当前位置:文档之家› 《结晶学基础》第八章习题

《结晶学基础》第八章习题

《结晶学基础》第八章习题
《结晶学基础》第八章习题

《结晶学基础》第八章习题

8001

在A 1型等径圆球密堆积中,密置层为:----------------------------------- ( )

(A) (100)面 (B) (110)面 (C) (111)面 (D) (210)面

8002

在A 1型堆积中,可取出一立方面心晶胞,金刚石晶体可抽出立方面心点阵,所 以C 原子是按A 1型堆积的,对否?

8003

从A 3型堆积中可取出一个六方晶胞,晶胞中含有两个球,坐标分别为(0,0,0)和(1/3,2/3,1/2),故为六方体心点阵,对否?

8004

在A 1型堆积中,球数:正四面体空隙数:正八面体空隙数=________。

8005

等径圆球作A 2型堆积,其密置列方向为:----------------------------------- ( )

(A) a (B) b (C) c (D) a +b (E) a +b +c

8006

原子按六方最密堆积排列,原子在六方晶胞中的坐标为_______。

8007

已知 Mg 的原子半径为 160 pm ,属 hcp(六方最密堆积)结构。

(1) 晶体有什么微观特征对称元素?属什么空间点阵型式?

(2) 原子分数坐标;

(3) 若原子符合硬球堆积规律,求金属镁的摩尔体积;

(4) 求d 002值。

8008

等径圆球六方最密堆积,中最近两个相邻八面体空隙公用的几何元素为_____;最近两个相邻四面体空隙公用的几何元素为____________。

8009

等径圆球的六方最密堆积可划分出六方晶胞,晶胞中两个原子的分数坐标分别为(0,0,0)和(1/3,2/3,1/2)。

(1)八面体空隙中心的分数坐标为____________,_____________。

(2)四面体空隙中心的分数坐标为____________,____________,___________

____________。

8010

由直圆柱形分子堆积,最高的空间利用率为____________。

8011

Ni是面心立方金属,晶胞参数a=352.4?pm,用Cr Kα(λ=229.1pm)拍粉末图,列出可能出现谱线的衍射指标及其Bragg角值。

8012

已知金属Ni 为A1型结构,原子间最近接触距离为249.2 pm,试计算:

(1) Ni 立方晶胞参数;

(2)金属Ni 的密度(以g·cm-3表示);

(3)画出(100),(110),(111)面上原子的排布方式。

8013

已知金属铜晶体按A1型堆积而成,其粉末图第一对谱线间的距离为43.3 mm,所用相机直径为57.3 mm,所用射线为Cu Kα线,λ=154.2?pm.。求金属铜晶体的晶胞常数、Cu 原子半径和金属铜的密度。(Cu的相对原子质量为63.54)

8014

已知金属铝为A1型最密堆积,其密度为2.70g·cm-3,相对原子质量为26,计算铝的原子半径;若所用X-射线波长λ=154.2?pm。试推算111衍射的布拉格角.

8015

已知金属Al晶体按A1型堆积而成,其粉末图第二对谱线间的距离为45.3mm,所用X-射线λ=154.2?pm,相机半径为28.65?mm,求金属Al晶体的晶胞参数、原子半径和晶体密度。

8016

金属W 的晶体属立方体心结构,若每一个原子为一个结构基元,已知金属W的相对原子质量为189.9,W 的晶体密度d=19.30 g·cm-3。

(1)求W 的原子半径;

(2)若用波长为154pm 的X-射线拍摄W 的衍射图,问最多能得到(100)面的几级衍射?

8017

金属锂晶体属立方晶系,(100)点阵面的面间距离是350 pm,其密度是0.53 g·cm-3,从原子数目判断该结构是面心点阵还是体心点阵?

(Li 的相对原子质量为6.941)

8018

金属钠为立方体心结构,立方晶胞参数a=429 pm,计算Na 的原子半径。

8019

金属钽为立方体心结构,立方晶胞参数a=330 pm,试求(110)面间距,若用λ为154?pm 的X-射线,衍射指标为220 的衍射角θ的数值是多少?

8020

金属铂为立方最密堆积结构,立方晶胞参数a=392.3?pm ,Pt的相对原子质量为195.0,试求金属铂的密度及原子半径。

8021

铝为立方面心结构,密度为2.70 g·cm-3,试计算它的立方晶胞参数和原子半径(铝的相对原子质量为27.0)。

8022

已知金属钛为六方最密堆积结构,金属钛原子半径为146 pm,试计算理想的六方晶胞参数。

8023

铬晶体为立方体心结构,a=288 pm,估算用λ=154 pm的X-射线所得的衍射图的衍射指标和相应的衍射数据。

8024

黄铜的β相(CuZn)有序结构为CsCl 型,立方晶胞参数a=307 pm,已知Cu的原子半径为128 pm。

(1)指出有序结构的空间点阵型式,结构基元和Zn 的原子半径;

(2)无序时成统计原子,立方晶胞参数不变,每个位置上均为Cu0.5Zn0.5,指出这时的

空间点阵型式,结构基元和统计原子半径。

8025

有一黄铜合金含Cu?75%,Zn?25%(质量分数),晶体的密度为8.5 g·cm-3,晶体属立方面心点阵结构,晶胞中含4个原子,相对原子质量分别为:Cu 63.5,Zn 65.4。

(1)求算Cu 和Zn 所占原子百分数;

(2)每个晶胞中含合金的质量;

(3)晶胞体积多大?

(4)统计原子的原子半径多大?

8026

已知金属镁中镁原子半径为160.45 pm,相对原子质量为24.305,当镁按六方最密堆积形成晶体时,试求:(1)晶胞参数值;(2)金属的密度。

8028

金属钠为体心立方点阵结构,a=429 pm,求:(1)Na的原子半径;(2)金属钠的密度;

(3)(110)面间距。

8029

灰锡为金刚石型结构,立方晶胞参数a=648.9?pm;白锡为四方晶系,a=583.2 pm ,c=318.1 pm,晶胞中含4个Sn 原子。

(1)由白锡转变为灰锡,体积是膨胀了还是收缩了?

(2)体积改变百分之几?

8030

碱金属的摩尔原子化热由Li 到Cs 是增加了还是减少了?

8031

半径为100 pm 的A 原子进行六方最密堆积。

(1)画出晶胞结构,标出晶胞参数

(2)四面体空隙中放B 原子,B 的半径多大正好和A 相接触?

(3)写出四面体空隙中心位置的分数坐标。

8033

等径圆球的立方最密堆积中,球数:八面体空隙数:四面体空隙数=________:________:___________。

等径圆球的六方最密堆积中,球数:八面体空隙数:四面体空隙数=________:________:__________。

8035

等径圆球的简单立方密堆积中,球数:立方空隙数=_______:________。

8036

等径圆球立方最密堆积中密置层的堆积次序可表示为_______________。

8037

等径圆球六方最密堆积中密置层的堆积次序可表示为_______________。

8038

等径圆球六方最密堆积结构划分出来的六方晶胞的原子分数坐标为_____。

8039

从能带分布看,半导体和绝缘体的差别在于_______________。

8040

已知半径为r1和r2的两种圆球(r1 r2),其最大堆积密度均为74.05%,所以这两种球混合堆积时最大堆积密度为_____________。

8041

Cu3Zn固溶体是面心立方结构,晶体密度为8.5 g·cm-3,相对原子质量分别为:Cu 63.5 ,Zn 65.4。试求晶胞参数a及统计原子的半径。

8042

金属钼为A2型结构,a=314.70 pm,试计算Mo的原子半径,(100)和(110)面的面间距。

8043

灰锡为金刚石型结构,锡的原子半径为140.5?pm,相对原子质量为118.71,求灰锡的晶胞参数、晶胞体积和晶体密度。

已知Au和Cu都是A1型结构,固溶体AuCu为立方晶系,a=385?pm 。若用Cu Kα射线(λ=154.2 pm)摄取AuCu的粉末衍射图,图中第一条衍射线的衍射指标是什么?相应的衍射角为多少度?

8045

已知Au和Cu都是A1型结构,若它们形成AuCu 有序结构,属四方晶系,请画出该晶体的晶胞,属何种点阵型式?指出结构基元是什么?

8046

Au和Cu都是A1型结构,若它们形成AuCu无序结构,请画出该无序结构的晶胞,属何种点阵型式?指出结构基元是什么?

8047

AuCu合金为立方晶系,晶胞参数a=385 pm,合金的密度为15.18 g·cm-3,已知Au 和Cu 都为A1型结构,若AuCu 是无序固溶体,问该固溶体的统计原子的相对原子质量是多少?

8048

用白锡制造的锡器,低温下由于白锡转变为灰锡,而使锡器碎裂成粉末。已知白锡为四方晶系,a=583.16 pm,c=318.15 pm,晶胞中有四个锡原子;灰锡是立方晶系,金刚石型结构,晶胞中有8个原子,a=648.92 pm,锡的相对原子质量为118.71,试计算白锡和灰锡的密度。

8049

将金属中的“自由电子”当作三维势箱中运动的电子,试写出它的Schrodinger方程。

8050

试用能带理论说明为什么固体可以是导体、半导体和绝缘体?

8051

在等径圆球的密置层中,每个球周围有______________个空隙,每个空隙由____________个球围成,在由N个球堆成的密置层中,有____________个空隙,平均每个球摊到___________个空隙。

8052

试比较A1和A3这两种结构的异同(试从密置层的结构、堆积型式、晶胞、密置层方向、配位数、堆积系数、空隙形式和数目等加以比较)。

8053

试证明等径圆球的hcp 结构中,晶胞参数c和a的比值(称为轴率)为常数,即c/a=1.633 。

8054

试计算等径圆球体心立方堆积(A2型)的堆积系数。

8055

在等径圆球的最密堆积中,一个四面体空隙由________个圆球围成,因此一个球占有_______个空隙,而一个球参与______个四面体空隙的形成,所以平均一个球占有______个四面体空隙。

8056

在等径圆球的最密堆积中,一个八面体空隙由________个圆球围成,因此一个球占有_______个空隙,而一个球参与______个八面体空隙的形成,所以平均一个球占有______个八面体空隙。

8057

Fm3,a=407.8 pm,用Cr Kα射线(λ=229.1pm)摄取金的粉金为立方晶系,空间群O h5-m

末衍射图,问衍射图上可能出现几条谱线,写出它们的衍射指标和相应的衍射角。

8058

银为立方晶系,用Cu Kα射线(λ=154.18 pm)作粉末衍射,在hkl类型衍射中,hkl奇偶混合的系统消光。衍射线经指标化后,选取333 衍射线,θ=78.64°,试计算晶胞参数。已知Ag 的密度为10.507 g·cm-3,相对原子质量为107.87,问晶胞中有几个Ag 原子。试写出Ag 原子的分数坐标。

8059

α-Fe为立方晶系,用CuO Kα射线(λ=154.18?pm)作粉末衍射,在hkl类型衍射中,h+k+l=奇数的系统消光。衍射线经指标化后,选取222 衍射线,θ=68.69°,试计算晶胞参数。已知α-Fe的密度为7.87?g·cm-3,Fe的相对原子质量为55.85,问α-Fe晶胞中有几个Fe 原子。请画出α-Fe 晶胞的结构示意图,写出Fe 原子的分数坐标。

8060

m3,a=502.3 pm,用Cr Kα射线(λ=229.1pm)摄金属钡晶体属立方晶系,空间群O h9-I m

取Ba 的粉末衍射图,问衍射图上可能出现几条衍射线,写出前面三条衍射线的指标和衍射角。

8061

金属钴是六方最密堆积,晶胞参数a=250.70?pm,c=406.98?pm,钴的相对原子质量为58.94,求钴的晶体密度和原子半径。

8062

α-Ga是正交晶系,a=451.92 pm,b=765.86 pm,c=452.58 pm,密度为5.904 g·cm-3,相对原子质量为69.72,问晶胞中有几个Ga原子?若用Cu Kα射线拍粉末图,222 衍射线的衍射角是多少?

8063

Pd是A1型结构,a=389.0 pm,它有很好的吸收H2性能,常温下1体积的Pd能吸收700体积的H2,请问1体积(1 cm3)的Pd 中含有多少个空隙(包括四面体空隙和八面体空隙),700 体积的H2可解离为多少个H 原子,若全部H 原子占有空隙,则所占空隙的百分数是多少。

8064

金属Pd为立方面心密堆积,a=389.0 pm,试求Pd 原子之间的最短距离是多少?金属Pd 的密度是多少?

8065

金属Ca 为A1型结构,每个Ca 原子的配位数为_________,晶胞中有_______个四面体空隙和_______个八面体空隙,密置层方向为______________。

8066

金属锆为A3型结构,金属原子半径为158.3 pm,试计算理想的六方晶胞参数和晶体密度。(锆的相对原子质量为91.22)

8067

铝为A1型结构,原子半径为143.2 pm,相对原子质量为26.98,试计算晶胞参数a。

8068

金属钒是立方晶系,a=302.38 pm,密度为5.96?g·cm-3,钒的相对原子质量为50.95,问晶胞中有几个原子?由钒的粉末衍射图,发现h+k+l=奇数的系统消光。问金属钒晶体属何种点阵型式,写出原子分数坐标。

8069

金属铷为A2型结构,Rb的原子半径为246.8 pm,密度为1.53?g·cm-3,试求:

(1)晶胞参数a;

(2)Rb 的相对原子质量。

8070

金属钾为A2型结构,密度为0.862 g·cm-3,试求:

(1)晶胞参数a;

(2)K 的原子半径;

(3) (110)面的面间距。(已知K的相对原子质量为39.089)

8071

已知金属Mg是Mg原子以A3堆积而成的,请给出镁晶体:

(1)所属晶系;

(2)所属点阵类型;

(3)晶胞中镁原子个数及其分数坐标;

(4)Mg原子的配位数。

8072

一立方晶系晶体中,原子A 以A1方式堆积,已知晶胞中一个A 原子的坐标是(1/4,1/4,1/4),该晶胞中一共有多少个A 原子?另外一些A 原子的坐标是什么?

8073

金属铜晶体为立方面心点阵,a=361pm,当用 =154 pm 的X-射线时,预言其粉末图前四条衍射线对应的衍射角,并计算铜的密度(Cu的相对原子质量为63.55)。

8074

在Cu-Zn合金中,Cu为正1价,采取A1型密堆积,晶胞参数a=362?pm,试用近自由电子模型计算:

(1) Cu的价带中允许填充电子的最高能级E max;

(2) Cu的E F(0) ;

与晶体中原子数之比;

(3) Cu的价带中允许填充的最高电子数N e

max

(4) Zn 2+的物质的量分数。

8075

金属锂为体心立方结构,晶胞参数 a =350?pm , 计算锂绝对零度时的Fermi 能级(eV

为单位)。

8076

金属铝属立方晶系,用Cu K α射线摄取333衍射,θ=81?17',计算晶胞参数。

8077

以半径为R 的硬球作最密堆积,计算:

(1) 两个共面的四面体空隙中心间的距离;

(2) 两个共顶点的四面体空隙中心间的距离(设两中心与公用顶点在一条直线上)。

8078

限制在边长为L 的正方形中的N 个自由电子,电子的能量为

E (k x ,k y )=m 22

(k x 2+k y 2)= 22

8m L

h (n x 2+n y 2) (1)求能量E 到E +d E 之间的状态数(包括自旋态);

(2)求此二维系统在绝对零度的Fermi 能量(n x ,n y =1,2,3,...)。

8079

某体心立方结构的金属晶体,其密度为2.0?g ·cm -3.利用80?pm 波长的射线测得200

衍射sin θ=0.133 。试求:

(1)晶胞的棱长;

(2)金属的相对原子质量;

(3)金属的原子半径;

(4)空间利用率。

8080

什么是费米面?自由电子的费米面几何形状如何?解释金属电子比热小的原因。

8081

(1)__________称为莫特转换,转变的原因是(2)____________,它反映了(3)________理

论的局限性。

8082

说明金属铜晶体密堆积层的方向,计算该密堆积层的堆积系数。

8083

铝Al属立方晶系,用Cu Kα射线摄取其333衍射线,θ=81?17′,求Al晶胞的参数。

8084

画出等径圆球密置单层示意图,说明球的配位数、空隙的形状和大小,计算每个球平均摊到的空隙数,并计算堆积系数。

8085

金属铝为面心立方结构,密度为2.70g·cm-3。

(1) 计算其晶胞参数和原子半径;

(2) 用Cu Kα射线摄取Al的粉末衍射图,衍射角θ=81?17′的衍射,其指标为多少?

8086

证明A1型面心立方密堆积的空间利用率为74.05%。

8087

证明A2型体心立方密堆积的空间利用率为68.02%。

8088

CuSn合金属NiAs型结构,六方晶胞参数a=419.8?pm,c=509.6?pm,晶胞中原子的分数坐标为:Cu:(0,0,0);(0,0,1/2);Sn:(1/3,2/3,1/4);(2/3,1/3,3/4)。

(1)计算Cu—Cu间的最短距离;

(2)Sn原子按什么型式堆积?

(3)Cu原子周围的原子围成什么多面体空隙?

8089

画出等径圆球密置双层及相应的点阵素单位,说明结构基元。

8090

画出等径圆球六方最密堆积沿六重轴的投影图,在图上标出四面体空隙中心和八面体空隙中心的投影位置。

8091

说明金属单质的A1,A3和A2型堆积结构中晶胞参数与堆积原子半径间的关系。

8092

作为一种近似处理,纳米材料中的电子和空穴可视为被限制在纳米范围内运动的一维势箱中的粒子,电子和空穴附加的动能(基态)等于其禁带宽度E g的增加量 E g。GaAs的电子和空穴的有效质量分别为m e*=0.065m0和m h*=0.45m0,m0为电子静质量;E g′ =1.42?eV,计算5000?pm GaAs 的禁带宽度。

8093

用分数坐标表示ccp晶胞中四面体空隙中心和八面体空隙中心的位置。

8094

Ne原子在低温下按立方最密堆积形成晶体,在标准压力、0K(外推法)时的晶胞参数a=446.2?pm,请计算:

(1) Ne晶体的密度;

(2)晶体中Ne原子的体积;

(3)晶体中原子间的最短距离。

8095

低温下,Ar 原子按立方最密堆积形成晶体,标准压力、0K(外推法)时晶胞参数a=531.1pm,请计算:

(1)该晶体的密度;

(2)Ar原子的体积;

(3)晶体中原子间的最短距离;

(4)说明Ar的用途。

8096

金属Ni属立方面心结构,已知Ni的原子半径为r=124.6 pm,试计算Ni的摩尔体积。

8097

金属Mg是由Mg原子按A3型堆积而成,已知Mg的原子半径是160 pm,求晶胞参数。

8098

画出A1型等径圆球密堆积中,圆球沿四重轴的投影,写出八面体空隙中心的分数坐标。

8099

写出A1型等径圆球密堆积中,四面体空隙中心的分数坐标。

8100

求A1型等径圆球密堆积的特征对称元素与密置层的夹角。

8101

画出A1型等径圆球密堆积中的密置层,并计算二维堆积密度。

8102

金属钠晶体属于立方体心结构,钠原子半径为185.8 pm,计算晶胞参数。

8103

金属锂晶体属于立方体心结构,其密度为0.53 g/cm3,相对原子质量6.941,求(100)点阵面的面间距。

第八章组合变形构件的强度习题

第八章组合变形构件的强度习题 一、填空题 1、两种或两种以上基本变形同时发生在一个杆上的变形,称为()变形。 二、计算题 1、如图所示的手摇绞车,最大起重量Q=788N,卷筒直径D=36cm,两轴承间的距离l=80cm,轴的许用应力[]σ=80Mpa。试按第三强度理论设计轴的直径d。 2、图示手摇铰车的最大起重量P=1kN,材料为Q235钢,[σ]=80 MPa。试按第三强度理论选择铰车的轴的直径。 3、图示传动轴AB由电动机带动,轴长L=1.2m,在跨中安装一胶带轮,重G=5kN,半径R=0.6m,胶带紧边张力F1=6kN,松边张力F2=3kN。轴直径d=0.1m,材料许用应力[σ]=50MPa。试按第三强度理论校核轴的强度。 4、如图所示,轴上安装有两个轮子,两轮上分别作用有F=3kN及重物Q,该轴处于

平衡状态。若[σ]=80MPa。试按第四强度理论选定轴的直径d。 5、图示钢质拐轴,AB轴的长度l AB=150mm, BC轴长度l BC=140mm,承受集中载荷F 的作用,许用应力[σ]=160Mpa,若AB轴的抗弯截面系数W z=3000mm3,。试利用第三强度理论,按AB轴的强度条件确定此结构的许可载荷F。(注:写出解题过程) 6、如图所示,由电动机带动的轴上,装有一直径D=1m的皮带轮,皮带紧边张力为2F=5KN,松边张力为F=2.5KN,轮重F P=2KN,已知材料的许用应力[σ]=80Mpa,试按第三强度理论设计轴的直径d。 7、如图所示,有一圆杆AB长为l,横截面直径为d,杆的一端固定,一端自由,在自由端B处固结一圆轮,轮的半径为R,并于轮缘处作用一集中的切向力P。试按第三强度理论建立该圆杆的强度条件。圆杆材料的许用应力为[σ]。

结晶学基础第八章习题答案

《结晶学基础》第八章习题答案 8001 (C) 8002 非。 8003 非。六方晶系只有简单六方一种点阵型式,六方晶胞中所含的两个球,均属一个结构基元。 8004 1:2:1 8005 (E) 8006 0,0,0; 1/3,2/3,1/2 (或 0,0,0; 2/3,1/3,1/2) 8007 (1) 63,6 简单六方。 (2) 0,0,0; 1/3,2/3,1/2。 (3) (N A ·34 r 3)/0.7405 = 13.95 cm 3 (4) d 002= 2×1.633×160/2 pm = 522.6/2 pm = 261.3 pm 8008 面; 面 8009 (1) (1/3,2/3,1/4); (1/3,2/3,3/4); (2) (2/3,1/3,1/8); (2/3,1/3,7/8); (0,0,3/8); (0,0,5/8)

8010 分子占据面积πr 2; 平行四边形面积 2r ×2r ×sin60° r r r 22866.02??π = 0.907 8011 布拉格角: 34.27°; 40.56°; 66.83°; 指标: 111; 200; 220 。 8012 (1) a = 352.4 pm (2) d =V N nM A /=2432310524.310 02.6/70.584-??? g?cm -3 = 8.906 g?cm -3 (3) 略 8013 A 1型堆积为立方面心结构,第一对谱线的衍射指标为111 a = 362.0 pm r = 128.0 pm 立方面心,每个晶胞中有4个Cu 原子, d = 8.89 g ·cm -3 8014 r = 143 pm; θ= 19.3° 8015 a = 400.4 pm r = 141.6 pm A 1堆积每个晶胞中有4个Al 原子, d = 2.793 g ·cm -3 8016 (1) r = 138.4 pm (2) 最多能得到(100)的4级衍射 8017 体心点阵

晶体学基础(晶向指数与晶面指数)

1.4 晶向指数和晶面指数 一晶向和晶面 1 晶向 晶向:空间点阵中各阵点列的方向(连接点阵中任意结点列的直线方向)。晶体中的某些方向,涉及到晶体中原子的位置,原子列方向,表示的是一组相互平行、方向一致的直线的指向。 2 晶面 晶面:通过空间点阵中任意一组阵点的平面(在点阵中由结点构成的平面)。晶体中原子所构成的平面。 不同的晶面和晶向具有不同的原子排列和不同的取向。材料的许多性质和行为(如各种物理性质、力学行为、相变、X光和电子衍射特性等)都和晶面、晶向有密切的关系。所以,为了研究和描述材料的性质和行为,首先就要设法表征晶面和晶向。为了便于确定和区别晶体中不同方位的晶向和晶面,国际上通用密勒(Miller)指数来统一标定晶向指数与晶面指数。 二晶向指数和晶面指数的确定 1 晶向指数的确定方法 三指数表示晶向指数[uvw]的步骤如图1所示。 (1)建立以晶轴a,b,c为坐标轴的坐标系,各轴上的坐标长度单位分别是晶胞边长a,b,c,坐标原点在待标晶向上。 (2)选取该晶向上原点以外的任一点P(xa,yb,zc)。 (3)将xa,yb,zc化成最小的简单整数比u,v,w,且u∶v∶w = xa∶yb∶zc。 (4)将u,v,w三数置于方括号内就得到晶向指数[uvw]。 图1 晶向指数的确定方法 图2 不同的晶向及其指数 当然,在确定晶向指数时,坐标原点不一定非选取在晶向上不可。若原点不在待标晶向上,那就需要选取该晶向上两点的坐标P(x1,y1,z1)和Q(x2,y2,z2),然后将(x1-x2),(y1-y2),

(z 1-z 2)三个数化成最小的简单整数u ,v ,w ,并使之满足u ∶v ∶w =(x 1-x 2)∶(y 1-y 2)∶(z 1-z 2)。则[uvw ]为该晶向的指数。 显然,晶向指数表示了所有相互平行、方向一致的晶向。若所指的方向相反,则晶向指数的数字相同,但符号相反,如图3中[001]与[010]。 说明: a 指数意义:代表相互平行、方向一致的所有晶向。 b 负值:标于数字上方,表示同一晶向的相反方向。 c 晶向族:晶体中原子排列情况相同但空间位向不同的一组晶向。用表示,数字相同,但排列顺序不同或正负号不同的晶向属于同一晶向族。晶体结构中那些原子密度相同的等同晶向称为晶向轴,用表示。 <100>:[100] [010] [001] [001] [010] [100] <111>:[111] [111] [111] [111] [111] [111] [111] [111] 图3 正交点阵中的几个晶向指数 2 晶面指数的确定 国际上通用的是密勒指数,即用三个数字来表示晶面指数(h k l )。图4中的红色晶面为待确定的晶面,其确定方法如下。 图4 晶面指数的确定 (1)建立一组以晶轴a ,b ,c 为坐标轴的坐标系,令坐标原点不在待标晶面上,各轴上的坐标长度单位分别是晶胞边长a ,b ,c 。 (2)求出待标晶面在a ,b ,c 轴上的截距xa ,yb ,zc 。如该晶面与某轴平行,则截距为∞。(3)取截距的倒数1/xa ,1/yb ,1/zc 。 (4)将这些倒数化成最小的简单整数比h ,k ,l ,使h ∶k ∶l = 1/xa ∶1/yb ∶1/zc 。 (5)如有某一数为负值,则将负号标注在该数字的上方,将h ,k ,l 置于圆括号内,写成(hkl ),则(hkl )就是待标晶面的晶面指数。 说明:晶面指数所代表的不仅是某一晶面,而是代表着一组相互平行的晶面。 a 指数意义:代表一组平行的晶面;

晶体学基础与晶体结构习题与答案

晶体学基础与晶体结构习题与答案 1. 由标准的(001)极射赤面投影图指出在立方晶体中属于[110]晶带轴的晶带,除了已在图2-1中标出晶面外,在下列晶面中哪些属于[110]晶带?(1-12),(0-12),(-113),(1-32),(-221)。 图2-1 2. 试证明四方晶系中只有简单立方和体心立方两种点阵类型。 3. 为什么密排六方结构不能称作为一种空间点阵? 4. 标出面心立方晶胞中(111)面上各点的坐标。 5. 标出具有下列密勒指数的晶面和晶向:a)立方晶系(421),(-123),(130),[2-1-1],[311]; b)六方晶系(2-1-11),(1-101),(3-2-12),[2-1-11],[1-213]。 6. 在体心立方晶系中画出{111}晶面族的所有晶面。 7. 在立方晶系中画出以[001]为晶带轴的所有晶面。 8. 已知纯钛有两种同素异构体,密排六方结构的低温稳定的α-Ti和体心立方结构的高温稳定的β-Ti,其同素异构转变温度为882.5℃,使计算纯钛在室温(20℃)和900℃时晶体中(112)和(001)的晶面间距(已知aα20℃=0.29506nm,cα20℃=0.46788nm,aα900℃=0.33065nm)。 9. 试计算面心立方晶体的(100),(110),(111),等晶面的面间距和面致密度,并指出面间距最大的面。 10.平面A在极射赤平面投影图中为通过NS及核电0°N,20°E的大圆,平面B的极点在30°N,50°W处,a)求极射投影图上两极点A、B间的夹角;b)求出A绕B顺时针转过40°的位置。 11. a)说明在fcc的(001)标准极射赤面投影图的外圆上,赤道线上和0°经线上的极点的指数各有何特点,b)在上述极图上标出(-110),(011),(112)极点。 12. 图2-2为α-Fe的x射线衍射谱,所用x光波长λ=0.1542nm,试计算每个峰线所对应晶面间距,并确定其晶格常数。 图2-2 13. 采用Cu kα(λ=0.15418nm)测得Cr的x射线衍射谱为首的三条2θ=44.4°,64.6°和81.8°,若(bcc)Cr的晶格常数a=0.28845nm,试求对应这些谱线的密勒指数。

结晶学基础第八节习题

《结晶学基础》第八章习题 8001 在A 1型等径圆球密堆积中,密置层为:----------------------------------- ( ) (A) (100)面 (B) (110)面 (C) (111)面 (D) (210)面 8002 在A 1型堆积中,可取出一立方面心晶胞,金刚石晶体可抽出立方面心点阵,所 以C 原子是按A 1型堆积的,对否? 8003 从A 3型堆积中可取出一个六方晶胞,晶胞中含有两个球,坐标分别为(0,0,0)和(1/3,2/3,1/2),故为六方体心点阵,对否? 8004 在A 1型堆积中,球数:正四面体空隙数:正八面体空隙数=________。 8005 等径圆球作A 2型堆积,其密置列方向为:----------------------------------- ( ) (A) a (B) b (C) c (D) a +b (E) a +b +c 8006 原子按六方最密堆积排列,原子在六方晶胞中的坐标为_______。 8007 已知 Mg 的原子半径为 160 pm ,属 hcp(六方最密堆积)结构。 (1) 晶体有什么微观特征对称元素?属什么空间点阵型式? (2) 原子分数坐标; (3) 若原子符合硬球堆积规律,求金属镁的摩尔体积; (4) 求d 002值。 8008 等径圆球六方最密堆积,中最近两个相邻八面体空隙公用的几何元素为_____;最近两个相邻四面体空隙公用的几何元素为____________。 8009

等径圆球的六方最密堆积可划分出六方晶胞,晶胞中两个原子的分数坐标分别为(0,0,0)和(1/3,2/3,1/2)。 (1)八面体空隙中心的分数坐标为____________,_____________。 (2)四面体空隙中心的分数坐标为____________,____________,___________ ____________。 8010 由直圆柱形分子堆积,最高的空间利用率为____________。 8011 Ni是面心立方金属,晶胞参数a=352.4?pm,用Cr Kα(λ=229.1pm)拍粉末图,列出可能出现谱线的衍射指标及其Bragg角值。 8012 已知金属Ni 为A1型结构,原子间最近接触距离为249.2 pm,试计算: (1) Ni 立方晶胞参数; (2)金属Ni 的密度(以g·cm-3表示); (3)画出(100),(110),(111)面上原子的排布方式。 8013 已知金属铜晶体按A1型堆积而成,其粉末图第一对谱线间的距离为43.3 mm,所用相机直径为57.3 mm,所用射线为Cu Kα线,λ=154.2?pm.。求金属铜晶体的晶胞常数、Cu 原子半径和金属铜的密度。(Cu的相对原子质量为63.54) 8014 已知金属铝为A1型最密堆积,其密度为2.70g·cm-3,相对原子质量为26,计算铝的原子半径;若所用X-射线波长λ=154.2?pm。试推算111衍射的布拉格角. 8015 已知金属Al晶体按A1型堆积而成,其粉末图第二对谱线间的距离为45.3mm,所用X-射线λ=154.2?pm,相机半径为28.65?mm,求金属Al晶体的晶胞参数、原子半径和晶体密度。 8016 金属W 的晶体属立方体心结构,若每一个原子为一个结构基元,已知金属W的相对原子质量为189.9,W 的晶体密度d=19.30 g·cm-3。 (1)求W 的原子半径;

晶体学基础(晶向指数与晶面指数)

晶向指数和晶面指数 一晶向和晶面 1 晶向 晶向:空间点阵中各阵点列的方向(连接点阵中任意结点列的直线方向)。晶体中的某些方向,涉及到晶体中原子的位置,原子列方向,表示的是一组相互平行、方向一致的直线的指向。 2 晶面 晶面:通过空间点阵中任意一组阵点的平面(在点阵中由结点构成的平面)。晶体中原子所构成的平面。 不同的晶面和晶向具有不同的原子排列和不同的取向。材料的许多性质和行为(如各种物理性质、力学行为、相变、X光和电子衍射特性等)都和晶面、晶向有密切的关系。所以,为了研究和描述材料的性质和行为,首先就要设法表征晶面和晶向。为了便于确定和区别晶体中不同方位的晶向和晶面,国际上通用密勒(Miller)指数来统一标定晶向指数与晶面指数。 二晶向指数和晶面指数的确定 1 晶向指数的确定方法 三指数表示晶向指数[uvw]的步骤如图1所示。 (1)建立以晶轴a,b,c为坐标轴的坐标系,各轴上的坐标长度单位分别是晶胞边长a,b,c,坐标原点在待标晶向上。 (2)选取该晶向上原点以外的任一点P(xa,yb,zc)。 (3)将xa,yb,zc化成最小的简单整数比u,v,w,且u∶v∶w = xa∶yb∶zc。 (4)将u,v,w三数置于方括号内就得到晶向指数[uvw]。 图1 晶向指数的确定方法 图2 不同的晶向及其指数 当然,在确定晶向指数时,坐标原点不一定非选取在晶向上不可。若原点不在待标晶向上,那就需要选取该晶向上两点的坐标P(x1,y1,z1)和Q(x2,y2,z2),然后将(x1-x2),(y1-y2),

(z 1-z 2)三个数化成最小的简单整数u ,v ,w ,并使之满足u ∶v ∶w =(x 1-x 2)∶(y 1-y 2)∶(z 1-z 2)。则[uvw ]为该晶向的指数。 显然,晶向指数表示了所有相互平行、方向一致的晶向。若所指的方向相反,则晶向指数的数字相同,但符号相反,如图3中[001]与[010]。 说明: a 指数意义:代表相互平行、方向一致的所有晶向。 b 负值:标于数字上方,表示同一晶向的相反方向。 c 晶向族:晶体中原子排列情况相同但空间位向不同的一组晶向。用表示,数字相同,但排列顺序不同或正负号不同的晶向属于同一晶向族。晶体结构中那些原子密度相同的等同晶向称为晶向轴,用表示。 <100>:[100] [010] [001] [001] [010] [100] <111>:[111] [111] [111] [111] [111] [111] [111] [111] 图3 正交点阵中的几个晶向指数 2 晶面指数的确定 国际上通用的是密勒指数,即用三个数字来表示晶面指数(h k l )。图4中的红色晶面为待确定的晶面,其确定方法如下。 图4 晶面指数的确定 (1)建立一组以晶轴a ,b ,c 为坐标轴的坐标系,令坐标原点不在待标晶面上,各轴上的坐标长度单位分别是晶胞边长a ,b ,c 。 (2)求出待标晶面在a ,b ,c 轴上的截距xa ,yb ,zc 。如该晶面与某轴平行,则截距为∞。(3)取截距的倒数1/xa ,1/yb ,1/zc 。 (4)将这些倒数化成最小的简单整数比h ,k ,l ,使h ∶k ∶l = 1/xa ∶1/yb ∶1/zc 。 (5)如有某一数为负值,则将负号标注在该数字的上方,将h ,k ,l 置于圆括号内,写成(hkl ),则(hkl )就是待标晶面的晶面指数。 说明:晶面指数所代表的不仅是某一晶面,而是代表着一组相互平行的晶面。 a 指数意义:代表一组平行的晶面;

第八章组合变形练习题

组合变形练习题 一、选择 1、应用叠加原理的前提条件是:。 A:线弹性构件; B:小变形杆件; C:线弹性、小变形杆件; D:线弹性、小变形、直杆; 2、平板上边切h/5,在下边对应切去h/5,平板的强度。 A:降低一半; B:降低不到一半; C:不变; D:提高了; 3、AB杆的A处靠在光滑的墙上,B端铰支,在自重作用下发生变形, AB杆发生变形。 A:平面弯曲 B:斜弯; C:拉弯组合; D:压弯组合; 4、简支梁受力如图:梁上。 A:AC段发生弯曲变形、CB段发生拉弯组合变 形 B:AC段发生压弯组合变形、CB段发生弯曲变形 C:两段只发生弯曲变 形 D:AC段发生压弯组合、CB段发生拉弯组合变形 5、图示中铸铁制成的压力机立柱的截面中,最合理的是。

6、矩形截面悬臂梁受力如图,P2作用在梁的中间截面处,悬臂梁根部截面上的最大应力为:。 A:σ max =(M y 2+M z 2)1/2/W B:σ max =M y /W y +M Z /W Z C:σ max =P 1 /A+P 2 /A D:σ max =P 1 /W y +P 2 /W z 7、塑性材料制成的圆截面杆件上承受轴向拉力、弯矩和扭矩的联合作用,其强度条件是。 A:σ r3 =N/A+M/W≤|σ| B:σ r3 =N/A+(M2+T2)1/2/W≤|σ| C:σ r3 =[(N/A+M/W)2+(T/W)2]1/2≤|σ| D:σ r3 =[(N/A)2+(M/W)2+(T/W)2]1/2≤|σ| 8、方形截面等直杆,抗弯模量为W,承受弯矩M,扭矩T,A点处正应力为σ,剪应力为τ,材料为普通碳钢,其强度条件为:。 A:σ≤|σ|,τ≤|τ| ; B: (M2+T2)1/2/W≤|σ| ; C:(M2+0.75T2)1/2/W≤|σ|; D:(σ2+4τ2)1/2≤|σ| ; 9、圆轴受力如图。该轴的变形为: A:AC段发生扭转变形,CB段发生弯曲变形 B:AC段发生扭转变形,CB段发生弯扭组合变形 C:AC段发生弯扭组合变形,CB段发生弯曲变形

材料科学基础习题及答案

《材料科学基础》习题及答案 第一章 结晶学基础 第二章 晶体结构与晶体中的缺陷 1 名词解释:配位数与配位体,同质多晶、类质同晶与多晶转变,位移性转变与重建性转变,晶体场理论与配位场理论。 晶系、晶胞、晶胞参数、空间点阵、米勒指数(晶面指数)、离子晶体的晶格能、原子半径与离子半径、离子极化、正尖晶石与反正尖晶石、反萤石结构、铁电效应、压电效应. 答:配位数:晶体结构中与一个离子直接相邻的异号离子数。 配位体:晶体结构中与某一个阳离子直接相邻、形成配位关系的各个阴离子中心连线所构成的多面体。 同质多晶:同一化学组成在不同外界条件下(温度、压力、pH 值等),结晶成为两种以上不同结构晶体的现象。 多晶转变:当外界条件改变到一定程度时,各种变体之间发生结构转变,从一种变体转变成为另一种变体的现象。 位移性转变:不打开任何键,也不改变原子最邻近的配位数,仅仅使结构发生畸变,原子从原来位置发生少许位移,使次级配位有所改变的一种多晶转变形式。 重建性转变:破坏原有原子间化学键,改变原子最邻近配位数,使晶体结构完全改变原样的一种多晶转变形式。 晶体场理论:认为在晶体结构中,中心阳离子与配位体之间是离子键,不存在电子轨道的重迭,并将配位体作为点电荷来处理的理论。 配位场理论:除了考虑到由配位体所引起的纯静电效应以外,还考虑了共价成键的效应的理论 图2-1 MgO 晶体中不同晶面的氧离子排布示意图 2 面排列密度的定义为:在平面上球体所占的面积分数。 (a )画出MgO (NaCl 型)晶体(111)、(110)和(100)晶面上的原子排布图; (b )计算这三个晶面的面排列密度。 解:MgO 晶体中O2-做紧密堆积,Mg2+填充在八面体空隙中。 (a )(111)、(110)和(100)晶面上的氧离子排布情况如图2-1所示。 (b )在面心立方紧密堆积的单位晶胞中,r a 220= (111)面:面排列密度= ()[] 907.032/2/2/34/222==?ππr r

《材料力学》第8章 组合变形及连接部分的计算 习题解

第八章 组合变形及连接部分的计算 习题解 [习题8-1] 14号工字钢悬臂梁受力情况如图所示。已知m l 8.0=,kN F 5.21=, kN F 0.12=,试求危险截面上的最大正应力。 解:危险截面在固定端,拉断的危险点在前上角点,压断的危险点在后下角,因钢材的拉压 性能相同,故只计算最大拉应力: 式中,z W ,y W 由14号工字钢,查型钢表得到3 102cm W z =,3 1.16cm W y =。故 MPa Pa m m N m m N 1.79101.79101.168.0100.11010228.0105.2363 63363max =?=???+?????=--σ [习题8-2] 受集度为 q 的均布荷载作用的矩形截面简支梁,其荷载作用面与梁的纵向对称面间的夹角为 030=α,如图所示。已知该梁材料的弹性模量 GPa E 10=;梁的尺寸为 m l 4=,mm h 160=,mm b 120=;许用应力MPa 12][=σ;许用挠度150/][l w =。试校核梁的强度和刚度。

解:(1)强度校核 )/(732.1866.0230cos 0m kN q q y =?== (正y 方向↓) )/(15.0230sin 0m kN q q z =?== (负z 方向←) )(464.34732.181 8122m kN l q M y zmaz ?=??== 出现在跨中截面 )(24181 8122m kN l q M z ymaz ?=??== 出现在跨中截面 )(51200016012061 61322mm bh W z =??== )(3840001201606 1 61322mm hb W y =??== 最大拉应力出现在左下角点上: y y z z W M W M max max max + = σ MPa mm mm N mm mm N 974.1138400010251200010464.33 636max =??+??=σ 因为 MPa 974.11max =σ,MPa 12][=σ,即:][max σσ< 所以 满足正应力强度条件,即不会拉断或压断,亦即强度上是安全的。 (2)刚度校核 =

晶体学习题与答案

一、 名词解释 (1)阵点;(2)(空间)点阵;(3)晶体结构;(4)晶胞;(5)晶带轴; 二、填空 (1)晶体中共有 种空间点阵,属于立方晶系的空间点阵有 三种。 (2)对于立方晶系,晶面间距的计算公式为 。 (3){110}晶面族包括 等晶面。 (4){h 1k 1l 1}和{h 2k 2l 2}两晶面的晶带轴指数[u v w]为 。 (5)(110)和(11-0)晶面的交线是 ;包括有[112]和[123]晶向的晶面是 。 三、计算及简答 (1)原子间的结合键共有几种?各自有何特点? (2)在立方晶系的晶胞中,画出(111)、(112)、(011)、(123)晶面和[111]、[101]、[111-] 晶向。 (3)列出六方晶系{101-2} 晶面族中所有晶面的密勒指数,并绘出(101-0)、(112-0)晶面 和〔112-0〕晶向。 (4)试证明立方晶系的〔111〕晶向垂直于(111)晶面。 (5)绘图指出面心立方和体心立方晶体的(100)、(110)、及(111)晶面,并求其面间距; 试分别指出两种晶体中,哪一种晶面的面间距最大? (6)在立方晶系中,(1-10)、(3-11)、(1-3- 2)晶面是否属于同一晶带?如果是,请指出其晶 带轴;并指出属于该晶带的任一其他晶面。 (7)写出立方晶系的{111}、{123}晶面族和<112>晶向族中的全部等价晶面和晶向的具体指 数。 (8)计算立方晶系中(111)和〔111-〕两晶面间的夹角。

(9)若采用四轴坐标系标定六方晶体的晶向指数,应该有什么约束条件?为什么? 答 案 二、填空 (1)14 简单、体心、面心 (2)222hkl d h k l =++ (3) (110)、(101)、(011)、(1-10)、(1-01) 、(01-1) (4)1122k l u k l =;1122l h v l h =;11 22 h k w h k = (5)〔001〕 (111-) 三、简答及计算 (1)略 (2) (3){101-2}晶面的密勒指数为(101-2)、(1-012)、(01-12)、(011-2)、 ( 1-102)、(11-02)。要求绘出的晶面和晶向如下图1-9所示。

第八章组合变形构建的强度习题答案_百度文库.

- 1 - 第八章组合变形构件的强度习题答案 一、填空题 1、组合 二、计算题 1、解:317888010157.610(N m m 4M =???=??3 36 78810141.8410(N m m 2 T =? ?=?? 3 3 80 0.10.1r d d

σ = = ≤ 解得 d ≥30mm 2 、解:(1 轴的计算简图 画出铰车梁的内力图: 险截面在梁中间截面左侧, P T P M 18. 02. 0max

== (2 强度计算第三强度理论:( ([]σπσ ≤+= += 2 2 3 2 2 3 18. 02. 032 P P d W T M Z r [] (

( ( ( mm m d 5. 320325. 010 118. 01012. 010 8032 10 118. 01012. 032 3 2 3 2 3 6 3 2 3 2

3 ==??+????= ??+??≥ πσπ 所以绞车的轴的最小直径为32.5mm 。 3、解: - 2 - m kN 8. 1? m kN 2. 4? (1)外力分析,将作用在胶带轮上的胶带拉力F 1、F 2向轴线简化,结果如图b .传动轴受竖向主动力: kN 1436521=++=++=F F G F ,此力使轴在竖向平面内弯曲。附加力偶为: ((m kN 8. 16. 03621?=?-=-=R F F M e ,此外力偶使轴发生变形。 故此轴属于弯扭组合变形。(2)内力分析 分别画出轴的扭矩图和弯矩图如图(c )、(d )危险截面上的弯矩m kN 2. 4?=M ,扭矩m kN 8. 1?=T (3)强度校核

结晶学基础习题习题

《结晶学基础》第七章习题 7001 试说明什么是单晶?什么是多晶? 7002 有一AB晶胞,其中A和B原子的分数坐标为A(0,0,0),B(1/2,1/2,1/2),属于:------------------------------------ ( ) (A) 立方体心点阵 (B) 立方面心点阵 (C) 立方底心点阵 (D) 立方简单点阵 7004 从CsCl 晶体中能抽出________点阵,结构基元是________,所属晶系的特征对称元素是________。 7005 某AB 型晶体属立方ZnS 型,请回答下列问题: (1) 从该晶体中可抽取出什么空间点阵? (2) 该晶体的结构基元为何? (3) 正当晶胞中含有几个结构基元? (4) 应写出几组B 原子的分数坐标? (5) 晶胞棱长为a,求在C3轴方向上A—A 最短距离; (6) 晶胞棱长为a,求在垂直C4轴的方向上B-B 最短距离。 7007 有一个A1 型立方面心晶体,试问一个立方晶胞中可能含有多少个A 和多少个B。7010 点阵参数为432 pm的简单立方点阵中,(111),(211)和(100)点阵面的面间距离各是多少? 7011 从某晶体中找到C3,3C2,σh,3σd等对称元素,该晶体属________晶系是_____点群。7012 7013 7014 属于立方晶系的点阵类型有________________,属于四方晶系的点阵类型有____________。

7015 晶体宏观外形中的对称元素可有________,________,________,______四种类型;晶 体微观结构中的对称元素可有________,________,________,________, ________, ________,______七种类型;晶体中对称轴的轴次(n )受晶体点阵结构的制约,仅限于 n =_________;晶体宏观外形中的对称元素进行一切可能的组合,可得________个晶体学点 群;分属于________个晶系,这些晶系总共有________种空间点阵型式,晶体微观结构中的 对称元素组合可得________个空间群。 7016 某一晶体,其空间群为94D -I 422,试给出: (1) 该晶体所属晶系; (2) 所属点阵类型; (3) 所属点群; (4) 晶胞形状特征。 7017 一晶体属于空间群P 2/c , (1) 给出该晶体所属晶系和点阵类型; (2) 给出该晶体所属点群的熊夫利记号; (3) 写出该晶体所具有的独立的宏观对称元素和派生的宏观对称元素。 7018 给出在三个坐标轴上之截距分别为 (2a ,3b ,c ) , (a ,b ,c ) , (6a ,3b ,3c ) , (2a , -3b ,-3c )的点阵面的指标。 7019 写出晶体中可能存在的全部宏观对称元素。 7020 试写出立方晶系和单斜晶系的特征对称元素。 7021 现有两种晶体,实验测得这两种晶体的空间群分别为172h D -C m c m 1222和42 d D -P 421c ,指出晶体所属的晶系分别为___________和_________,晶体的点阵类型分别为____________ 和____________, 这两种晶体的全部宏观对称元素分别为____________和____________。 7022 晶体的宏观对称操作集合构成____________个晶体学点群; 晶体的微观对称操作集合 构成____________个空间群。 7023 没有四方F 和四方C ,因为四方F 可以化为___________, 四方C 可以化为 _________。 7025 立方晶系的晶体可能属于哪些点群? 7026 与a 轴垂直的面的晶面指标是:----------------------------------- ( ) (A) (112) (B) (100)

材料科学基础 习题

1、已知粒子在一维矩形方势阱中运动,其波函数表达式,那么粒子在出现的概率密度为:() A. B. C. D. 2. 下列四种电子构型的原子电离能最低的是() A. ns2np3 ; B. ns2np4; C. ns2np5; D. ns2np6 3.下列哪一系列的排列顺序正好是电负性减小顺序的是()A. K、Na、Li; B. O、Cl、H; C. As、P、H; D. 三者都是。 4.下列哪种化合物中实际上没有氢健的是() A. H3BO3 B. CF2Cl2 C. N2H4 D. CH3COOH 5.下列哪种关于物质内部范德华力的说法是错的是() A. 非极性分子的物质没有取向力 B. 诱导力在三种范德 华力中通常是最小的 C. 分子的极性越大,取向力越大 D. 极性分子的物质没有色散力 6. 对称要素3L4表示() A. 3个4次对称轴 B. 4个3次对称轴 C. 3个4次旋转反伸轴 D. 3个4次旋转反映轴 7. 面角守恒定律中的守恒指() A.能量守恒 B.晶面夹角相等 C.晶面指数相同 D.晶格常数相同

8. 晶面通常被面网密度大的晶面所包围,这称为() A.布拉维法则 B.晶面法则 C.能量最低法则 D.平衡法则 9. 晶体中不可能存在的对称轴是() A.一次对称轴 B.三次对称轴 C.四次对称轴 D.五次对称轴 10. 如果某晶体具有9个对称面,应表示为() A.P9 B.9P C.P9 D.P9 11. 与L i2的对称操作等效的对称操作为() A.C B.2P C.P D.P+C 12. 对晶体进行宏观对称要素组合分析,可得到________种点群。 A.23 B.32 C.230 D.34 13. 晶族、晶系、对称型、布拉菲格子、空间群的数目分别是() A. 3、7、14、32、230 B. 3、7、32、14、230 C. 3、7、14、32、320 D. 3、7、32、14、320 14. 四方晶系的晶体常数特征为() A.a ≠ b ≠ c,α=β=γ= 90° B.a = b ≠ c,α=β=γ=90° C.a = b = c,α=β=γ=90° D.a ≠ b ≠ c,α≠β≠γ≠ 90° 15. 斜方晶系的晶体常数特征为() A.a ≠ b ≠ c,α=β=γ= 90° B.a = b ≠ c,α=β=γ=90°

结晶学及矿物学课后答案汇总

第一章习题 1.晶体与非晶体最本质的区别是什么?准晶体是一种什么物态? 答:晶体和非晶体均为固体,但它们之间有着本质的区别。晶体是具有格子构造的固体,即晶体的内部质点在三维空间做周期性重复排列。而非晶体不具有格子构造。晶体具有远程规律和近程规律,非晶体只有近程规律。准晶态也不具有格子构造,即内部质点也没有平移周期,但其内部质点排列具有远程规律。因此,这种物态介于晶体和非晶体之间。 2.在某一晶体结构中,同种质点都是相当点吗?为什么? 答:晶体结构中的同种质点并不一定都是相当点。因为相当点是满足以下两个条件的点:a.点的内容相同; b.点的周围环境相同。同种质点只满足了第一个条件,并不一定能够满足第二个条件。因此,晶体结构中的同种质点并不一定都是相当点。 3.从格子构造观点出发,说明晶体的基本性质。 答:晶体具有六个宏观的基本性质,这些性质是受其微观世界特点,即格子构造所决定的。现分别叙述:a.自限性晶体的多面体外形是其格子构造在外形上的直接反映。晶面、晶棱与角顶分别与格子构造中的面网、行列和结点相对应。从而导致了晶体在适当的条件下往往自发地形成几何多面体外形的性质。 b.均一性因为晶体是具有格子构造的固体,在同一晶体的各个不同部分,化学成分与晶体结构都是相同的,所以晶体的各个部分的物理性质与化学性质也是相同的。 c.异向性同一晶体中,由于内部质点在不同方向上的排布一般是不同的。因此,晶体的性质也随方向的不同有所差异。 d.对称性晶体的格子构造本身就是质点周期性重复排列,这本身就是一种对称性;体现在宏观上就是晶体相同的外形和物理性质在不同的方向上能够有规律地重复出现。 e.最小内能性晶体的格子构造使得其内部质点的排布是质点间引力和斥力达到平衡的结果。无论质点间的距离增大或缩小,都将导致质点的相对势能增加。因此,在相同的温度条件下,晶体比非晶体的内能要小;相对于气体和液体来说,晶体的内能更小。 f.稳定性内能越小越稳定,晶体的稳定性是最小内能性的必然结果。 5.图1-6中,金红石结构中的氧离子分属几套相当点? 答:分属4套相当点. 第二章习题 1.讨论一个晶面在与赤道平面平行、斜交或垂直时,投影点与投影基圆之间的距离关系。 答:根据晶面极射赤平投影的步骤和方法可知:与赤道平面平行的晶面投影点位于基圆的圆心,斜交的晶面投影点位于基圆的内部,直立的晶面投影点位于基圆上。根据这一规律可知,投影点与基圆的距离由远及近顺序分别为与赤道平面平行的晶面、斜交的晶面和垂直的晶面。 2.作立方体、四方柱的各晶面投影,讨论它们的关系。 答:立方体有六个晶面,其极射赤平投影点有六个投影点。四方柱由四个晶面组成,其投影点只有四个。四方柱的四个投影点的分布与立方体直立的四个晶面的投影点位置相同。如果将四方柱顶底面也投影,则立方体与四方柱投影结果一样,由此说明,投影图不能放映晶体的具体形状,只能反映各晶面的夹角情况。 3.已知磷灰石晶体上(见附图),m∧m=60°,m∧r=40°,作其所有晶面的投影,并在投影图中求r∧r=?答:晶面的极射赤平投影点见右图。在吴氏网中,将两个相邻的r晶面投影点旋转到过同一条大圆弧,在这条大圆弧上读取两点之间的刻度即为r∧r=42o。 4.作立方体上所有对称面的极射赤平投影。 5.请证明:在极射赤平投影图中,某晶面投影点与圆心的距离h与该晶面的极距角ρ的关系为:h = rtanρ/2 (r为基圆半径). 请见教材图2-6.在直角三角形OSa中,一直角边长为r,另一直角边为Oa,Oa=h,Oa的对角为ρ/2,根据三角函数关系可得:h = rtag ρ/2. 第三章习题

晶体学基础资料

竞赛要求: 初赛要求:晶体结构。晶胞。原子坐标。晶格能。晶胞中原子数或分子数的计算及与化学式的关系。分子晶体、原子晶体、离子晶体和金属晶体。配位数。晶体的堆积与填隙模型。常见的晶体结构类型,如NaCl、CsCl、闪锌矿(ZnS)、萤石(CaF2)、金刚石、石墨、硒、冰、干冰、尿素、金红石、钙钛矿、钾、镁、铜等。 决赛要求:晶体结构。点阵的基本概念。晶系。宏观对称元素。十四种空间点阵类型。 第七章晶体学基础 Chapter 7. The basic knowledge of crystallography §7.1 晶体结构的周期性和点阵 (Periodicity and lattices of crystal structures) 一、.晶体 远古时期,人类从宝石开始认识晶体。红宝石、蓝宝石、祖母绿等晶体以其晶莹剔透的外观,棱角分明的形状和艳丽的色彩,震憾人们的感官。名贵的宝石镶嵌在帝王的王冠上,成为权力与财富的象征,而现代人类合成出来晶体,如超导晶体YBaCuO、光学晶体BaB2O4、LiNbO3、磁学晶体NdFeB等高科技产品,则推动着人类的现代化进程。 世界上的固态物质可分为二类,一类是晶态,一类是非晶态。自然界存在大量的晶体物质,如高山岩石、地下矿藏、海边砂粒、两极冰川都是晶体组成。人类制造的金属、合金器材,水泥制品及食品中的盐、糖等都属于晶体,不论它们大至成千万吨,小至毫米、微米,晶体中的原子、分子都按某种规律周期性地排列。另一类固态物质,如玻璃、明胶、碳粉、塑料制品等,它们内部的原子、分子排列杂乱无章,没有周期性规律,通常称为玻璃体、无定形物或非晶态物质。 晶体结构最基本的特征是周期性。晶体是由原子或分子在空间按一定规律周期重复排列构成的固态物质,具有三维空间周期性。由于这样的内部结构,晶体具有以下性质: 1、均匀性:一块晶体内部各部分的宏观性质相同,如有相同的密度,相同的化学组成。晶体的均匀性来源于晶体由无数个极小的晶体单位(晶胞)组成,每个单位里有相同的原子、

《结晶学基础》第十章习题.doc

《结晶学基础》第十章习题 9501 金刚石的密度为3.51g - cm%歹lj式计算C —C键长。 9502 对于金刚石晶体结构,下面叙述何者不对?-------------------------- () (A)类似于立方ZnS型结构 (B)晶胞中含4个碳原了 (C)空间利用率仅34.01% (D)属A4堆积方式 9503 求金刚石型堆积的空间利用率O 9504 实验测得硅晶体属于金刚石型结构,空间群为晶体密度(7=2.33 g?cm'3? (1)计算晶胞参数i ; (2)计算晶体中Si—Si键长(Si相对原子质量28.06)。 9505 硅的结构和金刚石相同,硅的共价半径为117pm,求硅的晶胞参数。 9506 冰为六方晶系晶体,晶胞参数t7=452? pm, c=737? pm,晶胞中含4个H2O分了,O 原子坐标位置为(0,0,0); (0,0,0.375); (2/3,1/3,1/2); (2/3,1/3,0.875)。 (1)计算冰的密度; (2)计算氢键键长(只计算一个)。 9507 单晶硅在298? K时的密度为2.329? g - cm'3,立方晶胞参数67=543.1pm,则晶胞中有 个Si原子。(Si的相对原子质量为28.086) 9508 写出曰氏的结构式,说明其中包含的缺电子多中心键的名称和数bl。 9509

写出&Hg的结构式,说明其中包含的缺电子多中心键的名称和数|=|。 9510 (1)试画出B2H6的成键情况; (2)试用HMO方法讨论B—H—B的分子轨道。 设^H(ls)=?B(sp,) 9511 气态三甲基铝常以二聚体存在,二聚体的结构式为 9512 J出下列分子的结构式(标明单键和多重键等键型)和立体构型: (1)P4 (2) N4S4 (3) IO2F - (4) B3N3H6 9513 示意画出(1)三中心二电子硼桥键和(2)三中心二电子封闭式硼键的轨道迭加图。 9514 根据高了的电子结构说明H*和H的大小和酸碱性。 9515 SO42-中S—O键长为149? pm,比共价单键半径加和值(175? pm)短,说明原因。说明SiF6?-能稳定存在而SiCl62-不稳定的原因。 9515 80?+ S—O键长为149? pm,比共价单键半径加和值(175? pm)短,说明原因。说明SiF6?-能稳定存在而SiCl62-不稳定的原因。 9517 A1(CH3)3和Be(CH3)2都常以二聚体形式存在,写出它们的结构式。 9518 “相似相溶”原理中相似是指什么内容?

材料科学基础武汉理工出(部分习题答案)

第一章 结晶学基础 第二章 晶体结构与晶体中的缺陷 1 名词解释:配位数与配位体,同质多晶、类质同晶与多晶转变,位移性转变与重建性转变,晶体场理论与配位场理论。晶系、晶胞、晶胞参数、空间点阵、米勒指数(晶面指数)、离子晶体的晶格能、原子半径与离子半径、离子极化、正尖晶石与反正尖晶石、反萤石结构、铁电效应、压电效应. 答:配位数:晶体结构中与一个离子直接相邻的异号离子数。 配位体:晶体结构中与某一个阳离子直接相邻、形成配位关系的各个阴离子中心连线所构成的多面体。 同质多晶:同一化学组成在不同外界条件下(温度、压力、pH 值等),结晶成为两种以上不同结构晶体的现象。 多晶转变:当外界条件改变到一定程度时,各种变体之间发生结构转变,从一种变体转变成为另一种变体的现象。 位移性转变:不打开任何键,也不改变原子最邻近的配位数,仅仅使结构发生畸变,原子从原来位置发生少许位移,使次级配位有所改变的一种多晶转变形式。 重建性转变:破坏原有原子间化学键,改变原子最邻近配位数,使晶体结构完全改变原样的一种多晶转变形式。 晶体场理论:认为在晶体结构中,中心阳离子与配位体之间是离子键,不存在电子轨道的重迭,并将配位体作为点电荷来处理的理论。 配位场理论:除了考虑到由配位体所引起的纯静电效应以外,还考虑了共价成键的效应的理论 图2-1 MgO 晶体中不同晶面的氧离子排布示意图 2 面排列密度的定义为:在平面上球体所占的面积分数。 (a )画出MgO (NaCl 型)晶体(111)、(110)和(100)晶面上的原子排布图; (b )计算这三个晶面的面排列密度。 解:MgO 晶体中O2-做紧密堆积,Mg2+填充在八面体空隙中。 (a )(111)、(110)和(100)晶面上的氧离子排布情况如图2-1所示。 (b )在面心立方紧密堆积的单位晶胞中,r a 220= (111)面:面排列密度= ()[]907.032/2/2/34/222==?ππr r (110)面:面排列密度=()[]555.024/224/22==?ππr r r (100)面:面排列密度=()785.04/22/222==????? ?ππr r 3、已知Mg 2+半径为0.072nm ,O 2- 半径为0.140nm ,计算MgO 晶体结构的堆积系数与密度。 解:MgO 为NaCl 型,O 2-做密堆积,Mg 2+填充空隙。r O2- =0.140nm ,r Mg2+=0.072nm ,z=4,晶胞中质点体积:(4/3×πr O2-3+4/3×πr Mg2+ 3)×4,a=2(r ++r -),晶胞体积=a 3 ,堆积系数=晶胞中MgO 体积/晶胞体积=68.5%,密度=晶胞中MgO 质 量/晶胞体积=3.49g/cm 3。 4、(1)一晶面在x 、y 、z 轴上的截距分别为2a 、3b 、6c ,求出该晶面的米勒指数;(2)一晶面在x 、y 、z 轴上的截距分别为a/3、b/2、c ,求出该晶面的米勒指数。 解:(1)h:k:l=1/2:1/3:1/6=3:2:1,∴该晶面的米勒指数为(321);(2)(321) 5 试证明等径球体六方紧密堆积的六方晶胞的轴比c/a≈1.633。 证明:六方紧密堆积的晶胞中,a 轴上两个球直接相邻,a0=2r ;c 轴方向上,中间的一个球分别与上、下 各三个球紧密接触,形成四面体,如图2-2所示: 633.13/222/3/24/00===r r a c 图2-2 六方紧密堆积晶胞中 有关尺寸关系示意图 6、计算体心立方、面心立方、密排六方晶胞中的原子数、配位数、堆积系数。 解:体心:原子数 2,配位数 8,堆积密度 55.5%; 面心:原子数 4,配位数 6,堆积密度 74.04%; 六方:原子数 6,配位数 6,堆积密度 74.04%。

相关主题
文本预览
相关文档 最新文档