当前位置:文档之家› 第四章气固相催化反应本征动力学 (全)

第四章气固相催化反应本征动力学 (全)

第四章

气固相催化反应本征动力学

本章主要内容?催化剂

?催化反应机理

?本征的反应速率

第一节气固相催化过程????????????→???????→

?????→

??????→

?+×××固体石蜡烃类

混合物CH OH CH H CO Pa 10150423K Ru Pa 1020473K Fe,Co 4Ni,523K,3Pa 100Cu,573K,302555

,,,,常压

第二节固体催化剂

固体催化剂由三部分组成:

?活性组分

?载体

?助剂

?一个成功的催化剂往往是主催化剂和助催化剂及载体的完美结合。

活性组分

?以金属为主,根据不同的用途,有金属氧化物及硫化物等等。

?活性组分的选择,根据目前的知识水平只能有一个大致的方向,尚不能预先选择。

通常对活性组分的要求:

?具有尽可能高的催化活性,选择性和抗毒性。

载体

?以多孔物质为主,如硅藻土、三氧化二铝等。

?根据不同的需要,有不同的孔径和比表面。

?强度高,是对所有载体的要求。

助催化剂

加入的量小,增加催化活性,增加选择性,延长催化剂寿命

一般有结构型助催化剂和调变型助催化剂。

乙苯脱氢,Fe 2O 3加入少量

Cr 2O 3提高催化剂的热稳定性。

催化剂的设计

催化剂的制备

z沉淀法

z浸渍法

z混合法

z离子交换法

不同的制备方法,成份、用量相同,但催化剂性能不同

第四章气-固相催化反应宏观动力学

第四章 气-固相催化反应宏观动力学 在多孔催化剂进行的气-固相催化反应由下列几个步骤所组成: ① 反应物从气相主体扩散到催化剂颗粒的外表面。 ② 反应物从外表面向催化剂的孔道内部扩散。 ③ 在催化剂内部孔道所组成的那表面上进行催化反应。 ④ 产物从那表面扩散到外表面。 ⑤ 产物从外表面扩散到气流主体。 ①、⑤称为外扩散;②、④称为内扩散;③为本征动力学所描述,存在传质、传热现象(传质系数、传热系数), 描述以上五个步骤的模型称为宏观动力学模型。 §4.1气-固相催化反应的宏观过程 一、气-固相催化反应过程中反应组分的浓度分布 以催化活性组分均匀分布的球形催化剂为例,说明催化反应过程中反应物的浓度分布。 死区:可逆反应,催化剂颗粒中反应物可能的最小浓度是颗粒温度夏的平衡浓度C *A ,如果在距中心半径R d 处反应物的浓度接近平衡浓度,此时,在半径R d 颗粒内催化反应速率接近于零,这部分区域称为“死区”。 二、 内扩散有效固子与总体速率 内扩散 内表面上的催化反应 }同时进行,使催化剂内各部分的反映速率并不一致,越接近于外表面,反 应物浓度↗,产物浓度↘,颗粒处于等温时,越接近于外表面,单位内表面上催化反应速率↗,内扩散有效因子(或内表面利用率)ζ: 等温催化剂单位时间颗粒中实际反应量与按外表面组分浓度及颗粒内表面积计算的反应量之比。 i A s S A s S C f k dS C f k i )()(0 ?= ζ K S 为按单位内表面积计算的催化反应速率常数。 S i 为单位体积催化床中催化剂的内表面积。 定态下,单位时间内催化剂颗粒外表面由扩散作用进入催化剂内部的反应组分量与单位时间内整个催化剂颗粒中实际反应的组分量相等,所以 速率 及内表面积计算的反映按反应组分外表面浓度梯度计算的扩散速率按反应组分外表面浓度= ζ 即单位时间内从气流主体扩散到催化剂外表面的反应组分量也必等于颗粒内实际反应量, C A C C C C C C A P P

气固相催化反应固定床装置操作说明

气固相催化反应固定床装置 一、前言 本装置由管式炉加热固定床、流化床催化反应器组成,是有机化工、精细化工、石油化工等部门的主要实验设备,尤其在反应工程和催化工程及化工工艺、生化工程、环境保护专业中使用的相当广泛。该实验装置可进行加氢、脱氢、氧化、卤化、芳构化、烃化、歧化、氨化等各种催化反应的科研与教学工作。它能准确地测定和评价催化剂活性、寿命、找出最适宜的工艺条件,同时也能测取反应动力学和工业放大所需数据,是化工研究方面不可缺少的手段。 本装置由反应系统和控制系统组成:反应系统的反应器为管式反应器和流化床反应器,由不绣钢材料制。 气固相催化反应固定床装置是管式反应器,床内有直径3mm0勺不绣钢套管穿过反应器的上下两端,并在管内插入直径1mm勺垲装热电偶,通过上下拉动热偶而测出床层各不同高度勺反应温度。加热炉采用三段加热控温方式,上下段温度控制灵活,恒温区较宽。控制系统勺温度控制采用高精度勺智能化仪表,有三位半勺数字显示, 通过参数改变能适用各种测温传感器,并且控温与测温数据准确可靠。 气固相催化反应流化床是一种在反应器内由气流作用使催化剂细粒子上下翻滚作剧烈运动勺床型。流化床也为不锈钢制,床下部有填装勺陶瓷环做预热段,中下部为流化膨胀勺催化剂浓相段,中上部为稀相段,顶部为扩大段。也采用三段控温方法。控制系统勺温度控制采用高精度勺智能化仪表,有三位半勺数字显示,通过参数改变能适用各种测温传感器,并且控温与测温数据准确可靠。它勺换热效果比固定床优越,能及时把反应热移走,床层温度均匀,避免产物产生过热现象,提高了催化剂勺反应效率。故流化床在许多有机反应中得到应用,如丙烯氨氧化制丙烯晴、丁烷或苯氧化制顺酐、二甲苯或萘氧化制苯酐、乙烯氯化、石油催化裂化、烷烃催化脱氢、二氧化硫氧化等都有工业规模生产,在实验室用流化床研究催化剂和工艺条件对产品开发有重大作用。 整机流程设计合理,设备安装紧凑,操作方便,性能稳定,重现性好。此 外,还有与计算机联机的接口,可安装软件能在计算机上显示与存储有关数据实现计

固相反应动力学.

实验四 固相反应动力学 一、目的: 1.探讨Na 2CO 3-SiO 2系统的固相反应动力学; 2.熟悉运用失重法进行固相反应的研究。 二、原理: 固态物质中的质点,在温度升高时,振动相应增大,而达到一定温度时,其中若干原子或离子具有一定的活度,以至可以跳离原来位置,与周围的其它离子产生换位作用。在一元系统中表现为烧结的开始,如果是二元或多元系统则表现为表面相接触的物质间有新化合物的产生,亦即固相反应的存在。这时的反应是在没有气相和液相参加的情况下进行的,反应发生的温度低于液相出现的温度。 测定固相反应速度的问题,实际上就是测定反应过程中各反应阶段的反应量的问题,因此有许多方法,对于反应中有气体产生的反应可以用重量法或量体积法即测量反应过程中生成的气体的量,进而计算出物质的反应量。 本实验是测定Na 2CO 3-SiO 2系统的固相反应速度,采用的方法是重量法,该反应式可以表示为: Na 2CO 3+SiO 2=Na 2O ·SiO 2+CO 2↑ 在反应进行的过程中,在某一温度下随时间的增长,Na 2SiO 2量增多,生成的CO 2气量也越多,若测得系统各时间下失去的CO 2的重量,则可按杨德公式的要求先算出各时间下对应的G 值,再根据杨德尔公式(1-31G -)2=K τ可求出(1-31G -)2~τ的关系曲线。若此曲线是一直线,则表示杨德尔公式具有正确性,说明K 是常数。 二、仪器装置: 1.WZK-1可控硅温度控制器; 2.1/万光电天平; 3.管式电阻炉; 4.温控热电偶 三、操作步骤: 1.用差重法准确称取按分子量比1:1配制成的Na 2CO 3+SiO 2混合物0.3-0.4克,置于小铂金皿中(注意:不可装得太满)。 2.打开WZK 温度控制器电源开关,将黑色定温指针定于700℃,将控制开关拨到 “手 图4-1 固相反应原理图 图4-2 固相反应装置

实验报告—固相反应

南昌大学实验报告 (样本) 学生姓名:×××学号: 5702106*** 专业班级:无机材料062班 实验类型:■演示□验证□综合□设计□创新实验日期:2008-11-20实验成绩: 实验五固相反应 一.实验目的与内容 固相反应是材料制备中一个重要的高温动力学过程,固体之间能否进行反应、反应完成的程度、反应过程的控制等直接影响材料的显微结构,并最终决定材料的性质,因此,研究固体之间反应的机理及动力学规律,对传统和新型无机非金属材料的生产有重要的意义。 1.本实验的目的: 掌握TG法的原理,采用TG法研究固相反应的方法。通过Na2CO3-SiO2系统的反应验证固相反应的动力学规律—金斯特林格方程。通过作图计算出反应的速度常数和反应的表观活化能。 2.实验原理 固体材料在高温下加热时,因其中的某些组分分解逸出或固体与周围介质中的某些物质作用使固体物系的重量发生变化,如盐类的分解、含水矿物的脱水、有机质的燃烧等会使物系重量减轻,高温氧化、反应烧结等则会使物系重量增加。 现代热重分析仪常与微分装置联用,可同时得到TG-DTG曲线。通过测量物系质量随温度或时间的变化来揭示或间接揭示固体物系反应的机理或反应动力学规律。 固体物质中的质点,在高于绝对零度的温度下总是在其平衡位置附近作谐振动。温度升高时,振幅增大。当温度足够高时,晶格中的质点就会脱离晶格平衡位置,与周围其它质点产生换位作用,在单元系统中表现为烧结,在二元或多元系统则可能有新的化合物出现。这种没有液相或气相参与,由固体物质之间直接作用所发生的反应称为纯固相反应。实际生产过程中所发生的固相反应,往往有液相或气相参与,这就是所谓的广义固相反应,即由固体反应物出发,在高温下经过一系列物理化学变化而生成固体产物的过程。 固相反应属于非均相反应,描述其动力学规律的方程,通常采用转化率G(已反应的反应物量与反应物原始重量的比值)与反应时间t之间的积分或微分关系来表示。 测量固相反应速率,可以通过TG法(适应于反应中有重量变化的系统)、量气法(适应于有气

固相反应动力学

实验20 固相反应动力学 一、实验目的 验证固相反应理论,通过本实验达到进一步了解固相反应机理。通过测定BaCO3-SiO2系统中给定组成的固相反应速度常数,熟悉测定固相反应速度的仪器及方法。 二、实验内容 1.原理 固态物质中的质点(分子、原子或离子)是不断振动的(除绝对零度外),随着温度升高,振幅增大,当达到一定温度时(各种物质不同),由于存在热起伏,使某些质点具有了一定的能量,以至于可以跳离其原来的位置,而产生质点的迁移。这一过程对于单元系统来说就是烧结的开始。这一过程在无气相和液相时也能进行,这就是狭义的固相反应。从广义上讲,所谓固相反应就是有固体物质参加的反应。 固相反应全部过程可分为扩散过程、反应过程及晶核形成过程这三个部分。其中进行得最慢的一个过程控制着整个过程的进行。许多固相反应是由扩散过程控制的,在这种情况下,等温固相反应动力学有三种可能性: 1. 1.新形成的反应产物层阻碍扩散作用:此时反应速度与产物层的厚度y成反比: dy/dt=K/y (1) 2. 2.新形成的反应产物层与扩散作用无关: dy/dt=K (2) 3..新形成的反应产物层能促进扩散作用: dy/dt=Ky (3) 实际上大部分固相反应属于第一种类型.由(1)式积分得: y2=Kt (4) 由于实际测量反应产物层厚度比较困难,因此,通常用反应产物百分数x来表示反应程度.设颗粒为球形且反应物与产物的比重相等,则可推得如下方程: [1-3 100 100x ]2=Kt 对于BaCO3-SiO2系统,可以用测量反应时放出得气体体积或系统重量损失(重量法)来计算反应产物百分数。但因重量法灵敏度差,故常采用量气法。 量气法一般都在负压下(-40mmHg)进行,这样实验结果准确度高。本实验为便于控制和操作,在常压下进行。 2. 实验装置 实验装置如图20-1所示。 3. 实验步骤 (1) 在分析天平上称0.4~0.5克样品于白金小筒内,塌实,接上悬丝,然后置于炉内反应管中,挂于小钩上。 (2) 检查仪器密封情况,不漏气方可进行实验。采用提高(或降低)水准瓶,使之产生一个水位差(压力差)的方法来检查漏气情况。 (3) 检查线路后,接通电源,按10℃/min的升温速度升温至800℃,并保温10分钟,旋三通开关使反应管与量气筒接通(到指定温度前,反应管放空),记下量气筒的起始读数。(4) 作好准备工作后,将悬丝脱开,使白金小量筒落到反应管中,同时按动秒表记录时间。第一分钟内每20秒记录一次量气管上的读数。注意读数时应将水准瓶与量气管中的液面保持在同一水平上(为什么?),一分钟以后,每分钟读一次,10分钟后二分钟读一次,20分钟后每5分钟读一次,至60分钟实验结束。 注意整个实验中应严格控制温度,波动范围为<5℃。

气固相催化反应固定床装置操作说明

气固相催化反应固定床 装置操作说明 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

气固相催化反应固定床装置 一、前言 本装置由管式炉加热固定床、流化床催化反应器组成,是有机化工、精细化工、石油化工等部门的主要实验设备,尤其在反应工程和催化工程及化工工艺、生化工程、环境保护专业中使用的相当广泛。该实验装置可进行加氢、脱氢、氧化、卤化、芳构化、烃化、歧化、氨化等各种催化反应的科研与教学工作。它能准确地测定和评价催化剂活性、寿命、找出最适宜的工艺条件,同时也能测取反应动力学和工业放大所需数据,是化工研究方面不可缺少的手段。 本装置由反应系统和控制系统组成:反应系统的反应器为管式反应器和流化床反应器,由不绣钢材料制。 气固相催化反应固定床装置是管式反应器,床内有直径3mm的不绣钢套管穿过反应器的上下两端,并在管内插入直径1mm的垲装热电偶,通过上下拉动热偶而测出床层各不同高度的反应温度。加热炉采用三段加热控温方式,上下段温度控制灵活,恒温区较宽。控制系统的温度控制采用高精度的智能化仪表,有三位半的数字显示,通过参数改变能适用各种测温传感器,并且控温与测温数据准确可靠。 气固相催化反应流化床是一种在反应器内由气流作用使催化剂细粒子上下翻滚作剧烈运动的床型。流化床也为不锈钢制,床下部有填装的陶瓷环做预热段,中下部为流化膨胀的催化剂浓相段,中上部为稀相段,顶部为扩大段。也采用三段控温方法。控制系统的温度控制采用高精度的智能化仪表,有三位半的数字显示,通过参数改变能适用各种测温传感器,并且控温与测温数据准确可靠。它的换热效果比固定床优越,能及时把反应热移走,床层温度均匀,避免产物产生过热现象,提高了催化剂的反应效率。故流化床在许多有机反应中得到应用,如丙烯氨氧化制丙烯晴、丁烷或苯氧化制顺酐、二甲苯或萘氧化制苯酐、乙烯氯化、石油催化裂化、烷烃催化脱氢、二氧化硫氧化等都有工业规模生产,在实验室用流化床研究催化剂和工艺条件对产品开发有重大作用。

实验六固相反应动力学

实验六 固相反应动力学 一、实验目的 验证固相反应理论,通过本实验达到进一步了解固相反应机理。通过测定BaCO 3-SiO 2系统中给定组成的固相反应速度常数,熟悉测定固相反应速度的仪器及方法。 二、实验原理 固态物质中的质点(分子、原子或离子)是不断振动的(除绝对零度外),随着温度升高,振幅增大,当达到一定温度时(各种物质不同),由于存在热起伏,使某些质点具有了一定的能量,以至于可以跳离其原来的位置,而产生质点的迁移。这一过程对于单元系统来说就是烧结的开始。这一过程在无气相和液相时也能进行,这就是狭义的固相反应。从广义上讲,所谓固相反应就是有固体物质参加的反应。 固相反应全部过程可分为扩散过程、反应过程及晶核形成过程这三个部分。其中进行得最慢的一个过程控制着整个过程的进行。许多固相反应是由扩散过程控制的,在这种情况下,等温固相反应动力学有三种可能性: 1. 新形成的反应产物层阻碍扩散作用:此时反应速度与产物层的厚度y 成反比: dy/dt=K/y (1) 2. 新形成的反应产物层与扩散作用无关: dy/dt=K (2) 3. 新形成的反应产物层能促进扩散作用: dy/dt=Ky (3) 实际上大部分固相反应属于第一种类型.由(1)式积分得: y 2=Kt (4) 由于实际测量反应产物层厚度比较困难,因此,通常用反应产物百分数x 来表示反应程度.设颗粒为球形且反应物与产物的比重相等,则可推得如下方程: [1-3100 100x ?]2=Kt 对于BaCO 3-SiO 2系统,可以用测量反应时放出得气体体积或系统重量损失(重量法)来计算反应产物百分数。但因重量法灵敏度差,故常采用量气法。 量气法一般都在负压下(-40mmHg)进行,这样实验结果准确度高。本实验为便于控制和操作,在常压下进行。 三、实验仪器设备及流程

第五章气固相催化反应本征动力学

第五章气固相催化反应本征动力学 5. 1气固相催化过程(自学) 5. 2固体催化剂(自学) 5.3气固催化反应本征动力学 以反应A =B 为例。 A 分子, A 分子, 吸附态的 B 分子, B 分子 多相催化反应过程示意图

整个多相催化反应过程可概括为下列七个步骤组成: 1、反应组分从流体主体扩散到固体催化剂的外表面(外扩散过 程); 2、反应物自催化剂外表面扩散到催化剂内部(内扩散过程); 3、反应物在催化剂的表面上被吸附(吸附过程); 4、吸附的反应物转换为吸附态的生成物(表面反应过程); 5、生成物从催化剂的表面上脱附下来(脱附过程); 6、脱附的产物分子由催化剂的孔道向外扩散到催化剂的外表面 (内扩散过程); 7、产物自催化剂的外表面扩散到流体主体(外扩散过程)。 什么是气固相催化反应本征动力学? 气固相催化反应本征动力学由如下三步构成(不包括扩散的影响):1)吸附—气相分子在催化剂表面上化学吸附形成吸附络合物。2)反应—吸附络合物之间相互反应生成产物络合物。 3)脱附—产物络合物由固体表面脱附出来。 5.3.1化学吸附与脱附 目的—由吸附、脱附速率方程求出: 1.θ~P的关系; 2.如果其为控制步骤时就认为是本正动力学速率。 一、化学吸附速率的一般表达式 A +A σ σ → θ ①组分A的吸附率(活性中心覆盖率) A

总的活性中心数 覆盖的活性中心数 被组分A A =θ 5.3—1 ②空位率V θ 总的活性中心数 心数气相分子覆盖的活性中未被 V =θ 5.3—2 设i θ为i 组分的覆盖率,则有下式: 1V i =θ+θ∑ 理论基础—表面质量作用定律:对如下的多相基元反应 dD cC bB aA +=+吸吸 反应速率r 与反应物的吸附量或覆盖度(吸附率)θ成正比,其覆盖度的指数等于相应的化学计量系数: b B a A k r θθ= 5.3—3 表面质量作用定律是理想吸附催化反应动力学的基础,它在多相催化反应动力学中的地位相当于质量作用定律在均相反应动力学中的地位。 化学吸附为何可用表面质量作用定律? —化学吸附作用为化学键力,相当于基元化学反应过程,因此可用表面质量作用定律。 对σ→σ+A A 吸附过程,吸附速率可写成: V A a 0a V A a a P )RT /E exp(k P k r θ-=θ= 5.3—4 式中:r a —吸附速率 E a —活化能

固相反应动力学实验报告

固相反应动力学实验设计报告 一、实验具体项目 通过Na2CO3-SiO2系统的反应(Na2CO3+SiO2—→Na2SiO3+CO2↑)验证固相反应的动力学规律-金斯特林格方程。通过作图计算出反应的速度常数和反应的表观活化能。 二、实验方法 TG法。现代热重分析仪与微分装置连用,可同时得到TG-DTG 曲线,即得到固相反应系统的重量变化与时间的关系。 三、实验仪器和药品 Q600-SDT差示扫描量热/热重(DSC/TGA)同步热分析仪、铂金坩埚一只、不锈钢镊子两把、Na2CO3一瓶、SiO2一瓶(均为A·R级) 四、实验步骤 1、样品制备 将Na2CO3和SiO2分别在玛瑙研钵中研细,过250目筛。SiO2的筛下料在空气中加热至800℃,保温5h,Na2CO3筛下料在200℃烘箱中保温4h。把上述处理好的原料按Na2CO3:SiO2=1:1摩尔比配料,混合均匀,烘干,放入干燥器内备用。

2、测试步骤 1).检查周围环境及仪器状态:要求室内环境温度为23±5℃。在SDT和控制器之间进行所有必要的电缆连接,连接所有气体线路,检查并接通各个装置的电源,将控制器连接到仪器,熟悉控制器的操作,如果有必要,请校准SDT。 2).设置净化气体:主净化气体应该限制为常用的、最好是N2、Ar等惰性气体。推荐的流量设置为100ml/min。辅助净化气体主要为引入更具反应性的气体,其流速通常低于主净化气体,推荐的流量设置为20ml/min。 3).设定所需的SDT模式及要保存的信号(热流、重量或Delta/T)等。 4).选择并准备样品。包括准备一个适当大小的样品并将其放到测杯中。 5).记录数据:反应时间:t(min);坩埚与样品重量W1(g);CO2累计失重量W2(g);Na2CO3转化率G:[1-?G-(1-G)2/3]=Kkt Na2CO3~SiO2系统固相反应实验数据记录 反应时间t/min 初始质 量/mg 热重热重差 (CO2累计 失重量 W2/mg) NaCO3转化率 G/% D3=[1-(1-G)^ (1/3)]^2 D4=1-2/3G-(1-G)^(2/3) 0 9 0.62213 0 0 0 0 5 0.7553 6 0.13324 0.075494848 0.000666995 0.00065551 7 10 0.85410 0.23196 0.131487919 0.002107219 0.002042723 15 0.9795 8 0.35740 0.202621924 0.005284926 0.00502879 9 20 0.99389 0.37172 0.210742468 0.005754168 0.005463178 25 1.07849 0.45638 0.258717078 0.009019987 0.008448859

实验一 固相反应

实验一固相反应 一、实验目的 1. 探讨Na2CO3-SiO2系统的固相反应动力学关系。 2. 掌握用失重法进行固相反应研究的方法。 3. 验证固相反应的动力学规律——杨德方程。 二、实验原理 固相物质中的质点,温度升高时,振动要相应增大,达到一定温度时,其中的若干原子或离子便具有一定的活度,以至可以跳离原来的位置与周围的其他质点发生换位作用。在一元系统中表现为烧结的开始;如果是二元或多元系统,则表现为表面相接触的各物质间有新的化合物生成,亦即发生了固相反应。温度升高,固相反应的速度增大。这种反应是在没有气相和液相参加下进行的,反应发生的温度低于液相出现的温度,这种反应称作纯固相反应。不过实际生产工艺中是在生成的液相和气相参与下所进行的固相反应,因此,这里所提的固相反应是广义的,即由固态反应物出发,在高温下经一系列物理化学变化而生成固态产物的过程。 测定固相反应速度问题,实际上就是测定反应过程中各反应阶段的反应量的问题。因此,有许多中测定方法。 本实验是通过失重法研究Na2CO3-SiO2系统的固相反应,以观察它们之间的反应动力学关系,并可对固相反应的速度做出定量的研究和验证固相反应动力学公式。 Na2CO3-SiO2系统的固相反应按下式进行 Na2CO3+SiO2=Na2SiO3+CO2↑ 此反应是按分子比例作用的。若能测得反应进行中各时间下失去的CO2量,就可计算这段时间内反应物的反应量或生成物的生成量。据此,按照固相反应的动力学关系则可求得Na2CO3-SiO2系统固相反应的速度常数。 三、实验仪器装置 1. 电炉1台 2. 电流表1台 3. 温度控制器1台 4. 镍铬电偶1支 5. 热天平1台 6. 坩埚及挂钩1组 实验装置如图1所示。

气固相催化反应宏观动力学

气固相催化反应宏观动力学 化学反应工程主要研究化学反应器的原理,研究物理因素对化学反应的影响,以研究反应动力学为主要内容,并据此进行工业反应器的设计及放大。工业中,气固相催化反应十分常见,如SO 2催化氧化、H 2和CO 低压合成甲醇、由乙炔合成醋酸乙烯等,所以气固相催化反应的宏观动力学是教学重点。但气固相催化反应宏观动力学这部分的知识较难理解,公式复杂,反应速率表达形式多,我们在教学过程中很难理解和掌握。以下就这部分知识进行说明和分析。 反应动力学有本征动力学和宏观动力学之分。在气固相催化反应中,反应发生在固体催化剂的内表面,完整的反应步骤有:反应物从气相主体扩散,穿过颗粒外气膜滞流层,达到颗粒外表面;反应物从颗粒外表面沿微孔向颗粒内表面扩散;反应物被催化剂颗粒内表面的活性中心吸附;被吸附的反应物在内表面上发生化学反应;产物由内表面上脱附;产物由微孔内向颗粒外表面扩散;产物由外表面穿过气膜层向气流主体扩散。因此,完整的反应包含了颗粒外的气相扩散、颗粒内的气相扩散和表面催化反应过程。而扩散现象的存在必然会对反应速率造成影响。外扩散是纯传质的物理过程,内扩散与表面催化反应是同时进行的,所有又称“内扩散-反应过程”。如仅研究表面反应过程,即排除内、外扩散影响下的催化剂表面与所接触的气体间的反应情况的动力学,则为本征动力学。而将所有扩散影响考虑在内的情况,则为宏观动力学。宏观反应速率不仅和化学反应本征反应速率有关,而且与过程的扩散速率有关。如当外扩散为控制步骤时,反应的宏观速率就仅取决于传质扩散速率。 1、反应速率的表达及反应速率常数间的相互关系 对气固相催化反应,反应速率的表达可以用体积反应速率、表面积反应速率或质量反应速率,即反应区可以用不同的基准,相应地化学反应速率常数的基准也有很多。 体积反应速率的表达为:dV dF r i i v ±= (1) 式中反应区体积可以指催化剂颗粒床层的堆体积,或者是床层中催化剂颗粒的体积。催化剂床层的堆体积V B 与床层中催化剂颗粒的体积V 、床层中催化剂颗粒的内表面积S 、床层中催化剂颗粒的质量W 存在如下的关系。

化学反应工程习题-第五章:非均相反应动力学

第五章 非均相反应动力学 1.工业催化剂所必备的三个主要条件是:_______、_______、_______。(活性好、选择性高、寿命长) 2.气体在固体表面上的吸附中物理吸附是靠_______结合的,而化学吸附是靠_______结合的。(范德华力、化学键力) 3.气体在固体表面上的吸附中物理吸附是_______分子层的,而化学吸附是_______分子层的。(多、单) 4.气体在固体表面上发生吸附时,描述在一定温度下气体吸附量与压力的关系式称为_______。(吸附等温方程) 5. _______吸附等温方程式是假定吸附热是随着表面覆盖度的增加而随幂数关系减少的。(Freundlich ) 6._______吸附等温方程式是按吸附及脱附速率与覆盖率成指数函数的关系导出的。(Temkin ) 7.固体催化剂的比表面积的经典测定方法是基于_______方程。(BET ) 8.在气—固相催化反应中,反应速率一般是以单位催化剂的重量为基准的,如反应A →B ,A 的反应速率的定义为_______。( dt dn W r A A ?-=-1) 9.对于气—固相催化反应,要测定真实的反应速率,必须首先排除_______和_______的影响。(内扩散、外扩散) 10.测定气固相催化速率检验外扩散影响时,可以同时改变催化剂装量和进料流量,但保持_______不变。(0A F W ) 11.测定气固相催化速率检验外扩散影响时,可以同时改变_______和_______,但保持0A F W 不变。(催化剂装量、进料流量) 12.测定气固相催化速率检验内扩散影响时,可改变催化剂的_______,在恒定的0A F W 下测_______,看二者的变化关系。[粒度(直径p d )、转化率] 13.测定气固相催化速率检验内扩散影响时,可改变催化剂的粒度(直径 p d ),在恒定的 _______下测转化率,看二者的变化关系。(0A F W ) 14.催化剂回转式反应器是把催化剂夹在框架中快速回转,从而排除_______影响和达到气相_______及反应器_______的目的。(外扩散、完全混合、等温) 15.流动循环(无梯度)式反应器是指消除_______、_______的存在,使实验的准确性提高。(温度梯度、浓度梯度) 16.对于多孔性的催化剂,分子扩散很复杂,当孔径较大时,扩散阻力是由_______所致。(分子间碰撞) 17.对于多孔性的催化剂,分子扩散很复杂,当孔径较大时,扩散阻力是由分子间碰撞所致,这种扩散通常称为_______。[分子扩散(容积扩散)] 18.对于多孔性的催化剂,分子扩散很复杂,当微孔孔径在约_______时,分子与孔壁的碰撞为扩散阻力的主要因素。(0.1um ) 19.对于多孔性的催化剂,分子扩散很复杂,当微孔孔径在约0.1um 时,_______为扩散阻力的主要因素。(分子与孔壁的碰撞) 20.对于多孔性的催化剂,分子扩散很复杂,当微孔孔径在约0.1um 时,分子与孔壁的碰撞为扩散阻力的主要因素,这种扩散称为_______。(努森扩散) 21.等温催化剂的有效系数η为催化剂粒子的______________与催化剂内部的_______________________________之比。(实际反应速率、浓度和温度与其外表面上的相等时的反应速率) 22.气—固相催化反应的内扩散模数=S φ_______,它是表征内扩散影响的重要参数。

气固催化反应的七个步骤

1气固催化反应的七个步骤 1)气体反应物通过滞留膜向催化剂颗粒表面的传质(外扩散) 2) 气体沿微孔向颗粒内的传质(内扩散) 3)气体反应物在微孔表面的吸附 4)吸附反应物在催化剂表面的反应 5)吸附产物的脱附 6)气体产物沿微孔向外扩散(内扩散) 7)气体产物穿过滞流膜扩散到气流主体(外扩散) 1,7为外扩散过程 2,6为内扩散过程 3,4,5为化学动力学过程 (本征动力学) 2颗粒反应速率 外扩散很慢 c A0>>c As c A 0 r N A =k G c A0 外扩散(external transfer)的速率: N A = k G a(c Ag -c As ) N A = k g a(p Ag -p As ) 传质 传热(T s -T 0)max =(k G /h) (-H) (c A0-c Ae ) 内扩散很慢 c A0 c As > c A r=r s (c As ) r s (c A0) 3分子内扩散 气体在催化剂内的扩散属孔内扩散,根据孔的大小分为两类:孔径较大时, 为一般意义上的分子扩散;孔径较小时,属克努森(Knudson )扩散 费克(Fick )扩散定律 ※当微孔孔径远大于分子平均自由程时,扩散过程与孔径无关,属分子扩散。 ※努森扩散 1 2A A A A s cm :d d d d --=扩散系数D z c S D t n

、 D K,j 为克努森扩散系数; T为温度, K r为微孔半径,cm M j 为组分j的相对分 子质量 ※综合扩散 有效扩散系数:Dej = ( / t) D 4有效因子 ∑ ≠ - = N j k jk k j jm D y y D1 1 1 ()12 3 , s cm / 10 7.9 10 - ? = > j j K M T r D d时 λ () j K jm j D D D a N N y N N N N a D ay D D , B A A B A A B AB A k j 1 1 1 A B A , 1 / 1 /1 1 + = = - = + = - + = , 等分子扩散, 率 组分在气相中的摩尔分 : 组分的扩散通量 , :

实验报告1—固相反应

成都理工大学实验指导书课程:材料科学基础实验 专业:材料科学与工程班级 班级: 指导教师: 单位: 时间:2014年5月

实验一:固相反应动力学 一、实验目的 1. 掌握TG法的原理,采用TG法研究固相反应的方法。 2. 通过CaCO3-SiO2系统的反应验证固相反应的动力学规律—金斯特林格方程。 3. 通过作图计算出反应的速度常数和反应的表观活化能。 二、实验原理 固体材料在高温下加热时,因其中的某些组分分解逸出或固体与周围介质中的某些物质作用使固体物系的重量发生变化,如盐类的分解、含水矿物的脱水、有机质的燃烧等会使物系重量减轻,高温氧化、反应烧结等则会使物系重量增加。 现代热重分析仪常与微分装置联用,可同时得到TG-DTG曲线。通过测量物系质量随温度或时间的变化来揭示或间接揭示固体物系反应的机理或反应动力学规律。 固体物质中的质点,在高于绝对零度的温度下总是在其平衡位置附近作谐振动。温度升高时,振幅增大。当温度足够高时,晶格中的质点就会脱离晶格平衡位置,与周围其它质点产生换位作用,在单元系统中表现为烧结,在二元或多元系统则可能有新的化合物出现。这种没有液相或气相参与,由固体物质之间直接作用所发生的反应称为纯固相反应。实际生产过程中所发生的固相反应,往往有液相或气相参与,这就是所谓的广义固相反应,即由固体反应物出发,在高温下经过一系列物理化学变化而生成固体产物的过程。 固相反应属于非均相反应,描述其动力学规律的方程,通常采用转化率G(已反应的反应物量与反应物原始重量的比值)与反应时间t之间的积分或微分关系来表示。 测量固相反应速率,可以通过TG法(适应于反应中有重量变化的系统)、量气法(适应于有气体产物逸出的系统)等方法来实现。本实验通过失重法来考察CaCO3-SiO2系统的固相反应,并对其动力学规律进行验证。CaCO3-SiO2系统固相反应按下式进行: CaCO3+SiO2—→CaSiO3+CO2↑ 恒温下通过测量不同时间t时失去的CO2的重量,可计算出CaCO3的反应量,进而计算出其对应的转化率G,来验证金斯特林格方程:[1-(2G/3)-(1-G)2/3]=K k t的正确性。 式中,K k=Aexp(-Q/RT)为金斯特林格方程的速度常数,Q为反应的表观活化能。改变反应温度,则可通过金斯特林格方程计算出不同温度下的K k和Q。 三、主要仪器设备及耗材

相关主题
文本预览
相关文档 最新文档