当前位置:文档之家› 齿轮气体渗碳热处理工艺

齿轮气体渗碳热处理工艺

齿轮气体渗碳热处理工艺
齿轮气体渗碳热处理工艺

我公司齿轮气体渗碳热处理工艺及其质量控制

主要内容与使用范围

本标准结合中国齿轮标准化技术委员会、机械工业部郑州机械研究所起草的《齿轮气体渗碳热处理工艺及其质量控制》,根据我公司齿轮材料及性能所编写的基本符合产品要求的一般规定。

本标准适用于钢制齿轮的气体渗碳、淬火和回火处理。

一、标准篇

1、GB1818金属表面洛氏硬度试验方法

2、GB1979结构钢低倍组织缺陷评级图

3、GB3077合金结构钢技术条件

4、GB5216保证淬透性结构钢技术条件

5、GB6394金属平均晶粒度测定方法

6、GB8539齿轮材料及热处理质量检验的一般规定

7、GB9450钢件渗碳淬火有效硬化层深度的测定与校核

8、GB9452热处理炉有效加热区测定方法

9、GB10561钢中非金属夹杂物显微组织评定法

10、GB/T230金属洛氏硬度试验方法

11、GB/T13299钢的显微组织评定法

12、GB/T225-88钢的末端淬透性试验方法

13、ZB G51 108钢件在吸热式气氛中的热处理

14、ZB J36 012 钢件在吸热式气氛中的热处理

15、ZB T04 001汽车渗碳齿轮金相检验

二、材料篇

1、适合我公司齿轮产品的材料(见表一)

(遵循我国齿轮行业车辆齿轮钢采购标准CGMA001-2004钢号淬透能力)

表一

2、齿轮材料的冶金质量

1)化学成分

合金结构钢化学成分应符合GB/T3077-88《合金结构钢技术条件》中的有关规定,保证淬透性结构钢化学成分应符合GB/5216-85《保证淬透性结构钢条件》中的有关规定。检验标准执行GB223。

2)纯净度

钢材氧含量≤20.0×10-6,含氢量为≤5.0×10-6 ,含硫量<0.015%,当有特殊要求时,按双方协议规定。

3)低倍组织

一般疏松≤2级,中心疏松≤2级,偏析≤2.5级。检验标准执行GBl979-80《结构钢低倍组织缺陷评级图》。

4)非金属夹杂物

非金属夹杂物按GB/T10561-89中Ⅸ级标准检验,A≤2,B≤2,C≤1,D≤1。氧化物<3级,硫化物<3级,氧化物+硫化物<5.5级。检验标准执行GB/T10561-89《钢中非金属夹杂物显微评定方法》。

5)带状组织

钢中带状组织≤3级。检验标准执行GB/T13299-91《钢的显微组织评定方法》。

6)晶粒度

经930℃×3h渗碳后空冷,奥氏体晶粒度≥5级。检验标准执行GB6394-86《金属平均晶粒度测定法》。

7)末端淬透性

根据齿轮具体使用要求,按淬透性带订货,同炉钢中最大离散值为4HRC。检验标准执行GB /T225-88《钢的末端淬透性试验方法》。

三、锻件质量控制篇

1、原材料的控制

1)锻件用原材料(含钢锭)应有质量保证书,并符合工艺文件规定的材料牌号、尺寸规格和性能要求。

2)原材料或坯料进厂后需经材料检验部门复检,锻造用的锻材及锻坯,都必须有复检合格单。复检合格的原材料应有复检印记,不合格料应作出明显的标记。

3)合格料、待检料、不合格料应有明显的标记,且应分区存放,严禁混料。

4)合格料的入库、出库必须有严格的管理制度。

2、锻件的检验

1)工序检验

①每批锻件必须进行“首检三件”制度,检验合格后方可正式投产。生产中严格执行自检、互检和专检。

②工序检验员应对生产现场进行巡回检查,对锻件加热炉温度的控制、锻造操作情况进行监控,并定期抽检锻件的外行尺寸和表面质量。

③锻件或坯料经检验合格后,检验员应在工序卡或记录卡上签字后方可转入下道工序。

2)锻件终检

①模锻件终检应按锻件图及GB12361、GB12362及合同等有关规定进行。

②自由锻锻件终检应按锻件图及JB4249、JB4385、ZB J32 003.1~003.8、ZB J32 001或合同等有关

规定进行。

③在规定的锻件部位上打检验印记(挂标签)或其他标记均可。

④锻造时应使坯料整个截面得到均匀变形,锻造比按GB8539规定。若采用封闭锻造,其流线应基本呈径向分布。

⑤锻坯不应有裂纹、折叠、过热及其他内部缺陷,也不能有最后加工无法除区的表面缺陷。

3)合格、不合格证

①合格证应有检验部门按有关技术标准或合同要求填写和签发锻件合格证。

②不合格品,经检验部门检验,确认为不合格的锻件,应隔离存放,并交质保体系的不合格品处理机构进行处理。

四、热处理设备篇

1、渗碳设备

1)渗碳可采用连续式气体渗碳、密封箱式炉、井式气体渗碳炉等。

2)连续式气体渗碳炉及密封箱式炉应能有加热、保温、冷却等各个阶段所设定的温度下保持所需时间。

3)连续式气体渗碳炉、密封箱式炉及井式气体渗碳炉的有效加热区内的温度应控制在预定值的±10℃以内,有效加热区按GB9452的规定测试。

4)渗碳加热设备应结构合理,设有使炉内气氛均匀流动的装置,渗碳加热室应具有良好的密封性,渗碳的原料供给系统应安全可靠。

2、淬火冷却设备及冷却介质

1)淬火冷却设备应具有可以控制的加热、冷却循环系统及搅拌装置。

2)淬火冷却设备应装有防火排烟装置。

3)淬火冷却介质应具有齿轮淬火所要求的冷却能力,且不易老化,其技术要求应符合有关标准。在生产现场应有定期分析和调整的管理制度,以确保淬火质量。

3、清洗设备

清洗设备应具有浸泡、喷淋、油水分离等功能。清洗液可用碱水,其温度为60~80℃。也可用清洗剂。

4、回火设备

1)回火可采用连续式或周期式炉,其炉内有效加热区的温度应控制在预定值的±10℃以内。

2)回火设备应配有排油烟装置。

5、温度的测定及控制设备

1)渗碳淬火加热炉、回火炉应配有温度测控、自动记录及报警装置,淬火冷却设备应配有温度测控装置。

2)测温仪表及热电偶应定期校检,并应符合GB9452的规定。

6、炉内气氛的测定及控制设备

炉内气氛可采用CO2红外仪、氧探头、电阻丝、露点仪、定碳片通讯取气分析等方法进行测定与控制。相关设备按各自使用说明书操作。碳势控制精度应在±0.05%范围内。

五、热处理工艺技术篇

1、渗碳前的预处理

1)等温正火

①能有效控制冷却时的相变,使相变在等温温度下进行,能够获得均匀一致、满足要求的显微组织及硬度,其测试部位可参照JB/T6077,硬度应均匀,硬度差值≤25HBS,同一批硬度差≤40HB S。

②粗大的奥氏体晶粒形成的平衡组织(铁素体加珠光体),在后序渗碳加热时可以重新获得细小均匀的奥氏体晶粒。

③预处理采用等温正火处理的零件,能够可靠地获得良好切削加工性能和稳定的淬火变形规律。2)去应力处理

对要求高的齿轮以及模数大于14的齿轮,齿形粗加工后应进行去应力退火处理或在600~68 0℃进行高温回火。

3)渗碳处理前的准备工作

①探伤:按GB8539或行业标准,进行超声波或磁粉探伤检验

②表面清理:待渗碳的齿轮及料盘均应进行清理或置于450~550℃炉内气化脱脂,除去表面油污、铁屑及其他有害杂物。

③防渗措施:按ZBG51 108规定对齿轮不需渗碳的部位,可以采用防渗涂料涂敷表面。也可采用镀铜或预留加工余量等防渗措施。

4)随炉试样

随炉试样材料应与被处理齿轮材料相同,其形状尺寸应能代表齿轮实际处理情况,根据需要可采用如下任一形式。

①仿形试样或齿形试样,应至少有3个轮齿。齿根以下截面厚度等于齿根圆齿厚的二分之一,或

根据齿轮模数选取,一般大于10mm;齿宽为齿根圆齿厚的2~3倍。(见附录二)

②渗碳层检验试样表

表二

③心部硬度与心部组织检验试样(见表三)

表三

5)随炉钢铂定碳

①将一定长度30~60mm铂片用细砂把锈渍打磨干净,并用丙酮或酒精清洗干净、晾干,然后用天平测出渗碳前的重量并作记录。将取样杆抽出,将铂片用镊子置于取样杆端部螺旋丝中,将其插入取样孔球阀外段,拧上后端螺冒,然后打开球阀将杆送入炉内,再将球阀关上少许,在炉内保持20~30分钟,渗碳结束后将取样杆抽出,为避免试样氧化应分两次进行,a、向外抽动300mm,冷却5分钟后打开球阀将端部抽到球阀外段,并关闭球阀。b、待冷却5分钟后,才打开后端螺冒将铂片取出。用酒精或丙酮清洗干净后,按JB/T10312-2001规定的方法,依公式计算碳势:(渗后质量-渗前质量)÷渗后质量×%+钢铂原始含碳量=炉内碳势

称量一般用电子天平,保留到小数点后5位,并反复称量几次,以保证数据准确。

②随炉试样的数量根据设备类型及装炉情况确定,试样应放置在能代表齿轮热处理质量的部位,周期式渗碳炉的中检试样,可按爱协林公司标准执行。

6)渗碳原料的选用

根据热处理设备的类型、渗碳原料的特性及供应状况选择

①公司用可控气氛渗碳,吸热气氛原料气为天然气和液化石油气,其成分应符合ZB J36 012规定。

②渗碳原料应成分稳定、有害杂质含量低,含硫量应在0.02%以下,检验符合要求后使用。

③对于新购置的及较长时间未作渗碳使用的设备以及新夹具应进行预渗处理。

2、工艺控制

1)渗碳工艺规范

应严格按照爱协林公司推杆式双排连续渗碳炉的工艺规范进行生产,现场的工艺制作和控制,由专人负责调试,未经允许不得随意修改任何技术参数。

2)淬火工艺规范

我司使用的爱协林设备淬火采用压淬和直淬两种工艺。压淬保温室和直接淬火分开各走各的道,互不干涉,可实现3~4中不同规格(同一渗碳深度)的盆齿在3~4个压床上进行淬火。直淬可执行隔盘角齿的直接淬火或其它型号盘齿的直接淬火,方便、更具有灵活性。

3)喷沙或喷丸

热处理后齿轮按要求进行喷沙清理或喷丸强化

3、质量控制与检验方法

1)随炉试样检验

①表面硬度:根据有效硬化层深度选用洛式、表面洛式等硬度计,选择方法见表四并按GB/T230或

GB1818的规定检测。

表四

②当图样要求测表层硬度时,用维氏硬度计在试样截面上距表面0.05~0.10mm处测定,测定方法按GB4340。对渗碳淬火后需要磨齿的齿轮,表面硬度的测定部位应为从试样表面至轮齿单侧加工余量深度之处。

③表面硬度的均匀性要求见GB8539。

2)心部硬度心部硬度的一般要求30~45HRC,可由设计者根据齿轮使用条件规定。

①齿形试样心部硬度的测定位置参见GB8539。

②当用圆棒试样时,在试棒长度中部截取10mm厚的试样,在试样横截面中心处测定。试样尺寸与

模数关系应符合表3。

3)有效硬化层深度

①对于渗碳淬火后需加工的齿轮,渗碳的工艺层深应为图样上标注的渗碳深度加上轮齿单侧的加工余量。

②有效硬化层深度的测定应以硬度法为准,测定部位按GB8539规定,测定方法按GB9450、GB4340,也可按各行业规定或生产厂与用户的协议。

③用金相法、断口法检测渗层深度时,应预先找出与硬度法测定有效硬化层深度的关系,以保证成

品齿轮满足图样技术要求。

④渗碳齿轮有效硬化层深度推荐值见附录一

⑤当图样要求测定齿根有效硬化层深度时,应在齿形试样的法截面上向内测定,并以其测定结果为

准。

4)表层含碳量

①表层含碳量为表面至0.10深度范围的平均含碳量。

②如无特殊要求,表层含碳量一般控制在0.8~1.05%范围内,原则上不低于相应钢材的共析含碳量。

③表层含碳量可用试样剥层进行化学分析,也可用金相法判别或用直读光谱仪分析。

④应用各种碳控技术对渗碳过程进行控制时,应预先找出各种钢材渗碳时,其表层含碳量与气氛碳势的关系。

⑥当新产品试制或工艺调试时,应检验表层含碳量。在批量生产中,若渗碳过程无任何气氛控制措

施时,应定期检测表层含碳量。

5)表层组织

①残余奥氏体按各行业金相检验级别图评定。一般齿轮应控制在30%以下,高精度齿轮应控制在20%以下,对于留有加工余量的齿轮,评定部位按内控标准规定。

②马氏体按各行业金相检验级别图评定。对于齿形试样应以分度圆附近的严重视场作为评判依据。

③碳化物按各行业金相检验级别图评定。当采用ZB T04 001碳化物评级图时,若试样在400倍下无明显碳化物,但试样表面硬度及含碳量合格,表层组织不为亚共析状态时,可评定为1级。

④表层脱碳试样经4%硝酸酒精溶液轻腐蚀后,置于显微镜下放大400倍观察,对于齿形试样着重检查齿根角处,脱碳层深度应不大于0.02mm或按GB8539分档控制。

⑤表层非马氏体试样经4%硝酸酒精溶液轻腐蚀后,置于显微镜下放大400倍观察,对于齿形试样着重检查分度圆及齿根圆角处,按GB8539分档控制。

6)心部组织按各行业规定或生产厂与用户的协议检验

7)至表面硬度降、至心部硬度降

当图样要求测定至表面硬度降和至心部硬度降时,参见GB8539或各行业规定执行。

8)心部冲击性能

当用户要求时,在随炉圆棒试样或齿坯试样上取料,加工成冲击试样,进行冲击试验。

4、齿轮热处理质量检验

1)外观齿轮经热处理后,表面不得有氧化皮、碰伤、剥落、锈蚀等缺陷。

2)齿面硬度

①根据齿轮重要程度、批量及炉型规定抽检数量。

②测定部位以齿面为准,也可测齿顶或端面,但应考虑其与齿面硬度的差异。测量点要求分布在约相隔120°的三个轮齿上,每个轮齿上一般不得少于2点。其硬度值应符合图样技术要求。

③硬度计应稳定、可靠、重现性好。当选用齿面硬度计检测齿面时,应将测头垂直于齿面;当用洛氏硬度计检测齿顶时,应将被测处用砂纸打磨,其表面粗糙度应符合GB/T230规定,测量时应放置平稳;当用锉刀检验齿顶、齿根硬度时,锉刀应为标准锉刀;当用肖氏硬度计或里氏硬度计D型冲头装置检测时,齿轮的有效硬化层深度必须大于0.8mm。

④对于无法用硬度计检测的齿轮,一般以随炉试样的测量值为准。

⑤当硬度不符合技术要求时,应加倍抽检,若仍不符合则应根据具体情况进行返修或判废。

3)有效硬化层深度

①当采用各种碳控技术控制渗碳过程且生产质量稳定时,可以随炉试样的检测结果为准。抽检周期可根据具体情况确定。

②对指量生产的齿轮,当渗碳气氛无任何控制措施时,在试样合格的情况下,每周应抽检一件齿轮解剖测定,检验方法同3-3)。

4)表层组织、心部硬度、心部组织

一般以随炉试样的检测结果为准。公司可根据具体情况,确定解剖齿轮检验项目及检验周期。检测方法同3-2),3-5),3-6)。

5)裂纹

①在热处理和磨齿后,可靠度要求高的齿轮应100检验,一般齿轮应进行抽检。磨加工后表面一般不允许有裂纹。

②裂纹的检验方法可采用以下任意一种,如磁粉探伤、超声波探伤、荧光浸透及染色浸透探伤等。

③冷处理后微裂纹的检验用显微镜放大400倍观察随炉试样,在0.30mm×0.25mm的矩形范围内,长度大于一个晶粒的微裂纹不得超过10个。

6)畸变

①热处理后畸变量应控制在有关技术要求范围之内。

②批量生产时,抽检项目和件数按产品图样的技术要求。

③单件生产的齿轮应定期抽检。

5、记录内容

a、齿轮材料、盘数(数量)、件号、炉号。

b、渗碳热处理工艺流程及工艺参数。

c、检验的项目、部位及结果。

d、热处理操作人员、检验人员的姓名或代号。

e、操作、检验日期。

附录一

渗碳齿轮有效硬化层深度推荐值

6 1.30~1.80 25 4.00~5.00

7 1.50~2.00 28 4.00~5.00

8 1.80~2.30 32 4.00~5.00

9 1.80~2.30

附录二

编制校对审核批准

郭春华2010-5-15

渗碳工艺介绍

渗碳 定义 渗碳是对金属表面处理的一种,采用渗碳的多为低碳钢或低合金钢,具体方法是将工件置入具有活性渗碳介质中,加热到900--950摄氏度的单相奥氏体区,保温足够时间后,使渗碳介质中分解出的活性碳原子渗入钢件表层,从而获得表层高碳,心部仍保持原有成分. 相似的还有低温渗氮处理。这是金属材料常见的一种热处理工艺,它可以使渗过碳的工件表面获得很高的硬度,提高其耐磨程度。 简介 渗碳是指使碳原子渗入到钢表面层的过程。也是使低碳钢的工件具有高碳钢的表面层,再经过淬火和低温回火,使工件的表面层具有高硬度和耐磨性,而工件的中心部分仍然保持着低碳钢的韧性和塑性。 渗碳工件的材料一般为低碳钢或低碳合金钢(含碳量小于0.25%)。渗碳后﹐钢件表面的化学成分可接近高碳钢。工件渗碳后还要经过淬火﹐以得到高的表面硬度﹑高的耐磨性和疲劳强度﹐并保持心部有低碳钢淬火后的强韧性﹐使工件能承受冲击载荷。渗碳工艺广泛用于飞机﹑汽车和拖拉机等的机械零件﹐如齿轮﹑轴﹑凸轮轴等。 渗碳工艺在中国可以上溯到2000年以前。最早是用固体渗碳介质渗碳。液体和气体渗碳是在20世纪出现并得到广泛应用的。美国在20年代开始采用转筒炉进行气体渗碳。30年代﹐连续式气体渗碳炉开始在工业上应用。60年代高温(960~1100℃)气体渗碳得到发展。至70年代﹐出现了真空渗碳和离子渗碳。 原理渗碳与其他化学热处理一样﹐也包含3个基本过程。 ①分解:渗碳介质的分解产生活性碳原子。 ②吸附:活性碳原子被钢件表面吸收后即溶到表层奥氏体中﹐使奥氏体中含碳量增加。 ③扩散:表面含碳量增加便与心部含碳量出现浓度差﹐表面的碳遂向内部扩散。碳在钢中的扩散速度主要取决于温度﹐同时与工件中被渗元素内外浓度差和钢中合金元素含量有关。 渗碳零件的材料一般选用低碳钢或低碳合金钢(含碳量小於0.25%)。渗碳后必须进行淬火才能充分发挥渗碳的有利作用。工件渗碳淬火后的表层显微组织主要为高硬度的马氏体加上残余奥氏体和少量碳化物﹐心部组织为韧性好的低碳马氏体或含有非马氏体的组织﹐但应避免出现铁素体。一般渗碳层深度范围为0.8~1.2毫米﹐深度渗碳时可达2毫米或更深。表面硬度可达HRC58~63﹐心部硬度为 HRC30~42。渗碳淬火后﹐工件表面产生压缩内应力﹐对提高工件的疲劳强度有利。因此渗碳被广泛用以提高零件强度﹑冲击韧性和耐磨性﹐借以延长零件的使用寿命。 分类 按含碳介质的不同﹐渗碳可分为固体渗碳﹑液体渗碳﹑气体渗碳和碳氮共渗。 渗碳工艺 1、直接淬火低温回火组织及性能特点:不能细化钢的晶粒。工件淬火变形较大,合金钢渗碳件表面残余奥氏体量较多,表面硬度较低 适用范围:操作简单,成本低廉用来处理对变形和承受冲击载荷不大的零件,适用于气体渗碳和液体渗碳工艺。 2 、预冷直接淬火、低温回火,淬火温度800-850℃组织及性能特点:可以减少工件淬火变形,渗层中残余奥氏体量也可稍有降低,表面硬度略有提高,但奥氏体晶粒没有变化。 适用范围:操作简单,工件氧化、脱碳及淬火变形均小,广泛应用于细晶粒钢制造的各种工具。 3、一次加热淬火,低温回火,淬火温度820-850℃或780-810℃组织及性能特点:对心部强度要求较高者,采用820-850℃淬火,心部为低碳M,表面要求硬度高者,采用780-810℃淬火可以细化晶粒。 适用范围:适用于固体渗碳后的碳钢和低合金钢工件、气体、液体渗碳的粗晶粒钢,某些渗碳后不宜直接淬火的工件及渗碳后需机械加工的零件。

动力钳中渗碳淬火齿轮内花键孔的加工工艺

管理制度参考范本 动力钳中渗碳淬火齿轮内花键孔的加工工艺 S a 撰写人:___■_! 门:__111_1111 间:___■__ / 1 / 5

石油钻井和修井动力钳(以下简称动力钳)是我公司的主要产品。 齿轮加工在动力钳的制造过程中占据了很大比例,因此我们在加工过 程中会经常遇到各种齿轮加工方面的问题。其中,渗碳淬火齿轮内花键孔的加工就是比较有代表性的问题。我们公司经过多年实践,摸索了一些比较成熟的加工工艺,取得了良好的效果。 在齿轮加工中,为解决低碳合金钢渗碳齿轮淬火后内花键孔加工 问题,一般采取以下方法。对于花键孔硬度要求不高的齿轮,可在渗碳前。内孔及孔口两端面上留2mn余量,渗碳后车去内孔及端面上的碳渗层余量,使内孔及端面达到最终或工艺尺寸。内孔及端面处的硬度低于刀具硬度,可直接用拉刀拉削内花键。如动力钳上CMf齿轮马达配对齿轮的渐开线内花键就采用了这种加工工艺。这类齿轮也可以在渗碳前,按常规工艺精加工孔。渗碳时,在内孔及孔口两端面上涂上防渗涂料,渗碳后拉削内花键。由于防渗涂料在实际运用时效果不是很好,淬火时还要采用闷头闷内孔,以延缓内孔的冷却速度,降低内孔的淬火硬度,便于淬火后修整键槽。这些方法均是通过降低内花键孔的淬火硬度以便加工,从实际运用上来看,效果不是很理想。 我公司在对动力钳输出齿轮等要求硬齿面花键孔的加工时,通过摸索和借鉴,找出一种比较符合我公司实际情况的加工方法。这就是在渗碳前拉出内花键,渗碳后直接淬火,热处理后在压机上用花键推刀推挤修正内花键。这种加工方法必须控制齿轮内花键孔渗碳淬火后的收缩变形量,以便于下道工序修整内花键。 为了能稳定渗碳淬火后齿轮内花键孔的变形量,我们首先在齿轮材料以及热加工工艺上采取了一些措施。钢材内部组织疏松是导致内孔收缩量大的原因之一。我们严格按照国家标准精选材料,同时加大锻 造比,使组织紧密,以减少内孔收缩量。在锻件中如有魏氏组织与带状组织等缺陷,常温的正火难以消除,组织不均匀使冷加工后残余应 力增加。齿轮渗碳淬火后,内孔变形量增大。因此,严格控制锻造工艺,是减小齿轮内孔变形的重要一环。对于正火温度,我们经过多次试验,将其控制在940-950C,高于渗碳温度,比较符合我们的实际要求。齿坯充分正火后得到均匀的珠光体与铁素体,晶粒度为7-8 级,齿轮内孔变形变小。 动力钳具有花键孔的齿轮形状典型的有图示两种情况。 齿轮形状不同,加热与冷却时,各截面的塑性变形抗力不一。同一材料的齿轮经渗碳淬火后,花键尺寸相同的内径径向收缩量也不同。

机械加工常见热处理工艺

渗碳 渗碳热处理 渗碳:是对金属表面处理的一种,采用渗碳的多为低碳钢或低合金钢,具体方法是将工件置入具有活性渗碳介质中,加热到900--950摄氏度的单相奥氏体区,保温足够时间后,使渗碳介质中分解出的活性碳原子渗入钢件表层,从而获得表层高碳,心部仍保持原有成分。相似的还有低温渗氮处理。这是金属材料常见的一种热处理工艺,它可以使渗过碳的工件表面获得很高的硬度,提高其耐磨程度。 概述 渗碳(carburizing/carburization)是指使碳原子渗入到钢表面层的过程。 也是使低碳钢的工件具有高碳钢的表面层,再经过淬火和低温回火,使工件的表面层具有高硬度和耐磨性,而工件的中心部分仍然保持着低碳钢的韧性和塑性。 渗碳工件的材料一般为低碳钢或低碳合金钢(含碳量小于0.25%)。渗碳后﹐钢件表面的化学成分可接近高碳钢。工件渗碳后还要经过淬火﹐以得到高的表面硬度﹑高的耐磨性和疲劳强度﹐并保持心部有低碳钢淬火后的强韧性﹐使工件能承受冲击载荷。渗碳工艺广泛用于飞机﹑汽车和拖拉机等的机械零件﹐如齿轮﹑轴﹑凸轮轴等。 渗碳工艺在中国可以上溯到2000年以前。最早是用固体渗碳介质渗碳。液体和气体渗碳是在20世纪出现并得到广泛应用的。美国在20年代开始采用转筒炉进行气体渗碳。30年代﹐连续式气体渗碳炉开始在工业上应用。60年代高温(960~1100℃)气体渗碳得到发展。至70年代﹐出现了真空渗碳和离子渗碳。 分类 按含碳介质的不同﹐渗碳可分为气体渗碳、固体渗碳﹑液体渗碳﹑和碳氮共渗(氰化)。 气体渗碳是将工件装入密闭的渗碳炉内,通入气体渗剂(甲烷、乙烷等)或液体渗剂(煤油或苯、酒精、丙酮等),在高温下分解出活性碳原子,渗入工件表面,以获得高碳表面层的一种渗碳操作工艺。 固体渗碳是将工件和固体渗碳剂(木炭加促进剂组成)一起装在密闭的渗碳箱中,将箱放入加热炉中加热到渗碳温度,并保温一定时间,使活性碳原子渗人工件表面的一种最早的渗碳方法。 液体渗碳是利用液体介质进行渗碳,常用的液体渗碳介质有:碳化硅,“603”渗碳剂等。 碳氮共渗(氰化)又分为气体碳氮共渗、液体碳氮共渗、固体碳氮共渗。 原理 渗碳与其他化学热处理一样﹐也包含3个基本过程。

齿轮热处理工艺【详尽版】

齿轮热处理工艺【详细介绍】 内容来源网络,由深圳机械展收集整理! 一、工作条件以及材料与热处理要求 1.条件: 低速、轻载又不受冲击 要求: HT200 HT250 HT300 去应力退火 2.条件: 低速(<1m/s)、轻载,如车床溜板齿轮等 要求: 45 调质,HB200-250 3.条件: 低速、中载,如标准系列减速器齿轮 要求: 45 40Cr 40MnB (5042MnVB) 调质,HB220-250 4.条件: 低速、重载、无冲击,如机床主轴箱齿轮 要求: 40Cr(42MnVB) 淬火中温回火HRC40-45 5.条件: 中速、中载,无猛烈冲击,如机床主轴箱齿轮 要求: 40Cr、40MnB、42MnVB 调质或正火,感应加热表面淬火,低温回火,时效,HRC50-55 6.条件: 中速、中载或低速、重载,如车床变速箱中的次要齿轮 要求: 45 高频淬火,350-370℃回火,HRC40-45(无高频设备时,可采用快速加热齿面淬火) 7.条件: 中速、重载 要求: 40Cr、40MnB(40MnVB、42CrMo、40CrMnMo、40CrMnMoVBA)淬火,中温回火,HRC45-50.

8.条件: 高速、轻载或高速、中载,有冲击的小齿轮 要求: 15、20、20Cr、20MnVB渗碳,淬火,低温回火,HRC56-62.38CrAl 38CrMoAl 渗氮,渗氮深度0.5mm,HV900 9.条件: 高速、中载,无猛烈冲击,如机床主轴轮. 要求: 40Cr、40MnB、(40MnVB)高频淬火,HRC50-55. 10.条件: 高速、中载、有冲击、外形复杂和重要齿轮,如汽车变速箱齿轮 (20CrMnTi淬透性较高,过热敏感性小,渗碳速度快,过渡层均匀,渗碳后直接淬火变形较小,正火后切削加工性良好,低温冲击韧性也较好) 要求: 20Cr、20Mn2B、20MnVB渗碳,淬火,低温回火或渗碳后高频淬 火,HRC56-62.18CrMnTi、20CrMnTi(锻造→正火→加工齿轮→局部镀同→渗碳、 预冷淬火、低温回火→磨齿→喷丸)渗碳层深度1.2-1.6mm,齿轮硬度HRC58-60,心部硬度HRC25-35.表面:回火马氏体+残余奥氏体+碳化物.中心:索氏体+细珠光体 11.条件: 高速、重载、有冲击、模数<5 要求: 20Cr、20Mn2B 渗碳、淬火、低温回火,HRG56-62. 12.条件: 高速、重载、或中载、模数>6,要求高强度、高耐磨性,如立车重要螺旋锥齿轮 要求: 18CrMnTi、20SiMnVB 渗碳、淬火、低温回火,HRC56-62 13.条件: 高速、重载、有冲击、外形复杂的重要齿轮,如高速柴油机、重型载重汽车,航空发动机等设备上的齿轮. 要求: 12Cr2Ni4A、20Cr2Ni4A、18Cr2Ni4WA、20CrMnMoVBA(锻造→退火

金属材料渗碳淬火工艺综述

金属材料渗碳淬火工艺综述 摘要:渗碳与淬火在金属材料热处理中占有很重要的地位,渗碳是目前机械制造工业中应用最广泛的一种化学热处理方法,能提高材料的耐磨性和疲劳强度;淬火是热处理工艺中最重要,也用途最广泛的工序,能显著提高金属材料的强度和硬度。 关键词:渗碳,淬火,耐磨性,强度,硬度 1、渗碳工艺 1.1、渗碳原理 将低碳钢件放入渗碳介质中,在850~950℃加热保温,使活性碳原子渗入钢件表面并获得高渗碳层的工艺方法叫做渗碳。齿轮、凸轮、轴类等许多重要机械零件还有模具经过渗碳及随后的淬火并低温回火后,可以获得很高的表面硬度、耐磨性以及高的接触疲劳强度和弯曲疲劳强度,而心部仍保持低碳,具有良好的塑性和韧性,因此处理后的材料既能承受磨损和较高的表面接触应力及冲击负荷的作用。 渗碳属于化学热处理,过程由分解、吸附和扩散三个基本过程组成,发生的化学反应如下: 2CO→[C]+CO2 Fe+[C]→FeC CH4→[C]+2H2 1.2、渗碳分类 根据渗碳剂的不同,渗碳方法有固体渗碳、气体渗碳和离子渗碳。常用的是前两种,尤其是气体渗碳应用最为广泛。 固体渗碳是将低碳件放入装满固体渗碳剂的渗碳箱中,密封后送入炉中加热至渗碳温度保温,以便活性碳原子渗入工件表层。固体渗碳剂由一定颗粒度的木炭加碳酸盐混合而成。渗碳温度一般为900~930℃,渗碳保温时间视层深要求确定,一般需要十几个小时。固体渗碳加热时间长,生产效率低,劳动条件差,渗碳深度及质量不易控制。 气体渗碳是把零件放入含有气体渗碳介质的密封高温炉中进行碳的渗入过程的渗碳方法。这种渗碳方法通常是将煤油或丙酮等液态碳氢化合物直接滴入高温渗碳炉中,使其热裂分解为活性碳原子并渗入零件表面。气体渗碳温度一般为920~950℃。气体渗碳工艺过程通常可划分为升温排气、渗碳(包括强渗和扩散)、降温冷却三个阶段,如图1所示:

齿轮热处理

1 齿轮热处理概述众所周知,齿轮是机械设备中关键的零部件,它广泛的 用于汽车、飞机、坦克、齿轮传动是近代机它具有传动准确、结构紧凑使用寿命长等优点。轮船等工业领域。是机械产品重要器中最常见的一种机械振动是传递机械动力和运动的一种重要形式、基础零件。它与带、链、摩擦、液压等机械相比具有功率范围大,传动效率高、圆周速度高、传动比准确、使用寿命长、尺寸结构小等一系列优点。因此它已成为许多机由于齿轮在工业械产品不可缺少的传 动部件,也是机器中所占比例最大的传动形式。得益于近年来汽车、风电、. 发 展中的突出地位,使齿轮被公认为工业化的一种象征据大规格齿轮加工机床的需求增长十分耀眼。核电行业的拉动,汽车齿轮加工机床、近年来涉及齿轮加工机床制造的企业也日益增随着齿轮加工机床需求的增加,了解,多。无论是传统的汽车、船舶、航空航天、军工等行业,还是近年来新兴的高铁、铁对齿轮加工机床制都对机床工具行业的快速发展提出了紧迫需求,路、电子等行业,万吨。但 我国齿轮的质量年将达到200 2012 造商提出了新的要求。据权威部门预测主要 表现在齿轮的平均使用寿与其他发达国家的同类产品相较还是具有一定的差距,本设计是在课堂学习热处理知识后的探索和单位产品能耗、生产率这几方面上。命、并按重点是制定合理的热处理规程,尝试,其内容讨论如何设计齿轮的热处理工艺,此设计齿轮的热处理方法。齿轮是机械工业中应用最广泛的重要零件之一。其主要作用是传递动力,改变运 动速度和方向。是主要零件。其服役条件如下:齿轮工作时,通过齿面的接触来传递动力。两齿轮在相对运动过程中,既有滚动,(1)在齿根部位受因此,齿轮 表面受到很大的接触疲劳应力和摩擦力的作用。又有滑动。到很大的弯曲应力作用;word 编辑版. ⑵高速齿轮在运转过程中的过载产生振动,承受一定的冲击力或过载;⑶在一些特殊环境下,受介质环境的影响而承受其它特殊的力的作用。因此,齿轮的表面有高的硬度和耐磨性,高接触疲劳强度,有较高的齿根抗弯强度,高的心部 抗冲击能力。齿轮常用材料有。20Cr ,20CrMnTi, 18Cr2Ni4WA①20Cr降温直接淬火对渗碳时有晶粒长大倾向,有较高的强度及淬透性,但韧性较差。可切削性良好,冲击韧性影响较大,因而渗碳后进行二次淬火提高零件心部韧性;20Cr 为珠光体,焊接性较好,焊后一般不需热处理。但退火后较差;②20CrMnTi 20CrMnTi是性能良好的渗碳钢,淬透性较高,经渗碳淬火后具有高的强度和 韧性,特别是具有较高的低温冲击韧性,切削加工性良好,加工变形小,抗疲劳性能好。 ③18Cr2Ni4WA

气体渗碳炉作业指导书

气体渗碳炉作业指导书 Q/SZ J08.141 1 目的 为贯彻公司职业健康安全方针、环境方针,有效的进行安全生产并控制污染物的产生和排放,保护环境,特制定本作业指导书。 2 适用范围 本指导书适用于热处理厂540kw及105kw渗碳炉的操作。 3 总则 3.1 操作者必须经过专门培训、经过考试合格取得上岗证后,才能操作设备。 3.2 经过医生检查,确定无防碍工作疾病后才能工作。 3.3 工作时按规定穿戴劳动用品。 3.4 渗碳炉的尾气中含有一氧化碳,必须随时点燃、防止污染。 3.5 在渗剂室及滴注管路2m以内严禁动火、防止火灾。 3.6 渗碳炉的冷却用水保持清洁,严禁废物排入下水管路中。 4 操作规程 4.1 大型井式气体渗碳炉操作规程 4.1.1 性能简介 大型井式气体渗碳炉额定功率540KW,配有6区自动控温系统,及多功能淬火油槽,在结构上采用无底马弗罐油封方式,炉门采用开式水冷密封方式。炉门开启方式为液压控制。为适应工艺要求,有快速降温系统。因此要求操作者必须在熟悉设备性能的基础上,经岗位培训,考试合格后方能操作设备,并严格执行此操作规程。 4.1.2 开炉前准备工作 4.1.2.1 开炉前检查冷却水路是否畅通,有无泄露现象,发现问题及时处理。 4.1.2.2 认真检查底部油封汽缸油油标是否到规定位置,如有不足及时补充油。检查有无漏油现象(油液面在油标的两个刻度线内视为合格)。 4.1.2.3 认真检查炉盖密封圈是否完好,如有损坏及时更换。 4.1.2.4快速冷却鼓风机阀门,在开炉前应处于“0”位置,处于关闭状态。出风口盖应盖严。 4.1.2.5 检查炉丝对地绝缘电阻,应为0.5MΩ以上。 4.1.2.6 检查热电偶是否处于正确位置,油温报警侧温表应设定在120℃位置上,并确定是否灵敏可靠。 4.1.2.7 检查滴注系统是否畅通、有无渗漏现象,出现问题及时处理。 4.1.2.8 炉盖升降系统灵活可靠。 4.1.3 炉子启动 4.1.3.1 开动炉盖:A:当装卸工件需开启炉盖时,先按动油泵“启动”按钮,在炉前有人监护的情况下,并确认压紧手轮脱开、将炉盖热电偶氧碳头等位置提到风扇导流板上后,再按“炉盖升”按钮。当升到位置后,向右搬动900后进行装卸工件。B:当需要关闭炉盖时,在将炉盖搬回,对正马弗罐,炉前操作人员扶正炉盖,指挥操作者按“炉盖降”按钮,炉盖降到位后按油泵“停止”按钮。 注意:当开启炉盖后需要长时间的(5分钟以上)停留保持时,应按“油泵停止”,重新 139

常用齿轮材料的选择及其热处理工艺分析

齿轮材料的选择及其热处理工艺 1、齿轮材料的选择原则 齿轮材料的种类很多,在选择时应考虑的因素也很多,下述几点可供选择材料时参考: 1)齿轮材料必须满足工作条件的要求。例如,用于飞行器上的齿轮,要满足质量小、传递功率大和可靠性高的要求,因此必须选择机械性能高的合金银;矿山机械中的齿轮传动,一般功率很大、工作速度较低、周围环境中粉尘含量极高,因此往往选择铸钢或铸铁等材料;家用及办公用机械的功率很小,但要求传动平稳、低噪声或无噪声、以及能在少润滑或无润滑状态下正常工作,因此常选用工程塑料作为齿轮材料。总之,工作条件的要求是选择齿轮材料时首先应考虑的因素。 2)应考虑齿轮尺寸的大小、毛坯成型方法及热处理和制造工艺。大尺寸的齿轮一般采用铸造毛坯,可选用铸钢或铸铁作为齿轮材料。中等或中等以下尺寸要求较高的齿轮常选用锻造毛坯,可选择锻钢制作。尺寸较小而又要求不高时,可选用圆钢作毛坯。 齿轮表面硬化的方法有:渗碳、氨化和表面淬火。采用渗碳上艺时,应选用低碳钢或低碳含金钢作齿轮材料;氨化钢和调质钢能采用氮化工艺;采用表面淬火时,对材料没有特别的要求。 3)正火碳钢,不论毛坯的制作方法如何,只能用于制作在载荷平稳或轻度冲击下工作的齿轮,不能承受大的冲击载荷;调质碳钢可用于制作在中等冲击载荷下工作的齿轮。 4)合金钢常用于制作高速、重载并在冲击载荷下工作的齿轮。 5)飞行器中的齿轮传动,要求齿轮尺寸尽可能小,应采用表面硬化处理的高强度合金钢。 6)金属制的软齿面齿轮,配对两轮齿面的硬度差应保持为30~50HBS或更多。当小齿轮与大齿轮的齿面具有较大的硬度差(如小齿轮齿面为淬火并磨制,大齿轮齿面为常化或调质);且速度又较高时,较硬的小齿轮齿面对较软的大齿轮齿面会起较显著的冷作硬化效应,从而提高了大齿轮齿面的疲劳极限。因此,当配对的两齿轮齿面具有较大的硬度差时,大齿轮的接触疲劳许用应力可提高约20%,但应注意硬度高的齿面,粗糙度值也要相应地减小。 2、齿轮材料的选择 齿轮齿条是现代机械中应用最广泛的一种机械传动零件。齿轮传动通过轮齿互相啮合来传递空间任意两轴间的运动和动力,并可以改变运动的形式和速度。齿轮传动使用范围广,传动比恒定,效率较高,使用寿命。在机械零件产品的设计与制造过程中,不仅要考虑材料的性能能够适应零件的工作条件,使零件经久耐用,而且要求材料有较好的加工工艺性能和经济性,以便提高零件的生产率,降低成本,减少消耗。如果齿轮材料选择不当,则会出现零件的过早损伤,甚至失效。因此如何合理地选择和使用金属材料是一项十分重要的工作。 满足材料的机械性能,材料的机械性能包括强度、硬度、塑性及韧性等,反映材料在使用过程中所表现出来的特性。齿轮在啮合时齿面接触处有接触应力,齿根部有最大弯曲应力,可能产生齿面或齿体强度失效。齿面各点都有相对滑动,会产生磨损。齿轮主要的失效形式有齿面点蚀、齿面胶合、齿面塑性变形和轮齿折断等。因此要求齿轮材料有高的弯曲疲劳强度和接触疲劳强度,齿面要有足够的硬度和耐磨性,芯部要有一定的强度和韧性。 例如,在确定大、小齿轮硬度时应注意使小齿轮的齿面硬度比大齿轮的齿面硬度高30-50HBS,是因为小齿轮受载荷次数比大齿轮多,且小齿轮齿根较薄,强度低于大齿轮。为使两齿轮的轮齿接近等强度,小齿轮的齿面要比大齿轮的齿面硬一些。 另一方面,根据材料的使用性能确定了材料牌号后。要明确材料的机械性能或材料硬度,然后我们可以通过不同的热处理工艺达到所要求的硬度范围,从而赋予材料不同的机械性能。如材料为40Cr合金钢的齿轮,当840-860℃油淬,540-620℃回火时,调质硬度可达28-32HRC,可改善组织、提高综合机械性能;当860-880℃油淬,240—280℃回火时,硬度可达46-51HRC,则钢的表面耐磨性能好,芯部韧性好,变形小;当500-560℃氮化处理,氮化层0.15 -0.6mm时,硬度可达52-54HRC,则钢具有高的表面硬度、高的耐磨性、高的疲劳强度,较高的抗蚀性和抗胶合性能且变形极小;当通过电镀或表面合金化处里后,则可改善齿轮工作表面摩擦性能,提高抗腐蚀性能 3、齿轮常用材料 齿轮常用材料摘要:齿轮依靠结构尺寸材料强度承受载荷要求材料具有强度韧性耐磨性齿轮形状复杂齿轮精度要求要求材料工艺常用材料锻钢铸钢铸铁锻钢硬度分为大类HB称为软齿称为硬度HB工艺过程锻造毛坯正火粗车调质加工常用材料SiMnCr 液体动静压轴承常用轴壳配轴承轴承的密封类型精密轴承工序间防锈新工艺轴承寿命强化

常用热处理工艺【详情】

常用的几种热处理方法 内容来源网络,由深圳机械展收集整理! 更多相关表面处理及精密零件加工展示,就在深圳机械展! 1.常用热处理方式 1.1.退火 把钢加热到一定温度并在此温度下保温,然后缓慢冷却到室温。 退火有完全退火、球化退火、去应力退火等几种。 a.将钢加热到预定温度,保温一段时间,然后随炉缓慢冷却称为完全退火.目的是降 低钢的硬度,消除钢中不均匀组织和内应力. b.把钢加热到750度,保温一段时间,缓慢冷却至500度下,最后在空气中冷却叫球 化退火。目的是降低钢的硬度,改善切削性能,主要用于高碳钢。 c.去应力退火又叫低温退火,把钢加热到500~600度,保温一段时间,随炉缓冷到 300度以下,再室温冷却.退火过程中组织不发生变化,主要消除金属的内应力。 1.2.正火 将钢件加热到临界温度以上30-50℃,保温适当时间后,在静止的空气中冷却的热处理工艺称为正火。 正火的主要目的是细化组织,改善钢的性能,获得接近平衡状态的组织。 正火与退火工艺相比,其主要区别是正火的冷却速度稍快,所以正火热处理的生产周期短。故退火与正火同样能达到零件性能要求时,尽可能选用正火。 1.3.淬火 将钢件加热到临界点以上某一温度(45号钢淬火温度为840-860℃,碳素工具钢的淬火温度为760~780℃),保持一定的时间,然后以适当速度在水(油)中冷却以获得马氏体或贝氏体组织的热处理工艺称为淬火。 淬火与退火、正火处理在工艺上的主要区别是冷却速度快,目的是为了获得马氏体组织。马氏体组织是钢经淬火后获得的不平衡组织,它的硬度高,但塑性、韧性差。马氏体的硬度随钢的含碳量提高而增高。

1.4.回火 钢件淬硬后,再加热到临界温度以下的某一温度,保温一定时间,然后冷却到室温的热处理工艺称为回火。 淬火后的钢件一般不能直接使用,必须进行回火后才能使用。因为淬火钢的硬度高、脆性大,直接使用常发生脆断。通过回火可以消除或减少内应力、降低脆性,提高韧性;另一方面可以调整淬火钢的力学性能,达到钢的使用性能。根据回火温度的不同,回火可分为低温回火、中温回火和高温回火三种。 A 低温回火150~250.降低内应力,脆性,保持淬火后的高硬度和耐磨性。 B 中温回火350~500;提高弹性,强度。 C 高温回火500~650;淬火钢件在高于500℃的回火称为高温回火。淬火钢件经高温淬火后,具有良好综合力学性能(既有一定的强度、硬度,又有一定的塑性、韧性)。所以一般中碳钢和中碳合金钢常采用淬火后的高温回火处理。轴类零件应用最多。 淬火+高温回火称为调质处理。 2.Q235热处理工艺 Q235属于碳素结构钢,含碳量大概0.12%-0.2%之间,相当于普通的10、20钢,淬火后硬度改变不大。具有较高的强度,良好的塑性,韧性和焊接性能,综合性能好,能满足一般钢结构和钢筋混凝土结构用钢的要求。 Q235一般买来就用不热处理,一般它都用在工程上大量需要钢材的地方,数量巨大,一般是热轧后就使用,热轧也就是有正火这个热处理,不热处理的原因有几个: 1)这些场合不需要太高的力学要求。 2)这些钢构件的体积太大了,你想热处理也不现实。 3)这些钢很多情况下要被焊接使用的,你热处理了被焊接后也被焊接过程中将焊缝的 热处理给破坏了。 4)材料价格便宜,质量要求比较低,而且是低碳钢,热处理的效果也不太好。 5)如果非要用Q235淬出硬度那只能渗碳,但是一件很不划算的事情。 Q235在理论上是可以淬火得到马氏体的。但是由于马氏体碳过饱和度很低,淬火后的硬度很低,只有170HBS左右。而这种钢的供应状态硬度大概就有144HBS左右(出

金属表面热处理渗碳工艺对比

金属表面热处理渗碳工艺的对比 一、热处理发展历史 在实用生产技术发展上值得回顾的有:①1890年英国首次公布了制备不可燃气氛发生炉的专利,该气氛用于金属的光亮热处理,德国的A.富利1921年申请了在井式炉中通氨渗氮的专利。②P.P.阿诺索夫在1837年就倡导用气体渗碳法,而经过100年后(1935年)前苏联的利哈乔夫汽车厂才有了第一台用煤油裂解气的罐式连续渗碳炉;直到20世纪50年代才逐步取代了固体渗碳和用氰盐的液体渗碳。③前苏联的G.V.沃罗格金在20世纪40年代逐步把感应加热技术应用到炼钢、锻造加热和表面淬火热处理等领域。④20世纪40年代末出现了用LiCl露点仪的碳势可控渗碳。⑤离子渗氮于20世纪30年代在德国就有了专利,而KlÊ;ckner公司是在20世纪50年代末才开发出商品设备,并推向工业应用。⑥20世纪60年代初瑞士的H.魏斯发明了在井式炉中的CARBOMAAG滴注可控渗碳法。⑦20世纪60年代中期,用吸热式气(载气)、甲烷或丙烷(作富化气)并用CO2红外仪测控炉气碳势的可控渗碳在汽车工业中得到推广。与此同时第一代的冷壁式真空加热油中淬火炉和真空渗碳炉问世。⑧20世纪50年代开发,60年代推广的被称作Tenifer或Tufftride商品名称的盐浴氮碳共渗,使渗氮周期由数十小时缩短到1h~2h,可明显提高传动件的抗疲劳、耐磨性和抗咬合能力;由于处理温度低(<580℃),工件畸变小,其缺点是所用氰盐剧毒、废盐废水需妥善处理。⑨为避免使用剧毒的氰盐,20世纪60年代后期开发出了NH3+吸热式气(Nikotrier)和NH3+CO2(Nitroc)在570℃的井式或箱式炉中施行的气体氮碳共渗法,随后在汽车曲轴、低载齿轮等零件上获得广泛应用。⑩20世纪50年代高分子聚合物溶液开始用做淬火剂。最早使用的此类聚合物是聚乙烯醇(PVA),以0.1%~0.3%的浓度用做感应加热件的喷冷淬火,其冷却能力介于水油之间,不易燃、无污染。20世纪60年代美国联碳公司推出UCON(PAG)系列合成淬火剂,可代替油用于铁和非铁合金的淬火及固溶处理的冷却。随后又有一系列其它类别的合成淬火剂商品问世。⑾高、中、工频以及超音频和超高频、超高频脉冲感应加热表面热处理工艺广泛应用。各种静态固体电路高频、大功率电源相继问世,全自动程控多工位淬火机床和自动装卸料机械手或机器人获得工业应用。?⑿20世纪80年代氧探头逐步代替红外仪用于炉气碳势控制的传感器和计算机仿真自适应控制、无损检测技术、机器人装卸结合,使大批量生产的汽车零件的渗碳、淬火、清洗、回火、质检全过程实现自动化和无人作业。?⒀20世纪90年代,欧洲IpsenInternational、ALD和ECM等公司相继推出低压渗碳、低压离子渗碳和高压气淬的周期炉和半连续生产线,为提高效率、改善质量、减少畸变和保护环境作出了贡献,为汽车工业热处理未来提供了前景。近20年来,热处理新技术的大量涌现,为机器制造业的发展、机械产品质量的提高、热处理企业的技术改造积累了大量的技术储备,为热处理生产技术的进步提供了广阔前景。 二、氨气的作用:提高淬透性 渗碳淬火后的齿轮零件正常的组织应该是马氏体与残余奥氏体,但在实际生产中经常发现在渗碳淬火件的表层出现连续、断续的黑色组织或沿晶界分布的黑色氧化物。普遍的理论认为是由于内氧化使合金元素贫化、淬透性下降导致形成屈氏体类组织,这类组织就被称为非马氏体组织。非马氏体组织深度如果超标严重,反映在力学性能上就是出现零件表面硬度低头的现象,影响硬度梯度。在实际使用中会降低齿轮的耐磨性和疲劳寿命,危害比较严重。尽可能选择含Cr、Mo、V、Mn和Ni等高淬透性的低碳合金钢作为齿轮原材料。对渗碳后的零件采取剧烈的冷却方式(比如强力搅拌)可以有效地减少非马氏体组织,但前提是不能使零件

渗碳淬火热处理工艺

渗碳淬火工艺 1、钢的淬火 钢的淬火与回火是热处理工艺中最重要,也是用途最广泛的工序。淬火可以显著提高钢的强度和硬度。为了消除淬火钢的残余应力,得到不同强度,硬度和韧性配合的性能,需要配以不同温度的回火。所以淬火和回火又是不可分割的、紧密衔接在一起的两种热处理工艺。淬火、回火作为各种机器零件及工、模具的最终热处理是赋予钢件最终性能的关键工序,也是钢件热处理强化的重要手段之一。 1.1 淬火的定义和目的 把钢加热到奥氏体化温度,保温一定时间,然后以大于临界冷却速度进行冷却,这种热处理操作称为淬火。钢件淬火后获得马氏体或下贝氏体组织。图4为渗碳齿轮20CrNi2Mo材料淬火、回火工艺。 温830℃ 度 ℃油 冷200℃ 8 空冷 时间h 图4 渗碳齿轮20CrNi2Mo材料淬火、回火工艺 淬火的目的一般有: 1.1.1 提高工具、渗碳工件和其他高强度耐磨机器零件等的强度、硬度和耐磨性。例如高速工具钢通过淬火回火后,硬度可达63HRC,且具有良好的红硬性。渗碳工件通过淬火回火后,硬度可达58~63HRC。 1.1.2 结构钢通过淬火和高温回火(又称调质)之后获得良好综合力学性能。例如汽车半轴经淬火和高温回火(280~320HB)及外圆中频淬火后,不仅提高了花键耐磨性,而且使汽车半轴承受扭转、弯曲和冲击载荷能力(尤其是疲劳强度和韧性)大为提高。 淬火时,最常用的冷却介质是水、盐水、碱水和油等。通常碳素钢用水冷却,水价廉易得,合金钢用油来冷却,但对要求高硬度的轧辊采用盐水或碱水冷却,辊面经淬火后硬度高而均匀,但对操作要求非常严格,否则容易产生开裂。 1.2 钢的淬透性 2.2.1 淬透性的基本概念 所谓钢材的淬透性是指钢在淬火时获得淬硬层深度大小的能力(即钢材淬透能力),其大小用钢在一定条件下(顶端淬火法)淬火获得的有效淬硬层深度来表示,淬透性是每种钢材所固有的属性,淬硬层愈深,就表明钢的淬透性愈好,例如45、40Cr 、42CrMo钢三种

渗碳渗氮工艺

渗碳+渗氮表面处理工艺 渗碳与渗氮一般是指钢的表面化学热处理 渗碳必须用低碳钢或低碳合金钢。可分为固体.液体.气体渗碳三种。应用较广泛的气体渗碳,加热温度900-950摄氏度。渗碳深度主要取决于保温时间,一般按每小时0.2-0.25毫米估算。表面含碳量可达百分之0.85-1.05。渗碳后必须热处理,常用淬火后低温回火。得到表面高硬度心部高韧性的耐磨抗冲击零件。 渗氮应用最广泛的气体渗氮,加热温度500-600摄氏度。氮原子与钢的表面中的铝.铬.钼形成氮化物,一般深度为0.1-0.6毫米,氮化层不用淬火即可得到很高的硬度,这种性能可维持到600-650摄氏度。工件变形小,可防止水.蒸气.碱性溶液的腐蚀。但生产周期长,成本高,氮化层薄而脆,不宜承受集中的重载荷。主要用来处理重要和复杂的精密零件。 涂层、镀膜、是物理的方法。“渗”是化学变化,本质不同。 钢的渗碳---就是将低碳钢在富碳的介质中加热到高温(一般为900--950C),使活性碳 原子渗入钢的表面,以获得高碳的渗层组织。随后经淬火和低温回火,使表面具有高的硬度、耐磨性及疲劳抗力,而心部仍保持足够的强度和韧性。 渗碳钢的化学成分特点 (1)渗碳钢的含碳量一般都在0.15--0.25%范围内,对于重载的渗碳体,可以提高到 0.25--0.30%,以使心部在淬火及低温回火后仍具有足够的塑性和韧性。但含碳量不能太低,否则就不能保证一定的强度。 (2)合金元素在渗碳钢中的作用是提高淬透性,细化晶粒,强化固溶体,影响渗层中的含碳量、渗层厚度及组织。在渗碳钢中通常加入的合金元素有锰、铬、镍、钼、钨、钒、硼等。常用渗碳钢可以分碳素渗碳钢和合金渗碳钢两大类 (1)碳素渗碳钢中,用得最多的是15和20钢,它们经渗碳和热处理后表面硬度可达 56--62HRC。但由于淬透性较低,只适用于心部强度要求不高、受力小、承受磨损的小型零件,如轴套、链条等。 (2)低合金渗碳钢如20Cr、20Cr2MnVB、20Mn2TiB等,其渗透性和心部强度均较碳素渗碳钢高,可用于制造一般机械中的较为重要的渗碳件,如汽车、拖拉机中的齿轮、活塞销等。 (3)中合金渗碳钢如20Cr2Ni4、18Cr2N4W、15Si3MoWV等,由于具有很高的淬透性和较高的强度及韧性,主要用以制造截面较大、承载较重、受力复杂的零件,如航空发动机的齿轮、轴等。 固体渗碳、液体渗碳、气体渗碳---渗碳温度为900--950C,表面层w(碳)为0.8--1.2%,层深为0.5--2.0mm。 渗碳后的热处理---渗碳工件实际上应看作是由一种表面与中心含量相差悬殊码复合材料。渗碳只能改变工件表面的含碳量,而其表面以及心部的最终强化则必须经过适当的热处理才能实现。渗碳后的工件均需进行淬火和低温回火。淬火的目的是使在表面形成高碳马氏体或高碳马氏体和细粒状碳化物组织。低温回火温度为150--200C 。 渗碳零件注意事项 (1)渗碳前的预处理正火--目的是改善材料原始组织、减少带状、消除魏氏组织,使表面粗糙度变细,消除材料流线不合理状态。正火工艺;用860--980C空冷、179--217HBS。 (2)渗碳后需进行机械加工的工件,硬度不应高于30HRC。 (3)对于有薄壁沟槽的渗碳淬火零件,薄壁沟槽处不能先于渗碳之前加工。 (4)不得用镀锌的方法防渗碳。 防止渗碳方法

齿轮渗碳淬火工艺培训讲义(1)

齿轮渗碳淬火工艺培训讲义 一、齿轮受力状态及失效形式: 1、受力状态:齿面摩擦力、齿面接触应力和齿根弯曲应力。 2、失效形式: 齿面剥落:表面网状碳化物和渗碳过渡区拉应力是造成齿面剥落的原因。 麻点:齿面金属的塑性变形和齿面的摩擦力导到齿面产生疲劳裂纹,润滑油挤入加速裂纹扩展,由此而产生麻点。 断裂:表现为断齿或断轴,原因为齿轮基体强度不夠。 二、齿轮渗碳淬火通用技术要求: 1、对原材料的要求要: 根据不同使用要求对材料疏松、成份偏析、非金属夹物、带状组织、原始晶粒度和材料淬透性等均有不同级别要求。 2、对预备热处理组织状态和热处理硬度的要求: 包括组织状态、基体硬度、晶粒度等。 3、对最终热处理质量的要求: 包括渗碳淬火表面硬度、渗碳层深度和渗层金相组织、工件基体组织及硬度、强度等。 三、齿轮渗碳淬火工艺规程: 1、渗碳淬火齿轮(低速重载和高速齿轮) 选材: 2、渗碳齿轮工艺流程:锻造---正火---机加工---渗碳淬火---精加工---强力喷丸。

3、齿轮渗碳淬火技术要求: 4、正火热处理:

5、齿轮渗碳工艺: 渗碳淬火工艺曲线 温度 时间 6、使用设备: 可控气氛多用炉。 7、装炉工装及装料方式:详见附图。 (1)使用工装: 工装料架应为抗渗碳、抗热疲劳、高温具有高强度的高Ni-Cr 含量材质的工装。工装结构视工件大小、结构特征而定。工装的结构应保证工件加热、冷却均匀,有利于减小工件淬火变形。 (2)、装料方式: 一般齿轮类工件垂直挂装,套类齿轮多层碼放。工件间应留有一定间隙,以保证不同工件和相同工件不同部位加热和冷却均匀。 滚动件均匀、薄层应平摊于料筛底部,采用多层料筛叠放装料的形式较好。 8、淬火介质及淬火冷却方式: (1)、淬火介质采用德润宝或好富顿淬火油较好。因为这类淬火油蒸气膜持续时间短,蒸气薄且厚度均匀,奥氏体不稳定区冷速较高,有利于避免其产生非马转变;马氏体转变温度下的冷却速度较慢,有利于减小工件淬火应力和淬火变形。 (2)、淬火介质的搅拌强度和循环方向: 选择强力向下搅拌为宜,但最终应根据工件淬火效果确定。

渗氮、渗碳工艺

1?前面已经提到了约99%的自攻螺钉采用碳钢,即渗碳钢制造;其中自钻自攻螺钉也可以采用热处理钢制造(实际上生产企业大多采用渗碳钢,目前国内外大多采用C1018,C1022等材料来制造自攻螺钉各类产品 1、普通自攻螺钉的机械性能 (1)ISO2702、GB/T3098.5、DIN267T12 ①表面硬度:≥450HV0.3。 ②芯部硬度:≤ST3.9:270~390HV5,>ST3.9:270~390HV10。 ③渗碳层深度:。 M2.5 0.04~0.12mm M3: 0.05~0.18mm M4~M5: 0.10~0.25mm M6~M8: 0.15~0.28mm 2、纤维板钉的机械性能 (1)表面硬度:450~750HV0.3。 (2)芯部硬度:2.5mm~4mm: 320~450HV5;4.5mm~6mm: 320~450HV10。 (3)渗碳层深度:2.5mm~3mm:0.05~0.18mm;3.5mm~6mm:0.10~0.23mm。 (4)破坏扭矩:2.5mm:≥1.0Nm 3mm:≥1.5Nm 3.5mm:≥2.0Nm 4mm:≥3.0Nm 4.5mm:≥4.3Nm 5mm:≥6.2Nm 6mm:≥10.8Nm (5)弯折角试验:≥15°。 3、墙板自攻螺钉机械性能 (1)表面硬度:≥560HV0.3。 (2)渗碳层深度: 0.05~0.10mm。 (3)拧入性:拧入转速:2000~3000r/min;轴向总推力:150±3 N;板厚:0.6mm;拧入时间≤1s。 (4)破坏扭矩 3.5(6#):≥2.8Nm, 4.2(8#):≥4.2Nm 3.9(7#):≥3.4Nm, 4.8(10#):≥6Nm 一?渗碳工艺(气体渗碳——煤油):? 渗碳钢的碳含量一般在0.12%~0.25%之间,其所含主要合金元素一般是铬、锰、镍、钼、钨、钛等。? ○ 1?把炉温升到800℃左右,断开电源打开炉盖,放入装好工件的工装,关闭炉盖升温到930℃左右。在升温过程中,打开风扇及煤油阀门,以每分钟160滴的速度滴入炉内,进行排气,同时打开试样孔和排气管并点燃排气火焰。排气时间一般为60~80分钟(保证温度到渗碳温度还要排气30分钟左右);? ○ 在渗碳过程中要随时注意火焰形状,正常的火焰是:火焰呈金黄色,无力不熄灭(断续熄灭,说明水气高了),火苗无黑焰和火星,火苗长100~150mm;若火苗出现火星,说明炉内炭黑过度;火苗过长、尖端外缘呈亮白色,说明渗碳剂供量过多;火苗短、外缘呈浅蓝色并有透明,说明渗碳剂供量不足或炉子漏气。 渗碳工艺曲线说明如下:? 赶气:其目的是赶走炉内空气,使炉内空气恢复到工艺规定的碳势气氛。?保温:其目的是使炉内工件温度均匀。保温时间一般是40min到1h。? 渗碳温度和渗碳时间:渗碳温度一般为

齿轮表面渗碳及渗碳深度

仪器在400倍以上的放大倍数下测量压痕。 测定应在各方约定的位置上,在制备好的试样表面上的两条或更多条硬化线上进行,并绘制出每一条线的硬度分布曲线 二.齿轮固体渗碳工艺 (一)渗碳剂的成份及其作用: 固体渗碳剂主要是由木炭粒和碳酸盐(BaCO3或Na2CO3等组成。木炭粒是主渗剂,碳酸盐是催渗剂。 木炭颗粒均匀,并要求3—6mm左右的占80%,1—3mm左右占20%左右,1mm以下的不大于1%,如果是大零件渗碳,大颗粒木炭应多些,小零件,小颗粒应多些。常用的渗碳剂成份如表1所示。 常用渗碳剂的成份 渗碳加热时,炭与其间隙中的氧作用(不完全燃烧),生成一氧化碳。 2C+O2—→2CO 一氧化碳在渗碳条件下,是不稳定的。活性碳原子被钢件表面吸收,并向内部扩散。整个反反应过程可用下式示意表示:C+CO2—→2CO—→CO2+[C]单独用木炭进行渗碳,周期长,效果差,为了增加渗碳剂的活性,增加活性碳原子数量,一般加入一定数量的碳酸盐作为催渗剂。催渗剂在高温下与木碳产生如下反应:BaCO3+C—→BaO2+CO Na2CO3 + C(木炭) —→ Na2O + 2CO 2CO —→ CO2 + [C]渗碳过程中,木炭受到了烧损,但催渗剂分解氧化物,在开箱冷却时与空气接触,如按下方程式进行还原,这使催渗剂消耗大为减少。BaO+CO2—→BaCO3,Na2O+CO2—→Na2CO3 为了提高催渗剂再生效果,在此介绍一种有效的方法,即将高温下倒出来的渗碳剂,立刻用水喷洒(水的重量是渗碳剂重量的4—5%)。通过这样的处理,碳酸盐可得较完全的再生,其原因是:BaO+CO2—→BaCO3这个过程随温度下降而缓慢,如果在高温下喷水,就能使BaO变成氢氧化钡,而氢氧化钡向碳酸钡转变

齿轮渗碳淬火变形原因及其控制

齿轮及齿圈渗碳淬火变形原因及其控制的措施 1 引言 齿轮渗碳淬火的变形直接关系到齿轮质量指标。对于渗碳淬火的齿轮,特别是大型齿轮,其变形量很大,且难以控制。较大的变形不仅会使磨齿加工的磨量增加,成本提高,而且影响齿轮制造精度,降低承载能力,最终寿命也会大大下降。齿轮渗碳淬火热处理变形主要是由于工件在机加工时产生的残余应力,热处理过程中产生的热应力和组织应力以及工件自重变形等共同作用而产生的。影响齿轮渗碳淬火变形的因素很多,包括齿轮的几何形状、原材料及冶金质量、锻造和机加工的残余应力、装料方式和热处理工艺及设备等诸方面。掌握变形规律,减少齿轮渗碳淬火变形,能够提高齿轮的承载能力和使用寿命,对缩短制造周期,降低生产成本也都具有重要意义。 2 齿轮渗碳淬火变形规律 对齿轮质量和寿命影响最大的变形来自齿轮外径、公法线长度和螺旋角等。一般说来,变形趋势如下: 2.1 齿轮变形规律:齿轮渗碳淬火后齿顶圆外径呈明显胀大趋势,且上下不均匀呈锥形;径长比越大,外径胀大量越大。碳浓度失控偏高时,齿轮外径呈收缩趋势。 2.2 齿轮轴变形规律:齿顶圆外径呈明显收缩趋势,但一根齿轴的齿宽方向上,中间呈缩小,两端略有胀大。 2.3 齿圈变形规律:大型齿圈经渗碳淬火后,其外径均胀大,齿宽大小不同时,齿宽方向呈锥形或腰鼓形。 3 渗碳淬火变形原因 3.1 渗碳件变形的实质 渗碳的低碳钢,原始相结构是由铁素体和少量珠光体组成,铁素体量约占整个体积的80%。当加热至AC1以上温度时,珠光体转变为奥氏体,900℃铁素体全部转变为奥氏体。910—930℃渗碳时,零件表面奥氏体区碳浓度增加至0.75—1.2%,这部分碳浓度高的奥氏体冷至Ar1以下才开始向珠光体、索氏体转变,而心部区的低碳奥氏体在900℃即开始分解为铁素体,冷至550℃左右全部转变完成。心部奥氏体向铁素体转变是比容增大的过程,表层奥氏体冷却时是热收缩量增加的变化过程。在整个冷却过程中,心部铁素体生成时总是受着表层高碳奥氏体区的压应力。此外,齿轮由于模数大、渗层深,渗碳时间较长,由于自重影响,也会增加变形。 3.2 齿轮渗碳淬火变形的原因 工件淬火时,淬火应力越大,相变越不均匀,比容差越大,则淬火变形越严重。淬火变形还与钢的屈服强度有关,塑性变形抗力越大,其变形程度就越小。 3.3齿圈变形原因 3.3.1齿圈厚薄的影响,淬火冷却时各部位冷却速度的差别而导致组织转变的不同; 3.3.2因装夹等不当及零件自重导致变形; 3.3.3淬火时产生的应力不平衡是变形的主原因。

相关主题
文本预览
相关文档 最新文档