当前位置:文档之家› 钨钼材料的切削加工

钨钼材料的切削加工

钨钼材料的切削加工
钨钼材料的切削加工

1.常用难熔金属的力学物理性能有哪些?

工业上常用的高熔点金属统称难熔金属,如钨、钼、钽、铌、锆等。

难熔金属熔点高、密度大,晶体结构稳定,激活能大,切削加工困难。以难熔金属为主,添加其他合金元素构成难熔金属材料。随着科学技术的发展,难熔金属在原子能、宇航、机械、电子、化工、医疗、纺织、轻工等领域得到了越来越广泛的应用。

常用难熔金属中钨的熔点最高(3380℃),密度最大(19.1g/cm3),而钼的弹性模量最大,达到343 350MPa。

难熔金属系列——钨合金

4.怎样切削加工钨锭与钨棒?

纯钨的硬度和强度都很高,钨的铸锭在切削加工时,由于晶粒粗大,易产生掉块而使加工表面粗糙。切削钨锭和钨棒可以使用硬质合金作刀具材料,常用的硬质合金牌号有YG6、YG8、YS2(YG10H)、726等。

用硬质合金切削钨锭或钨棒,可选用45o主偏角,荒车时前角与后角应小些,粗车与半精车时前角、后角适当加大。纯钨性极脆,切削时易崩边或剥落,刀具切入切出时,应减小进给量,以防止刀具破损。钨的切削参数推荐值见表10-2。

CBN刀具也可以加工纯钨。例如,用DLS—F复合片车削φ10 mm钨棒,在ν

C =30m/min、f=0.1mm/r、a

p

=0.1mm;γ

O

=-4o、α

O

=12o、λ

O

=0o、Κ

r

=90o、r

ε=0.3mm、

倒棱为0.25mm×(-8o)的条件下,当后刀面磨损0.2mm时,切削路程为104 m。而

用YG6X刀片,当ν

C

=9.5m/min、后刀面磨损0.2 mm时,切削路程为57.6m。可见,CBN刀具的切削速度为YG6X硬质合金刀具3倍的条件下,耐用度为其2倍。

虽然CBN刀具硬度高,耐磨性好,但脆性较大,强度和韧性差,不适于冲击大的切削加工。用CBN刀具加工纯钨,可选用较高的切削速度,但切削深度和进给量应小些。

5.怎样切削加工钨合金?

以钴、镍作粘结剂用粉末冶金法烧结成的钨合金密度大,称为高密度合金,也称高比重合金。这类合金可以通过锻造或热处理来提高其致密度和强度。通常

>981MPa,硬度为>HRC40。

钨合金的抗拉强度为σ

b

钨合金的导热系数比纯钨小,切屑呈颗粒状,刀——屑接触长度短,切削温度很高,容易产生刀瘤和粘结磨损。切削钨合金要求刀具材料导热性好,抗弯强度和韧性较高,红硬性好。推荐选用碳化钨基细晶粒超细晶粒硬质合金,如YDl5、YM051等。

切削钨合金时,刀具要求锋利,又要保证刃口强度。刀具几何参数可选用:γO=-8o、αO=8o、Κr=75o、rε=0.5mm。切削用量可选用:νC=38m/min,f=0.24mm/r,a

=1mm。切削时不加切削液。

p

6.怎样改善钨的切削加工性?

钨的切削加工性很差,为了提高加工效率和加工质量,可以采取以下方法改善钨的切削加工性:

(1)钨坯表面有很硬的氧化层,加工时会使刀具磨损加剧或产生“打刀”现象。因此在加工前,可将钨坯进行喷砂处理,去除表面氧化层,减轻刀具磨损。

(2)金属从塑性到脆性的转变温度称为塑脆性转变温度。纯钨的塑脆性转变温度很高,为改善其切削加工性,可用喷灯将工件加热到200℃以上,再进行切削加工。

(3)进行渗铜处理,也可改善钨的切削加工性。渗铜后的钝钨车削情况与45号钢相似。

(4)钨中加入一些氧化锆,其切削加工性也能得到较大的改善。

8.铌的性能对切削加工有什么要求?怎样进行切削加工?

铌的强度、硬度低而韧性高,具有良好的冷塑性。在切削加工过程中,随着温度升高,吸收氧氮等气体,对铌的性能产生显著影响。因此,切削加工铌的主要问题是防止切削温度过高,要求采用锋利的刀具、较低的切削速度,并浇注大量的切削液。

切削铌的刀具材料可采用高速钢或YG8、YW2等硬质合金,但不宜采用含铌

的硬质合金作刀具材料。用硬质合金刀具时,刀具的几何参数可选用:γ

O

=20o~

25o,α

O =10o~15o,Κ

r

=45o,Κ′

r

=15o,γ

O1

=-5o~0o,b

γ=0.1~0.3mm,rε=0.2~

0.5mm。卷屑槽半径=4~6mm。精加工时应适当加大前角、主偏角,减小刀尖圆弧

半径。切削用量的选择如下:粗加工时ν

c =45~80m/min,a

p

=5~8mm,f=0.3~0.5

mm/r;半精加工时ν

c =60~100m/min,a

p

≤2mm,f=0.2~0.4mm/r;精加工时ν

c =70~120m/min,a

p

=0.1~0.5mm,f=0.1~0.15 mm/r。采用高速钢刀具时,ν

c

≤30m/min,f≤0.3mm/r。

9.钽的性能对切削加工有什么要求?怎样进行切削加工?

钽的熔点高、密度大,退火状态下具有良好的塑性,高温时性能也较稳定。

退火后的钽材软而韧,切削时会产生严重的粘附现象,引起刀具的粘结磨损。特别是切削速度低于20m/min时,粘刀和撕裂现象更为严重。当切削速度高于40m/min时,撕裂现象大为减轻。切削时要求刀具尽可能锋利,切削速度不可太低。一般采用硬质合金作刀具材料,常用的有YG8、YW2等。采用较大前角和主

偏角,刀具几何参数为:γ

O =35o~45o,α

O

=5o~8o,Κ

r

=90o,Κ′

r

=5o,γ

O1

=-2

o~2o,b

γ=0.1~0.3mm,rε=0.2~0.5mm,前后面表面粗糙度R a< 0.16~0.32μm,以减少摩擦和粘刀现象。

切削用量的选择如下:粗车时ν

c =30~70m/min,a

p

=5~8mm,f=0.2~0.4mm/r;

精车、半精车时ν

c =50~80m/min,a

p

≤1.5mm,f=0.1~0.3mm/r。切削时应使用

冷却与润滑作用兼备的切削液,流量要充足。

10.锆的性能对切削加工有什么要求?怎样进行切削加工?

锆的熔点较高,但软化温度低,在发生相变的温度下已显著软化。锆在切削时会产生很多与切削钛及其合金相似的特点,易产生加工硬化,刀一屑易粘结,弹性变形大。锆的韧性好,切屑呈带状,微量切削时易引起燃烧。因此,切削锆时应尽量避免微量切削和防止工件变形。刀具要求锋利并尽量降低刀具表面粗糙度值,并磨出卷屑槽,卷屑槽半径6~10mm,以控制切屑拳曲和折断。

切削锆及其合金可选用硬质合金或高速钢作刀具材料,常用的硬质合金牌号

有YG6、YG8等。车削锆铸锭时,γ

O =16o~23o,α

O

=10o~15o,Κ

r

=45o,Κ′

r

=15

o,γ

O1=-5o~-2o,b

γ=0.2~0.5mm,rε=0.2~0.5mm;粗车时νc=90~150m/min,

a p =5~8mm,f=0.2~0.5mm/r;半精车时ν

c

=120~200m/min,a

p

=1~2mm,f=0.3~

0.6mm/r。车削锻件时,γ

O =0o~10o,α

O

=8o~12o,Κ

r

=45o~75o,Κ′

r

=15o,

γO1=0o~5o,bγ=0.2~0.5mm,rε=0.5~3mm;νc=40~50m/min,a p=3~10mm,

f=0.3~1.0mm/r。采用高速钢刀具切削锆及其合金,可适当加大前角,一般取γO

=15o~30o

切削加工锆及其合金,应大量使用水溶性切削液,以控制切削温度,减少加工过程中的加工硬化、粘结、自燃等现象。

锆及其合金的铣、钻、铰、攻丝可参照钛合金加工。

金属材料切削加工性

第一章金属材料切削加工性 切削加工性:Machinability,指金属材料被切削加工成合格零件的难易程度。例如:以车削45#钢为例: 材料硬度HB200(正火) 单位切削力κc=200kg/mm2 用YT15车刀车削:IT8 νc=120 θ=800oC 此种车削方法家喻户晓,人人皆知,谁都会做,没什么难点。 1. 铝合金,这是比较好加工的,κc=70,νc=800m/min时,θ也不高,T很长。 2. 灰口铸铁HT200 κc=114 断屑 切削加工性评价指标: ①刀具耐用度高;T ②许用切削速度高;νc ③已加工表面易于达到; ④车削时断屑; ⑤切削力小,切削温度低。F c θ 3. 45#淬火HRC50 切削力F c大,切削温度θ高,刀具耐用度T低。 一般情况下不车,只能磨削。IT8 §1—1 衡量切削加工性指标

以车削45#钢(HB200)为参照基准: 刀具材料:YT15; 刀具耐用度:T=60min ; [ν60]j =100m/min ; 当切削LY12 ν60=300m/min 相比 []6060300 3100 r j νκν= == 一、称相对加工性 相对加工性比较表 二、衡量指标: 1. 刀具耐用度T : T 较长,加工性较好。 例:45#钢 T=60min 30C r M n SiA T=20min 加工性差。 2. 切削速度νc : 例:45#钢 νc =100m/min YT15 LY12 νc =300m/min YG15

300 3 100 r κ= = 加工性好。 泰勒公式: 0.4c A T ν= 切削速度是根据刀具耐用度确定的。一定刀具耐用度下有一个允许的切削速度νT 。 3. 切削力F c (或者κc ) 凡切削力大者,加工性差。 单位切削力κc 比较 4. 切削温度(θ) 凡是切削温度高者,加工性差。 切削温度比较表 条件: νc =60m/min a p =3 f=0.1 见图(一) θo

机械材料切削性能研究3

徐州建筑学院继续教育学院 专业专科毕业论文 机械材料切削加工性能的研究学生姓名: 学号: 指导教师: 专业: 年级: 教学点:江苏省交通技师学院 二0一二年六月

摘要:材料的化学成分不一样, 材料的组织结构不同, 热处理的方法不同, 力学性能也不同, 其切削加工性也完全不同。而切削加工性又会影响刀具的耐用度、零件表面质量、产品的生产率, 甚至使被加工零件变成次品、废品。因此, 必须对影响工件材料切削加工性的因素进行分析, 为以后选择正确的加工工艺路线提供依据。主要对影响工件材料切削加工的各种因素如材料的力学性能、物理性能、化学性能、化学成分、金相组织等进行了较为详细的分析, 并提出了改善工件材料切削加工性的基本途径。 关键词:切削加工、热处理、工艺路线,物理特性 Abstract: Chemical composition is not the same as the organizational structure of the material, heat treatment, mechanical properties, its machinability is also completely different. Cutting would affect the durability of the tool parts surface quality, the product of productivity, even the parts to be processed into defective, waste. Therefore, we must analyze the factors affecting the machinability of the workpiece material to provide a basis for the future to select the correct processing line. On a variety of factors influence the machining of the workpiece material, such as the mechanical properties, physical properties, chemical properties, chemical composition, microstructure, etc. in a more detailed analysis, and basic way to improve workpiece material machinability. Keywords:Machining, heat treatment, process route, the physical characteristics

难切削材料的加工及其精密切削加工方面的问题分析

难切削材料的加工及其精密切削加工方 面的问题分析 研究表明,由于其在一定范围内能够有效地解决难切削材料的加工及其精密切削加工方面的问题并在加工中具有一系列的特点,因而越来越引起人们的重视而受到世界各国的瞩目。 1.普通切削与振动切削 在普通切削中,切削是靠刀具与工件的相对运动来完成的。切屑和已加工表面的形成过程,本质上是工件材料受到刀具的挤压,产生弹性变形和塑性变形,使切屑与母体分离的过程(见图1)。在这种刀具始终不离开切削的普通切削中,刀具的作用包括两个方面:一个是刀刃的作用;一个是形成刀刃的刀面的作用。由于刀刃与被切物接触处局部压力很大,从而使被切物分离。刀面则在切削的同时撑挤被切物,促进这种分离。普通切削中,伴随着切屑的形成,由于切屑与刀具之间的挤压和摩擦作用,将不可避免地产生较大的切削力,较高的切削温度,使刀具磨损和产生切削振动等有害现象。 基于这种思想,在和有害的自激振动现象作斗争中产生了一种新的切削方法——振动切削。振动切削即是通过在切削刀具上施加某种有规律的、可控的振动,使切削速度、背吃刀量发生周期性的改变,从而得到特殊的切削效果的方法(见图2)。振动切削改变了工具和被加工材料之间的空间与时间存在条件,从而改变了加工(切削)机理,达到减小切削力、切削热,提高加工质量和效率的目的。振动切削按所加频率不同可分为高频振动和低频振动,低频振动仅仅从量上改变切屑的形成条件,主要用来解决断屑问题以及与此相关的一系列问题。而超声振动(高频振动)切削已经使切屑形成机理产生重大变化,可以提高被加工材料的可加工性,提高刀具寿命和工件加工质量。超声加工的工艺效果来自刀具和工件之间的分离运动,即它是一种脉冲式的断续切削过程。所以,作为精密加工和难加工材料加工中的一种新技术,它的切削效果已经得到世界各国的一致公认,认为它是传统加工技术的一个飞跃。 振动切削系统的流程是:超声波电源输出大功率的超声频的交流信号,由换能器将电能转换成同频率的机械振动,经过变幅杆进行振幅放大,从而带动刀具振动。其组成如图3所示。把振动系统固定在刀架上,刀杆的左端是刀片,右端是振动驱动中心,由换能器和变幅杆将纵向振动转换为弯曲刀杆的横向振动。 2.振动切削的特点及工艺效果分析 (1)振动切削的特点 振动切削可以使切削力大幅度降低,使摩擦热减小、刀具寿命提高和已加工表面粗糙度值减少,即有以下特点:

难切削材料的加工技术

一、什么是难切削材料 切削加工性差的材料, 二、哪些因素影响材料的切削加工性 1)材料的化学成分和配比,它是影响材料的热处理性能和材料切削加工性的根 本因素。 2)材料的热导系数和线膨胀系数的影响 3)材料的硬度、强度、韧性、塑性和弹性模量的影响 4)材料的金相组织的影响 三、具体难加工材料的加工 1)淬火钢的切削 淬火钢是指钢材经过淬火处理后,其结构为马氏体,硬度大于HRC50的钢,它在难切削材料中占有相当大的比例。传统加工淬火钢的方法是磨削,但为了提高加工效率,解决工件形状复杂、不能磨削和淬火后工件产生形状、位置误差的问题,也需要采用车削、铣削、镗削、钻削和铰削等切削加工。 淬火钢在切削加工时有以下特点:淬火钢的硬度高达HRC50-65,强度高达2100-2600Mpa,几乎没有塑性,按照工件材料切削加工性分级属于最难切削的9a级,由于它的强度、硬度高,导热系数只有一般钢材的1/7,所以在切削时不仅切削温度高而且单位切削力高达4500Mpa。它属于脆性材料,切削力集中在刃口附件,易造成崩刃或打刀。 切削淬火钢的刀具材料应选择硬度高抗弯强度也高的硬质合金或陶瓷和立方氮化硼。切削淬火钢的刀具几何参数:通常情况下前角为-10°—0°,断续切削时前角为-10°—-30°,后角为8°—10°,主偏角为30°—60°。刃倾角为-5°—0°,刀尖圆弧半径为0.5—2mm。 切削淬火钢的切削用量,首先,要根据刀具材料和工件材料的物理力学性能、工件形状、工件系统刚性和加工余量来选择。其次,是考虑合理的切削速度。再次,选择切削深度和进给量。一般淬火钢的耐热性为摄氏200—400度,高于此温度,淬火钢的硬度开始下降,而硬质合金刀具、陶瓷刀具和立方氮化硼的耐热性分别为摄氏800—1000度、1100—1200度和1400—1500度,所以在切削淬火钢时,要充分利用这已特性,合理选择切削速度。硬质合金刀具、陶瓷刀具和立方氮化硼的切削速度应控制在:30—70m/min、60—120 m/min和100-200 m/min. 在连续切削的最佳切削速度的情况下,切下的切削为暗红色,在车削淬火钢螺纹时,为了使切入、切出处平稳,应现在入刀和出刀处倒一个45°的角而且每次吃刀深度要小一些。钻孔时,一定要合理选择切削速度,一般为30—50 m/min,避免转速过低,在用小钻头钻孔时要勤退刀,以免工件因为热胀冷缩将钻头夹住而使钻头折断。铣削淬火钢是断续切削,为了使切入切出平稳刀具主偏角应小一些而且还应选择负的刃倾角,硬质合金铣刀的切削速度为40—50 m/min,陶瓷铣刀的切削速度为100 m/min左右,每刀齿进给量为0.05—0.15mm。刨削时除应选用较大的负刃倾角外,硬质合金的切削速度应控制在10 m/min左右,进给量为0.1—0.2mm。

难加工材料

难加工材料 绪论: 1.难加工材料分类?特点? 2.难切削材料有哪些特点? 3.改善难切削材料切削加工性的基本途径有哪些? 第一章淬火钢的切削加工 1.1 什么是淬火钢?它有哪些切削特点? 1.2怎样选择切削淬火钢的刀具材料? 1.3切削淬火钢的实例有哪些? 第二章不锈钢的切削加工 第三章高强度钢和超高强度钢的切削加工 第四章高锰钢的切削加工 第五章冷硬铸铁和耐磨铸铁的切削加工 第六章钛合金的切削加工 第七章高温合金的切削加工 第八章热喷涂材料的切削加工 第九章难熔金属和纯金属的切削加工 第十章其他难加工材料

绪论: 1.难切削材料分哪几类?各有什么特点? 难加工材料,科学地说,就是切削加工性差的材料,即硬度>HB250,强度σb>1000MPa,延伸率>80%,冲击值αK>0.98MJ/m2,导热系数K<41.8W(m·K)。 难加工材料种类很多,从金属到非金属材料的范围也很广泛,初步可分为以下八大类: (1)微观高硬度材料:如玻璃钢、岩石、可加工陶瓷、碳棒、碳纤维、各种塑料、胶木、树脂、合成材料、硅橡胶、铸铁等。 这类材料的特点是含有硬质点相,其中有的研磨性很强。 由于这些材料的耐磨性很好,切削时起磨料作用,故刀具主要承受磨料磨损,在高速切削时也同时伴随着物理、化学磨损。 (2)宏观高硬度材料:如淬火钢、硬质合金、陶瓷、冷硬铸铁、合金铸铁、喷涂材料(镍基、钴基)等。 这类材料的主要特点是硬度高。切削这类材料时,由于切削力大,切削温度高,刀具主要是磨料磨损和崩刃。

(3)加工时硬化倾向严重的材料,如不锈钢、高锰钢、耐热钢、高温合金等。 这类材料的塑性高、韧性好、强度高,强化系数高。切削加工时的切削表面和已加工表面硬化现象严重。由于这类材料的强度高,导热系数低,切削温度高,切削力大,刀具主要承受磨料磨损、粘结磨损和热烈磨损。 (4)切削温度高的材料:如合成树脂、木材、硬质橡胶、石棉、酚醛塑料、高温合金、钛合金等。 这类材料的导热系数很低。切削这类材料时,刀具易产生磨料磨损、粘结磨损、扩散磨损和氧化磨损。 (5)高塑性材料:如纯铁、纯镍、纯铜等。 由于这类材料延长率大于50%,塑性高,切削时塑性变形很大,易产生积屑瘤和鳞刺,刀具主要时磨料磨损和粘结磨损。 (6)高强度材料:是指强度σb>1000MPa的材料,如奥氏体不锈钢、高锰钢、高温合金和部分合金钢。 由于它们的强度高,切削时的切削力大,切削温度高,不仅刀具易磨损,而且切屑不易处理。

第七章 工件材料的切削加工性习题

第七章工件材料的切削加工性 工件材料的种类繁多,性能各异。本章主要研究工件材料的切削加工性、影响切削加工性的因素和改善切削加工性的办法。 7.1 必备知识和考试要点 1.了解切削加工性的概念和衡量指标。 2.熟悉影响材料切削加工性的因素。 3.掌握改善材料切削加工性的办法。 4.了解难加工材料切削加工的问题和对策。 7. 2 典型范例和答题技巧。 [例7.1] 工件材料切削加工性的含义是什么?为什么说它是相对的? [答案] 工件材料切削加工性是指在一定的条件下,工件材料切削加工的难易程度。由于切削加工的条件和要求不同,材料的切削加工性有不同的内容和指标。所谓材料切削加工的难易,都是相对某种工件材料而言,这种难易程度是一个相对概念。例如以45钢为基准时,可以说高强度钢切削加工性不好,就是相对于45钢而言。 [例7.2] 常用的切削加工性衡量指标有哪些?各用于什么场合?何谓相对加工性? [答案] 常用的切削加工性衡量指标有:(1)以表面加工质量衡量切削加工性。容易获得好的加工表面质量的材料,切削加工性好,反之则差。该指标是零件精加工时常用的衡量指标。(2)以刀具耐用度衡量切削加工性。在相同的切削条件下加工不同材料时,刀具耐用度较长,或允许的切削速度较高,或切除金属体积较多,切削加工性好。其中相同切削条件下比较刀具耐用度和相同刀具耐用度下比较允许的切削速度是最常用的切削加工性指标,可适用于各种加工条件。(3)以单位切削力、切削温度衡量切削加工性。在相同的条件下,切削力小、切削温度低时,材料的切削加工性好。在粗加工或机床刚性、动力不足时用这种衡量指标。(4)以断屑性能衡量切削加工性。在自动机床、组合机床及自动生产线或深孔钻削等对工件材料断屑性能有要求时,采用这种衡量指标。 相对加工性K v是指以强度 b=0.637GPa的45钢的v60为基准,记为(v60);其它被切削材料的v60与之相比的数值,称为相对加工性,即,K v= v60/(v60);K v愈大,切削加工性愈好。 [例7.3] 影响工件材料切削加工性的主要因素有哪些?如何影响? [答案] 影响工件材料切削加工性的主要因素有:(1)工件材料的硬度。硬度包括材料的常温硬度、高温硬度、硬质点和加工硬化。硬度高时,切削力大,切削温度高,降低了刀具耐用度,甚至发生刀尖烧损或崩刃。(2)材料的强度。材料强度包括常温强度和高温强度。材料强度高时,切削力大,切削温度高,刀具磨损加快。(3)工件材料的塑性和韧性。塑性大时,切屑变形大,切削力增大,切削温度也较高,易发生粘结,刀具磨损加大,工件加工表面也粗糙。塑性低或呈脆性时,刀刃处的切削负荷大,刀具磨损加剧。工件材料韧性大时,断屑困难。(4)材料的导热系数。导热系数小的材料,切削温度高,切削加工性差。(5)材料的化学成分。化学元素对材料的作用不相同,影响材料的物理机械性能。钢中Cr、Ni、V、Mn、W、Mo等元素能提高材料的强度和硬度;而铅、硫、磷等能降低材料的强度和塑性,从而影响材料的加工性能。铸铁中硅、铝、铜等元素能促进铸铁碳的石墨化,可提高切削加工性;Cr、Mn、P、S等元素阻碍石墨化,会降低切削加工性。(6)材料的组织。材料的组织不同,其物理机械性能就不同,切削加工性也不一样。铁素体塑性大,切削加工性不好,珠光体硬度、强度、塑性等比较适中,切削加工性好。索氏体和托氏体、渗碳体和马氏体等,或强度大,或硬度高,或两者兼有,切削加工性差。奥氏体塑性、韧性大,加工硬化严重,切削加工性差。 [例7.4] 为什么说低碳钢与高碳钢的切削加工性都不如中碳钢?

金属材料切削加工性

第一章 金属材料切削加工性 切削加工性:Machinability ,指金属材料被切削加工成合格零件的难易程度。 例如:以车削45#钢为例: 材料硬度 HB200(正火) 单位切削力 κc =200kg/mm 2 用YT15车刀车削: IT8 ν c =120 θ=800oC 此种车削方法家喻户晓,人人皆知,谁都会做,没什么难点。 1. 铝合金,这是比较好加工的,κc =70, νc =800m/min 时,θ也不高,T 很长。 2. 灰口铸铁HT200 κc =114 断屑 切削加工性评价指标: ① 刀具耐用度高; T ② 许用切削速度高; νc ③ 已加工表面易于达到; ④ 车削时断屑; ⑤ 切削力小,切削温度低。 F c θ 3. 45#淬火 HRC50 切削力F c 大,切削温度θ高,刀具耐用度T 低。 一般情况下不车,只能磨削。 IT8 §1—1 衡量切削加工性指标 以车削45#钢(HB200)为参照基准: 刀具材料:YT15; 刀具耐用度:T=60min ; [ν60]j =100m/min ; 当切削L Y12 ν60=300m/min 相比 []6060300 3100 r j νκν= == 一、称相对加工性 1. 刀具耐用度T : T 较长,加工性较好。 例:45#钢 T=60min 30C r M n SiA T=20min 加工性差。 2. 切削速度νc :

例:45#钢 νc =100m/min YT15 LY12 νc =300m/min YG15 300 3 100 r κ== 加工性好。 泰勒公式: 0.4c A T ν= 切削速度是根据刀具耐用度确定的。一定刀具耐用度下有一个允许的切削速度νT 。 3. 切削力F c (或者κc ) 凡切削力大者,加工性差。 4. 切削温度(凡是切削温度高者,加工性差。 条件: νc p θo 10 20 30 40 50 60 70 80 90 100 110 120 130 νc m/min 图(一) 1—GH131 2—1Cr18Ni9Ti 3—45#钢(正火) 4—HT200 YT15—45# YG8—GH131 1Cr18Ni9Ti HT200 γo =15o α0=8o κr =75o λs =0o γε=0.2 a p =3 f=0.1

难切削材料加工参数选择

1. 前角选择的原则:刀具材料的抗弯强度和韧性较高时,可选用大前角。高速钢刀具的前 角,在同样条件下,可比硬质合金刀具的前角大5-10°,而陶瓷的前角又要比硬质合金的小一些。加工塑性材料宜选较大的前角,以减少金属变形和摩擦。加工脆性材料时,应选5-15读的较小前角。工件材料硬度、强度较低时,应选用较大前角,反之,选负前角或较小的正前角,以增强刀刃的强度和散热的体积。粗加工取较小的前角,精加工取较大的前角,精密成型刀具取零度前角。 2. 倒棱选择原则:倒棱宽度和进给量有关。倒棱宽度一般取(0.3~0.8)f 粗加工取大值。 进给量f<=0.2mm/r 的精加工刀具,不宜磨出负倒棱。高速钢倒棱前角取-5~0°,硬质合金倒棱角去-15~-5。另外也可以采用刃口钝圆形式代替倒棱,可以增强刃口强度,一般用于粗加工。 3. 后角选用原则:后角主要按照切削厚度来选择。切削厚度小时,宜选用大后角,以减少 刃口圆弧半径,使刃口锋利。当f<=0.25mm/r 时,取后角为10~12°,反之,取后角为6~8°。后角还依据材料强度和硬度选择,材料强度和硬度高,应取小的后角,相反则取大的后角,当工艺系统刚性差时,应选用小的后角或刃带宽=0.1mm~0.2mm,角度为0的刃带。另外后角的选择与刀具的运动轨迹有关。副后角选择原则与主后角相似。 4. 主偏角选择原则:在工艺系统和工艺要求允许的情况下,主偏角宜选的小一些。工艺系 统刚性好、切深小和工件硬度高时,如对冷硬铸铁和淬火钢的加工,取10~30°,工艺系统差可取75~93°。粗加工时为了增加刀尖强度,改善散热条件,应取较小主偏角。 5. 副偏角的选择原则:在工艺系统刚性较好的情况下,副偏角不宜取得太大,精加工时取 5~10°,粗加工时取10~15°。切断刀或切槽刀为了增强刀头强度,取1~2°。 6. 刃倾角选择原则:粗加工时,去3~5°,精加工时,取45~75°,冲击性较大时,取-30~-45, 强力刨削是,取-10~-20°,当车削硬度高的材料时,去-15~-5°,采用金刚石和立方氮化硼刀具时,取-5~0°。 7. 控制积屑瘤产生的措施:(1)降低和提高切削速度,切削速度大于120m/min 或小于 15m/min 时,产生积屑瘤小。(2)采用润滑性能良好的切削液(3)增大刀具前角(4)提高工件材料的硬度,可采用热处理工艺,将材料的硬度提高。(5)降低前刀面的粗糙度。 8. 材料的切削加工性:材料在加工时的难易程度,不仅取决于材料本身的成分、结构、性 能和状态,而且也取决于切削条件。 9. 材料的相对切削加工性:一般以切削未淬火的45钢时的刀具耐用度T=60min 、切削速 度=60m/min 为基准,将其他材料在相同条件下的切削速度的比值,称为此材料相对45号钢的相对切削加工性,用r K 表示,计算公式如下:Tj T r v v K / T v -其他材料切削速度,Tj v -基准材料切削速度。 典型的难切削材料相对切削加工性 量,在相同切削条件下,切削力、切削温度高的材料比切削力、切削温度低的材料切削

刀具材料,牌号,难加工材料刀具几何形状

刀具材料的分类: 工具钢碳素工具钢合金工具钢高速工具钢普通高速钢高性能高速钢硬质合金 按晶粒大小区分: 普通硬质合金细颗粒硬质合金微颗粒硬质合金 按主要成分区分: 钨基硬质合金钛基硬质合金陶瓷氧化物陶瓷氮化物陶瓷超硬材 料立方氮化硼金刚石 刀具材料是决定刀具切削性能的根本因素,对于加工效率、加工质量、加工成本以及刀具 耐用度影响很大。使用碳工具钢作为刀具材料时,切削速度只有10m/min左右;20世纪 初出现了高速钢刀具材料,切削速度提高到每分钟几十米;30年代出现了硬质合金,切削速度提高到每分钟一百多米至几百米;当前陶瓷刀具和超硬材料刀具的出现,使切削速度 提高到每分钟一千米以上;被加工材料的发展也大大地推动了刀具材料的发展。性能优良 的刀具材料,是保证刀具高效工作的基本条件。刀具切削部分在强烈摩擦、高压、高温下 工作,应具备如下的基本要求。高硬度和高耐磨性; 刀具材料的硬度必须高于被加工材料 的硬度才能切下金属,这是刀具材料必备的基本要求,现有刀具材料硬度都在60HRC以上。刀具材料越硬,其耐磨性越好,但由于切削条件较复杂,材料的耐磨性还决定于它的化学 成分和金相组织的稳定性。足够的强度与冲击韧性 . 强度是指抵抗切削力的作用而不致于 刀刃崩碎与刀杆折断所应具备的性能。一般用抗弯强度来表示。 冲击韧性是指刀具材料在间断切削或有冲击的工作条件下保证不崩刃的能力,一般地,硬 度越高,冲击韧性越低,材料越脆。硬度和韧性是一对矛盾,也是刀具材料所应克服的一 个关键。高耐热性耐热性又称红硬性,是衡量刀具材料性能的主要指标。它综合反映了刀具材料在高温下保持硬度、耐磨性、强度、抗氧化、抗粘结和抗扩散的能力。良好的工艺 性和经济性. 为了便于制造,刀具材料应有良好的工艺性,如锻造、热处理及磨削加工性能。当然在制 造和选用时应综合考虑经济性。当前超硬材料及涂层刀具材料费用都较贵,但其使用寿命 很长,在成批大量生产中,分摊到每个零件中的费用反而有所降低。因此在选用时一定要 综合考虑. 硬质合金常用牌号及用途介绍:牌号/相当标准ISO/ 物理机械性能(min):抗弯强度N/mm2 ;硬度HRA/用途 :适于铸铁.有色金属及合金.淬火钢合金钢小切削断面高速精加工.; 2、YG6/ K20 /1900; 90.5 /适于铸铁.有色金属及合金.非金属材料中等到切削速度下半精加工和精加工. 3、YG6x /K15/ 1800; 92.0/ 适于冷硬铸铁.球墨铸铁.灰铸铁.耐热合金钢的中小切削断面高速精加工.半精加工.

难加工材料

摘要:阐述了难加工材料的特点,重点介绍了对难加工材料进行车削加工时应采取的措施,列举了几种不同材料车削时应选取的参数。 引言 在压缩机的生产过程中,经常会接触到一些难加工的材料,如制造压缩机叶轮的材 料有一种含有Cr、Ni、Mo等合金元素的高强度结构钢,这种钢材一经调质处理达 到一定的硬度时,很难车削。钦合金叶轮因为钦合金元素的存在给车削带来诸多麻 烦,大型硬齿面齿轮,渗碳淬火的过程会造成一些需要加工的表面过硬而难以车削 加工;还有一些运输机械常用紫铜等纯金属制造的套类零件也给车削带来相当大的 麻烦。为了解决这些难加工材料的车削加工问题,需要对难加工材料的特性有足够 的了解,然后采取有针对性的措施才能予以解决。 1 难加工材料的加工特点 1.何谓难加工材料 所谓难加工材料,主要是指切削加工性能差的材料。金属材料切削加工性的好坏, 主要是从切削时的刀具耐用度、已加工表面的质量及切屑形成和排除的难易程度3 个方面来衡量。只要上述这3个方面有一项明显的差,就可认为是难加工材料。常 见的难加工材料有高强度钢、不锈钢、高温合金、钦合金、高锰钢和纯金属(如紫铜) 等。 2.难加工材料的切削特点 a.车削温度:在切削难加工材料时,切削温度一般都比较高,主要原因有以下 两方面。 i.导热系数低:难加工材料的导热系数一般都比较低(纯金属紫铜等除 外),在切削时切削热不易传散,而且易集中在刀尖处。

ii.热强度高:如镍基合金等高温合金在500一800℃时抗拉强度达到最高值。因此在车削这类合金时,车刀的车削速度不宜过高,一般不宜超过10m/min,否则刀具切人工件的切削阻力将会增大。 b.切削变形系数和加工硬化:难加工材料中的高温合金和不锈钢等,这些材料 的变形系数都比较大。在较小的切削速度开始,变形系数就随着车削速度的增大而增大,在切削速度大约达到6m/min的情况下,切屑的变形系数将达到最大值。由于车削过程中形成切屑时的塑性变形,金属产生硬化和强化,使切削阻力增大,刀具磨损加快,甚至产生崩刃。 如高温合金、高锰钢和奥氏体不锈钢奥氏体组织,其硬化的严重程度和深度都很大,要比4 5钢大好几倍。难加工材料由于硬化程度严重,切屑的温度和硬度高,韧性好,以及切削温度高(强韧切屑),如果这样的切屑流经前刀面,就容易产生粘结和熔焊等粘刀现象,粘刀不利于切屑的排除,使容屑糟堵塞,容易造成打刀。粘刀还容易使刀具产生粘结磨损和崩刃。 另外,强韧的切屑呈锯齿形,容易损坏刀具刃口。 c.切削力:难加工材料一般强度较高,尤其是高温强度要比一般钢材大得多, 再加上塑性变形大和加工硬化程度严重,因此车削难加工材料的切削力一般都比车削普通碳钢时大得多。 d.磨损限度与耐用度:由于难加工材料的温度高、热强度高、塑性大、切削温 度高和加工硬化严重,有些材料还有较强的化学亲和力和粘刀现象,所以车刀的磨损速度也较快。车削硬化现象严重的材料,车刀后刀面的磨损限度值不宜过大。硬质合金车刀粗车时的磨损限度为0.9~1.0mm ,精车为0.4~0.6mm 。难加工材料的刀具耐用度对于不锈钢而言为90~150min。对高温合金和钦合金等材料来说,刀具的耐用度时间还要短。车刀的耐用度与选择合理的车削速度和车刀材料及车刀类型都有一定的关系。 2 车削时应采取的措施

难加工材料的切削加工技术

难加工材料的切削加工技术 难加工材料的界定及具体品种,随时代及专业领域而各有不同,例如,宇航产业常用的超耐热合金、钛合金及含有碳纤维的复合材料等,都是该领域的难加工材料。宇航业的工程技术人员开展了加工技术的研究与开发工作,已经研究出适合该领域使用的切削工具和加工方法。近年来,机械制品多功能、高功能化的发展势头十分强劲,要求零件必须实现小型化、微细化。为了满足这些要求,则所用材料必须具有高硬度、高韧性和高耐磨性,而具有这些特性的材料其加工难度也特别大,因此又出现了新的难加工材料。难加工材料就是这样随着时代的发展及专业领域的不同而出现,其特有的加工技术也随着时代及各专业领域的研 另一方面,随着信息化社会的到来,难加工材料切削技术信息也可通过因特网互相交流,因此,今后有关难加工材料切削加工的数据等信息将会更加充实,加工效率也必然会进 切削领域中的难加工材料 在切削加工中,通常出现的刀具磨损包括如下两种形态:(1)由于机械作用而出现的磨损,如崩刃或磨粒磨损等;(2)由于热及化学作用而出现的磨损,如粘结、扩散、腐蚀等磨损,以及由切削刃软化、溶融而产生的破断、热疲劳、热龟裂等。 切削难加工材料时,在很短时间内即出现上述刀具磨损,这是由于被加工材料中存在较多促使刀具磨损的因素。例如,多数难加工材料均具有热传导率较低的特点,切削时产生的热量很难扩散,致使刀具刃尖温度很高,切削刃受热影响极为明显。这种影响的结果会使刀具材料中的粘结剂在高温下粘结强度下降,WC(碳化钨)等粒子易于分离出去,从而加速了刀具磨损。另外,难加工材料中的成分和刀具材料中的某些成分在切削高温条件下产生反应,出现成 在切削高硬度、高韧性被加工材料时,切削刃的温度很高,也会出现与切削难加工材料时类似的刀具磨损。如切削高硬度钢时,与切削一般钢材相比,切削力更大,刀具刚性不足将会引起崩刃等现象,使刀具寿命不稳定,而且会缩短刀具寿命,尤其是加工生成短切屑 在切削超耐热合金时,由于材料的高温硬度很高,切削时的应力大量集中在刃尖处,这将导致切削刃产生塑性变形;同时,由于加工 由于这些特点,所以要求用户在切削难加工材料时,必须慎重选择刀具品种和切削条 难加工材料在切削加工中应注意的问题 切削加工大致分为车削、铣削及以中心齿为主的切削(钻头、立铣刀的端面切削等),这些切削加工的切削热对刃尖的影响也各不相同。车削是一种连续切削,刃尖承受的切削力无明显变化,切削热连续作用于切削刃上;铣削则是一种间断切削,切削力是断续作用于刃尖,切削时将发生振动,刃尖所受的热影响,是切削时的加热和非切削时的冷却交替进行,总的

ansys切削加工受力分析

1绪论 金属切削是机械制造行业中的一类重要的加工手段。美国和日本每年花费在切削加工方面的费用分别高达1000 亿美元和10000亿日元。中国目前拥有各类金属切削机床超过300 万台, 各类高速钢刀具年产量达3.9 亿件, 每年用于制造刀具的硬质合金超过5000吨。可见切削加工仍然是目前国际上加工制造精密金属零件的主要办法。19世纪中期, 人们开始对金属切削过程的研究, 到现在已经有一百多年历史。由于金属切削本身具有非常复杂的机理, 对其研究一直是国内外研究的重点和难点。过去通常采用实验法, 它具有跟踪观测困难、观测设备昂贵、实验周期长、人力消耗大、综合成本高等不利因素。本文利用材料变形的弹塑性理论, 建立工件材料的模型,借助大型商业有限元软件ANSYS, 通过输入材料性能参数、建立有限元模型、施加约束及载荷、计算, 对正交金属切削的受力情况进行了分析。以前角10°、后角8°的YT 类硬质合金刀具切削45号钢为实例进行计算。切削厚度为2 mm时形成带状切屑。提取不同阶段应力场分布云图, 分析了切削区应力的变化过程。这种方法比传统实验法快捷、有效, 为金属切削过程的研究开辟了一条新的道路。 2设计要求 根据有限元分析理论,根据ANSYS的求解步骤,建立切削加工的三维模型。对该模型进行网格划分并施加约束边界条件,最后进行求解得出应力分布云图,并以此云图分析得出结论。 3金属切削简介[3] 金属切削过程,从实质讲,就是产生切屑和形成已加工表面的过程。产生切屑和形成已加王表面是金属切削时密切相关的两个方面。 3.1切削方式 切削时,当工件材料一定,所产生切屑的形态和形成已加工表面的特性,在很大程度上决定于切削方式。切削方式是由刀具切削刃和工件间的运动所决定,可分为:直角切削、斜角切削和普通切削三种方式。 3.2切屑的基本形态 金属切削时,由于工件材料、刀具几何形状和切削用量不同,会出现各种不同形态的切屑。但从变形观点出发,可归纳为四种基本形态。 1.带状切屑切屑呈连续状、与前刀面接触的底层光滑、背面呈毛葺状。

常用刀具材料硬度的比较

第三章 一、选择题 1.31210111下面是关于常用刀具材料硬度的比较,那个选项的论述是正确的(A)A金刚石>CBN>硬质合金>高速钢B金刚石>CBN>高速钢>硬质合金 C金刚石>硬质合金>高速钢>CBN D金刚石>高速钢>硬质合金>CBN 2. 31210122下面属于性质脆、工艺性差的刀具材料是(C) A碳素工具钢 B 合金工具钢 C 金刚石D 硬质合金钢 3. 31210113 目前使用最为广泛的刀具材料是(B) A陶瓷B高速钢和硬质合金 C 碳素工具钢 D CBN 4.31210114 W18Cr4V是:(C) A碳素钢 B 硬质合金钢 C 普通高速钢D 高性能高速钢 5.31210125 W18Cr4V比W6Mo5Cr4V2 好的性能是:(D) A硬度 B 韧性 C 切削性能D可磨性 6.31210116 WC—Co类属于哪一类硬质合金:(A) A YG类 B YT类 C YW类 D YM类 7.31210127 应用于切削一般钢料的硬质合金刀具是(B) A YG类 B YT类 C YW类 D YM类 8.31210128 在加工高温合金(如镍基合金)等难加工材料时,刀具材料可首选:(A) A CBN B 硬质合金 C 金刚石 D 陶瓷 9.31210129 在粗车铸铁时,选用:(B) A YG3 B YG8 C YT5 D YT30 10.3121012A碳素钢、合金钢的连续精加工,应选用:(D) A YG3 B YG8 C YT15 D YT30 11. 3121012B 在连续粗加工、不连续精加工碳素钢时,应选用:(B) A YT5 B YT15 C YT30 D YW2 12.31310121 在数控机床和自动线上,一般采用:(C) A整体式刀具 B 装配式刀具 C 复合式刀具D焊接装配式刀具 13. 32210111 增大前角,下面正确的是:(D) A增大粗糙度 B 增大切削效率 C 切削刃与刀头的强度增大 D 减小切削的变形 14.32210122 对于不同的刀具材料,合理前角(γopt)也不同,硬质合金刀具的γopt (B) 要____ 高速钢刀具的γ opt A大于 B 小于 C 等于 D 都有可能 15 32210113 增大前角可以(B) A减小切削力,导热面积增大B减小切削力,导热面积减小 C增大切削力,导热面积增大D增大切削力,导热面积减小1632210114 下面有关刀具前面的卷屑槽宽度的说法,正确的是:(D) A愈小愈好 B 愈大愈好 C 无所谓 D 根据工件材料和切削用量决定 17 32310111 增大后角(A) A减小摩擦 B 增大摩擦 C 切削刃钝园半径越大 D 刀头强度增强1832310121 加工下面哪种材料时,应该采用较小的后角(C) A工件材料塑性较大B工件材料容易产生加工硬化 C 脆性材料 D 硬而脆的材料

难切削材料怎样选用切削液

难切削材料怎样选用切削液 合理选用切削液,可以有效地减小切削过程中的摩擦,改善散热条件,降低切削力、切削温度和刀具磨损,提高刀具耐用度和切削效率,保证已加工表面质量和降低产品的加工成本。随着科学技术和机械加工工业不断发展,一些新型、高性能的工程材料得到广泛应用。这些材料大都属于切削加工性很差的难切削材料,这就给切削加工带来了难题。为了使难切削材料的加工难题获得解决,除合理选择刀具材料、刀具几何参数、切削用量及掌握操作技术等切削条件外,合理选用切削液也尤为重要的条件。 在难切削材料中,有的硬度高达65~70HRC,抗拉强度比45号钢的抗拉强度高三倍左右,造成切削力比切削45号钢高200%~250%;有时材料导热系数只有45号钢导热系数的1/4~1/7或更低,造成切削区热量不能很快传导出去,形成高的切削温度,限制切削速度的提高;有的材料高温硬度和强度高,有的材料加工硬化的程度比基体高50%~200%,硬化深度达0.l~0.3mm,造成切削的困难;有的材料化学活性大,在切削中和刀具材料产生亲和作用,造成刀具产生严重的粘结和扩散磨损;有的材料弹性模量极小和弹性恢复大及延伸率很大,更难于切削。因为,在切削各种难切削材料时,要根据所切材料各自的性能与切削特点与加工阶段,选择相宜的切削液,以改善难切削材料的切削加工性,而达到加工的目的。 常用的切削液有:水溶液、普通乳化液、极压乳化液、矿物油、植物油、动物油、极压切削油等。其中,水溶液的冷却效果最好,极压切削液的润滑效果最好。一般的切削液,在200℃左右就失去润滑能力。可是在切削液中添加极压添加剂(如氯化石蜡、四氯化碳、硫代磷酸盐、二烷基二硫、代磷酸锌)后,就成为润滑性能良好的极压切削液,可以在600~1000℃高温和1470~1960MPa高压条件下起润滑作用。所以含硫、氯、磷等极压添加剂的乳化液和切削油,特别适合于难切削材料加工过程的冷却与润滑。下面介绍几种难切削材料加工时的切削液选用。 不锈钢:在粗加工时,选用3%~5%乳化液或10%~15%极压乳化液、极压切削油、硫化油;在精加工时,选用极压切削油或10%~20%极压乳化液、硫化油、硫化油80%~85%加CCl415%~20%、矿物油78%~80%加黑机油或植物油和猪油18%加硫1.7%、全损耗系统用油90%加CCl410%、煤油50%加油酸25%加植物油25%、煤油60%加松节油20%加油酸20%;拉削、攻螺纹、铰孔时,采用10%~15%极压乳化液或极压切削油、硫化豆油或植物油;在硫化油中加10%~20% CCl4、在猪油中加20%~30% CCl4、或在硫化油中加10%~15%煤油用于铰孔;在硫化油中加入15%~20%CCl4或用白铅油加全损耗系统用油或用煤油稀释氯化石蜡或用MoS2油膏用于攻螺纹;在滚齿或插齿时,用20%~25%极压乳化液或极压切削油;在钻孔时,用10%~15%乳化液或10%~15%极压乳化液、极压切削油、硫化油、MoS2切削剂。 高温合金:除采用切削不锈钢所用的切削液外,在粗加工时,采用硫酸钾2%加亚硝酸钾1%加三乙醇胺7%加硼酸7%~10%加甘油7%~10%加水余量;或采用葵二酸7%~10%加亚硝酸钠5%加三乙醇胺7%~10%加硼酸7%~10%加甘油7%~10%加水余量。 钛合金:粗加工时,采用3%~5%乳化液或10%~15%极压乳化液;精加工时,

金属材料的工艺性能

金属材料的工艺性能 金属材料的工艺性能是指制造工艺过程中材料适应加工的性能,即指其铸造性能、锻造性能、焊接性能、切削加工性能和热处理工艺性能。 1、铸造性能 金属材料铸造成形获得优良铸件的能力称为铸造性能,用流动性、收缩性和偏析来衡量。 1)流动性熔融金属的流动能力称为流动性。流动性好的金属容易充满铸型,从而获得外形完整和尺寸精确、轮廓清晰的铸件; 2)收缩性铸件在凝固和冷却的过程中,其体积和尺寸减少的现象称为收缩性。铸件用金属材料的收视率越小越好; 3)偏析铸锭或铸件化学成分和组织的不均匀现象称为偏析,偏析大会使铸件各部分的力学性能有很大的差异,降低铸件的质量。 被铸物质多为原为固态,但加热至液态的金属,如铜、铁、锡等,铸模的材料可以是沙,金属甚至陶瓷。南关菜市场东头前两年有两个人把大量的铝易拉罐盒熔化后倒进模子里铸成大大小小的铝锅、铝盆等 2、锻造性 工业革命前锻造是普遍的金属加工工艺,马蹄铁、冷兵器、铠甲均由各国的铁匠手锻造(俗称打铁),金银首饰加工、金属包装材料是锻造与冲压的总和。什么是锻造性能? 锻造性能:金属材料用锻压加工方法成形的适应能力称锻造性。

锻造性主要取决于金属材料的塑性和变形抗力。塑性越好,变形抗力越小,金属的锻造性能越好。高碳钢不易锻造,高速钢更难。 (塑性:断裂前材料产生永久变形的能力。) 3、焊接性 金属材料对焊接加工的适应性成为焊接性。也就是在一定的焊接工艺条件下,获得优质焊接接头的难易程度。钢材的含碳量高低是焊接性能好坏的主要因素,含碳量和合金元素含量越高,焊接性能越差。4、切削加工性能 切削加工性能一般用切削后的表面质量(用表面粗糙程度高低衡量)和道具寿命来表示。金属材料具有适当的硬度和足够的脆性时切削性良好。改变钢的化学成分(如加入少量铅、磷等元素)和进行适当的热处理(如低碳钢进行正火,高碳钢进行球化退火)可以提高刚的切削加工性能。(热处理的四把火:正火、退火、淬火、回火等,后面我们将进一步学习。)铜有良好的切削加工性能。 5、热处理工艺性能 钢的热处理工艺性能主要考虑其淬透性,即钢接受淬火的能力。(淬火能获得较高的硬度和光洁的表面),含锰、铬、镍等元素的合金钢淬透性比较好,碳钢的淬透性较差。铝合金的热处理要求较严,铜合金只有几种可以熔热处理强化。三国时诸葛亮带兵打仗,请当时的著名工匠蒲元为他造了3000把钢刀,蒲元用了(清水淬其锋)的热处理工艺,经过千锤百炼,使钢刀削铁如泥,从而大败敌军.有关方面的成语:趁热打铁、斩钉截铁等。

切削性能

两种Ti(C,N)基金属陶瓷刀具切削性能的研究 摘要:Ti(C.N)基金属陶瓷是本世纪七十年代出现的一种新型工具材料,具有许多优良的性能。本文用传统的粉末冶金的方法制备了纳米TiN改性TiC基金属陶瓷刀具试样和超细晶Ti(C,N)基金属陶瓷刀具试样,对两种刀具试样进行切削性能实验,对比其性能的优异,为制备性能更优异的金属陶瓷刀具提供理论依据。关键字:纳米TiN改性TiC基金属陶瓷刀具,超细晶Ti(C,N)基金属陶瓷刀具,切削性能 ABSTRACT :As a new kind of tool material in seventy’s, has many good properties. The cutting and wear behaviors of two kinds of cermets cutters were investigated in this paper,which expects to present theoretical instruction for preparation of high performance cermets cutters and enrich materials design theory.Key words:Nano TiN modified TiC-based cermets cutters,Ultra-fine Ti(C,N)一based ccrmets cutters,Cutting performance 1引言 Ti(C,N)金属陶瓷刀具是20世纪70年代初发展起来的一种新型材料刀具,由于具有硬度高、耐磨性好、高温力学性能优良和不易与金属发生粘结等特性,广泛应用于难加工材料的切削加工中,并可用于超高速切削、高速干切削和硬材料的切削加工【1】。由于全球W的价格不断上涨,所以其是代替硬质合金刀具材料的很好选择。但是也存在抗塑性变形能力、抗崩刃性能差及韧性不好等问题。因此,长期以来对金属陶瓷刀具进行增韧一直是国内外科技工作者努力的方向,而近十年多来出现的通过纳米材料添加对传统材料进行改性,改善了金属陶瓷的力学性能。本文通过将纳米TiN改性的TiC基金属陶瓷刀具和用亚微米级Ti(C,N)粉末为原料烧结的金属陶瓷刀具加工成可转位车刀片,按照实际的生产条件来进行切削性能实验,考察不同成分和不同后角条件下,刀具的耐用度和失效形式。研究纳米TiN改性的TiC基金属陶瓷刀具的切削性能。 2 试验 本实验所用的刀具是自行研制的,试验用粉末原料均为外购。其中TiC和Ti(c,N)粉末购于石家庄华泰纳米陶瓷材料厂;TiN纳米粉购于中国科学院成都有机化学;Ni粉购于四川江油国营八五七厂。其余粉末均从株洲硬质合金厂购得。本实验所用的TiC粉末为微米级,Ti(C,N)粉末为亚微米级,而TiN为纳米级。 实验中TiN、WC、Mo和C的添加量分别取为lO%、15%、5%、1%。另外为了保证金属粘结相对陶瓷相的润湿性,制出致密的高性能的金属陶瓷试样,选用对陶瓷相润湿性较好的Co和Ni作为粘结剂。本实验中金属陶瓷的基本成分配

相关主题
文本预览
相关文档 最新文档