当前位置:文档之家› 样本方差的证明

样本方差的证明

样本方差的证明
样本方差的证明

样本方差为何除以n-1?

方差的概念从小学就开始建立了。对于一个随机变量,分别表示其数学期望和

方差,从中随机抽取n个样本,是样本均值,

是样本方差。那么为什么样本方差是除以而不是n

呢?

这里涉及到一个无偏估计的概念,是随机变量,同样也是随机变量,其中是对总体的一个估计,如果的期望分别等于的话,就说这种

估计是无偏的。容易证明,但是

的证明就不是那么显而易见了,下面我证明给大家看。记为的方差和期望。

证毕~~

这样看,x1,x2,...xn是n个可以自由变化的样本,互不影响。

而x1-xbar, x2-xbar,...xn-xbar是否也是n个自由变化的呢?不是……因为这n个统计量受到一个约束条件的影响就是之和等于0。如果我们记yi=xi-xbar,也就是说y1+y2+...yn=0,

这样我们可以任意变动其中n-1值,比如取定了y1,y2,...y(n-1),那么yn就不能任意变化,yn=-(y1+y2+y(n-1))。

这个只是从自由变化的角度直观解释,实际上证明分布比较烦琐……

比如说让十跟人任意取十个数,很容易理解可以随便取.十个都是自由的.

如果我加一个条件,十个人取十个数,但是这是个书加起来必须得零.

第一个人可以随便取,第二个人也可以,第九个也可以,都是自由的,

但是第十个人不能随便自由取,只能取特定的数,才能保证这十个数的

和是零.所以加了一个条件就丢了一个自由度

自由度是指当以样本的统计量来估计总体的参数时,样本中独立或能自由变化的数据的个数称为该统计量的自由度。当平均数的值和其中n-1个数据的值已知时,另一个数据的值就不能自由变化了,因此样本方差无偏估计的自由度为n-1。

OLS估计量的性质的推导证明(一些补充)

OLS 估计量的性质的推导证明(一些补充) 1、 线性: 2 2 2 2 2 2 (()()0) i i i i i i i i i i i i i i i i i i i i i x y x Y Y x Y Y x x x x x x Y x kY k x X X X n X x x ββΛ Λ -===-==-=-===∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑i 由于(1)证明斜率系数估计量是Y的线性函数。 , 其中= 22 2222 (0)(1,0)01,1·0,0()1()101,1 i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i x k x x k x x x k x x x x k X k x X k x X k k X x x k x k k X k X =========+=+=+====∑∑ ∑ ∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑ 注意: (由于对确定量而=()=故又故言是定值)前已证前已证记得与对后面的故证明会有用。 211 ),i i i i i i Y Y X k X Y w Y w k X n n ααβΛ Λ Λ =-=-==-∑∑() 证明截距系数估计量是的线性函数。 (其中

11 )111):(0)10(1;)1,i i i i i i i i i i i i i i i i i i w k X n k X X k n n w X k X X X X k X n n X k k X w w X X n =-=-=-===-=-====-=∑∑∑∑∑∑∑∑∑∑∑∑∑ 注意 ( 前已证前已证注意 0,对后面的 1;(证明有用。 2、无偏: 112211221122)()(...)()()...()()()...(1,0)()i i i i i i i i n n n n n n kY k X k k X k k E k E k k k E k E k E k k E k E k E k X k E βββαβεαβεβεεεεεεεεεεεΛ Λ ==++=++=+==+++=+++=++=+∑∑∑∑∑∑∑∑∑iiiii i  iii(1) 是的无偏估计量。 ( 由于 (前已证注 意假设 0())((0)i i i k E E k ββεεεβββ Λ Λ ==+=+=∑∑ii 所以对等式 =两边取期望有,) (1,i i i i i w w E w X k ααεαααααεα Λ ΛΛ Λ ==+=+∑∑∑∑ii课件上有错误:(2) 是的无偏估计量,即) 证明方法同上,参考课=应改为=注意利用 件0。 3、有效性:

概率论与数理统计课程报告:泊松分布及其在实际中的应用

泊松分布及其在实际中的应用 摘要:本文从泊松分布的定义和基本性质出发,举例讨论了泊松分布在实际中的重要应用。 关键字:泊松分布;应用;运筹学;分子生物学;核衰变 泊松分布是法国数学家泊松于1837年引入的,是概率论中的几大重要分布之一。作为一种常见的离散型随机变量的分布,其在实际中有着非常广泛的应用。 1泊松分布的定义及基本知识 1.1定义: (1)若随机变量X 的分布列为 ), ?=>= =-,2,1,0(0,! )(k k e k X P k λλλ 则称X 服从参数为λ的泊松分布,并用记号X~P(λ)表示。 (2)泊松流: 随机质点流:随机现象中源源不断出现的随机质点构成的序列。 若质点流具有平稳性、无后效性、普通性, 则称该质点流为泊松事件流(泊松流)。 例如某电话交换台收到的电话呼叫数; 到某机场降落的飞机数; 一个售货员接待的顾客数等这些事件都可以看作泊松流。 1.2有关泊松分布的一些性质 (1)满足分布列的两个性质:P(X=k)≥0(k=0,1,2,…), 且有 1! ! )(0 =?====-∞ =-∞=∞ =-∑∑∑ λλλ λ λλe e k e k e k X P k k k o k k . (2)若随机变量X 服从参数为λ的泊松分布,则X 的期望和方差分别为:E (X)=λ; D(X)=λ. (3)以n ,p 为参数的二项分布,当n →∞,p →0时,使得np=λ保持为正常数,则 λλ--→ -e k p p C k k n k k n ! ) 1(对于k=0,1,2,…一致成立。 由如上定理的条件λ=np 知,当n 很大时,p 很小时,有下面的近似公式 λλ--→ -=e k p p C k P k k n k k n n ! ) 1()( 2泊松分布的应用 对于试验成功概率很小而试验次数很多的随机过程, 都可以很自然的应用于泊松分布的理论。在泊松分布中的概率表达式只含一个参数λ,减少了对参数的确定与修改工作量, 模型构建比较简单, 具有很重要的实际意义。 以下具体举例说明泊松分布在实际中的重要应用。 (1)泊松分布在经济生活中的应用: 泊松分布是经济生活中的一种非常重要的分布形式,尤其是经常被运用在运筹学研究中的一个分布模型。如物料订单的规划,道路交通信号灯的设计,生产计划的安排,海港发

方差的性质

由方差的定义,可以得到方差的基本性质(假定所遇到的方差都存在, 其中c, k为常数). 性质1.D(c)=0; 性质2.D(cξ)=c2D(ξ); 特别地,当c =-1时D(-ξ)=D(ξ); 性质3.D(ξ+c)= D(ξ); 性质4.D(kξ+c)= k2D(ξ); 性质5.若ξ, η相互独立, 则 D(ξ+η)=D(ξ)+D(η). 注.若一个随机变量的取值不影响另一随机变量的取值,则称两个随机变量是相互独立的.本课程略去了关于随机变量相互独立的严格数学描述. 例3.5.13. 设离散型随机变量X具有概率分布律 X-2 -1 0 1 2 3 P(X=x k) 0.1 0.2 0.2 0.3 0.1 0.1 求E(X), D(X), D(2X+3). 解.由离散型随机变量的数学期望的定义得 E(X)=(-2)×0.1+(-1)×0.2+0×0.2+1×0.3+2×0.1+3×0.1 =0.4; E(X2)=(-2)2×0.1+(-1)2×0.2+02×0.2+12×0.3+22×0.1+32×0.1 =2.2; 再由方差计算公式 D(X)=E(X2)-(E(X))2 =2.2-0.42=2.04; ∴D(2X+3)=4D(X)=4×2.04=8.16 . 例3.5.14 设连续型随机变量X具有概率密度: 求(1)常数A;(2)D(-X-2). 解. (1)根据密度函数的性质

∴ 计算上述积分,可得A=e/2. (2)要求方差,首先要求数学期望. ∴D(X)=E(X2)-(E(X))2 =11/4-16/9=35/36 ; D(-X-2)=D(X)=35/36

泊松过程与泊松分布的基本知识

泊松过程与泊松分布的基本知识泊松过程是随机过程的一个经典模型,是一种累积随机事件的发生次数的独立增量过程。也就是说,每次事件的发生是相互独立的。那么泊松分布和泊松过程又什么关系呢?可以说泊松分布是描述稀有事件的统计规律,即可以描述一段时间内发生某个次数的概率。而泊松过程呢,就适合刻画“稀有事件流”的概率特性。 比较:泊松分布 泊松过程的主要公式: 其实没多少不一样对不对?不一样的是泊松过程是一个可以查看在时间t内发生次数的概率,这个t是可变的。泊松分布则是给定了时间。 泊松过程的关键在于,它的到达间隔序列Tn,即每两次发生的时间是服从的独立同指数分布的。如果每次发生的间隔时间不服从指数分布,那么这个随机过程就会更一般化,我们成为是更新过程,这也是随机过程的推广。 泊松过程分为齐次泊松过程和非齐次泊松过程,齐次的意思很简单,就是说过程并不依赖于初始时刻,强度函数是一个常数,从上面的公式也看得出来。而非齐次则是变成了,这意味着什么呢?这以为着随着与时间的改变,强度是会改变的,改变服从强度函数,说了这

么久,强度究竟是个什么概念?强度的意思就是泊松过程的该事件发生的频率,或者说快慢,泊松分布中我们知道期望就是,实际含义就是,在一段时间内,发生的次数平均水平是次。 复合泊松过程:泊松过程我们已经知道,用描述一段时间累积发生的次数,但是如果每次发生带来的后果都是不一样的,我们怎么描述这个过程呢?比如,火车站到达的乘客是服从泊松过程的,但是每个乘客携带有不同重量的行李,我们如何刻画在[0,t]时间内行李总重量呢,这个过程就是复合泊松过程。复合泊松过程的均值函数和方差函数一般可以用全期望和全方差公式进行计算,因为简单泊松过程的期望很容易求。 更新过程: 上文已经说到,更新过程作为泊松过程的推广,更具有一般性,那么在讨论更新过程时,我们更多地讨来更新函数,更新函数是更新过程的均值函数m(t)=E[N(t)],怎么理解呢,就是说需要用t时刻的累积计数的期望特性来表达更新过程。有一条定理: 这个定理是可以证明的,Fn(t)是分布函数,就是说:在t时刻,更新函数值就是在这个时刻,n取遍所有值的分布之和。 那么是否可以这样理解,更新过程和泊松过程的区别就是更新间隔序列不同,那么如果已知了更新间隔序列的概率密度函数,就可以求解该过程的更新函数了,详细的推导就不写了。扔结论出来:对间隔序列概率密度函数做拉氏变换得到Lf(s),然后求 Lm(s)=Lf(s)/s(1-Lf(s)),再对Lm(s)进行逆变换,就得到了m(t),这就是更新函数。

附录3-1:高斯-马尔科夫定理的证明

高斯-马尔科夫定理(OLS 有效性)的证明 根据OLS 的一阶条件: 022) (='+'-=??βββX X y X S 设b 是解,则b 满足正则方程组 y X Xb X '=' 这正是我们曾分析的最小二乘正则方程组。因为X 是满秩的,所以X X '的逆存在, 从而得到解是 y X X X b ''=-1)( ββββX X y X y y S ''+''-'=2)( 022) (='+'-=??βββX X y X S 为了证实这确实是最小值,我们需要二阶编分矩阵 X X S b '=???=2') (2ββββ 是一个正定矩阵。 我们现在来证明这个结果。对任意一非零向量c ,令Xc X c q ''=,则 Xc q i i =='=∑νυ νν其中,2 除非ν的每一元素都为0,否则q 是正的。但若υ为零的话,则X 的各列的一个线性组合等于0,这与X 满秩的假定相矛盾。 三、最小二乘估计量的统计特性 在本节中,我们对回归量的两种情况,即非随机回归量和随机回归量下分别作讨论。 1、X 非随机回归量 若回归量当作非随机来进行处理时,则将X 当作常数矩阵处理就可导出最小二乘估计量的各种特性。可得 εβεβX X X X X X X b ''+=+''=--11)()()( (4) 若X 是非随机的,或0)(='εX E ,则(4)中第二项的期望值是0。所以,最小二乘

估计量是无偏的,它的协方差矩阵是 ]))([(]['--=ββb b E b Var ])()[(11--''''=X X X X X X E εε 11)(][)(--''''=X X X E X X X εε 121)()()(--'''=X X X I X X X σ 12)(-'=X X σ 在前面的内容中,对K =2的特殊b 是β的最小方差的线性无偏估计量。现在我们给出这个基本结果的一个更一般的证明,令β是Cy b =~ 的另一个不同于b 的线性无偏估计量, 其中C 是一个K ×n 矩阵。若b ~是无偏的, ,][][βεβ=+=C CX E Cy E 这暗示着CX=I ,并且εβC b +=~。所以可以得到b ~的协方差矩阵是 C C b Var '=2]~[σ 现在令X X X C D ''-=-1)(,由假设知D ≠0。那么,,~ *Dy b b b =-= ,''*)(2DD D D b Var Y σ==∑ 于是'DD 是非负定矩阵。 则 ]))()()([(]~[112'''+''+=--X X X D X X X D b Var σ )])()()([(112--'+'''+=X X X D X X X D σ ))((12-'+'=X X D D σ 在展开这个四项和式之前,我们注意到 )()(1X X X X DX CX I ''+==- 由于上面最后一项是I ,有DX=0,所以 122)(]~[-'+'=X X D D b Var σσ D D b V a r '+=2 ][σ

泊松分布及其应用研究

泊松分布及其应用研究 Prepared on 22 November 2020

湖南科技大学 信息与电气工程学院 《课程论文》 题目:泊松分布及其应用研究 专业:通信工程 班级: 13级3班 姓名:黄夏妮 学号: 目录 一、摘要 (1) 二、泊松分布的概念 (2) 三、计数过程为广义的泊松过程 (4) 四、泊松分布及泊松分布增量 (5) 五、泊松分布的特征 (5) 六、泊松分布的应用 (6) 七、基于MATLAB的泊松过程仿真 (8) 八、参考文献 (12)

摘要 作为一种常见的离散型随机变量的分布,泊松分布日益显示其重要性,成为概率论中最重要的几个分布之一。服从泊松分布的随机变量是常见的,它常与时间单位的计数过程相联系。 在现实生活中应用更为广泛,如数学建模、管理科学、运筹学及自然科学、概率论等等。并且在某些函数关系起着一种重要作用。例如线性的、指数的、三角函数的等等。同样, 在为观察现象构造确定性模型时, 某些概率分布也经常出现。泊松分布作为大量试验中稀有事件出现的频数的概率分布的数学模型, 它具有很多性质。为此本文讲述了泊松分布的一些性质, 并讨论了这些性质在实际生活中的重要作用。

二、泊松分布的概念: 定义1 设随机变量X 的可能取值为,,2,1,0 且 {}0,,2,1,0,! >===-λλ k e k x k X P k 为常数。 则称X 服从参数为λ的泊松分布,记作X ~ D(λ) 。 定义2 设ε是任意一个随机变量,称 )t (- e t)(it +∞<<∞=Φε是ε的特征函数。 主要结论: 定理1 如果X 是一个具有以λ为参数的泊松分布,则E( X) = λ且D ( X) =λ。 证明 设X 是一随机变量,若 ] X) E( - X [ E{2}存在,则称它为X 的方差,记作D( X) ,即 ] X) E( - X [ E{ X) D(2}=。设X 服从泊松分布D ( X) ,即有: 则()()λλλλλλλλ λ=?=-==- ∞ =--∞ =-∑∑ e e k e k e k X E k k k k 11 0!1! 从而()() () λλλλλλλ λ +=-+-==-∞ =-∞ =--∞ =∑ ∑ ∑2122 2 2 !1!2! e k e k e k k X E k k k k k k 故λλλλ - X) E( - ) X E( X) D(2222=+== 定理2 设随机变量) , ,2 1 n ( x n =服从二项分布,其分布律为 {}n k p p C k x P k n n k n k n n ,,2,1,0,)1( =-==-。 又设0>=λn np 是常数,则{}λλ-∞ →==e k k x P k n n ! lim 。 证明 由λ=n np 得: 显然,当k = 0 时,故λ-n e k} x P{→=。当k ≥1 且k → ∞时,有

独立随机变量期望和方差的性质

第七周多维随机变量,独立性 7.4独立随机变量期望和方差的性质 独立随机变量乘积的期望的性质: Y X ,独立,则()()() Y E X E XY E =以离散型随机变量为例,设二元随机变量(),X Y 的联合分布列() ,i j P X x Y y ==已知,则()()(),i j i j P X x Y y P X x P Y y ====?=, () 1,2,,; 1,2,,i m j n == ()() 11,m n i j i j i j E XY x y P X x Y y =====∑∑()() 11 m n i j i j i j x y P X x P Y y =====∑∑()() 1 1 m n i i j j i j x P X x y P Y y =====∑∑()() E X E Y =***********************************************************************独立随机变量和的方差的性质: Y X ,独立,则()()() Y Var X Var Y X Var +=+()()() 2 2 Var X Y E X Y E X Y ??+=+-+?? ()222E X XY Y =++()()()()22 2E X E X E Y E Y ??-++? ? ()()()()2 2 22E X E X E Y E Y =-+-()()()22E XY E X E Y +-()()()() 2 2 22E X E X E Y E Y =-+-()() Var X Var Y =+若12,,,n X X X 相互独立,且都存在方差,则()() 121 n m k k Var X X X Var X =+++=∑ ***********************************************************************利用独立的0-1分布求和计算二项分布随机变量()~,X b n p 期望和方差 我们在推导二项分布随机变量的方差时,已经利用了独立随机变量和的方差等于方差

最小二乘法估计量的性质(高斯—马尔可夫定理的初步证明)

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 最小二乘法估计量的性质(高斯—马尔可夫定理的初 步证明) 高斯马尔可夫定理: 若一元线性模型满足计量经济基本假设, 则参数的最小二乘估计(OLS) 是最小方差的线性无偏估计。 (BLUE) 最小二乘法估计量 OLS 的性质(高斯马尔可夫定理的 初步证明) 1.线性性: 0 和1 都是iy的线性函数证明: ; 令=j=njiixxxxk12)()( 则有 iniiyk==11 ,且有0=ik, 1=iixk,=i=niixxk122)(1 从而1 是iy的线性函数;同理, 0 = 令iikxnw=1,则有: iiyw=0,即0 也是iy的线性函数。 另有: 1=i w,0=iixw 2. 无偏性: 0 和1 都是0 、1 的无偏估计量;即有: ( )=,00=E ( )11=E 证明: 先证 ( )11E ,又, 1=iixk ()=i=++==iiiiinikuxkyk01011+1 +iiiiukxk ==+iiuk1 ( )(因为: ( )u1101=++=i0iiiiiEkxkkE =ik,1ixk) 同理,利用 1=i w和0=iixw可证得 ( ),00=E 3. 最优性或最小方差性:在所有的线性无偏估计中,0 和1 分别是0 、1 的方差最小的 1 / 2

有效估计量证明: 若1~ 是原值1 的一个线性无偏估计(方差条件不限),且记=iiyc1~(∵线性估计),再根据无偏估计的特性,有:再记P==111==1, 0iiixcc。 ()iiiykc~,则有11~+= P ( )Cov(+)),(2)()(),(2),(),(),(~,~~1111111111PCovDPDPCovCovP PPPCovCovD++=+=++== 如果能证明0),(1=PCov,则利用方差不小于 0 的性质,判定)()()()~(111DDPDD+=,1 即为所有无偏的线性估计中方差最小的。 ∵2u2i2u1)())((),)((),(iiiiiiiiiikkckkcykykcCovPCov=== 又∵=j=njiixxxxk12)()( 且有: 0=ik,1=iixk,=i=niixxk122)(1 所以0)(1)(1212112i===j=j=i=injnjnniiiiixxxxxcxckkc,0),~((1 =PCov, 有: )()()()111DDPDD+=,命题得证。 (此处利用了==1, 0iiixcc)。

计量经济学中相关证明

课本中相关章节的证明过程 第2章有关的证明过程 2.1 一元线性回归模型 有一元线性回归模型为:y t = ?0 + ?1 x t + u t 上式表示变量y t 和x t之间的真实关系。其中y t 称被解释变量(因变量),x t称解释变量(自变量),u t称随机误差项,?0称常数项,?1称回归系数(通常未知)。上模型可以分为两部分。(1)回归函数部分,E(y t) = ?0 + ?1 x t, (2)随机部分,u t。 图2.8 真实的回归直线 这种模型可以赋予各种实际意义,收入与支出的关系;如脉搏与血压的关系;商品价格与供给量的关系;文件容量与保存时间的关系;林区木材采伐量与木材剩余物的关系;身高与体重的关系等。 以收入与支出的关系为例。 假设固定对一个家庭进行观察,随着收入水平的不同,与支出呈线性函数关系。但实际上数据来自各个家庭,来自各个不同收入水平,使其他条件不变成为不可能,所以由数据得到的散点图不在一条直线上(不呈函数关系),而是散在直线周围,服从统计关系。随机误差项u t中可能包括家庭人口数不同,消费习惯不同,不同地域的消费指数不同,不同家庭的外来收入不同等因素。所以,在经济问题上“控制其他因素不变”实际是不可能的。 回归模型的随机误差项中一般包括如下几项内容,(1)非重要解释变量的省略,(2)人的随机行为,(3)数学模型形式欠妥,(4)归并误差(粮食的归并)(5)测量误差等。 回归模型存在两个特点。(1)建立在某些假定条件不变前提下抽象出来的回归函数不能百分之百地再现所研究的经济过程。(2)也正是由于这些假定与抽象,才使我们能够透过复杂的经济现象,深刻认识到该经济过程的本质。 通常,线性回归函数E(y t) = ?0 + ?1 x t是观察不到的,利用样本得到的只是对E(y t) = ?0 + ?1 x t 的估计,即对?0和?1的估计。 在对回归函数进行估计之前应该对随机误差项u t做出如下假定。 (1) u t 是一个随机变量,u t 的取值服从概率分布。 (2) E(u t) = 0。 (3) D(u t) = E[u t - E(u t) ]2 = E(u t)2 = ?2。称u i 具有同方差性。 (4) u t 为正态分布(根据中心极限定理)。以上四个假定可作如下表达:u t? N (0,??)。 (5) Cov(u i, u j) = E[(u i - E(u i) ) ( u j - E(u j) )] = E(u i, u j) = 0, (i?j )。含义是不同观测值所对应的随机项相互独立。称为u i 的非自相关性。 (6) x i是非随机的。 (7) Cov(u i, x i) = E[(u i - E(u i) ) (x i - E(x i) )] = E[u i (x i - E(x i) ] = E[u i x i - u i E(x i) ] = E(u i x i) = 0. u i与x i相互独立。否则,分不清是谁对y t的贡献。 (8) 对于多元线性回归模型,解释变量之间不能完全相关或高度相关(非多重共线性)。 在假定(1),(2)成立条件下有E(y t) = E(?0+ ?1 x t+ u t) = ?0+ ?1 x t。 2.2 最小二乘估计(OLS) 对于所研究的经济问题,通常真实的回归直线是观测不到的。收集样本的目的就是要对这条真实的回归直线做出估计。 图2.9

泊松分布的应用

泊松分布的应用

泊松分布的应用 摘要 泊松分布是指一个系统在运行中超负载造成的失效次数的分布形式。它是高等数学里的一个概念,属于概率论的范畴,是法国数学家泊松在推广伯努利形式下的大数定律时,研究得出的一种概率分布,因而命名为泊松分布。 作为一种常见的离散型随机变量的分布,泊松分布日益显示其重要性,成为概率论中最重要的几个分布之一。服从泊松分布的随机变量是常见的,它常与时间单位的计数过程相联系。 在现实生活中应用更为广泛,如数学建模、管理科学、运筹学及自然科学、概率论等等。并且在某些函数关系起着一种重要作用。例如线性的、指数的、三角函数的等等。本文对泊松分布产生的过程、定义和性质做了简单的介绍,研究了泊松分布的一些性质, 并讨论了这些性质在实际生活中的重要作用。 关键词:泊松过程;泊松分布;定义;定理;应用;

一、 计数过程为广义的泊松过程 1.计数过程 设)} 0, [ T t , t)( {N X T ∞=∈=为一随机过程, 如果 t )( N 是取非负整数值的随机变量,且满足s < t 时, t)( s) ( N ≤,则称)} 0, [ T t , t)( {N X T ∞=∈=为计数过程。 将增量 t t 0 , t), t ( N ) t ( N - t)( N 000<≤?=,它表示时间间隔 t), t [ 0内出现的质点数。“在 t), t [ 0内出现k 个质点”,即k} t), t ( {N 0=是一随机事件,其概率记为 2 0,1, k , k} t), t ( P{N t), t ( P 00K ===总之,对某种随机事件的来到数都可以得到一个计数过程,而同一时刻只能至多发生一个来到的就是简单计数过程。 2.泊松过程 计数过程0} t , t)( {N ∈称为强度为λ的泊松过程,如果满足条件: (1)在不相重叠的区间上的增量具有独立性; (2)0 (0) N =; (3)对于充分小的, t)( O t 1} t) t t,( P{N t) t t,( P 1?+?==?+=?+λ其中常数 0>λ,称为过程)(t N 的强度。 (4)对于充分小的Δt (){}()t j t t t N P t t t P j j j ?==?+=?+∑∑∞ =∞=ο2 2 ,),( 亦即对于充分小的t ?,在()t t t ?+,或2个以上质点的概率与出现一个质点的概率相对可以忽略不计。了解泊松过程,就很容易去了解泊松分布的相关性质,其实泊松分布就是在泊松过程当中每单位的时间间隔内出现质点数目的计数。 二、 泊松分布的概念: 泊松分布常用于描述单位时间、单位平面或单位空间中罕见“质点”总数的随机分布规律。 定义1 设随机变量X 的可能取值为,,2,1,0 且 {}0,,2,1,0,! >===-λλ k e k x k X P k 为常数。

巧用方差的性质解题

巧用方差的性质解题 由方差的计算公式])()()[(1222212 ----+?+-+-=x x x x x x n s n 容易得出方差的两条性质: 性质1 任何一组实数所的方差都是非负实数. 性质2 若一组实数据的方差为零,则该组数据均相等,且都等于该组数据的平均数. 运用这两个性质和方差计算公式,常可帮助我们快捷解决一类与之相关的问题. 例1 已知8=+y x ,162=-z xy ,求z y x ++的值. 解:∵x 、y 的平均数为 2 y x +=4,216z xy +=, ∴x 、y 的方差 ])4()4[(21222-+-=y x s =]32)(8[2 122++-+y x y x =]32)(82)[(2 12++--+y x xy y x =]3264)16(264[2 12+-+-z =2z -. 由性质1,得02≥-z ,∴02 ≤z . ∴2z =0,0=z .∴=2s 0. 由性质2,得y x ==4. ∴z y x ++=4+4+0=8. 例2 已知c b a ++=6,222c b a ++=12,求c b a 32++的值. 解:∵a 、b 、c 的平均数是 3 c b a ++=2, ∴a 、b 、c 的方差 ])2()2()2[(3 12222-+-+-=c b a s =]12)(4)[(3 1222+++-++c b a c b a =)122412(3 1+-=0. 由性质2,得a =b =c =2. ∴c b a 32++=12. 例3 设m 、n 、p 均为正实数,且2m +2n -22p =0,求 n m p +的最小值. 解:m 、n 的平均数-x =2 n m +. m 、n 的方差为

概率统计论 浅谈泊松分布

浅谈泊松分布 班级:XXX 姓名:XXX 学号:XXX

浅谈泊松分布当一个随机事件,以固定的平均瞬时速率λ

二项概率的泊松逼近 如果∞→n ,0→p 使得λ=np 保持为正常数,则 λλ--→-e k p p C k k n k k n !)1( 对k = 0,1,2,…一致地成立。

2.1泊松分布使用范围 泊松分布主要用于描述在单位时间(空间)中稀有事件的发生数. 即需满足以下四个条件: 1. 给定区域内的特定事件产生的次数,可以是根据时间,长度,面积来定义; 2. 各段相等区域内的特定事件产生的概率是一样的; 3. 各区域内,事件发生的概率是相互独立的;

4. 当给定区域变得非常小时,两次以上事件发生的概率趋向于0。 2.2泊松分布的性质 1. 泊松分布的均数与方差相等,即m =2σ 2.泊松分布的可加性 如果1x ,2x ,3x …k x 相互独立,且它们分别服从以1λ,2λ,3λ…k λ为参数的泊松分布,则k X X X X T ++++= 321也服从泊松分布,其参数为k λλλλ++++ 321。 3.泊松分布的应用 )0(P 是未产生二体的菌的存在概率,实际上其值的5%与采用2/05.0m J 照射时的大肠杆菌uvrA -株,recA -株(除去既不能修复又不能重组修复的二重突变)的生存率是一致的。由于该菌株每个基因

组有一个二体就是致死量,因此)1(P ,)2(P ……就意味着全部死亡的概率。 3.2泊松分布在医学统计上的应用 在遗传学上,计算遗传图距的基本方法是建立在重组率基础上的,根据重组率的大小作出有关基因间的距离,绘制线性基因图;可是当研究的两个基因间的距离相对较远,在它们之间可能发生双交换、三交换、四交换甚至更高数目的交换,而形成的配子总有一半是非重组型的。若简单的把重组率看作交换率,显然交换率降低了,图距也随之缩小。这里可以用泊松分布原理来描述减数分裂过程中染色体上某区段交换的分布。在图距计算中,x 表示交换数,m 表示对总样本来说每进行一次减数分裂两基因 间的平均交换数,而基因间不发生交换的概率为m m e e m P --==! 0)0(0 ,基因间至少发生一次交换的概率为m e P P --=-=1)0(1。由此可计算两基因间的交换率和重组率。进而可更科学的作出遗传图。 3.3 泊松分布在交通运输上的应用 道路是行驶各种车辆的通道。为了给编制交通建设规划提供可靠的依据和保证道路上的车能安全而有效地通行, 道路工作者必须对道路上的车流进行实地调查和统计分析以便掌握车流的变化规律。数理统计方法是对交通流分布进行研究的有效而实际可行的方法。通常把在单位时间内通过道路上某一地点的车辆叫做交通流。对于时间间隔极短,并非是高密度的交通流的分布状态, 它常常是服从“概率论” 中的“ 泊松分布” 规律的。 如用简单例子表示,取通过某一地点车辆的时间作为时间数轴, 在数轴上划出给定时间间隔和该时间间隔内通过的车辆数目,譬如, 以20秒的时间间隔的数轴为例, 在20~0秒内,一辆车也没有通过, 在40~20秒间隔内,有二辆车通过, 在60~40秒间隔内, 有一辆车通过, 等等。这样在实地进行大量观测就可以的到某一时间间隔内的随机来车数目和该时间间隔内出现该车辆数的次数, 从而按泊松分布公式求算在给定时间间隔内在某一地点通过γ辆车的概率)(γP 。 参考文献 1. 戴维 M. 莱文等.《以EXCEL 为决策工具的商务统计》.机械工业出版社,2009 2.庄军、林奇英《泊松分布在生物学中的应用》.激光生物学报.2007年第16卷第5期. 3.薛珊荣 《“泊松分布”在交通工程中的应用》.湖南大学学报.1995年第8卷第2期.

总结归纳方差的性质

总结归纳方差的性质 总结归纳方差的性质[1] 在中国古代,数学叫作算术,又称算学,最后才改为数学.以下是精品学习网为大家的高中数学方差公式,希望可以解决您所遇到的相关问题,加油,精品学习网一直陪伴您。 一.方差的概念与计算公式 例1两人的5次测验成绩如下: X:50,100,100,60,50E(X)=72; Y:73,70,75,72,70E(Y)=72。 平均成绩相同,但X不稳定,对平均值的偏离大。 方差描述随机变量对于数学期望的偏离程度。 单个偏离是 消除符号影响 方差即偏离平方的均值,记为D(X): 直接计算公式分离散型和连续型,具体为: 这里是一个数。推导另一种计算公式 得到:“方差等于平方的均值减去均值的平方”。 其中,分别为离散型和连续型计算公式。称为标准差或均方差,方差描述波动 二.方差的性质 1.设C为常数,则D(C)=0(常数无波动); 2.D(CX)=C2D(X)(常数平方提取);

证: 特别地D(-X)=D(X),D(-2X)=4D(X)(方差无负值) 特别地 独立前提的逐项求和,可推广到有限项。 方差公式: 平均数:M=(x1+x2+x3+…+xn)/n(n表示这组数据个数,x1、x2、x3……xn表示这组数据具体数值) 方差公式:S?=〈(M-x1)?+(M-x2)?+(M-x3)?+…+(M-xn)?〉╱n 三.常用分布的方差 1.两点分布 2.二项分布 X~B(n,p) 引入随机变量Xi(第i次试验中A出现的次数,服从两点分布), 3.泊松分布(推导略) 4.均匀分布 另一计算过程为 5.指数分布(推导略) 6.正态分布(推导略) 7.t分布:其中X~T(n),E(X)=0;D(X)=n/(n-2); 8.F分布:其中X~F(m,n),E(X)=n/(n-2); ~

泊松流、指数分布、爱尔朗分布

三种常用的理论分布: (1) 泊松流与泊松分布 {N (t ),t>0}是计数过程,有 ,2,1,0,! )()(==-n e n t t P t n n λλ 且E[N (t )]=λt ,Var[N(t)]=λt. (2) 指数分布 当输入过程是一个泊松过程{N(t),t>0}时,设T 是两位顾客相继到达的时间间隔,有 F T (t )=P {T ≤t }=1-P {T >t } =1-P 0(t )=1-t e λ-, t>0, F T (t )=0, t ≤0。 从 而 ?? ?≤>='=-.0, 00, )()(t t e t F t f t T T λλ(λ> 0), 且 E (T )=1/λ,

λ—单位时间到达的平均顾客数; 1/λ— 相继到达的平均间隔时间。 定理.输入过程{N(t), t>0}是参数为λ的泊松过程的充分必要条件是相继到达的时间间隔:T 1,T 2,…T n ,…相互独立,同服从参数为指数分布。 为一位顾客服务的时间V 一般也服从指数分布,有 ?? ?<>-=-.0,0,0, 1)(t t e t F t V μ, ???<>-=-.0, 0,0, )(t t e t f t V μμ 其中 μ— 平均服务率; E (V )= 1/μ—一位顾客的平均服务时 间。 ρ=λ/μ—服务强度,刻画服务效率和服务机构利用程度的重要指标。 (3)爱尔朗(Erlang )分布 设V 1,V 2,…,V k 相互独立,V i ~E(0 ,k μ),则,T=V 1+V 2+…+V k 的概率密度为

?? ???<>-=-. 0,0, 0,)! 1()()(1t t k kt k t f k k μμ 称T 服从k 阶爱尔朗分布。 例:串列的k 个服务台,每个服务台的服务时间相互独立,服从相同的指数分布,则k 个服务台的总服务时间服从k 阶爱尔朗分布。 有:1)E (T )=μμ1 1)(1=?=∑=k k V E k i i ; 2)k=1时,T ~E (0,μ); 3)k ≥30时,T 近似服从正态分布; 4).01 )(2lim lim ==∞→∞→μk T Var t k (化为确定型分布)。 (注:文档可能无法思考全面,请浏览后下载,供参考。可复制、编制,期待你的好评与关注)

1方差的定义

第二节 方 差 1.方差的定义 数学期望描述了随机变量取值的“平均”.有时仅知道这个平均值还不够.例如,有A ,B 两名射手,他们每次射击命中的环数分别为X ,Y ,已知X ,Y 的分布律为: 表4-7 其他的因素.通常的想法是:在射击的平均环数相等的条件下进一步衡量谁的射击技术更稳定些.也就是看谁命中的环数比较集中于平均值的附近,通常人们会采用命中的环数X 与它的平均值E (X )之间的离差|X -E (X )|的均值E [|X -E (X )|]来度量,E [|X -E (X )|]愈小,表明X 的值愈集中于E (X )的附近,即技术稳定;E [|X -E (X )|]愈大,表明X 的值很分散,技术不稳定.但由于E [|X -E (X )|]带有绝对值,运算不便,故通常采用X 与E (X )的离差|X -E (X )|的平方平均值E [X -E (X )]2来度量随机变量X 取值的分散程度.此例中,由于 E [X -E (X )]2=0.23(8-9)2+0.63(9-9)2+0.2×(10-9)2=0.4, E [Y -E (Y )]2=0.13(8-9)2+0.83(9-9)2+0.1×(10-9)2=0.2. 由此可见B 的技术更稳定些. 定义4.2 设X 是一个随机变量,若E [X -E (X )]2存在,则称E [X -E (X )]2为X 的方差(Variance ),记为D (X ),即 D (X )= E [X -E (X )]2. (4.7) 称)(X D 为随机变量X 的标准差(Standard deviation )或均方差(Mean square deviation),记为σ(X ). 根据定义可知,随机变量X 的方差反映了随机变量的取值与其数学期望的偏离程度.若X 取值比较集中,则D (X )较小,反之,若X 取值比较分散,则D (X )较大. 由于方差是随机变量X 的函数g (X )=[X -E (X )]2的数学期望.若离散型随机变量X 的分布律为P {X =x k }=p k ,k =1,2,…,则 D (X )=k k k p X E x ∑∞ =-12)]([. (4.8) 若连续型随机变量X 的概率密度为f (x ),则 D (X )=?+∞ ∞--.)()]([2x x f X E x d (4.9) 由此可见,方差D (X )是一个常数,它由随机变量的分布惟一确定. 根据数学期望的性质可得: D (X )= E [X -E (X )]2=E [X 2-2X 2E (X )+[E (X )]2] =E (X 2)-2E (X )2E (X )+[E (X )]2=E (X 2)-[E (X )]2.

Poisson过程教学目的了解计数过程的概念掌握泊松

第三章Poisson过程 教学目的:(1)了解计数过程的概念; (2)掌握泊松过程两种定义的等价性; (3)掌握泊松过程的到达时刻的分布、等待时间的分布和来到时刻的条件分布; (4)了解泊松过程的三种推广。 教学重点:(1)泊松过程两种定义的等价性; (2)泊松过程的到达时刻的分布、等待时间的分布和来到时刻的条件分布; (3)泊松过程的三种推广。 教学难点:(1)泊松过程两种定义的等价性的证明; (2)泊松过程来到时刻的条件分布; (3)泊松过程的推广。 3.1 Poisson过程 教学目的:掌握Poisson过程的定义及等价定义;会进行Poisson过程相关的概率的计算。 教学重点:Poisson过程的定义与其等价定义等价性的证明;Poisson过程相关的概率的计算。 教学难点:Poisson过程的定义与其等价定义等价性的证明。 Poisson过程是一类重要的计数过程,先给出计数过程的定义 定义3.1:{(),0} 表示从到时刻 N t t N t t≥ 随机过程称为计数过程,如果()0特定事件发生的次数,它具备以下两个特点: 某一A N t取值为整数; (1)() 内事件发生的次数。 (2)()()()-()(,] 时,且表示时间A s t N s N t N t N s s t <≤ 计数过程有着广泛的应用,如:某商店一段时间内购物的顾客数;某段时 间内电话转换台呼叫的次数;加油站一段时间内等候加油的人数等。 如果在不相交的时间区间中发生的事件个数是独立的,则称该计数过程

有独立增量。即当123,t t t <<2132()-()()-()X t X t X t X t 有与是独立的。 若在任一时间区间中的事件个数的分布只依赖于,时间区间的长度则计数 过程有平稳增量。即对一切12120(,]t t s t s t s <>++及,在中事件个数 21()()N t s N t s +-+12(,]t t 与区间中事件的个数21()()N t N t -有相同的分布。 Poission 过程是计数过程,而且是一类最重要、应用广泛的计数过程,它最早于1837年由法国数学家Poission 引入。 .独立增量和平稳增量是某些级数过程的主要性质Poisson 过程是具有独立 增量.和平稳增量的计数过程 定义3.2:{(),0}(0)N t t λλ≥>计数过程称为参数为Poisson 过程,如果 (1)(0)0N =; (2)过程具有独立增量; (3),0,s t ≥对任意的 (()-())P N t s N s n +=! n t t e n λλ-=() 例3.1:3/h 设顾客到达商店依次人的平均速度到达,Poisson 且服从分布, 9:00,已知商店上午开门试求 (1)9:0010:005从到这一小时内最多有名顾客的概率? (2)9:3011:30到时仅到一位顾客,而到时总计已达到5位顾客的概率? (解:见板书。) 注:(1)Poisson 过程具有平稳增量。 (2)随机变量()N t 服从参数为t λ的Poisson 分布,故[()]E N t t λ=(显然,可以认为λ是单位时间内事件发生的平均次数,称λ是Poisson 过程的强度或速率或发生率。)

泊松流、指数分布、爱尔朗分布

三种常用的理论分布: (1) 泊松流与泊松分布 {N (t ),t>0}是计数过程,有 ,2,1,0,!) ()(==-n e n t t P t n n λλ 且E[N (t )]=λt ,V ar[N(t)]=λt. (2) 指数分布 当输入过程是一个泊松过程{N(t),t>0}时,设T 是两位顾客相继到达的时间间隔,有 F T (t )=P {T ≤t }=1-P {T >t } =1-P 0(t )=1-t e λ-, t>0, F T (t )=0, t ≤0。 从而 ???≤>='=-.0, 00,)()(t t e t F t f t T T λλ(λ>0), 且 E (T )=1/λ, λ—单位时间到达的平均顾客数;

1/λ— 相继到达的平均间隔时间。 定理.输入过程{N(t), t>0}是参数为λ的泊松过程的充分必要条件是相继到达的时间间隔:T 1,T 2,…T n ,…相互独立,同服从参数为指数分布。 为一位顾客服务的时间V 一般也服从指数分布,有 ? ??<>-=-.0,0,0,1)(t t e t F t V μ, ???<>-=-.0,0,0,)(t t e t f t V μμ 其中 μ— 平均服务率; E (V )= 1/μ—一位顾客的平均服务时间。 ρ=λ/μ—服务强度,刻画服务效率和服务机构利用程度的重要指标。 (3)爱尔朗(Erlang )分布 设V 1,V 2,…,V k 相互独立,V i ~E(0 ,k μ),则,T=V 1+V 2+…+V k 的概率密度为

?????<>-=-. 0,0,0,)!1()()(1 t t k kt k t f k k μμ 称T 服从k 阶爱尔朗分布。 例:串列的k 个服务台,每个服务台的服务时间相互独立,服从相同的指数分布,则k 个服务台的总服务时间服从k 阶爱尔朗分布。 有:1)E (T )=μμ11)(1=?=∑=k k V E k i i ; 2)k=1时,T ~E (0,μ); 3)k ≥30时,T 近似服从正态分布; 4).01)(2lim lim ==∞→∞→μ k T Var t k (化为确定型分布)。

相关主题
文本预览
相关文档 最新文档