解析式; (2)如图2.若点P 为线段AD 上的一动点(不与A D 、重合).分别以AP 、DP 为斜边,在直线

AD 的同侧作等腰直角△APM 和等腰直角△DPN ,连接MN ,试确定△MPN 面积最大时

P 点的坐标.

(3)如图3.连接BD 、CD ,在线段CD 上是否存在点Q ,使得以A D Q 、、为顶点的三角形

与△ABD 相似,若存在,请直接写出点Q 的坐标;若不存在,请说明理由.

【答案】(1)2

65y x x =-+-;(2)当2m =,即2AP =时,MPN S ?最大,此时

3OP =,所以()3,0P ;(3)存在点Q 坐标为2-3(,)或78-33

?? ???

,. 【解析】

分析:(1)把A 与B 坐标代入一次函数解析式求出m 与n 的值,确定出A 与B 坐标,代入二次函数解析式求出b 与c 的值即可;

(2)由等腰直角△APM 和等腰直角△DPN ,得到∠MPN 为直角,由两直角边乘积的一半表示出三角形MPN 面积,利用二次函数性质确定出三角形面积最大时P 的坐标即可; (3)存在,分两种情况,根据相似得比例,求出AQ 的长,利用两点间的距离公式求出Q 坐标即可.

详解:(1)把A (m ,0),B (4,n )代入y =x ﹣1得:m =1,n =3,∴A (1,0),B (4,3).

∵y =﹣x 2+bx +c 经过点A 与点B ,∴101643b c b c -++=??

-++=?,解得:65

b c =??=-?,则二次函数解

析式为y=﹣x2+6x﹣5;

(2)如图2,△APM与△DPN都为等腰直角三角形,∴∠APM=∠DPN=45°,

∴∠MPN=90°,∴△MPN为直角三角形,令﹣x2+6x﹣5=0,得到x=1或x=5,∴D(5,

0),即DP=5﹣1=4,设AP=m,则有DP=4﹣m,∴PM=2

m,PN=

2

(4﹣m),

∴S△MPN=1

2PM?PN=

1

2

×

2

2

2

2

(4﹣m)=﹣

1

4

m2﹣m=﹣

1

4

(m﹣2)2+1,∴当

m=2,即AP=2时,S△MPN最大,此时OP=3,即P(3,0);

(3)存在,易得直线CD解析式为y=x﹣5,设Q(x,x﹣5),由题意得:∠BAD=∠ADC=45°,分两种情况讨论:

①当△ABD∽△DAQ时,AB

DA

=

BD

AQ

,即

32

=

4

AQ

,解得:AQ=

82

,由两点间的距离

公式得:(x﹣1)2+(x﹣5)2=128

3

,解得:x=

7

3

,此时Q(

7

3

,﹣

8

3

);

②当△ABD∽△DQA时,BD

AQ

=1,即AQ=10,∴(x﹣1)2+(x﹣5)2=10,解得:

x=2,此时Q(2,﹣3).

综上,点Q的坐标为(2,﹣3)或(7

3

,﹣

8

3

).

点睛:本题属于二次函数综合题,涉及的知识有:待定系数法求函数解析式,二次函数的图象与性质,相似三角形的判定与性质,两点间的距离公式,熟练掌握各自的性质是解答本题的关键.

8.如图,直线y=﹣x+4与x轴交于点B,与y轴交于点C,抛物线y=﹣x2+bx+c经过B,C两点,与x轴另一交点为A.点P以每秒2个单位长度的速度在线段BC上由点B向点C运动(点P不与点B和点C重合),设运动时间为t秒,过点P作x轴垂线交x轴于点E,交抛物线于点M.

(1)求抛物线的解析式;

(2)如图①,过点P作y轴垂线交y轴于点N,连接MN交BC于点Q,当

1

2 MQ

NQ

时,

求t的值;

(3)如图②,连接AM交BC于点D,当△PDM是等腰三角形时,直接写出t的值.

【答案】(1)y =﹣x 2+3x +4;(2)t 的值为1

2

;(3)当△PDM 是等腰三角形时,t =1或

t ﹣1. 【解析】 【分析】

(1)求直线y=-x+4与x 轴交点B ,与y 轴交点C ,用待定系数法即求得抛物线解析式. (2)根据点B 、C 坐标求得∠OBC=45°,又PE ⊥x 轴于点E ,得到△PEB 是等腰直角三角

形,由PB =

求得BE=PE=t ,即可用t 表示各线段,得到点M 的横坐标,进而用m 表

示点M 纵坐标,求得MP 的长.根据MP ∥CN 可证MPQ NCQ ∽,故有

1

2

MP MQ NC NQ ==,把用t 表示的MP 、NC 代入即得到关于t 的方程,求解即得到t 的值. (3)因为不确定等腰△PDM 的底和腰,故需分3种情况讨论:①若MD=MP ,则∠MDP=∠MPD=45°,故有∠DMP=90°,不合题意;②若DM=DP ,则∠DMP=∠MPD=45°,进而得AE=ME ,把含t 的式子代入并解方程即可;③若MP=DP ,则∠PMD=∠PDM ,由对顶角相等和两直线平行内错角相等可得∠CFD=∠PMD=∠PDM=∠CDF 进而得CF=CD .用t 表示M 的坐标,求直线AM 解析式,求得AM 与y 轴交点F 的坐标,即能用t 表示CF 的长.把直线AM 与直线BC 解析式联立方程组,解得x 的值即为点D 横坐标.过D 作y 轴垂线段DG ,得等腰直角△CDG ,用DG 即点D 横坐标,进而可用t 表示CD 的长.把含t 的式子代入CF=CD ,解方程即得到t 的值. 【详解】

(1)直线y =﹣x +4中,当x =0时,y =4 ∴C (0,4)

当y =﹣x +4=0时,解得:x =4 ∴B (4,0)

∵抛物线y =﹣x 2+bx +c 经过B ,C 两点

∴1640004b c c -++=??++=? 解得:34b c =??=?

∴抛物线解析式为y =﹣x 2+3x +4

(2)∵B (4,0),C (0,4),∠BOC =90° ∴OB =OC

∴∠OBC =∠OCB =45° ∵ME ⊥x 轴于点E ,PB

t ∴∠BEP =90°

∴Rt △BEP 中,2

PE sin PBE PB ∠=

∴2

BE PE PB t ==

=, ∴4M P P x x OE OB

BE t y PE t ===﹣=﹣,==

∵点M 在抛物线上

∴2

243445M y t t t t +++=﹣(﹣

)(﹣)=﹣, ∴24M

P MP y y t t +=﹣=﹣ , ∵PN ⊥y 轴于点N

∴∠PNO =∠NOE =∠PEO =90° ∴四边形ONPE 是矩形 ∴ON =PE =t ∴NC =OC ﹣ON =4﹣t ∵MP ∥CN ∴△MPQ ∽△NCQ

12MP MQ NC NQ == ∴24142

t t t -+=-

解得:121

42

t t =,=(点P 不与点C 重合,故舍去) ∴t 的值为

12

(3)∵∠PEB =90°,BE =PE ∴∠BPE =∠PBE =45° ∴∠MPD =∠BPE =45°

①若MD =MP ,则∠MDP =∠MPD =45° ∴∠DMP =90°,即DM ∥x 轴,与题意矛盾 ②若DM =DP ,则∠DMP =∠MPD =45° ∵∠AEM =90° ∴AE =ME

∵y =﹣x 2+3x +4=0时,解得:x 1=﹣1,x 2=4 ∴A (﹣1,0)

∵由(2)得,x M =4﹣t ,ME =y M =﹣t 2+5t ∴AE =4﹣t ﹣(﹣1)=5﹣t ∴5﹣t =﹣t 2+5t

解得:t 1=1,t 2=5(0<t <4,舍去)

③若MP =DP ,则∠PMD =∠PDM

如图,记AM 与y 轴交点为F ,过点D 作DG ⊥y 轴于点G ∴∠CFD =∠PMD =∠PDM =∠CDF ∴CF =CD

∵A (﹣1,0),M (4﹣t ,﹣t 2+5t ),设直线AM 解析式为y =ax +m

∴()2

045a m a t m t t -+=??-+=-+?

解得:a t m t =??=? , ∴直线AM :y tx t +=

∴F (0,t ) ∴CF =OC ﹣OF =4﹣t ∵tx +t =﹣x +4,解得:41

t

x t -=+, ∴41

D x t

t DG -=

+==, ∵∠CGD =90°,∠DCG =45°

∴)4

1

t CD t -+=,

∴)441

t t t -+﹣

解得:1t

综上所述,当△PDM 是等腰三角形时,t =1或1t . 【点睛】

本题考查了二次函数的图象与性质,解二元一次方程组和一元二次方程,等腰直角三角形的性质,相似三角形的判定和性质,涉及等腰三角形的分类讨论,要充分利用等腰的性质作为列方程的依据.

9.如图,顶点M 在y 轴上的抛物线与直线y=x+1相交于A 、B 两点,且点A 在x 轴上,点B 的横坐标为2,连结AM 、BM . (1)求抛物线的函数关系式; (2)判断△ABM 的形状,并说明理由;

(3)把抛物线与直线y=x 的交点称为抛物线的不动点.若将(1)中抛物线平移,使其顶点为(m ,2m ),当m 满足什么条件时,平移后的抛物线总有不动点.

【答案】(1)抛物线解析式为y=x2﹣1;(2)△ABM为直角三角形.理由见解析;(3)

当m≤时,平移后的抛物线总有不动点.

【解析】

试题分析:(1)分别写出A、B的坐标,利用待定系数法求出抛物线的解析式即可;

根据OA=OM=1,AC=BC=3,分别得到∠MAC=45°,∠BAC=45°,得到∠BAM=90°,进而得到△ABM是直角三角形;

(3)根据抛物线的平以后的顶点设其解析式为,

∵抛物线的不动点是抛物线与直线的交点,∴,

方程总有实数根,则≥0,得到m的取值范围即可

试题解析:解:(1)∵点A是直线与轴的交点,∴A点为(-1,0)

∵点B在直线上,且横坐标为2,∴B点为(2,3)

∵过点A、B的抛物线的顶点M在轴上,故设其解析式为:

∴,解得:

∴抛物线的解析式为.

(2)△ABM是直角三角形,且∠BAM=90°.理由如下:

作BC⊥轴于点C,∵A(-1,0)、B(2,3)∴AC=BC=3,∴∠BAC=45°;

点M是抛物线的顶点,∴M点为(0,-1)∴OA=OM=1,

∵∠AOM=90°∴∠MAC=45°;

∴∠BAM=∠BAC+∠MAC=90°∴△ABM是直角三角形.

(3)将抛物线的顶点平移至点(,),则其解析式为.

∵抛物线的不动点是抛物线与直线的交点,∴

化简得:

∴==

当时,方程总有实数根,即平移后的抛物线总有不动点

∴.

考点:二次函数的综合应用(待定系数法;直角三角形的判定;一元二次方程根的判别

式)

10.如图,矩形OABC 的两边在坐标轴上,点A 的坐标为(10,0),抛物线y=ax 2+bx+4过点B ,C 两点,且与x 轴的一个交点为D (﹣2,0),点P 是线段CB 上的动点,设CP =t (0<t <10).

(1)请直接写出B 、C 两点的坐标及抛物线的解析式;

(2)过点P 作PE ⊥BC ,交抛物线于点E ,连接BE ,当t 为何值时,∠PBE =∠OCD ? (3)点Q 是x 轴上的动点,过点P 作PM ∥BQ ,交CQ 于点M ,作PN ∥CQ ,交BQ 于点N ,当四边形PMQN 为正方形时,请求出t 的值.

【答案】(1)B (10,4),C (0,4),215463y x x =-++;(2)3;(3)103或 203

. 【解析】

试题分析:(1)由抛物线的解析式可求得C 点坐标,由矩形的性质可求得B 点坐标,由B 、D 的坐标,利用待定系数法可求得抛物线解析式;

(2)可设P (t ,4),则可表示出E 点坐标,从而可表示出PB 、PE 的长,由条件可证得△PBE ∽△OCD ,利用相似三角形的性质可得到关于t 的方程,可求得t 的值;

(3)当四边形PMQN 为正方形时,则可证得△COQ ∽△QAB ,利用相似三角形的性质可求得CQ 的长,在Rt △BCQ 中可求得BQ 、CQ ,则可用t 分别表示出PM 和PN ,可得到关于t 的方程,可求得t 的值. 试题解析:

解:(1)在y =ax 2+bx +4中,令x =0可得y =4, ∴C (0,4),

∵四边形OABC 为矩形,且A (10,0), ∴B (10,4),

把B 、D 坐标代入抛物线解析式可得1001044

4240a b a b ++=??

-+=?

解得1653a b ?

=-????=??

∴抛物线解析式为y =16-

x 2+5

3

x +4;

(2)由题意可设P (t ,4),则E (t ,16-t 2+5

3

t +4), ∴PB =10﹣t ,PE =16-

t 2+53t +4﹣4=16-t 2+5

3

t , ∵∠BPE =∠COD =90°, 当∠PBE =∠OCD 时, 则△PBE ∽△OCD ,

PE PB

OD OC

=,即BP ?OD =CO ?PE , ∴2(10﹣t )=4(16-t 2+5

3

t ),解得t =3或t =10(不合题意,舍去), ∴当t =3时,∠PBE =∠OCD ; 当∠PBE =∠CDO 时, 则△PBE ∽△ODC ,

PE PB

OC OD

=,即BP ?OC =DO ?PE , ∴4(10﹣t )=2(16-

t 2+5

3

t ),解得t =12或t =10(均不合题意,舍去) 综上所述∴当t =3时,∠PBE =∠OCD ;

(3)当四边形PMQN 为正方形时,则∠PMC =∠PNB =∠CQB =90°,PM =PN , ∴∠CQO +∠AQB =90°, ∵∠CQO +∠OCQ =90°, ∴∠OCQ =∠AQB , ∴Rt △COQ ∽Rt △QAB , ∴

CO OQ

AQ AB

=,即OQ ?AQ =CO ?AB , 设OQ =m ,则AQ =10﹣m ,

∴m (10﹣m )=4×4,解得m =2或m =8,

①当m =2时,CQ BQ

∴sin ∠BCQ =

BQ BC ,sin ∠CBQ =CQ BC

∴PM =PC ?sin ∠PCQ t ,PN =PB ?sin ∠CBQ (10﹣t ),

t (10﹣t ),解得t =103

, ②当m =8时,同理可求得t =

20

3

, ∴当四边形PMQN 为正方形时,t 的值为

103或203

中考数学二次函数压轴题(含答案)

中考数学二次函数压轴题(含答案) 面积类 1.如图,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点. (1)求抛物线的解析式. (2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长. (3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由. 解答: 解:(1)设抛物线的解析式为:y=a(x+1)(x﹣3),则: a(0+1)(0﹣3)=3,a=﹣1; ∴抛物线的解析式:y=﹣(x+1)(x﹣3)=﹣x2+2x+3. (2)设直线BC的解析式为:y=kx+b,则有: , 解得;

故直线BC的解析式:y=﹣x+3. 已知点M的横坐标为m,MN∥y,则M(m,﹣m+3)、N(m,﹣m2+2m+3); ∴故MN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m(0<m<3). (3)如图; ∵S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN?OB, ∴S△BNC=(﹣m2+3m)?3=﹣(m﹣)2+(0<m<3); ∴当m=时,△BNC的面积最大,最大值为. 2.如图,抛物线的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0). (1)求抛物线的解析式; (2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标; (3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标. 解答:

解:(1)将B(4,0)代入抛物线的解析式中,得: 0=16a﹣×4﹣2,即:a=; ∴抛物线的解析式为:y=x2﹣x﹣2. (2)由(1)的函数解析式可求得:A(﹣1,0)、C(0,﹣2); ∴OA=1,OC=2,OB=4, 即:OC2=OA?OB,又:OC⊥AB, ∴△OAC∽△OCB,得:∠OCA=∠OBC; ∴∠ACB=∠OCA+∠OCB=∠OBC+∠OCB=90°, ∴△ABC为直角三角形,AB为△ABC外接圆的直径; 所以该外接圆的圆心为AB的中点,且坐标为:(,0). (3)已求得:B(4,0)、C(0,﹣2),可得直线BC的解析式为:y=x﹣2; 设直线l∥BC,则该直线的解析式可表示为:y=x+b,当直线l与抛物线只有一个交点时,可列方程:x+b=x2﹣x﹣2,即:x2﹣2x﹣2﹣b=0,且△=0; ∴4﹣4×(﹣2﹣b)=0,即b=﹣4; ∴直线l:y=x﹣4. 所以点M即直线l和抛物线的唯一交点,有: ,解得:即M(2,﹣3). 过M点作MN⊥x轴于N, S△BMC=S梯形OCMN+S△MNB﹣S△OCB=×2×(2+3)+×2×3﹣×2×4=4.

二次函数试题及答案

2009年中考试题专题之13-二次函数试题及答案 一、选择题 1、向上发射一枚炮弹,经x 秒后的高度为y 公尺,且时间与高度关系为y =ax 2+bx 。若此炮弹在第7秒与第14秒时的高度相等,则再下列哪一个时间的高度是最高的? (A) 第8秒 (B) 第10秒 (C) 第12秒 (D) 第15秒 。 2、在平面直角坐标系中,将二次函数2 2x y =的图象向上平移2个单位,所得图象的解析式为 A .222-=x y B .222 +=x y C .2)2(2-=x y D .2 )2(2+=x y 3、抛物线3)2(2 +-=x y 的顶点坐标是( ) A .(2,3) B .(-2,3) C .(2,-3) D .(-2,-3) 5、二次函数2 (1)2y x =++的最小值是( ). A .2 B .1 C .-3 D . 23 6、抛物线22()y x m n =++(m n ,是常数)的顶点坐标是( ) A .()m n , B .()m n -, C .()m n -, D .()m n --, 7、根据下表中的二次函数c bx ax y ++=2的自变量x 与函数y 的对应值,可判断二次函数的图像与x 轴( ) x … -1 0 1 2 … y … -1 47- -2 4 7 - … A .只有一个交点 B .有两个交点,且它们分别在y 轴两侧 C .有两个交点,且它们均在y 轴同侧 D .无交点 8、二次函数2 365y x x =--+的图象的顶点坐标是( ) A .(18)-, B .(18), C .(12)-, D .(14)-,

9、函数y =ax +1与y =ax 2+bx +1(a ≠0)的图象可能是( ) 10、抛物线的图象如图所示,根据图象可知,抛物线的解析式可能..是( )A 、y=x 2 -x-2 B 、y=12 1 212++-x C 、y=12 1 212+--x x D 、y=22++-x x 11、已知二次函数2 (0)y ax bx c a =++≠的图象如图所示, 则下列结论:0ac >①;②方程2 0ax bx c ++=的两根之和大于0;y ③随x 的增大而增大;④0a b c -+<,其中正确的个数() A .4个 B .3个 C .2个 D .1个 12、二次函数c bx ax y ++=2的图象如图2所示,若点A (1,y 1)、B (2,y 2)是它图象上的两点,则y 1与y 2的大小关系是( ) A .21y y < B .21y y = C .21y y > D .不能确定 A . B . C . D .

中考二次函数压轴题经典题型

中考二次函数压轴题经典题型 1、如图,已知;边长为4的正方形截去一角成为五边形ABCDE,其中AF=2,BF=l,在AB上的一点P,使矩形PNDM 有最大面积,求矩形PNDM的面积最大值? 2、如图,二次函数的图象经过点D(0, 3 9 7 ),且顶点C的横坐标为4,该图象在x 轴上截得的线段AB的长为6. ⑴求二次函数的解析式; ⑵在该抛物线的对称轴上找一点P,使PA+PD最小,求出点P的坐标; ⑶在抛物线上是否存在点Q,使△QAB与△ABC相似?如果存在,求出点Q的坐标;如果不存在,请说明理由. 3.如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A(1 2 , 5 2 )和B(4,m),点P是线段AB 上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C. (1)求抛物线的解析式; (2)是否存在这样的P点,使线段PC的长有最大值,若存在,求出这个最大值;若不存在,请说明理由; (3)求△PAC为直角三角形时点P的坐标.

4、如图,二次函数y=a+bx的图象经过点A(2,4)与B(6,0). (1)求a,b的值; (2)点C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2<x<6),写出四边形OACB 的面积S关于点C的横坐标x的函数表达式,并求S的最大值。 5、如图1,对称轴x=为直线的抛物线经过B(2,0)、C(0,4)两点,抛物线与轴的另一交点为A.(1)求抛物线的解析式; (2)若点P为第一象限内抛物线上一点,设四边形COBP的面积为S,求S的最大值; (3)如图2,若M是线段BC上一动点,在轴上是否存在这样有点Q,使△MQC为等腰三角形且△MQB 为直角三角形?若存在,求出Q点坐标;若不存在,请说明理由.

二次函数综合题经典习题(含答案及基本讲解)

二次函数综合题训练题型集合 1、如图1,已知二次函数图象的顶点坐标为C(1,0),直线m x y+ =与该二次函数的图象交于A、B两点,其中A点的坐标为(3,4),B点在轴y上. (1)求m的值及这个二次函数的关系式; (2)P为线段AB上的一个动点(点P与A、B不重合),过P作x轴的垂线与这个二次函数的图象交于点E点,设线段PE的长为h,点P的横坐标为x,求h与x之间 的函数关系式,并写出自变量x的取值范围; (3)D为直线AB与这个二次函数图象对称轴的交点,在线段AB上是否存在一点P,使得四边形DCEP是平行四边形?若存在,请求出此时P点的坐标;若不存在,请说 明理由. 2、如图2,已知二次函数24 y ax x c =-+的图像经过点A和点B.(1)求该二次函数的表达式; (2)写出该抛物线的对称轴及顶点坐标; (3)点P(m,m)与点Q均在该函数图像上(其中m>0),且这两点关于抛物线的对称轴对称,求m的值及点Q 到x轴的距离 E B A C P 图1 O x y D x y O 3 -9 -1 -1 A B 图2

P B A C O x y Q 图3 3、如图3,已知抛物线c x b x a y ++=2经过O(0,0),A(4,0),B(3,3)三点,连结AB ,过点B 作BC ∥x 轴交该抛物线于点C. (1) 求这条抛物线的函数关系式. (2) 两个动点P 、Q 分别从O 、A 两点同时出发,以每秒1个单位长度的速度运动. 其中,点P 沿着线段0A 向A 点运动,点Q 沿着折线A →B →C 的路线向C 点运动. 设这两个动点运动的时间为t (秒) (0<t <4),△PQA 的面积记为S. ① 求S 与t 的函数关系式; ② 当t 为何值时,S 有最大值,最大值是多少?并指出此时△PQA 的形状; ③ 是否存在这样的t 值,使得△PQA 是直角三角形?若存在,请直接写出此时P 、Q 两点的坐标;若不存在,请说明理由. 7、(07海南中考)如图7,直线43 4 +- =x y 与x 轴交于点A ,与y 轴交于点C ,已知二次函数的图象经过点A 、C 和点()0,1-B . (1)求该二次函数的关系式; (2)设该二次函数的图象的顶点为M ,求四边形AOCM 的面积; (3)有两动点D 、E 同时从点O 出发,其中点D 以每秒 2 3 个单位长度的速度沿折线OAC 按O →A →C 的路线运动,点E 以每秒4个单位长度的速度沿折线OCA 按O →C → A 的路线运动, 当D 、E 两点相遇时,它们都停止运动.设D 、E 同时从点O 出发t 秒时,ODE ?的面积为S . ①请问D 、E 两点在运动过程中,是否存在DE ∥OC ,若存在,请求出此时t 的值;若不存在,请说明理由; ②请求出S 关于t 的函数关系式,并写出自变量t 的取值范围; ③设0S 是②中函数S 的最大值,那么0S = . C A M y B O x C A M y B O x C A M y B O x

全国中考数学二次函数的综合中考真题汇总及答案解析

一、二次函数 真题与模拟题分类汇编(难题易错题) 1.如图1,抛物线y=ax 2+bx+c (a≠0)与x 轴交于点A (﹣1,0)、B (4,0)两点,与y 轴交于点C ,且OC=3OA .点P 是抛物线上的一个动点,过点P 作PE ⊥x 轴于点E ,交直线BC 于点D ,连接PC . (1)求抛物线的解析式; (2)如图2,当动点P 只在第一象限的抛物线上运动时,求过点P 作PF ⊥BC 于点F ,试问△PDF 的周长是否有最大值?如果有,请求出其最大值,如果没有,请说明理由. (3)当点P 在抛物线上运动时,将△CPD 沿直线CP 翻折,点D 的对应点为点Q ,试问,四边形CDPQ 是否成为菱形?如果能,请求出此时点P 的坐标,如果不能,请说明理由. 【答案】(1) y=﹣23 4x +94x+3;(2) 有最大值,365 ;(3) 存在这样的Q 点,使得四边形CDPQ 是菱形,此时点P 的坐标为( 73,256)或(173,﹣253). 【解析】 试题分析: (1)利用待定系数法求二次函数的解析式; (2)设P (m ,﹣ 34m 2+94m+3),△PFD 的周长为L ,再利用待定系数法求直线BC 的解析式为:y=﹣ 34x+3,表示PD=﹣2334m m ,证明△PFD ∽△BOC ,根据周长比等于对应边的比得:=PED PD BOC BC 的周长的周长,代入得:L=﹣95(m ﹣2)2+365 ,求L 的最大值即可; (3)如图3,当点Q 落在y 轴上时,四边形CDPQ 是菱形,根据翻折的性质知:CD=CQ ,PQ=PD ,∠PCQ=∠PCD ,又知Q 落在y 轴上时,则CQ ∥PD ,由四边相等:CD=DP=PQ=QC ,得四边形CDPQ 是菱形,表示P (n ,﹣23n 4 +94 n+3),则D (n ,﹣34n+3),G (0,﹣34 n+3),利用勾股定理表示PD 和CD 的长并列式可得结论. 试题解析: (1)由OC=3OA ,有C (0,3), 将A (﹣1,0),B (4,0),C (0,3)代入y=ax 2+bx+c 中,得:

二次函数测试题及答案

1. 2. 3. 4. 5. 6. 、选择题: 二次函数 抛物线y =(x-2)2 3的对称轴是( A.直线x = —3 B.直线x =3 二次函数y 二ax 2 在( ) A.第一象限 C.第三象限 已知二次函数 则一定有( 2 A. b —4ac 0 bx c 的图象如右图,则点 = ax 2 把抛物线y =x 2 ? bx B.第二象限 D.第四象限 C. M bx c ,且 a ::: 0,a -b c .0, 2 B. b -4ac =0 C. b 2 -4ac :: 2 D. b —4ac < 0 c 向右平移3个单位,再向下平移 2个单位,所得图象的解析式是 2 y =x -3x 5,则有( A. b = 3 , c -1 C. b =3 , c =3 B. b = -9 , c = -15 D. b = —9 , c =21 下面所示各图是在同 一直 角 坐标 系内,二次 函数y 二ax 2 (a c)x c 与一次 函数 k 已知反比例函数y 的图象如右图所示,则二 x y =ax c 的大致图象,有且只有一个是正确的,正确的是(

11. 已知抛物线y =ax2 bx c与x轴有两个交点,那么一元二次方程ax2 bx 0的根的 情况是_______________________ 12. __________________________________________________________________ 已知抛物线 y=ax2+x+c与x轴交点的横坐标为-1,则a+c= _______________________________ 13. 请你写出函数y=(x+1)2与y=x2+1具有的一个共同性质:_____________________ . 14. 有一个二次函数的图象,三位同学分别说出它的一些特点:甲:对称轴是直线x =4 ; 乙:与x轴两个交点的横坐标都是整数; 丙:与y轴交点的纵坐标也是整数,且以这三个交点为顶点的三角形面积为 3. 请你写出满足上述全部特点的一个二次函数解析式: 15. 已知二次函数的图象开口向上,且与y轴的正半轴相交,请你写出一个满足条件的二次函 数的解析式:________________________. A.x 二-2 B. x =2 C. 8. 二 欠 函 1 数y :=(x -1)2'2的最小值是() A.-2 B. 2 C. D. 1 9. - 二- 次函数y =ax2bx c的图象如图所 M=4 a 2b c N = a —b c , P = 4a-b ,则( A.M0 , N 0, P 0 B.M<0 ,N 0, P 0 C.M0, N :: 0, P 0 D.M0 , N 0, P :::0 、 填空题: 7.抛物线y=x2 -2x 3的对称轴是直线( )x = —1 D. x =1 10.将二次函数y =x2 -2x 3配方成y =(x -h)2? k的形式,则y= ____________________

二次函数经典例题及答案

二次函数经典例题及答案 1.已知抛物线的顶点为P (- 4,—2),与x轴交于A B两点,与y轴交于点C,其中B点坐标为(1 , 0)。 (1) 求这条抛物线的函数关系式; (2) 若抛物线的对称轴交x轴于点D,则在线段AC上是否存在这样的点Q,使得△ ADQ 1 2 9 . 135 y=2 x +4x - 2;存在点Q (-1 , -4 ) , Q (2^5-9,-%'5 ) , Q (--^, -4) ?析 一2 25 试题分析:(1)根据顶点坐标把抛物线设为顶点式形式y=a ( x+4) - 2,然后把点B的坐 标代入解析式求出a的值,即可得解; (2)先根据顶点坐标求出点D 的坐标,再根据抛物线解析式求出点A、C的坐标,从而得 到OA OC AD的长度,根据勾股定理列式求出AC的长度,然后根据锐角三角形函数求出/ OAC勺正弦值与余弦值,再分① AD=QD时,过Q作QE1丄x轴于点E,根据等腰三角形三线合一的性质求出AQ,再利用/ OAC勺正弦求出QE的长度,根据/ OAC勺余弦求出AE的长度,然后求出OE,从而得到点Q的坐标;②AD=AQ时,过Q作QE2丄x轴于点E>,利用/ OAC勺正弦求出QE2的长度,根据/ OAC勺余弦求出AE的长度,然后求出OE,从而得到点Q的坐标;③AQ=DQ时,过Q作QE3丄x轴于点已,根据等腰三角形三线合一的性质求出AE 的长度,然后求出OE,再由相似三角形对应边成比例列式求出QE3的长度,从而得到点Q 的坐标. 试题解析:(1 )???抛物线顶点坐标为( 25 -4 , - 2), ???设抛物线解析式为 2 25 y=a (x+4) - 2 为等腰三角形?若存在,请求出符合条件的点

(完整版)初中数学二次函数综合题及答案

二次函数题 选择题: 1、y=(m-2)x m2- m 是关于x 的二次函数,则m=( ) A -1 B 2 C -1或2 D m 不存在 2、下列函数关系中,可以看作二次函数y=ax 2+bx+c(a ≠0)模型的是( ) A 在一定距离内,汽车行驶的速度与行驶的时间的关系 B 我国人中自然增长率为1%,这样我国总人口数随年份变化的关系 C 矩形周长一定时,矩形面积和矩形边长之间的关系 D 圆的周长与半径之间的关系 4、将一抛物线向下向右各平移2个单位得到的抛物线是y=-x 2,则抛物线的解析式是( ) A y=—( x-2)2+2 B y=—( x+2)2+2 C y=— ( x+2)2+2 D y=—( x-2)2—2 5、抛物线y= 2 1 x 2 -6x+24的顶点坐标是( ) A (—6,—6) B (—6,6) C (6,6) D (6,—6) 6、已知函数y=ax 2+bx+c,图象如图所示,则下列结论中正确的有( )个 ①abc 〈0 ②a +c 〈b ③ a+b+c 〉0 ④ 2c 〈3b A 1 B 2 C 3 D 4 7、函数y=ax 2-bx+c (a ≠0)的图象过点(-1,0),则 c b a + =c a b + =b a c + 的值是( ) A -1 B 1 C 21 D -2 1 8、已知一次函数y= ax+c 与二次函数y=ax 2+bx+c (a ≠0),它们在同一坐标系内的大致图象是图中的( ) A B C D 二填空题: 13、无论m 为任何实数,总在抛物线y=x 2+2mx +m 上的点的坐标是————————————。 16、若抛物线y=ax 2+bx+c (a ≠0)的对称轴为直线x =2,最小值为-2,则关于方程ax 2+bx+c =-2的根为————————————。 17、抛物线y=(k+1)x 2+k 2-9开口向下,且经过原点,则k =————————— 解答题:(二次函数与三角形) 1、已知:二次函数y=x 2 +bx+c ,其图象对称轴为直线x=1,且经过点(2,﹣). (1)求此二次函数的解析式. (2)设该图象与x 轴交于B 、C 两点(B 点在C 点的左侧),请在此二次函数x 轴下方的图象上确定一点E ,使△EBC 的面积最大,并求出最大面积. 1 —1 0 x y y x -1 x y y x y x y

2018中考数学专题二次函数

2018中考数专题二次函数 (共40题) 1.如图,抛物线y=﹣x2+bx+c与直线AB交于A(﹣4,﹣4),B(0,4)两点,直线AC:y=﹣x﹣6交y轴于点C.点E是直线AB上的动点,过点E作EF⊥x轴交AC于点F,交抛物线于点G. (1)求抛物线y=﹣x2+bx+c的表达式; (2)连接GB,EO,当四边形GEOB是平行四边形时,求点G的坐标; (3)①在y轴上存在一点H,连接EH,HF,当点E运动到什么位置时,以A,E,F,H为顶点的四边形是矩形?求出此时点E,H的坐标; ②在①的前提下,以点E为圆心,EH长为半径作圆,点M为⊙E上一动点,求AM+CM它的最小值. 2.如图,抛物线y=a(x﹣1)(x﹣3)与x轴交于A,B两点,与y轴的正半轴交于点C,其顶点为D. (1)写出C,D两点的坐标(用含a的式子表示); (2)设S△BCD:S△ABD=k,求k的值; (3)当△BCD是直角三角形时,求对应抛物线的解析式. 3.如图,直线y=kx+b(k、b为常数)分别与x轴、y轴交于点A(﹣4,0)、B(0,3),抛物线y=﹣x2+2x+1与y轴交于点C. (1)求直线y=kx+b的函数解析式; (2)若点P(x,y)是抛物线y=﹣x2+2x+1上的任意一点,设点P到直线AB的距离为d,求d关于x的函数解析式,并求d取最小值时点P的坐标;

(3)若点E在抛物线y=﹣x2+2x+1的对称轴上移动,点F在直线AB上移动,求CE+EF的最小值. 4.如图,已知抛物线y=﹣x2+bx+c与y轴相交于点A(0,3),与x正半轴相交于点B,对称轴是直线x=1 (1)求此抛物线的解析式以及点B的坐标. (2)动点M从点O出发,以每秒2个单位长度的速度沿x轴正方向运动,同时动点N从点O出发,以每秒3个单位长度的速度沿y轴正方向运动,当N点到达A点时,M、N同时停止运动.过动点M作x轴的垂线交线段AB于点Q,交抛物线于点P,设运动的时间为t秒. ①当t为何值时,四边形OMPN为矩形. ②当t>0时,△BOQ能否为等腰三角形?若能,求出t的值;若不能,请说明理由. 5.如图,抛物线y=﹣x2+bx+c与x轴分别交于A(﹣1,0),B(5,0)两点. (1)求抛物线的解析式; (2)在第二象限取一点C,作CD垂直X轴于点D,AC,且AD=5,CD=8,将Rt△ACD沿x轴向右平移m个单位,当点C落在抛物线上时,求m的值; (3)在(2)的条件下,当点C第一次落在抛物线上记为点E,点P是抛物线对称轴上一点.试探究:在抛物线上是否存在点Q,使以点B、E、P、Q为顶点的四边形是平行四边形?若存

初中数学二次函数经典测试题及答案

初中数学二次函数经典测试题及答案 一、选择题 1.四位同学在研究函数2y x bx c =++(,b c 是常数)时,甲发现当1x =时,函数有最小值;乙发现1-是方程20x bx c ++=的一个根;丙发现函数的最小值为3;丁发现当 2x =时,4y =,已知这四位同学中只有一位发现的结论是错误的,则该同学是( ) A .甲 B .乙 C .丙 D .丁 【答案】B 【解析】 【分析】 利用假设法逐一分析,分别求出二次函数的解析式,再判断与假设是否矛盾即可得出结论. 【详解】 解:A .假设甲同学的结论错误,则乙、丙、丁的结论都正确 由乙、丁同学的结论可得 01442b c b c =-+?? =++? 解得:13 23b c ? =????=-?? ∴二次函数的解析式为:2 21212533636 ??=+-=+ ???-y x x x ∴当x=16-时,y 的最小值为25 36 -,与丙的结论矛盾,故假设不成立,故本选项不符合题意; B .假设乙同学的结论错误,则甲、丙、丁的结论都正确 由甲、丙的结论可得二次函数解析式为()2 13y x =-+ 当x=2时,解得y=4,当x=-1时,y=7≠0 ∴此时符合假设条件,故本选项符合题意; C . 假设丙同学的结论错误,则甲、乙、丁的结论都正确 由甲乙的结论可得 1 2 01b b c ?-=???=-+? 解得:23b c =-??=-?

∴223y x x =-- 当x=2时,解得:y=-3,与丁的结论矛盾,故假设不成立,故本选项不符合题意; D . 假设丁同学的结论错误,则甲、乙、丙的结论都正确 由甲、丙的结论可得二次函数解析式为()2 13y x =-+ 当x=-1时,解得y=7≠0,与乙的结论矛盾,故假设不成立,故本选项不符合题意. 故选B . 【点睛】 此题考查的是利用待定系数法求二次函数解析式,利用假设法求出b 、c 的值是解决此题的关键. 2.抛物线y =-x 2+bx +3的对称轴为直线x =-1.若关于x 的一元二次方程-x 2+bx +3﹣t =0(t 为实数)在﹣2<x <3的范围内有实数根,则t 的取值范围是( ) A .-12<t ≤3 B .-12<t <4 C .-12<t ≤4 D .-12<t <3 【答案】C 【解析】 【分析】 根据给出的对称轴求出函数解析式为y =-x 2?2x +3,将一元二次方程-x 2+bx +3?t =0的实数根看做是y =-x 2?2x +3与函数y =t 的交点,再由﹣2<x <3确定y 的取值范围即可求解. 【详解】 解:∵y =-x 2+bx +3的对称轴为直线x =-1, ∴b =?2, ∴y =-x 2?2x +3, ∴一元二次方程-x 2+bx +3?t =0的实数根可以看做是y =-x 2?2x +3与函数y =t 的交点, ∵当x =?1时,y =4;当x =3时,y =-12, ∴函数y =-x 2?2x +3在﹣2<x <3的范围内-12<y≤4, ∴-12<t≤4, 故选:C . 【点睛】 本题考查二次函数的图象及性质,能够将方程的实数根问题转化为二次函数与直线的交点问题是解题关键. 3.二次函数2(0)y ax bx c a =++≠的图象如图所示,下列结论①24b ac >,②0abc <,③20a b c +->,④0a b c ++<.其中正确的是( )

二次函数经典中考试题(含答案)

二次函数经典中考试题(含答案) —、解答题(共30小题) 1. (2013?武汉)科幻小说《实验室的故事》中,有这样一个情节:科学家把一种珍奇的植物 分别放在不同温度的环境中,经过一天后,测试出这种植物高度的增长情况(如下表) : 温度 x/C … -4 - 2 0 2 4 4.5 … 植物每天高度增长量 y/mm … 41 49 49 41 25 19.75 … 由这些数据,科学家推测出植物每天高度增长量 y 是温度x 的函数,且这种函数是反比例函 数、一次函数和二次函数中的一种. (1) 请你选择一种适当的函数,求出它的函数关系式,并简要说明不选择另外两种函数的理 由; (2) 温度为多少时,这种植物每天高度增长量最大? (3) 如果实验室温度保持不变,在10天内要使该植物高度增长量的总和超过 250mm ,那么 实验室的温度x 应该在哪个范围内选择?请直接写出结果. 2. (2013?莆田)如图所示,某学校拟建一个含内接矩形的菱形花坛 (花坛为轴对称图形).矩 形的四个顶点分别在菱形四条边上,菱形 ABCD 的边长AB=4米,/ ABC=60 °设AE=x 米 (0v x V 4),矩形EFGH 的面积为S 米2. (1) 求S 与x 的函数关系式; (2) 学校准备在矩形内种植红色花草,四个三角形内种植黄色花草?已知红色花草的价格为 20元咪2,黄色花草的价格为40元咪2?当x 为何值时,购买花草所需的总费用最低,并求 出最低总费用(结果保留根号)? y 的二元一次方程组 (1) 若a=3.求方程组的解; (2) 若S=a (3x+y ),当a 为何值时,S 有最值. 4. (2013?南宁)如图,抛物线 y=ax 2+c (a 旳)经过C (2,0),D (0,- 1)两点,并与直 线y=kx 交于A 、B 两点,直线I 过点E (0,- 2)且平行于x 轴,过A 、B 两点分别作直线 l 的垂线,垂足分别为点M 、N . (1) 求此抛物线的解析式; (2) 求证:AO=AM ; (3) 探究: ①当k=0时,直线y=kx 与x 轴重合,求出此时 的值; 3. (2013?资阳)在关于 x ,

中考数学压轴题专题复习—二次函数的综合含答案

一、二次函数真题与模拟题分类汇编(难题易错题) 1.已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点. (1)求抛物线的解析式; (2)当点P运动到什么位置时,△PAB的面积有最大值? (3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由. 【答案】(1)抛物线解析式为y=﹣1 2 x2+2x+6;(2)当t=3时,△PAB的面积有最大值; (3)点P(4,6). 【解析】 【分析】(1)利用待定系数法进行求解即可得; (2)作PM⊥OB与点M,交AB于点N,作AG⊥PM,先求出直线AB解析式为y=﹣x+6, 设P(t,﹣1 2 t2+2t+6),则N(t,﹣t+6),由 S△PAB=S△PAN+S△PBN=1 2 PN?AG+ 1 2 PN?BM= 1 2 PN?OB列出关于t的函数表达式,利用二次函数 的性质求解可得; (3)由PH⊥OB知DH∥AO,据此由OA=OB=6得∠BDH=∠BAO=45°,结合∠DPE=90°知若△PDE为等腰直角三角形,则∠EDP=45°,从而得出点E与点A重合,求出y=6时x的值即可得出答案. 【详解】(1)∵抛物线过点B(6,0)、C(﹣2,0), ∴设抛物线解析式为y=a(x﹣6)(x+2), 将点A(0,6)代入,得:﹣12a=6, 解得:a=﹣1 2 , 所以抛物线解析式为y=﹣1 2 (x﹣6)(x+2)=﹣ 1 2 x2+2x+6; (2)如图1,过点P作PM⊥OB与点M,交AB于点N,作AG⊥PM于点G,

中考数学 二次函数知识点总结

中考数学二次函数知识 点总结 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

二次函数知识点总结 二次函数知识点: 1.二次函数的概念:一般地,形如2 y ax bx c =++(a b c ,,是常数,0 a≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0 ,可以为零.二次函数的定义域是 a≠,而b c 全体实数. 2. 二次函数2 =++的结构特征: y ax bx c ⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2. ⑵a b c ,,是常数,a是二次项系数,b是一次项系数,c是常数项. 二次函数的基本形式 1. 二次函数基本形式:2 =的性质: y ax 结论:a 的绝对值越大,抛物线的开口越小。 总结: 2. 2 =+的 y ax c 性质:

结论:上加下减。 总结: 3. ()2 =-的性 y a x h 质: 结论:左加右减。 总结: 4.

()2 y a x h k =-+的性质: 总结: 二次函数图象 的平 移 1. 平移步 骤: ⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”.

(完整版)二次函数测试题及答案

二次函数 一、选择题: 1. 抛物线3)2(2+-=x y 的对称轴是( ) A. 直线3-=x B. 直线3=x C. 直线 =x D. 直线 2. 二次函数c bx ax y ++=2的图象如右图,则点) ,(a c b M 在( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 3. 已知二次函数 c bx ax y ++=2,且0+-c b a , 则一定有( ) A. 042>-ac b B. 042=-ac b C. 042<-ac b D. ac b 42-≤0 4. 把抛物线c bx x y ++=2向右平移3个单位,再向下平移2个单位,所得图象的解析式是 532+-=x x y ,则有( ) A. 3=b ,7=c B. 9-=b ,15-=c C. 3=b ,3=c D. 9-=b ,21=c 5. 已知反比例函数x k y = 的图象如右图所示,则二次函数222k x kx y +-=的图象大致为( ) x 6. 下面所示各图是在同一直角坐标系内,二次函数c x c a ax y +++=)(2与一次函数 c ax y +=的大致图象,有且只有一个是正确的,正确的是( )

B D 7.抛物线3 2 2+ - =x x y的对称轴是直线() A. 2 - = x B. 2 = x C. 1 - = x D. 1 = x 8.二次函数2 )1 (2+ - =x y的最小值是() A. 2- B. 2 C. 1- D. 1 9.二次函数c bx ax y+ + =2的图象如图所示,若 c b a M+ + =2 4c b a N+ - =,b a P- =4,则() A. 0 > M,0 > N,0 > P B. 0 < M,0 > N,0 > P C. 0 > M,0 < N,0 > P D. 0 < M,0 > N,0 < P 二、填空题: 10.将二次函数3 2 2+ - =x x y配方成k h x y+ - =2) (的形式,则y=______________________. 11.已知抛物线c bx ax y+ + =2与x轴有两个交点,那么一元二次方程0 2= + +c bx ax的根的情况是______________________. 12.已知抛物线c x ax y+ + =2与x轴交点的横坐标为1 -,则c a+=_________. 13.请你写出函数2)1 (+ =x y与1 2+ =x y具有的一个共同性质:_______________. 14.有一个二次函数的图象,三位同学分别说出它的一些特点: 甲:对称轴是直线4 = x; 乙:与x轴两个交点的横坐标都是整数; 丙:与y轴交点的纵坐标也是整数,且以这三个交点为顶点的三角形面积为3. 请你写出满足上述全部特点的一个二次函数解析式: 15.已知二次函数的图象开口向上,且与y轴的正半轴相交,请你写出一个满足条件的二次函 数的解析式:_____________________.

初中数学二次函数综合题及答案(经典题型)

二次函数试题 论:①抛物线y lx21 是由抛物线y-x2怎样移动得到的22 ②抛物线y2(x 2 1)是由抛物线y 1 x2 2 :怎样移动得到的 ③抛物线y[(x1)21是由抛物线y 1 2 x21怎样移动得到的 22 ④抛物线 y ](x1)21是由抛物线 y 1 2 (x 1)2怎样移动得到22 ⑤抛物线y2(x1)21是由抛物线y 1 2 -x2怎样移动得到的 22 选择题:1、y=(m-2)x m2- m是关于x的二次函数,贝U m=() A -1 B 2 C -1 或2 D m 不存在 2、下列函数关系中,可以看作二次函数y=ax2+bx+c(a丰0)模型的是() 在一定距离内,汽车行驶的速度与行驶的时间的关系 我国人中自然增长率为1%这样我国总人口数随年份变化的关系 矩形周长一定时,矩形面积和矩形边长之间的关系 圆的周长与半径之间的关系 4、将一抛物线向下向右各平移2个单位得到的抛物线是y=-x2,则抛物线的解析式是( A y= —( x-2 ) 2+2 B y= —(x+2 )2+2 C y= (x+2 ) 2+2 D y= —( x-2 1 2 5、抛物线y= x -6x+24 2 的顶点坐标是( A (—6,—6) B(—6, 6) C(6,6) D (6,—6) 6、已知函数y=ax2+bx+c,图象如图所示,则下列结论中正确的有 ①abc〈0 ②a+ c〈 b ③ a+b+c > 7、函数y=ax2-bx+c (a丰 0) 的图象过点( A -1 B 1 C - 的值是 b 1 )个 -1 ,

填空题: 13、无论m为任何实数,总在抛物线y=x2+ 2mx+ m上的点的坐标是------------ 。 16、若抛物线y=ax2+bx+c(0)的对称轴为直线x =2,最小值为—2,则关于方程ax2+bx+c =-2的根为一 17、抛物线y= (k+1)x2+k2-9开口向下,且经过原点,则k= ---------------- 解答题:(二次函数与三角形) 1、已知:二次函数y==x2+bx+c,其图象对称轴为直线x=1,且经过点 4 (1)求此二次函数的解析式. (2)设该图象与x轴交于B、C两点(B点在C点的左侧),请在此二次函数x轴下方的图象上确定一点并求出最大面积. 2、如图,在平面直角坐标系中,抛物线与x轴交于A B两点(A在B的左侧),与y轴 9 交于点C (0,4),顶点为(1,2)? (1)求抛物线的函数表达式; (2)设抛物线的对称轴与轴交于点D,试在对称轴上找出点卩,使厶CDP为等腰三角形,请直接写岀满足条件的所有点P的坐标. (3)若点E是线段AB上的一个动点(与A B不重合),分另U连接AC BC过点E作EF // AC交线段BC于点F,连接CE记厶CEF的面积为S S是否存在最大值若存在,求出 存在,请说明理由. 4 2 3、如图,一次函数y=—4x—4的图象与x轴、y轴分别交于A、C两点,抛物线y= + bx+ c的图象经过A C两点,且与x轴交于点B (1)求抛物线的函数表达式;己,使厶EBC的面积最大, (第2题图) S的最大值及此时E点的坐标;若不

初中数学二次函数试题及答案

一、选择题(每题3分,共30分) 1.下列关系式中,属于二次函数的是(x为自变量)() A. B. C. D. 2. 函数y=x2-2x+3的图象的顶点坐标是() A. (1,-4) B.(-1,2) C. (1,2) D.(0,3) 3. 抛物线y=2(x-3)2的顶点在() A. 第一象限 B. 第二象限 C. x轴上 D. y轴上 4. 抛物线的对称轴是() A. x=-2 B.x=2 C. x=-4 D. x=4 5. 已知二次函数y=ax2+bx+c的图象如图所示,则下列结论中,正确的是() A. ab>0,c>0 B. ab>0,c<0 C. ab<0,c>0 D. ab<0,c<0 6. 二次函数y=ax2+bx+c的图象如图所示,则点在第 ___象限() A. 一 B. 二 C. 三 D. 四 7. 如图所示,已知二次函数y=ax2+bx+c(a≠0)的图象的顶点 P的横坐标是4,图象交x轴于点A(m,0)和点B,且m>4,那么 AB的长是() A. 4+m B. m C. 2m-8 D. 8-2m 8. 若一次函数y=ax+b的图象经过第二、三、四象限,则二次函数y=ax2+bx 的图象只可能是()

9. 已知抛物线和直线在同一直角坐标系中的图象如图所示,抛物线的对称轴为直线x=-1,P1(x1,y1),P2(x2,y2)是抛物线上的点,P3(x3, y3)是直线上的点,且-1

二次函数综合题训练(含答案)

二次函数综合题训练 一、综合题(共24题;共305分) 1.如图,在平面直角坐标系中,二次函数图象的顶点坐标为,该图象与轴相交于点、,与轴相交于点,其中点的横坐标为1. (1)求该二次函数的表达式; (2)求. 2.如图,在平面直角坐标系中,二次函数的图象交x轴于点A,B(点A在点B的左侧). (1)求点A,B的坐标,并根据该函数图象写出y≥0时x的取值范围; (2)把点B向上平移m个单位得点B1.若点B1向左平移n个单位,将与该二次函数图象上的点B2重合;若点B1向左平移(n+6)个单位,将与该二次函数图象上的点B3重合.已知m>0,n>0,求m,n 的值. 3.已知抛物线y=2x2-4x+c与x轴有两个不同的交点. (1)求c的取值范围; (2)若抛物线y=2x2-4x+c经过点A(2,m)和点B(3,n),试比较m与n的大小,并说明理由. 4.如图,已知二次函数y=x2+ax+3的图象经过点P(-2,3). (1)求a的值和图象的顶点坐标。 (2)点Q(m,n)在该二次函数图象上. ①当m=2时,求n的值;

②若点Q到y轴的距离小于2,请根据图象直接写出n的取值范围. 5.若二次函数图象的顶点在一次函数的图象上,则称 为的伴随函数,如:是的伴随函数. (1)若是的伴随函数,求直线与两坐标轴围成的三角形的面积;(2)若函数的伴随函数与轴两个交点间的距离为4,求,的值. 6.已知k是常数,抛物线y=x2+(k2+k-6)x+3k的对称轴是y轴,并且与x轴有两个交点. (1)求k的值: (2)若点P在抛物线y=x2+(k2+k-6)x+3k上,且P到y轴的距离是2,求点P的坐标. 7.如图,在平面直角坐标系中,抛物线与轴交于点、点,与轴交于点. (1)求拋物线的解析式; (2)过点作直线轴,点在直线上且,直接写出点的坐标.8.在平面直角坐标系中,抛物线与轴交于点A,将点A向右平移2个单位长度,得到点B,点B在抛物线上. (1)求点B的坐标(用含的式子表示); (2)求抛物线的对称轴; (3)已知点,.若抛物线与线段PQ恰有一个公共点,结合函数图象,求的取值范围. 9.如图,直线与轴、轴分别交于两点,抛物线经过点 ,与轴另一交点为,顶点为. (1)求抛物线的解析式; (2)在轴上找一点,使的值最小,求的最小值;

相关主题
文本预览
相关文档 最新文档