当前位置:文档之家› 非线性偏振旋转在光纤激光器中的应用研究

非线性偏振旋转在光纤激光器中的应用研究

非线性偏振旋转在光纤激光器中的应用研究
非线性偏振旋转在光纤激光器中的应用研究

非线性偏振旋转在光纤激光器中的应用研究

摘要:对主动锁模和被动锁模以及主被动杂合锁模机制的结构原理及优缺点进行了分析比较,对光纤和半导体光放大器(SOA)中的非线性偏振旋转效应(NPR)及其在光纤锁模激光器中应用进行了调查研究,分析了使用外部光注入SOA充当调制器和利用SOA中NPR效应在光纤激光器中实现主被动锁模需要解决的关键问题。

关键词:非线性偏振旋转;半导体光放大器;主被动锁模;光纤激光器

一. 课题的提出与研究的意义

锁模光纤激光器能产生稳定的高重复频率超短光脉冲,是高速光纤通信系统中极具潜力的一种光源。锁模光纤激光器按锁模方式分为主动锁模光纤激光器、被动锁模光纤激光器和主被动混合锁模光纤激光器等三大类。主动锁模和被动锁模都有其各自的优缺点,为了让锁模光纤激光器在光通讯系统能更好的得到应用,提高光纤激光器的输出脉冲质量,采用主被动杂合锁模的方法具有非常重要的研究意义。

二. 本课题国内外的研究现状分析

采用主被动锁模技术,大大改善了主动锁模光纤激光器的输出脉冲质量,成为研究的前沿课题。主动锁模光纤激光器具有输出脉冲啁啾小、重复率高且输出功率较高的特点。

文献[1]中,彭璨等人报道了电吸收调制器(EAM)和半导体光放大器(SOA) 构成的主动锁模。其中SOA 作为增益放大器件,在锁模脉冲形成过程中为腔内提供足够增益。EAM是实现主动锁模的关键器件,在EAM上加正弦微波信号,利用其陡峭的调制曲线对腔内损耗进行调制以获得窄脉冲。从实验结果比较,由EAM和SOA构成的锁模光纤激光器的短期和长期稳定性较铌酸锂调制器和EDFA组成的锁模光纤激光器为好,无需加任何反馈控制回路,其输出脉冲在连续6 h 内均可保持较小的时间抖动和幅度抖动(时间抖动在117 ps 以内,幅度抖动在6 %以内),输出光谱也相当稳定。

文献[2],王林,马晓红等人论述了主动谐波锁模掺铒光纤环形激光器(AHML-EDFL)。LiNbO3作为强度调制器,通过改变调制器的调制参数来使得满

足腔内谐振条件的某一边模振荡的模式损耗比其他所有模式损耗都低,致使该模的振荡幅度比其他模都要强些,由此造成输入到调制器上的光场主要是受到该边模所含有的调制频率谐波分量的幅度调制。因而,通过调节调制器的调制参数来控制谐振腔中的模式损耗,以获得所需的高阶锁模脉冲序列。通过实验与理论分析我们认为利用调制器的非线性特性,即它的频率变换功能来产生高阶脉冲是一种较好办法,它拓展了调制器的调制速率,使得调制器的调制性能更为丰富。

文献[3],于晋龙,马晓红等人报道了重复频率为20GHz、输出脉冲宽度为12.4ps、波长可调谐范围为16nm的注入锁模光纤激光器的实验。该激光器具有稳定、对偏振不敏感、波长可调谐的优点,其基本原理是采用半导体光放大器作为调制器件,将高重复频率的窄光脉冲注入半导体光放大器中,利用半导体光放大器的交叉增益调制和自相位调制(SPM) 效应,对锁模激光器进行调制,得到高复速率、波长可调谐的窄光脉冲输出。

文献[4],华颖,于晋龙等人提出了一个新的全光时钟提取方案:首先在复用的过程中使相邻码的时间间隔不相等,获得不均匀复用信号。然后将复用后的光脉冲信号作为调制信号注入到主动光纤锁模激光器。当单路谐波分量与光纤锁模激光器的纵模相符合时,就可以提取到复用前的光时钟脉冲。利用此方案,完成了从2×10GHz中提取10GHz和20GHz时钟的实验。

文献[5],张劲松,李唐军等人研究了主动有理谐波锁模激光器实验,文中采用σ形腔结构,靠光纤光栅来做反射镜并确定激射波长;与传统的线形主动锁模光纤激光器不同的是,在调制器的输入端还插入了一实验室自制的偏振控制器(PC)。保证了激光在调制器中的单向传输,提高了稳定性。此实验实现了锁模光纤激光器输出光脉冲重复频率对RF驱动频率的倍增,得到了重复频率10GHz~50GHz输出脉冲。

文献[6],吕捷,于晋龙等人报道了基于注入锁模光纤激光器进行全光时钟的提取实验。其原理是首先从10Gb/s伪随机码信号中提取出波形很好的10GHz时钟信号,然后利用半导体光放大器的交叉增益调制(XGM) 和交叉相位调制(XPM) 特性,10GHz时钟信号直接注入半导体放大器中,调制光纤环形激光器腔内的损耗或相位,在腔长匹配的条件下形成锁模,得到高重复速率、波长可调谐的时钟脉冲输出。实验成功地从40Gb/s伪随机码信号中提取出了40GHz时钟信号。

文献[7],Terji Durhuus,Benny Mikkelsen等人理论研究了基于半导体光放大器(SOA)的主动锁模光纤环形激光器。分析了SOA主动锁模与线宽扩大因素的影响以及之间的关系参数,提出了一个常规SOA主动锁模光纤环形激光器和外部振幅调制器的分析模型,使用SOA作为增益介质,用在被动锁模激光器中利用可饱和吸收体进行时域分析的方法来分析主动锁模激光器。

文献[8],Can Peng,Minyu Yao等人介绍了相对于以前较先进的多切面光学放大器的动态模型,其密度分布在纵向和面反射,影响着信号产生非线性。在这里,作者使用模型来研究互调失真和串扰,使用光学放大器,用实验测量的互调失真和串扰验证了该模型。

文献[9],L. Zhan,P. H. Wang等人报道了在光纤环形激光器中使用非线性偏振旋转技术产生振幅均衡的高阶任意分子的有理数谐波锁模(RHMLed)脉冲。实验中使用非线性偏振旋转技术(NPR),对于变化的脉冲幅值分布进行修改分子的方法,有利于实现振幅均衡的高阶有理数谐波锁模。结果表明当分子是3而不是1时,实验获得了高达10倍脉冲振幅一致的有理数谐波锁模脉冲序列。

文献[10],王肇颖,胡智勇等人报道了一种新型环形腔可调谐多波长光纤激光器,腔内以半导体光放大器为增益介质,利用高双折射光纤构成的高双折射环形镜的滤波特性;同时,高双折射光纤环形镜作为滤波器,放置在由SOA构成的环形腔光纤激光器内,得到了17 个以上的波长,并实现了这一组波长在50 GHz 范围内整体连续可调谐。这是一种获得可调谐多波长输出的简单易行方法。

文献[11],戴科辉,张新亮等人提出一种腔内损耗小的基于半导体光放大器(SOA)交叉增益调制效应(XGM)的主动锁模光纤激光器结构。半导体光放大器既是环形腔激光器的增益元件,又是引入环形腔增益周期性调制的元件,同时利用光环行器取代其中的一个耦合器将外部控制光脉冲引入环腔内,这样可减小环形腔内的损耗,获得更高的输出功率。实验实现了10 GHz的三阶有理数锁模和20 GHz的谐波锁模,得到了高重复频率的超短光脉冲输出。20 GHz的谐波锁模输出能够在40 nm范围内可调且超短光脉冲输出稳定,输出功率较大。

文献[12]是江光裕的硕士学位论文,文中建立了基于SOA非线性偏振旋转效应的谐波锁模光纤环形激光器理论模型,研究了在不同SOA注入电流情况下,SOA非线性偏振旋转效应对谐波锁模光纤环形激光器输出脉冲的波形、峰值功

率、脉冲宽度的影响。

文献[13]是南开大学马宁的硕士学位论文。文章重点在理论和实验方面研究了光纤调Q激光器和锁模光纤激光器。对主动锁模光纤激光器进行了理论分析和实验研究,在主动锁模掺铒光纤环形腔激光器中实现了2.5GHz、5GHz的谐波锁模,并在2.5GHz的调制频率下获得了二、三、四阶的有理数谐波锁模脉冲。

文献[14],王肇颖,余震虹等在理论上分析了利用非线性光学环形镜作为等效可饱和吸收体压缩脉冲进行锁模的物理机制,由一个作为可饱和吸收体的非线性环形镜(NOLM)和作为主动锁模元件的电光调制器构成“8”字腔主被动锁模光纤激光器,在非线性光学环形镜中采用色散位移光纤,除了增大非线性之外,色散位移光纤降低了两束光在空间上的展宽,提高了它们在耦合器处的重叠率,从而获得最大的透射率,减小反射损耗,利用8字形主被动混合锁模的结构在调制频率2.498749 GHz下,在1.543μm处获得了12 ps的锁模脉冲输出。三.锁模光纤激光器

所谓锁模就是相位锁定,它是对激光束进行调制,使激光的不同振荡纵模具有确定的相位关系,从而使各个模式相干叠加得到超短脉冲。锁模激光脉冲宽度可达10-11~10-14s,同时也具有较高的峰值功率。

3.1 主动锁模光纤激光器

主动锁模光纤激光器主要是指在激光腔内插入主动调制期间或外界有相关脉冲注入,利用这些主动因素对激光腔内光波进行调制来实现锁模。因而主动锁模方法又可以分为两类:振幅或相位损耗调制和同步锁模。

图1 主动锁模光纤激光器结构

典型的主动锁模光纤激光器的结构如图1所示。980nm或1480nm LD泵浦的掺铒光纤(EDF)、波分复用耦合器(WDM)、泵浦光源、LiNbO3相位或强度调制器(FM orAM Modulator)、光隔离器(Isolator)、偏振控制器(PC)、滤波器(Filter)和输出耦合器是谐振腔的基本组成部分。环形腔内任何一个器件的都会对输出脉冲的性能产生影响。腔内主动的锁模器件是一个高速LiNbO3调制器,它对光波的调制方式有两种:一种是振幅调制(损耗调制);另一种是相位调制。调制器在正弦电压信号驱动下产生周期性的损耗或周期性的相位变化,这种周期性的变化与腔内循环的脉冲相互作用导致了锁模脉冲序列的产生。由于LiNbO3调制器是偏振敏感元件,所以常在调制器前安置一个偏振控制器来调节入射到调制器的光场偏振态。光隔离器被用来确保主动锁模掺铒光纤环形腔激光器处于单向运转,它也可消除某些光学元件上产生的反射波带给调制器的不利影响。为了避免超模噪声,可在腔内插入延迟线。

其中有一种主动锁模激光器是利用光纤非线性效应,主要是XPM 效应来实现主动锁模,工作原理是用腔内的一段单模光纤作为一个相位调制器,当向腔内注入波长为λp的光脉冲序列时,该波长的光与光纤环形腔中波长为λs的信号光相互作用,形成交叉相位调制,由此对信号光λs产生周期性的相位调制,从而实现激光器的主动锁模。目前,利用这种结构已成功地从40Gb/s 的信号脉冲中提取光时钟信号。

主动锁模激光器的优点主要体现在以下几个方面:(1)脉冲啁啾小,可以产生近变换极限的无啁秋脉冲;(2)重复频率高且可以控制,利用有理数谐波锁模技术还可以突破“电子瓶颈”的限制产生几百GHz的光脉冲;(3)输出波长的调谐范围大,几乎可以覆盖整个EDFA增益的范围;(4)输出脉冲峰值功率高并具有很高的信噪比,这一点对OTDM系统是非常有利的;(5)激光腔结构灵活,可以很方便的根据需要构成各种腔结构实现锁模运转。但是,主动锁模光纤激光器的稳定性叫较差是制约其应用的一个主要因素,影响主动锁模光纤激光器稳定性的因素是多种多样的。腔内光纤长度或折射率受环境影响发生变化、微波调制频率的漂移等会造成腔长与调制频率的不匹配,导致脉冲逐渐塌陷,这被称为激光

器的长期不稳定性。除此之外,主动锁模光纤激光器腔内还存在着短期不稳定性的问题。

3.2 被动锁模光纤激光器

被动锁模光纤激光器是利用插入腔中的非线性元件(饱和吸收体或非线性光纤放大环镜)产生锁模脉冲的。光纤的非线性偏振旋转在环形腔光纤锁模激光器中可以起到饱和吸收体的作用,其原理如图3-2中所示。

图2 被动锁模光纤激光器结构

当两束或多束光波同时在光纤中传输时,它们将在光纤中发生相互影响。XPM效应的产生是因为一光波的有效折射率不仅与此光波的强度有关,而且与此光波的强度有关,而且与另外一些同时传播的光波的强度有关,由隔离器(Iosatlor)出来的光被PC1,变为椭圆偏振光,它在X方向和Y方向有不同的光强,它在X方向和Y方向有不同的光强,这束椭圆偏振光经过光纤,由于光纤的XPM 效应,沿X方向的偏振分量和沿Y方向的偏振分量和沿Y方向的偏振分量经过相同长度的光纤产生的相移却不同,这就使椭圆偏振光的偏振态发生旋转。另外,光纤本身的双折射也使在光纤中传播的光的偏振态发生旋转。适当选择PC2的位置,使某个偏振态的光损耗最小,能再次通过隔离器,继续振荡,这样就可以利用偏振选择来实现被动锁模。

被动锁模光纤激光器是利用光纤中的非线性效应来实现被动锁模的,它无须外加电调制信号或外界注入脉冲,被动锁模激光器结构简单,是真正的全光器件。它可以充分利用掺铒光纤的增益带宽,理论上讲可直接产生fs光脉冲。它的不足之处是输出脉冲重复频率的稳定度差,不能外界调控。

3.3 基于非线性偏振旋转效应的被动锁模光纤激光器

非线性偏振旋转被动锁模的基本原理是强度相关饱和吸收,即低强度光被吸收,而高强度光可以通过。但是,非线性偏振旋转效应本身是会饱和的,这就是说当光强大于某一临界值时,激光腔的传输率不是随着光强的增大而增大,而是随着光强的增大而减小,不同于被动锁模光纤激光器,现在在激光腔内插入了一段较长的单模光纤(SMF),用来增大激光腔内非线性效应,另外还有一段保偏光纤(PMF),偏振相关隔离器和保偏光纤一起组成了一个在线型的周期性光纤滤波器。它的波长间隔由公式Δλ=λ2/(ΔnL) 决定,其中Δn和L分别是保偏光纤的双折射和长度。

3.4 主被动杂合锁模光纤激光器

图3 主被动杂合锁模光纤激光器结构

由于主动锁模光纤激光器的弛豫振荡和超模噪声劣化了输出脉冲的质量。特别是当采取有理数谐波锁模技术时,在阶数大于2的情况下,输出锁模脉冲将出现较大的幅度波动,这种幅度噪声是光纤通信系统所不允许的。为了改善主动锁模光纤激光器的输出脉冲质量,人们多采用主被动联合锁模的方法,其中“8”字型腔激光器就是一种典型的主被动联合锁模激光器结构,它的结构如图3所示。它实际上是主动锁模掺铒光纤环形腔激光器加上了一个由非线性光学环行镜(NOLM)构成的附腔。NOLM 中的XPM 效应使其具有可饱和吸收体的性质,所以可以被作为被动锁模器件,环中的一段色散位移光纤(DSF)主要是用来增大光纤的非线性效应。从主动锁模环中输出的脉冲注入到NOLM附腔,利用NOLM的非线性效应来消除弛豫振荡、超模噪声和幅度波动造成的不利影响,从而获得高质量的锁模脉冲。

3.5 半导体光放大器(SOA)及工作原理

半导体光放大器是光放大器的一种,体积小、结构简单、成本低、不需抽运源、易于同其它光器件和电路集成,近几年来发展很快。可以用作功率放大、中继放大和接收机前置放大外,还可以在波分复用系统中作波长转换器或构成光开关阵列及光交换系统。半导体光放大器工作原理半导体光放大器的工作原理与半导体激光器一样,都是通过半导体增益介质的粒子数反转引发受激辐射产生光放大,不同的是半导体激光器放大的是内部电子空穴复合产生的光子,而半导体光放大器放大的是外部输入的光子或光信号。半导体光放大器有法布里-珀罗光放大器(FP-SOA)和行波光放大器(TW-SOA)两种。FP-SOA实际上就是一个工作在阈值电流以下的半导体激光器,它的增益谱宽很窄。在光纤通信中有实际应用价值的是行波半导体光放大器(TW-SOA),它是把半导体激光器两解理面进行理想增透,入射光信号在这种放大器中仅经历单程放大。

半导体光放大器(SOA)具有交叉增益调制效应。利用半导体光放大器(SOA)的交叉增益调制作用可以实现波长变换。本课题可以利用半导体光放大器(SOA)的这一效应在光纤环形激光器中得到峰值高、脉宽窄的谐波锁模脉冲。

四.本课题的关键问题及解决问题的思路

如何建立锁模机制,是实现叠加脉冲的关键所在。在本文中,SOA的任务之一是作为激光增益介质,第二功能是引进非线性偏振旋转效(NPR)作为被动锁模机制,同时强度调制器(IM)又是偏振片,可以结合到SOA环形腔。强度调制器(IM)和半导体光放大器(SOA)能够产生非线性偏振旋转(NPR),通过强度调制器(IM)和这种非线性偏振旋转(NPR)作为调制损耗,对腔内光波进行调制,因此,光偏振的控制是非常重要的。第一个偏振控制器PC1用于调整输入信号的偏振态,到SOA TE模的方向大约是45度。由于质子交换铌酸锂调制器的光波导特征强烈依赖于偏振片,只有TM模可以通过调制器传输光波。因此,调制器还可以作为检偏器去实现加成脉冲锁模。第二个偏振控制器PC1用来调整SOA输出光场的偏振方向。

五.结论

通过阅读大量的参考文献,对国内外研究小组对于锁模激光器的研究进展进行了调查,确定了本课题的研究方案,提出并解决了本课题的关键问题,为完成

课题打下了良好的基础。

参考文献

[1] 彭璨,姚敏玉,张洪明,等.10GHz主动锁模光纤激光器[J].中国激光,2003,30(2):101-104.

[2] 王林,马晓红,于晋龙,杨恩泽,张以谟,陈才,黄超.主动谐波锁模掺铒光纤环形激光

器调制特性研究[J].光学学报,2000,27(6):493-499

[3] 于晋龙,马晓红,杨天新,丁永奎,戴居丰,杨恩泽. 20 GHz 注入锁模光纤激光器实验

[J].光学学报,2002,22(2):253-256

[4] 华颖,于晋龙,马晓红,陈永诗,杨恩泽.基于注入锁模光纤激光器的OTDM时钟提

取技术实验研究[J]. 高技术通讯,2002,08:13-16

[5] 张劲松,李唐军,黄力群,简水生. 主动有理谐波锁模光纤激光器[J]. 电子学报,2000,

11:43-45

[6] 吕捷,于晋龙,李亚男,王宏丽,杨恩泽. 基于注入锁模激光器的40 Gb /s 全光时钟

提取[J]. 光学学报,2005,25(10):1307-1312

[7] Terji Durhuus, Benny Mikkelsen, and Kristian E. Stubkjaer, Member, ZEEE.“Detailed

Dynamic Model for Semiconductor Optical Amplifiers and Their Crosstalk and Intermodulation Distortion,”JOURNAL OF LIGHTWA VE TECHNOLOGY. 1056-1063,(1992).

[8] Can Peng, Minyu Yao, Janfeng Zhang, Hongming Zhang,Qianfan Xu, Yizhi Gao.“Theoretical

analysis of actively mode-locked fiber ring laser with semiconductor optical amplifier,”Optics Communications. 209, 181–192(2002)

[9] L. Zhan, P. H. Wang, Z. C. Gu, S. Y. Luo and Y. X. Xia. “Amplitude-equalized high-order

arbitrary numerator rational harmonic mode-locked pulse generation in fiber-ring lasers using nonlinear polarization rotation,” Optical Society of America.140,836-841,(2005). [10]王肇颖,胡智勇,包焕民,姜骁骏,贾东方,李世忱. 基于半导体光放大器的可调谐多

波长光纤激光器[J]. 光学学报,2006,35(3):321-323

[11]戴科辉,张新亮,徐帆,黄德修.基于半导体光放大器交叉增益调制效应的主动锁模光

纤激光器[J]. 光学学报,2006,33(3):293-297

[12]江光裕. 基于SOA主动锁模光纤激光器的特性研究[DB/OL].西南大学,2006.

[13]马宁. 调Q和锁模光纤激光器的研究[DB/OL]. 南开大学,2001.

[14]王肇颖,余震虹,高培良. 8字形主被动锁模掺Er3+光纤激光器[J].光学学

报,2003,23,:1341-1345.

IPG官方就光纤激光器问题解答

IPG官方问题解答 光纤激光器常见问题解答 1. 我现在使用的是灯泵浦YAG激光器,改用光纤激光器会给我带来哪些好处? ?光纤激光器的电光转换效率高达28 %,而灯泵浦YAG激光只有1.5%~2% ?不用更换灯管,因而更加省钱:光纤激光器中使用了寿命长达10万小时的电信级单芯结半导体激光管 ?所有功率级的光斑大小和形状都是固定的 ?免维护或低维护 ?备件极少 ?风冷或基本不需要冷却 ?体积相当小 ?工作距离更长 ?不需要调整 ?无需预热,立即可用 2. 光纤激光器有质保服务吗? 在业内,IPG提供的质保期最长:光纤激光器的标准质保期为购买后整2年时间,IPG最长可提供8年质保期,详情请与我们的销售人员联系。 3. 你们的竞争对手说你们的光纤激光器存在后向反射的问题,是真的吗? 说这些话的人并不熟悉光纤激光器技术,如果传送光纤选择合适的话,我们的数千瓦功率低模光纤激光器不会发射后向反射问题。单模激光都很少出现这种问题。但是,如果后向反射太高的话,设备一旦检测到会自动关闭。使用隔离器也能消除该问题。IPG已经有无数的设备应用在铜和铝等高反光材料的切割和焊接领域。 4. 如何确定光斑大小? 方法非常简单,对于光纤激光器而言,这是一个光纤输出在工件上成像的过程。光斑大小等于光纤直径乘以准直器的放大率和最终聚焦透镜直径。例如,如果光纤直径等于50μm,准直器的焦距等于60 ,最终聚焦透镜的焦距等于300mm,则最终光斑尺寸等于SS= 50x 300/60= 250微米。光纤直径、准直器、最终聚焦透镜可根据光斑大小要求进行调整。光斑大小不随额定功率的5% ~105%动态范围发生变化,对于单模激光器,在使用低阶模激光遮蔽装置时,光斑大小为高斯光束光斑。5. IPG最近为什么又推出了CO2激光器? IPG最近推出了第一代CO2气体激光器,输出功率1 ~3 kW,光谱范围10.6μm。这款新的IPG CO2激光器的专利权属于IPG,与现在市面上传统的CO2 激光器相比效率更高、体积更小,非常适合处理非金属材料。 虽然光纤激光器在金属焊接、熔覆、烧结和钎焊等众多领域内正在逐步取代包括CO2激光器在内的传统激光器,但是像聚合物和有机材料等非金属材料使用10.6μm光谱范围的CO2气体激光器处理效果会更好。另外,无数的客户都表达了以更加现代的产品取代自己传统CO2激光器的兴趣。IPG希望随着这款经过改进的CO2激光器的推出能够满足这些客户的需要。 6. 为什么光纤激光器比固态和气体激光器效率更高? 答案很简单――在设计上,光纤激光器产生的热量更少,对所产生热量的管理更为有效。掺镱半导体泵浦光纤激光器(泵浦波长980 nm)比掺钕YAG二极管泵浦激光器(泵浦波长808 nm)的量子亏损(即泵浦能量和发生能量之差)低。另外,光纤激光器的光光转换效率通常为70-80%,而泵浦YAG仅约为4%,半导体泵浦YAG和盘形激光器约为40%。由于激光始终被包含在光纤内,因而激光腔内不会存在其它导致激光损失的因素。 7. 如果我改用光纤激光器会节省多少成本? 用户如果在生产中采用光纤激光器会节约相当大的成本,具体节约多少取决于用户的当前工艺、材料、生产环境、电气和劳动力成本。节约主要体现在以下方面: a. 电光转换效率更高:现有传统激光器技术的效率与光纤激光器是无法相比的。 类型电光转换效率

基于多通单元的高能量耗散孤子锁模光纤振荡器

物理学报Acta Phys.Sin.Vol.62,No.5(2013)054203 基于多通单元的高能量耗散孤子锁模光纤振荡器* 谢辰胡明列?张大鹏柴路王清月 (天津大学精密仪器与光电子工程学院超快激光研究室,光电信息技术科学教育部重点实验室,天津300072) (2012年7月22日收到;2012年10月12日收到修改稿) 为了在有限抽运功率条件下探索基于大模场面积光子晶体光纤的耗散孤子锁模振荡器的能量提升潜力,本文 利用多通单元将基于掺镱大模场面积光子晶体光纤锁模振荡器的腔长延展,消除了有限抽运功率的限制,使得该系统能够在较低平均功率水平下获得更高的单脉冲能量.实验上构建了重复频率低至15.58MHz 的高能量光子晶体光纤锁模脉冲振荡器,并通过分别使用6nm 带宽和12nm 带宽的两种不同带宽的光谱滤光片,能够直接输出平均功率分别为3.73W 和4.9W 的啁啾脉冲,对应单脉冲能量分别为239nJ 和314nJ.经过光栅对去啁啾后,最窄脉冲宽度分别为56fs 和75fs,对应峰值功率均超过3MW. 关键词:多通单元,耗散孤子,飞秒,光纤激光器 PACS:4265Re,4255.Wd,42.65.Tg,07.60.Vg DOI:10.7498/aps.62.054203 1引言 飞秒激光器现已广泛应用于研究化学反应中 的超快过程、超短脉冲微纳加工、生命科学以及 超精密测距等诸多前沿科学技术领域,目前最为广 泛使用的高能量飞秒激光系统大多仍是基于固体 激光技术的钛宝石锁模激光放大系统.而由于该系 统对环境的要求较高、操作维护复杂,同时钛宝石 Kerr 透镜锁模需要昂贵高质量的抽运源以及复杂 的振荡-放大系统进一步推高了系统的成本,极大阻 碍了超短脉冲技术的普及.而光纤锁模激光系统的 出现能够大大缓解甚至完全解决上述问题,但起初 光纤激光系统输出的功率与能量一直无法很高.随 着科技的进步,各种研究结果指出:光纤内过大的 非线性是对光纤锁模振荡器直接输出脉冲能量的 一个基本限制,如果能够成功解决该问题,甚至仅 利用光纤振荡系统即可输出以往振荡-放大系统才 能达到的高功率高能量脉冲指标,这就进一步降低 了系统的复杂性和成本,同时也能够大大提高系统 的稳定性,为超短脉冲技术的进一步普及和推广铺平了道路. 为了探索光纤锁模振荡器脉冲能量提升的潜力,Frank Wise 小组从增大脉冲在激光腔内的时间宽度进而降低高峰值功率带来的过高非线性这一方案入手开展了广泛而深入的研究.首先由Chong 等人于2006年基于普通单模光纤(SMF)在全正色散域(ANDi)利用非线性偏振旋转(NPR)锁模机理研制成功耗散孤子锁模光纤激光器[1].到了2007年,他们甚至将基于SMF 的ANDi 激光器输出的单脉冲能量提升至了26nJ 的水平[2].深入的研究表明,基于全正色散域的耗散孤子锁模光纤振荡器是迄今为止由光纤振荡器直接输出单脉冲能量最高的一种锁模方案.到了2010年,Wise 小组又使用了模场直径更大(33μm)的大模场面积光子晶体光纤,从而将输出的单脉冲能量水平提高至百纳焦耳量级[3].而Baumgartl 等随后从提高单模场面积这一方案入手降低光纤内非线性对脉冲能量的限制,利用两种特殊设计的超大模场直径(分别为41μm 和70μm)的大气孔间隙光子晶体光纤,先后于2011年和2012年构建了两台工作于全正色散域的耗散孤子锁模振荡器,更是将基于NPR 锁模方案*国家重点基础研究发展计划(批准号:2011CB808101,2010CB327604)、国家自然科学基金(批准号:61078028,60838004)、全国优秀博士论文作者专项资金(批准号:2007B34)和高等学校博士学科点专项科研基金(批准号:20110032110056)资助的课题. ?通讯作者.E-mail:huminglie@https://www.doczj.com/doc/ab17908334.html, c ?2013中国物理学会Chinese Physical Society https://www.doczj.com/doc/ab17908334.html, 网络出版时间:2013-01-08 09:31 网络出版地址:https://www.doczj.com/doc/ab17908334.html,/kcms/detail/11.1958.O4.20130108.0931.002.html

锁模激光器

西安邮电大学光电子技术及应用 锁模激光器 班级:软件1103班 学号:04113098 院(系):计算机学院

姓名:刘歌歌 2013年12月8日 一、摘要 本文主要介绍了锁模的基本原理和应用前景,并简单介绍了锁模激光器。 二、关键词:锁模激光器,工作原理,应用和前景 三、引言 如果在激光谐振腔内不加入任何选模装置,那么激光器的输出谱线是由许多分立的,由横纵模确定的频谱组成的。锁模就是将多纵模激光器中各纵模的初相位关系固定,形成等时间间隔的光脉冲序列。使各纵模在时间上同步,频率间隔也保持一定,则激光器将输出脉宽极窄、峰值功率很高的超短脉冲。 发展前景: 目前,最为广泛使用的一种产生飞秒激光脉冲的克尔透镜锁模(Kerr Lensmode locking)技术是一种独特的被动锁模方法。科尔透镜锁模实际上是利用了材料的折射率随光强变化的特性使得激光器运转中的尖峰脉冲得到的增益高出连续的背景激光增益,从而最终实现短脉冲输出。一台激光器实现锁模运转后,在通常情况下,只有一个激光脉冲在腔内来回传输,该脉冲每到达激光器的输出镜时,就有一部分光通过输出镜耦和到腔外。因此,锁模激光器的输出是一个等间隔的激光脉冲序列。相邻脉冲间的时间间隔等于光脉冲在激光腔内的往返时间,即所谓腔周期。一台锁模激光器所产生的激光脉冲的宽度是否短到飞秒量级主要取决于腔内色散特性、非线性特性及两者间的相互平衡关系。而最终的极限脉宽则受限于增益介质的光谱范围。衡量一台飞秒激光器的重要技术指标为:脉冲宽度、平均功率和脉冲重复频率。 此外,还有谱宽与脉宽积,脉冲的中心波长,输出光斑大小,偏振方向等。脉冲重复频率实际上告诉我们了激光脉冲序列中两相邻脉冲间的间隔。由平均功率和脉冲重复频率可求出单脉冲能量,由单脉冲能量和脉冲宽度可求出脉冲的峰值功率。 四、锁模激光器的原理 1、多模激光器的输出特性

2_m波段全光纤保偏被动锁模掺铥光纤激光器_曹丁象

第26卷第9期强激光与粒子束Vol.26,No.9 2014年9月HIGH POWER LASER AND PARTICLE BEAMS Sep.,2014  2μm波段全光纤保偏被动锁模掺铥光纤激光器* 曹丁象1,2,3, 张宝夫4, 王兴龙1 (1.光库通讯(珠海)有限公司,广东珠海519080; 2.天津大学精密仪器与光电子工程学院,天津300072; 3.解放军75731部队,广东深圳518112; 4.中山大学物理科学与工程技术学院,广州510275) 摘 要: 报道了2μm波段的全光纤保偏锁模掺铥光纤激光器,通过在法布里-珀罗(F-P)腔内加入半导 体可饱和吸收镜做为被动锁模器件,采用主振-放大构型,获得了最高输出平均功率为1.08W,重复频率为10. 24MHz,脉冲宽度为15.24ps,中心波长为2054.68nm,光谱宽度约为0.3nm的2μm线偏振激光脉冲输出, 激光脉冲的消光比为24.17dB。 关键词: 光纤激光器; 被动锁模; 半导体可饱和吸收镜; 掺铥光纤 中图分类号: TN248.1 文献标志码: A doi:10.11884/HPLPB201426.091014 2μm波段光纤激光器在军事对抗、医疗、先进制造业及光伏太阳能等产业中均有着广泛的应用需求[1-3]。在医疗方面,2μm波长高功率掺铥光纤激光器成为高精度外科手术的优良候选光源。在材料处理方面,2μm激光器在材料处理特别是塑料处理方面非常具有吸引力。激光传感和自由空间光通信方面,2μm激光波长是人眼安全的波长,该波长会被晶状体吸收而不会达到视网膜,对眼睛的损伤阈值比短波长更高,因此人眼安全的2μm波长激光器具有非常大的潜在市场。杨末强等研究了增益开关锁模2μm铥钬共掺光纤激光器[4],该激光器腔内不需要锁模器件,结构简单、紧凑,但是输出功率受限于泵浦功率。王雄等研究了全光纤主动锁模2μm掺铥脉冲激光器[5]。基于半导体可饱和吸收体(SESAM)的锁模光纤激光器具有环境稳定性高、易于自启动等优点,其已经成为被动锁模的研究热点之一[6-8]。刘江等研究了全光纤结构SESAM被动锁模2.0μm掺铥光纤激光器[7],得到了8nJ的高能量ps脉冲,但是该激光脉冲为非偏振光。 本文采用SESAM作为激光锁模器件,双包层单模掺铥光纤(TDF)作为激光增益介质,通过“全光纤嵌入结构”保偏、锁模掺铥光纤激光器的设计,实现了2μm波段ps激光脉冲偏振光输出。 1 实验装置 掺铥双包层大模场光纤锁模激光器的实验装置如图1和图2所示。考虑到锁模激光脉冲的稳定性及SESAM的损伤问题,激光器采取了“种子源振荡器+功率放大器”(MOPA)结构,首先通过主振荡器(MO)获得数十mW量级的锁模脉冲输出,然后经功率放大器(PA)将激光功率提升至目标功率水平。锁模掺铥光纤激光振荡器采用输出波长为793nm的半导体激光器作为泵浦源,其最大功率为5W。泵浦光通过泵浦合束器耦合进长度为2.1m的10/130μm(“/”符号前后分别代表芯径直径和内包层直径)的高掺杂浓度、双包层大模场掺铥光纤中。在增益光纤之后通过熔接3m长的SMF-28光纤来增加激光器腔长,以调节锁模激光的重复频率,同时该光纤也起到了剥离残余泵浦光的作用。SESAM作为激光器系统的锁模元件,与另 Fig.1 Schematic of the polarized,passively mode-locked thulium doped fiber seed laser 图1 保偏锁模掺铥光纤激光器种子源示意图 *收稿日期:2013-12-16; 修订日期:2014-05-07 基金项目:广东省中国科学院全面战略合作项目(2010B090300063)

非线性偏振旋转在光纤激光器中的应用研究

非线性偏振旋转在光纤激光器中的应用研究 摘要:对主动锁模和被动锁模以及主被动杂合锁模机制的结构原理及优缺点进行了分析比较,对光纤和半导体光放大器(SOA)中的非线性偏振旋转效应(NPR)及其在光纤锁模激光器中应用进行了调查研究,分析了使用外部光注入SOA充当调制器和利用SOA中NPR效应在光纤激光器中实现主被动锁模需要解决的关键问题。 关键词:非线性偏振旋转;半导体光放大器;主被动锁模;光纤激光器 一. 课题的提出与研究的意义 锁模光纤激光器能产生稳定的高重复频率超短光脉冲,是高速光纤通信系统中极具潜力的一种光源。锁模光纤激光器按锁模方式分为主动锁模光纤激光器、被动锁模光纤激光器和主被动混合锁模光纤激光器等三大类。主动锁模和被动锁模都有其各自的优缺点,为了让锁模光纤激光器在光通讯系统能更好的得到应用,提高光纤激光器的输出脉冲质量,采用主被动杂合锁模的方法具有非常重要的研究意义。 二. 本课题国内外的研究现状分析 采用主被动锁模技术,大大改善了主动锁模光纤激光器的输出脉冲质量,成为研究的前沿课题。主动锁模光纤激光器具有输出脉冲啁啾小、重复率高且输出功率较高的特点。 文献[1]中,彭璨等人报道了电吸收调制器(EAM)和半导体光放大器(SOA) 构成的主动锁模。其中SOA 作为增益放大器件,在锁模脉冲形成过程中为腔内提供足够增益。EAM是实现主动锁模的关键器件,在EAM上加正弦微波信号,利用其陡峭的调制曲线对腔内损耗进行调制以获得窄脉冲。从实验结果比较,由EAM和SOA构成的锁模光纤激光器的短期和长期稳定性较铌酸锂调制器和EDFA组成的锁模光纤激光器为好,无需加任何反馈控制回路,其输出脉冲在连续6 h 内均可保持较小的时间抖动和幅度抖动(时间抖动在117 ps 以内,幅度抖动在6 %以内),输出光谱也相当稳定。 文献[2],王林,马晓红等人论述了主动谐波锁模掺铒光纤环形激光器(AHML-EDFL)。LiNbO3作为强度调制器,通过改变调制器的调制参数来使得满

掺铥光纤激光器

掺铥光纤激光器 1、掺铥光纤激光器 掺铥光纤激光器的光谱可调谐范围更宽(~1600 nm-2200 nm),该波段处于人眼安全波段且包含了1940 nm附近的水吸收峰,对组织的穿透深度浅,且还包含几个大气窗口及特殊气体的吸收峰。与同时处于人眼安全波段掺铒或铒镱共掺1550 nm激光器相比,掺铥光纤激光器的光光转换效率可达60%以上;且位于铥离子吸收带的790 nm半导体激光器技术成熟,可提供高功率泵浦源;此外,此波段泵浦时,量子转换效率为200%。掺铥基质为石英光纤,也容易实现高功率输出。 对于掺铥光纤激光器的研究,连续输出已达千瓦量级,如:飞秒150 W的功率输出,皮秒也达到百瓦的输出功率水平,相比之下,单脉冲能量较高的纳秒量级脉冲输出平均功率较低,且多数为空间泵浦结构,最高仅为110 W。793 nm 半导体泵浦激光器的输出功率已达数百瓦,所以掺铥光纤激光器的输出功率可更高。且与掺镱光纤激光器相比,掺铥光纤激光的受激布里渊散射和受激拉曼散射的产生阈值要高4倍以上,光纤端面的损伤阈值也高出近10倍,在高功率输出方面优势更加明显。目前高功率、可调谐掺铥光纤激光器正处于研究的热点。 2、研究进展 (1)、纳秒脉冲掺铥光纤激光器研究进展(主动调Q): 输出参数 (脉冲能量/功率、斜率效率/重频、脉宽) 是否 全光纤结构 研究单位 4 W,4 kHz,130 ns 否加拿大信息技术研究12.3 W,100 kHz,4 5 ns 否法德研究所 33 W,13.9 kHz,15 ns 否耶拿大学应用物理研究所52 W,50 kHz,822 ns 是新加坡南洋理工大学 (2)、皮秒/飞秒脉冲掺铥光纤激光器研究进展(锁模): 平均功率,重复频率,脉宽,实现方式 是否 全光纤结构 研究单位 3.1 W,100 MHz,108 fs,CPA 否美国IMRA公司5.4 W,100 kHz,300 fs,SESAM/CPA 是美国PolarOnyx公司 7 W,2 MHz,33 ps,电流调制否英国南安普顿大学 152 W,49.1MHz,~700 fs,CPA 否德国耶拿大学

中红外光纤激光器

中红外光纤激光器 摘要 位于2~5μm中红外波段的激光在国防、医疗、通信方面有着特殊的 重要应用。利用固体激光器泵浦稀土离子掺杂的玻璃光纤产生荧光发射是 直接获得2~5 μm 波段中红外激光的有效途径,具有光束质量好、体积 小、转换效率高、散热效果好等优点。本文介绍了中红外光纤激光器的原 理、研究现状和发展前景。对中红外光纤激光器的发展和研究方向进行了 阐述。 关键词:中红外;光纤激光器;稀土离子;硫化物光纤;氟化物光纤 一、中红外光纤激光器简介 1.1 中红外激光 位于2~5μm中红外波段的激光在国防、医疗、通信方面有着特殊的重 要应用。它位于大气“透明窗口”,处于大多数军用探测器的工作波段, 可 以进行战术导弹尾焰红外辐射模拟、人眼安全的激光雷达、激光定向红外 干扰等军事用途。在民用领域可用于遥感化学传感、空气污染控制,它还 可以用于新一代激光手术,使血液迅速凝结,手术创面小、止血性好(水分 子在3μm附近有很强的吸收峰)此外,采用2~5 μm 替代目前广泛使用 的1.55 μm 作为光纤通信工作波长也是一项极具研究价值的课题,由于 材料的Rayleigh 散射与光波长的四次方成反比,采用2~5 μm 作为工 作波长可以有效降低光纤损耗,增加无中继通信的距离。因此,研发中 红外波段的激光器对于国家安全和国民经济建设具有十分重要的意义。 获得中红外激光的方法有间接方法和直接方法。其中间接方法包括: (1) CO2激光器的倍频及差频输出 (2) 利用非线性红外晶体采用非线性频率变换或光学参量振荡技术 将其它波段激光调谐到中红外波段 直接方法包括: (1)以氟化氘等为介质的化学激光器 (2) 以AlGaAsSb,InGaAsSb,InAs/(In)GaSb 等锑化物窄禁带半导 体、过渡金属离子掺杂的Ⅱ–Ⅵ族半导体制作的中红外激光器 (3)近红外半导体激光泵浦的稀土离子或过渡金属离子掺杂的玻璃、

被动调Q锁模掺镱光纤激光器

第33卷 第8期2006年8月 中 国 激 光 C H IN ESE J OU RNAL O F L ASERS Vol.33,No.8 August ,2006   文章编号:025827025(2006)0821021204被动调Q 锁模掺镱光纤激光器 甘 雨1,2,向望华1,2,周晓芳1,2,张贵忠1,2,张 喆1,2,王志刚 1,2 (天津大学1精密仪器与光电子工程学院, 2 教育部光电信息技术科学重点实验室,天津300072) 摘要 报道了基于偏振旋转技术等效快可饱和吸收体的被动调Q 锁模光纤激光器,采用976nm 半导体激光器作为抽运源,高掺杂浓度的Yb 3+光纤作为增益介质构成环形腔,通过调节抽运光功率和偏振控制器的角度得到了调 Q ,调Q 锁模与锁模三种稳定的输出脉冲。获得的锁模脉冲中心波长为1.05μm ,重复频率为20M Hz ,脉冲光谱宽 度为13.8nm ,抽运功率为270mW 时,锁模平均输出功率为15.82mW ;调Q 频率为17.54k Hz ,调Q 脉冲宽度为 8μs ,光谱宽度为4.7nm ;调Q 锁模中调Q 重复频率为300k Hz 。 关键词 激光器;调Q;锁模;偏振旋转;Yb 3+光纤激光器中图分类号 TN 248.1 文献标识码 A Passive Q 2Switching and Modelocking Yb 3+2Doped Fiber Laser GAN Yu 1,2,XIAN G Wang 2hua 1,2,ZHOU Xiao 2fang 1,2,ZHAN G Gui 2zhong 1,2,ZHAN G Zhe 1,2,WAN G Zhi 2gang 1,2 1 College of Precision I nst rument and O ptoelect ronics Engineering , 2 Key L aboratory of O ptoelect ronics I nf ormation and Technical S cience (M inist ry of Education ),Tianj in Universit y ,Tianj in 300072, China Abstract An all fiber laser based upon nonlinear polarization rotation as an effective fast saturable absorber for mode 2locking is reported.The absorber can act as passive Q 2switching and modelocking.The ring laser with a highly Yb 3+2doped fiber as the gain medium ,pumped by a semiconductor laser of 976nm wavelength ,can operate in three different stable regimes by proper adjustments of pump power and polarizer orientations :Q 2switched ,Q 2switched mode 2locked and continuous wave (CW )mode 2locked.The center wavelength of the CW mode 2locked pulse is 1.05μm with a f ull width at half maximum (FW HM )spectrum of 13.8nm ,the pulse repetition rate is 20M Hz ,and an average output power is 15.82mW with 270mW pump power.In Q 2switched regime ,the laser generates 8μs duration pulses of 4.7nm FW HM spectrum at a repetition rate of 17.54k Hz.The Q 2switched repetition rate is 300k Hz in Q 2switched mode 2locked regime.K ey w ords lasers ;Q 2switched ;mode 2locked ;polarization rotation ;Yb 3+fiber laser 收稿日期:2005212201;收到修改稿日期:2006202227 基金项目:天津市科委基金(043601011)和高等学校博士学科点专项科研基金(20050056004)项目资助。 作者简介:甘 雨(1978— ),男,黑龙江牡丹江人,天津大学精密仪器与光电子工程学院博士研究生,主要从事超短脉冲激光器和超高速光通信的研究。E 2mail :rainmangy @https://www.doczj.com/doc/ab17908334.html, 导师简介:向望华(1947— ),男,湖南溆浦人,天津大学精密仪器与光电子工程学院教授,博士生导师,目前研究方向为光电子技术、超快激光与光通信技术方面的研究。E 2mail :wanghuaxiang @https://www.doczj.com/doc/ab17908334.html, 1 引 言 稳定、低噪声的超短脉冲光源在超快光谱学、多光子显微学、超快生物学和光通信等领域具有很重要的应用价值。锁模光纤激光器以其结构紧凑、小型化、成本低、易于实现全固化等优良的性能有望在许多应用中替代传统的固体锁模激光器。基于以上的特点,在过去的10年中,锁模光纤激光器得到了 极大的发展,大量的研究工作主要围绕掺铒光纤和 掺钕光纤进行[1~3]。近年来,同其他掺杂粒子相比,以镱元素作为增益粒子的掺镱光纤具有高的量子效率,没有基态和激发态吸收,长的上能级寿命,宽的吸收谱,在915nm 和976nm 处具有吸收峰,高掺杂时无浓度淬灭,便于半导体激光器抽运等优点,将取代掺钕光纤,成为1μm 波段的主要工作物质。在超

高功率掺镱双包层光纤激光器

第36卷 第9期 激光与红外 V o.l 36,N o .9 2006年9月 LA SER & I NFRAR ED Septe m ber ,2006 文章编号:1001-5078(2006)09-0833-04 高功率掺镱双包层光纤激光器 赵玉辉1,2 ,郑 义1 ,詹 仪1 ,杨洪杰 1 (1.郑州大学河南省激光与光电信息技术重点实验室,河南郑州450052;2.山东理工大学,山东淄博255049) 摘 要:简要地概述高功率双包层掺镱光纤激光器的基本原理和关键技术,介绍其在工业、通 信、医疗等领域的应用,并对国内外的近期进展作了综述。关键词:双包层光纤激光器;包层泵浦;高功率中图分类号:TN248.1 文献标识码:A H i gh -power Yb -doped Double -clad F i ber Laser ZHAO Yu -hu i 1,2 ,Z H E NG Y i 1 ,Z HAN Y i 1 ,YANG H ong -jie 1 (1.H enan K ey L aboratory of Laser and O ptoe l ectronics Infor m a tion T echnology of Zhengzhou U n i v ers it y ,Zheng z hou 450052,Ch i na ;2.Shandong U n i versity o f T echno l ogy ,Z i bo 255049,Ch i na)Ab stract :T he pr i nciples and key techni que o f h i gh -pow er Y b -doped double -c lad fi ber l ase r are briefl y descr i bed .Its applica ti ons i n i ndustry ,comm un i cation ,m ed i ca l treat m ent are i ntroduced .T he latest progresses and deve lop m ent trends in the a rea are prospected .K ey w ords :doub l e -c lad fi ber laser ;c laddi ng -pu m p ;h i gh po w er 1 引 言 光纤激光器由于其诸多优点而倍受青睐。自20世纪80年代中期开发出掺稀土离子单模光纤制造技术以来,光纤激光器成为激光技术领域研究的热点。但是,由于泵浦光较难有效耦合到纤芯中,因此,光纤激光通常被认为是一种低功率光源。近年来,国际上发展了一种以双包层光纤为基础的包层泵浦技术,提高了光纤激光器的输出功率,改变了光纤激光器仅仅是小功率光子器件的历史。目前,掺镱双包层光纤激光器的输出功率与单模光纤激光器相比提高了几个数量级,而且具有光束质量好、结构紧凑小巧、全固化、低阈值、高效率等优点,因此,在工业加工、光通信、医学、印刷、激光测距等领域具有 广泛的应用前景[1-2] 。本文简要介绍了高功率掺镱光纤激光器的机理、关键技术与应用、以及近几年的研究进展和发展方向。 2 掺镱双包层光纤激光器的基本原理和特点 图1为一个纵向泵浦的光纤激光器的基本结构图。一段掺镱离子的双包层光纤放置于两反射率经过选择的腔镜间,泵浦光从光纤激光器的左边腔镜耦合进光纤。光纤激光器是一个波导型的谐振装置,光波的传输介质是光纤,这种结构实际上是 Fabr y -Po r o t 谐振腔结构。在光纤激光器中,非常细 的掺镱光纤纤芯就充当了光纤激光器的增益介质,由于外加泵浦光的作用,在光纤内便很容易形成高功率密度,从而引起激光工作物质的粒子数反转,从纤芯输出激光。 图1 双包层光纤激光器原理示意图F i g .1 sche m atic d iagra m of pri n ci p l e confi gu ration f or doub le -cl ad fi b er l aser 由于双包层掺镱光纤激光器是波导式结构,因 而具有可容强泵浦和高增益的特点,而且光纤本身具有良好的柔绕性、小尺寸和可掺杂等特点,从而使其具有很多优异的性能和特点。主要表现在: a)输出激光的光束质量好,激光器可以实现光 束质量达到近衍射极限(M 2 U 1)的单模高功率激光输出; b)掺镱双包层光纤激光器具有量子效率高、增 基金项目:河南省创新人才培训对象基金资助项目;河南省杰出青年基金资助项目(No .121001200)。 作者简介:赵玉辉(1973-),男,硕士生,主要从事光纤激光器技术的研究。E-m ai:l z haoyhs @163.co m 收稿日期:2006-03-09;修订日期:2006-04-11

光纤激光器综述

摘要:光纤激光器技术是光学领域最为重要的技术之一,作为第三代激光技术的代表,其稳定性好、效率高、阈值低、线宽窄、可调谐、紧凑小巧和性价比高等优点,使得它在光纤传感、光纤通信、工业加工等领域都有着重要的应用。而掺镱双包层光纤激光器是国际上近年来发展的一种新型固体激光器。本文就介绍了这种高功率掺镱双包层光纤激光器,主要介绍了高功率掺镱双包层光纤激光器的概念、发展历史及发展现状、基本原理、优点、实现的关键技术、应用及其广阔的前景。同时总结出了未来光纤激光器的发展方向,并且可以预计光纤激光器最终将可能会替代掉全球大部分高功率CO2激光器和绝大部分Y AG激光器。 关键词:光纤激光器;掺镱双包层光纤激光器;光纤融合技术;激光加工。引言 光纤激光器是指用掺稀土元素玻璃光纤作为增益介质的激光器,虽然光纤激光器得到了社会各方面的广泛重视,但是光纤激光器并不是新型光器件。1961年,美国光学公司的Snitzer和Koester等在一根芯径300um的掺Nd3+玻璃波导中进行试验观察到了激光现象,并与1963年和1964年发表了多组分玻璃光纤中的光放大结果,提出了光纤激光器和光纤放大器的思想。1975~1985年中有关这个领域的文章较少,不过在这期间许多发展光纤激光器的必须工艺技术已趋于成熟[1]。上个世纪80年代后期,美国Polaroid公司提出了包层抽运技术,之后双包层光纤激光器,特别是掺镱双包层光纤激光器发展非常迅速。1994年,PASK 等首先在掺Yb3+石英光纤中实现了包层抽运,得到了0.5W的最大激光输出。1998年,Lucent技术公司的KOSINKI和INNISS报道了一种内包层截面形状为星形的掺Yb3+双包层光纤激光器,得到了20W的激光输出。1999年,DOMINIC等用4个45W的半导体激光二极管阵列组成总功率为180W的抽运源,在1120nm 得到110W的激光输出。2002年,IPG公司公布了2000W的掺Yb3+双包层光纤激光器。目前,该公司已经推出了输出功率为17kW的掺Yb3+双包层光纤激光器,虽然因为采用的是多组激光合束的方式,致使激光器的光束质量下降很大,但仍然在对功率要求高、光束质量要求不是很高的场合有非常好的应用前景。但如何提高功率,同时又保证光束质量,是当前研究要解决的难题之一。 在国内,关于掺Yb3+双包层光纤激光器的研究起步较晚。从上个世纪年80

中红外光纤激光器技术研究新进展

| 14 先进激光材料及新型激光器技术 中红外光纤激光器技术研究新进展 张云军1,王月珠1 ,鞠有轮1,姚宝权1 ,贺万俊2 ,余正平2 1 哈尔滨工业大学可调谐激光技术国家重点实验室; 2 四川智溢实业有限公司 摘要:光纤激光器和光纤拉曼激光器以其优良的光束质量、高的转换效率、运行稳定和便于热管理等诸多优点,已成为激光器领域发展的一个新的里程碑。其已经在光通信、机械制造、医疗和国防应用上显示了卓越的性能。但是光纤激光器和光纤拉曼激光器的发射波长现在主要集中在1~2μm 波段,这里面以掺Yb 、掺Tm 和掺Er 光纤激光器为代表,其中还有主要以这三种激光器作为泵浦原的光纤拉曼激光器。现阶段利用光纤激光器实现波长大于2μm 高功率激光输出还受到限制,这主要归因于大于2μm 的激光在硅基光纤中存在强烈的共振吸收。 采用大于2μm 波长处具有低的声子损耗的新基质光纤是解决光纤中红外光源的关键,现阶段主要获得2~5μm 光纤激光器的主要光纤有氟化物光纤(ZBLAN fiber ,包括ZrF 4、BaF 2、LaF 3、AlF 3和NaF )、硫化物光纤(三硫化二砷 As 2S 3和三硒化二砷 As 2Se 3)、氧化碲光纤(二氧化碲TeO 2)和高掺GeO 2光纤。以这几种材料为基质的光纤在2~5μm 波段都具有较低的声子能量,对稀土离子具有较好的溶解性,而且它们的折射率都较高。 基于光纤结构实现2~5μm 波段激光输出的方式主要有四种方式:纤芯掺杂稀土离子后采用激光振荡方式:2.1μm 掺Ho 光纤激光器,最高输出达到140W; 2.8μm 掺Er 光纤激光器,最高输出功率达到24W 。采用1.5μm 和2.0μm 的超短脉冲激光作为泵浦源,泵浦中红外光纤获得2~5μm 波段超连续谱激光输出;利用ZBLAN 氟化物光纤获得的1~4μm 超连续激光已达10W 以上;利用As 2Se 3已经获得3~6μm 的超连续谱输出;采用1.5μm 和2.0μm 的激光作为泵浦源,通过拉曼散射方式获得大于2μm 波段激光输出;采用短脉冲激光泵浦微结构光子晶体光纤,通过光纤四波混频实现大于2μm 波段激光输出。 本文将对2~5μm 的光纤激光器、超连续谱光源、光纤拉曼激光器和中红外光纤四波混频的近期发展现状加以总结介绍。 张云军,2000年在哈尔滨工业大学获得学士学位,2007年基于自己在双包 层掺铥光纤激光器方面的研究获得哈尔滨工业大学的博士学位。现任哈尔滨工 业大学可调谐激光技术国家重点实验室讲师。主要研究方向是高功率包层泵浦 掺铥光纤激光器、飞秒激光刻写大芯径2微米波段光纤光栅和中红外高功率激 光器。高功率全光纤化掺铥光纤激光器是他研究的重点。发表掺铥光纤激光器 和光纤光栅的相关学术论文近20篇。

光纤激光器的原理及应用

光纤激光器的原理及应用 张洪英 哈尔滨工程大学理学院 摘要:由于在光通信、光数据存储、传感技术、医学等领域的广泛应用,近几年来光纤激光器发展十分迅速,且拥有体积小、重量轻、检测分辨率高、灵敏度高、测温范围宽、保密性好、抗电磁干扰能力强、抗腐蚀性强等明显优势。本文简要介绍了光纤激光器的基本结构、工作原理及特性,并对目前几种光纤激光器发展现状及特点做了分析,总结了光纤激光器的发展趋势。 关键词:光纤激光器原理种类特点发展趋势 1引言 对掺杂光纤作增益介质的光纤激光器的研究20世纪60年代,斯尼泽(Snitzer)于1963年报道了在玻璃基质中掺激活钕离子(Nd3+)所制成的光纤激光器。20世纪70年代以来,人们在光纤制备技术以及光纤激光器的泵浦与谐振腔结构的探索方面取得了较大进展。而在20世纪80年代中期英国南安普顿大学掺饵(EI3+)光纤的突破,使光纤激光器更具实用性,显示出十分诱人的应用前景[1]。 与传统的固体、气体激光器相比,光纤激光器具有许多独特的优越性,例如光束质量好,体积小,重量轻,免维护,风冷却,易于操作,运行成本低,可在工业化环境下长期使用;而且加工精度高,速度快,寿命长,省能源,尤其可以智能化,自动化,柔性好[2-3]。因此,它已经在许多领域取代了传统的Y AG、CO2激光器等。 光纤激光器的输出波长范围在400~3400nm之间,可应用于:光学数据存储、光学通信、传感技术、光谱和医学应用等多种领域。目前发展较为迅速的掺光纤激光器、光纤光栅激光器、窄线宽可调谐光纤激光器以及高功率的双包层光纤激光器。 2光纤激光器的基本结构与工作原理 2.1光纤激光器的基本结构 光纤激光器主要由三部分组成:由能产生光子的增益介质、使光子得到反馈并在增益介质中进行谐振放大的光学谐振腔和可使激光介质处于受激状态的泵浦源装置。光纤激光器的基本结构如图2.1所示。

光纤激光器技术及其研究进展

中文核心期刊 光纤激光器技术及其研究进展武建芬,陈根祥 (北京交通大学光波所,北京100044) 摘要:简要介绍了光纤激光器的基本原理、分类及特点,并对几种具有良好应用前景的热门光纤激光器的结构、原理和工作特性进行了较详细介绍,最后对未来光纤激光器技术的发展和应用前景作了展望。 关键词:双包层光纤激光器;多波长光纤激光器;锁模光纤激光器 中图分类号:TN248文献标志码:A 1引言 由于光纤激光器技术在高速率大容量波分复用光纤通信系统、高精度光纤传感技术和大功率激光等方面呈现出广阔的应用前景和巨大的技术优势,近年来受到了来自电子信息、工业加工和国防科技等研究开发领域的高度关注。符合光纤激光器发展需要的各种光纤结构、光纤材料特别是各种稀土掺杂光纤材料和新的激光泵浦技术均得到了快速的发展,极大地推动了光纤激光器技术的进步[1]。特别是20世纪90年代后期,随着半导体激光器及掺杂光纤制作技术的日益成熟,光纤激光器的研究取得了重大进展。输出功率、波长调谐范围等性能得到了显著提高。由于具有与光纤系统完全匹配的独特优点,光纤激光器可以方便地应用于各种光纤通信和光纤传感系统,尤其是可实现稳定多波长激光输出的光纤激光器非常适合应用于密集波分复用(DWDM)光纤系统。目前国内外对于光纤激光器的研究方向和热点主要集中在高功率光纤激光器、高功率光子晶体光纤激光器、窄线宽可调谐光纤激光器、多波长光纤激光器、超短脉冲光纤激光器、拉曼光纤激光器等几个方面。本文简要介绍了光纤激光器的基本原理、分类及特点,并就几种主要的光纤激光器技术较详细地介绍了其工作原理及国内外近几年的新发展,最后对未来光纤激光器的发展和应用前景进行了分析与展望。2光纤激光器的基本原理、分类及特点 2.1光纤激光器的基本原理 和传统的固体、气体激光器一样,光纤激光器基本也是由泵浦源、增益介质、谐振腔三个基本的要素组成。泵浦源一般采用高功率半导体激光器(LD),增益介质为稀土掺杂光纤或普通非线性光纤,谐振腔可以由光纤光栅等光学反馈元件构成各种直线型谐振腔,也可以用耦合器构成各种环形谐振腔。泵浦光经适当的光学系统耦合进入增益光纤,增益光纤在吸收泵浦光后形成粒子数反转或非线性增益并产生自发辐射。所产生的自发辐射光经受激放大和谐振腔的选模作用后,最终形成稳定激光输出。 2.2光纤激光器的分类 光纤激光器种类很多,根据其激射机理、器件结构和输出激光特性的不同可以有多种不同的分类方式。根据目前光纤激光器技术的发展情况,其分类方式和相应的激光器类型主要有以下几种: (1)按增益介质分类稀土离子掺杂光纤激光器(Nd3+、Er3+、Yb3+、Tm3+等,基质可以是石英玻璃、氟化锆玻璃、单晶),非线性效应光纤激光器(利用光纤中的SRS、SBS非线性效应产生波长可调谐的激光)。在光纤中掺入不同的稀土离子,并采用适当的泵浦技术,即可获得不同波段的激光输出。 (2)按谐振腔结构分类F-P腔、环形腔、环路反射器光纤谐振腔以及"8"字形腔、DBR光纤激光器、DFB光纤激光器。 (3)按光纤结构分类单和双包层光纤激光器、光子晶体光纤激光器、特种光纤激光器。 (4)按输出激光类型分类连续光纤激光器,超短脉冲光纤激光器、大功率光纤激光器。 (5)按输出波长分类S-波段(1460 ̄1530nm)、C-波段(1530 ̄1565nm)、L-波段(1565 ̄1610nm),可调谐单波长激光器,可调谐多波长激光器。 2.3光纤激光器的显著特点 由于光纤激光器在增益介质和器件结构等方面的特点,与传统的激光技术相比,光纤激光器在很多方面显示出独特的优点。这些优点可以归纳为以下几个主要的方面[2,3]: 收稿日期:2006-05-11。 基金项目:北京交通大学科技基金(2005SZ004)项目资助;国家自然科 学基金(60577021;60437010)项目资助。 作者简介:武建芬(1975-),男,研究生,主要研究方向为光电子器件、光 纤传感和光纤激光器。 !"# 光通信技术 2006年第8期

200W光纤激光器应用

SPI 200W光纤激光器的应用 一、激光焊接------一般应用500w到20kw的激光器 1、激光焊原理 激光焊采用激光作为焊接热源,机器人作为运动系统。激光热源的特殊优势在于,它有着超乎寻常的加热能力,能把大量的能量集中在很小的作用点上,所以具有能量密度高、加热集中、焊接速度快及焊接变形小等特点,可实现薄板的快速连接。 当激光光斑上的功率密度足够大( >106 W/ cm2 )时,金属在激光的照射下迅速加热,其表面温度在极短的时间内升高至沸点,金属发生气化。金属蒸气以一定的速度离开金属熔池的表面,产生一个附加应力反作用于熔化的金属,使其向下凹陷,在激光斑下产生一个小凹坑。随着加热过程的进行,激光可以直接射入坑底,形成一个细长的“小孔”。当金属蒸气的反冲压力与液态金属的表面张力和重力平衡后,小孔不再继续深入。光斑密度很大时,所产生的小孔将贯穿于整个板厚,形成深穿透焊缝。小孔随着光束相对于工件而沿着焊接方向前进。金属在小孔前方熔化,绕过小孔流向后方,重新凝固形成的焊缝如图1 所示。

2、激光焊接设备 激光焊接设备主要由激光器、光导系统、焊接机和控制系统组成如图2 所示。 1. 激光器 用于激光焊接的激光器主要有CO2 气体激光器和YAG 固体激光器两种。激光器最重要的性能是输出功率和光束质量。从这两方向考虑,CO2 激光器比YAG 激光器具有很大优势,是目前深熔焊接主要采用的激光器,生产上应用大多数还处在6 ~15kW 范围。YAG 激光器一般功率小于1kW,用于薄小零件的微连接。近年来,国外在研制和生产大功率YAG 激光器方面取得了突破性的进展,最大功率已达5kW,并已投人市场。由于其波长短,仅为CO2 激光的1/ 10 ,有利于金属表面吸收,可以用光纤传输,简化光导系统。因此,大功率YAG 激

相关主题
文本预览
相关文档 最新文档