当前位置:文档之家› 高效率微波功放现状

高效率微波功放现状

高效率微波功放现状
高效率微波功放现状

高效率微波功放现状

功率放大器常应用在发射机的末端,是收发信机中最重要的耗能元件。随着通信产业的发展,无线通信系统的耗能问题受到越来越多的重视。在无线通信系统中,射频系统是其重要的部分,功率放大器作为射频系统的前端模块,它的成本大约占到基站的三分之一。而射频功率放大器作为重要的耗能元件,在整个无线通信系统中的耗能占了很大比重,追求更高的功放效率已经成了设备制造商们的重要目标。

针对功放效率,国内外在开关模式放大器技术、EE&R技术、LINC 技术和Doherty 放大器、谐波控制技术等方向进行过研究。同其它几种技术相比,Doherty 技术有着工作效率高、实现方式简单,成本相对低廉,对系统的线性度的影响相对较小等多个优点,并且可以方便地和改善线性度的前馈和预失真技术相结合,因此在现代无线通信系统中得到广泛的研究和应用。本文将简要介绍高效率微波功放技术中的谐波控制技术、Doherty技术、EE&R技术。

一、谐波控制技术

理想情况下,A 类放大器的最大效率只有50%,B 类放大器的最大效率为78.5%,C 类放大器的最大效率为100%时输出功率为0,这在功率放大器设计中是不可取的。由负载线理论可知,负载阻抗(主要是基波阻抗)决定晶体管的最大输出功率,必然会影响其最大效率。大信号下的功放早已产生谐波分量,推而广之,谐波阻抗必然也会影响功放的效率。当漏极电压与电流波形交错,即没有重叠部分时,直流能量可以完全地转化为了交流能量。而如何获得理想的电压电流波形便成了提高功放效率的关键。谐波控制类功放是从频域出发,利用特定比例的谐波分量来调控波形,从而实现高效率的。F类,逆F类,J类功放均是典型的谐波控制类功放。下面分别对F类、逆F类功放中谐波控制技术的应用进行说明。

为获得理想F类波形,功放输出需要对偶次谐波短路,奇次谐波开路。即负载匹配电路的偶次谐波阻抗为零,奇次谐波阻抗呈现无限大。这也是F类功放设计的精要。在物理现实中,因为漏源电容等因素作用,无法对所有高次谐波进行控制。因此,工程上通常利用二、三次谐波分量调整功放输出波形。

不同的输出电压电流波形能够使放大器工作时产生不同量的耗散功率。耗散功率越小,功率放大器将能量转化能力就越强。逆F类功放提高效率的原理也即是此:通过对谐波分量的控制,来输出最佳的波形(电压为半正弦,电流为方波)。要实现逆F功放的理想波形必须满足两个条件:(l)电压中只有偶次谐波分量,电流中只有奇次谐波分量;(2)剩余的谐波分量形成一定的幅度相位关系。要满足以上两个条件,不仅需要在输出端进行谐波负载控制,输入谐波控制也是必要的。

二、EE&R技术

EE&R技术是提取出信号的幅度和相位信息,分别放大后再进行相位和幅度的合成,输出射频信号。相位和幅度的合成一般使用高效率的开关类功率放大器,管子的栅极接相位信号,电源电压用幅度信号进行调制。这种方法的优点是平均效率比较高,一般是线性功放的3~5倍,且线性度只与包络通道有关,提高线性性能比较方便。缺点是需要补偿相位、幅度两路径的延时差。除了两个通道的时间队列之外,EE&R系统的线性受到两个支路的限制带宽的影响,特别是包络通路。信号分离为包络和相位(即从笛卡尔坐标到极坐标的转换)展宽了频谱。

EE&R技术的系统图大致如下图所示:

理想的限幅器消除了非线性RF功放中产生AM-PM失真的可能性,因此功放的输出得以保持输入信号的原始的未失真的相位特性。常包络RF信号使用D 类、E类或F类开关模式放大器来进行高效率放大。功率放大器最后一级的幅度调制恢复相位调制载波信号的包络,产生了输入信号幅度的复制。在EE&R系统中,RF晶体管的偏置点根据输入信号的功率动态的改变,因此功放在整个输出功率的大动态范围内都工作在高效率区域

三、Doherty技术

传统功率放大器设计采用功率回退的方法,但牺牲了功放的效率uJ。在现在的通信射频系统中,大多数都采用多载波调制技术,高的峰均比使回退的线性放大器设计效率极低,通常只有15%左右。Doherty结构功放配合数字预失真技术可以很好地提升功率效率,效率可以提升到35%以上。经典的二级Doherty结构框图如下图所示:

其中包括两个放大器,即主(载波)放大器和辅助(峰值)放大器,两个放大器并行连接,主放大器串接一条λ/4的传输线起阻抗变换作用,辅助放大器前λ/4传输线用于补偿由主放大器输出的λ/4的传输线引起的相移。

主放大器偏置在B类模式,而辅助放大器偏置在C类模式。Doherty功率放大器结构的基本工作原理可在低、中、峰值输出功率区域加以区分。低功率状态时,输入信号比较小,辅助放大器截止,只有主功放处于工作状态;到达中功率时,主功放的输出电压达到峰值饱和点时,理论上的效率可以达到

78.5%。如果此时将激励加大,那么工作在C类模式的辅助放大器开始工作。

由于辅助放大器工作后的牵引,主功放的负载减小,所以尽管载波放大器的输出电压饱和,输出功率还是会随着负载的减小而持续增大。当达到激励的

峰值时,辅助放大器也达到了饱和点。单个B类功放的最大效率出现在峰值处,而采用Doherty技术可以使主放大器在饱和输出点处功率回退6dB的情况下获得和输出饱和功率一样高的效率。

功率放大器在通信系统中发挥着举足轻重的作用,它将射频信号的功率推到适合的水平,然后通过天线发送出去,因此追求微波功放的高效率一直是设计人员关注的热点。本文简要介绍了高效率微波功放的现状及实现高效率的关键技术,由于个人能力有限,尚有很多不足之处。

音频功率放大器设计详解

音频功率放大器设计 一、设计任务 设计一个实用的音频功率放大器。在输入正弦波幅度≤5mV,负载电阻等于8Ω的 条件下,音频功率放大器满足如下要求: 1、最大输出不失真功率P OM≥8W。 2、功率放大器的频带宽度BW≥50Hz~15KHz。 3、在最大输出功率下非线性失真系数≤3%。 4、输入阻抗R i≥100kΩ。 5、具有音调控制功能:低音100Hz处有±12dB的调节范围,高 音10kHz处有±12dB的调节范围。 二、设计方案分析 根据设计课题的要求,该音频功率放大器可由图所示框图实现。 下面主要介绍各部 分电路的特点及要求。 图1 音频功率放大器组成框图 1、前置放大器 音频功率放大器的作用是将声音源输入的信号进行放大,然后输

出驱动扬声器。声音源 的种类有多种,如传声器(话筒)、电唱机、录音机(放音磁头)、CD唱机及线路传输等,这些声音源的输出信号的电压差别很大,从零点几毫伏到几百毫伏。一般功率放大器的输入灵敏度是一定的,这些不同的声音源信号如果直接输入到功率放大器中的话,对于输入过低的信号,功率放大器输出功率不足,不能充分发挥功放的作用;假如输入信号的幅值过大,功率放大器的输出信号将严重过载失真,这样将失去了音频放大的意义。所以一个实用的音频功率放大系统必须设置前置放大器,以便使放大器适应不同的的输入信号,或放大,或衰减,或进行阻抗变换,使其与功率放大器的输入灵敏度相匹配。另外在各种声音源中,除了信号的幅度差别外,它们的频率特性有的也不同,如电唱机输出信号和磁带放音的输出信号频率特性曲线呈上翘形,即低音被衰减,高音被提升。对于这样的输入信号,在进行功率放大器之前,需要进行频率补偿,使其频率特性曲线恢复到接近平坦的状态,即加入频率均衡网络放大器。 对于话筒和线路输入信号,一般只需将输入信号进行放大和衰减,不需要进行频率均衡。前置放大器的主要功能一是使话筒的输出阻抗与前置放大器的输入阻抗相匹配;二是使前置放大器的输出电压幅度与功率放大器的输入灵敏度相匹配。由于话筒输出信号非常微弱,一般只有100μV~几毫伏,所以前置放大器输入级的噪声对整个放大器的信噪比影响很大。前置放大器的输入级首先采用低噪声电路,对于由晶体管组成的分立元件组成的前置放大器,首先要选择低

微波线性功率放大器综述

微波线性功率放大器综述 1概述 微波线性功率放大器在现代微波(无线)通信系统中的重要性越来越大。特别是在CDMA 体制移动通信系统中,线性功率放大器已经是必不可少的重要部件。 2基本指标 2.1 AM/AM AM/PM失真 一个HPA的线性特征可以用AM/AM和AM/PM 曲线来表示. 输入的RF 信号可以表示为: x(t)=R i(t)?cos[ω0t+θx(t)] (1) 相应的输出表示为: y(t)=G[R i(f)] ?cos{ω0t+θx(t)+ψ[R i(f)]} (2) 其中G和ψ表示AM/AM 和AM/PM曲线,如图一。 图. 1 实测的放大器失真曲线 理想的线性功放的曲线如图2。 图. 2 理想的放大器AM/AM和AM/PM曲线

2.2 双音IMD 、IP3、P1dB 双音IMD ,在放大器输入端加入两个CW 信号,在放大器的输出端测量的3阶、5阶等信号大小,以dBc 表示。 IP3 IMD 、IP3及P 1dB 定义图示 2.3 ACPR ACPR 主要应用在象CDMA 这样的宽频谱信号的研究上。邻道功率(ACP )定义为当主信道加一信号时,紧邻主信道的两个信道内的功率大小。邻道功率的产生主要来自两个方面,一是由于器件的非线性作用产生,二是由于主信道信号本身频谱较信道宽。ACPR 定义为ACP 功率与主信道功率的比值。 图3 邻道功率(ACP )定义 图4 器件非线性产生的邻道功率 对移动通信的CDMA 信号而言,其IM3(即ACPR )与IP3的关系可以通过一公式表示。 IP3=-5log[P IM3(f 1,f 2)B 3/P O [(3B-f 1)3-(3B-f 2)3]]+22.2 (dBm) 其中: P IM3(f 1,f 2) 表示要求的IM3的输出功率(W ) B 表示二分之一CDMA 信号带宽 (KHz ) f 1,f 2表示两个边带频率相对于中心频率的差值(KHz )

功放的效率

按功放中功放管的导电方式不同,可以分为甲类功放(又称A 类)、乙类功放(又称B 类)、甲乙类功放(又称AB 类)。 甲类功放是指在信号的整个周期内(正弦波的正负两个半周),放大器的任何功率输出元件都不会出现电流截止(即停止输出)的一类放大器。甲类放大器工作时会产生高热,效率很低,但固有的优点是不存在交越失真。 乙类功放是指正弦信号的正负两个半周分别由推挽输出级的两“臂”轮流放大输出的一类放大器,每一“臂”的导电时间为信号的半个周期。乙类放大器的优点是效率高,缺点是会产生交越失真。 甲乙类功放界于甲类和乙类之间,推挽放大的每一个“臂”导通时间大于信号的半个周期而小于一个周期。甲乙类放大有效解决了乙类放大器的交越失真问题,效率又比甲类放大器高,因此获得了极为广泛的应用。 甲类: 1、结构 三极管的静态功耗: CQ CEQ T I U P ?= 电源提供的平均功耗 CQ CC E I V P ?= 若CC CEQ V U 2 1= ,则CQ CC RL T I V P P ?= =2 1。 三极管和负载电阻RL 的静态功耗相等。 三极管的动态功耗 输出功率: 设输出电压的幅值为Uom om om om om o 2122I U I U P =?= + u V CC i

要想P O 大,就要使功率三角形的面积大,即必须使V om 和I om 都要大 最大输出功率:CQ CC om I V P ?=)2 1 (21 电源提供的功率 CQ CC Cm CQ CC C CC E I V t d t I I V t d i V P ?=+?= ?= ? ? ωωπ ωπ π π )sin (21)(2120 20 此电路的最高效率25.0≈= E om P P η 甲类功率放大器存在的缺点: 输出功率小; 静态功率大,效率低。 乙类 1、结构: 互补对称: 电路中采用两个晶体管:NPN 、PNP 各一支;两管特性一致。组成互补对称式射极输出器。 2、工作原理 静态时:ui = 0V → ic 1、ic 2均=0(乙类工作状态) → uo = 0V 动态时:ui >0V,T1导通,T2截止,所以iL = ic 1; Ui <0V,T1导通,T2截止,所以iL = ic 2。 所以,T 1、T 2两个管子交替工作,在负载上得到完整的正弦波。 - u CC i

线性化微波功放现状及发展趋势1..

线性化微波功放现状及发展趋势 学院:电子工程学院 专业:电磁场与微波技术 教师:徐瑞敏教授 姓名:XXX 学号:2014210202XX 报告日期:2014.10.26

线性化微波功放现状及发展趋势 一、引言 电磁波和低频率端相比高频率端拥有其独特的优点,近年来尤其是微波毫米波电路作为航空航天的无线通信手段得到广泛应用。但是在几乎所有的微波电子系统中,要将信号放大都需要微波功放,因此微波功放在微波有源电路中拥有了无可比拟的重要地位。对微波功放,除了有一定的功率输出和增益指标以外,线性度也是一个十分重要的指标。例如在微波测试设备中,由于功放的非线性失真所产生的谐波往往影响了测试精度;在移动通信的基站和移动站中,功放的非线性失真往往会产生邻道干扰,从而引起信号失真。因此,在这些设备中对功放的线性度提出了很高的要求。 对功放线性度的衡量可从两个指标来考察:一为谐波抑制度,当放大器输人频率为f0的单频信号时,由于非线性失真,会产生频率为nf0等的谐波,如图1所示,输出主频与谐波的功率电平之差即为谐波抑制度,用dBc表示。 第二个衡量指标为三阶交调系数。当放大器输人一定频率间隔(例如SMH:)、幅度相同的频率为f,和f:两信号时,由于非线性失真,在放大器输出端除了放大的f’,和f:外,还有2j,;一J:和2j:一f,,此为三阶交调频率,如图1(b)所示,主频与三阶交调频率的功率电平之差即为功放的三阶交调系数,用(IBc表示也可用一分贝压缩点来表示功放的线性度的,一分贝压缩点与三阶交调之间具有换算关系。 二、功率放大器的非线性特性 现在一方面人们追求更高的功率利用率,另一方面是日益发展的无线通信产业的要求迫使我们不得不给予功率放大器的线性化问题以足够重视。要研究线性化技术,首先必须了解功率放大器的非线性失真特性,以做到有的放矢。 理想情况下,功率放大器工作在线性状态,传输系数与输入信号的幅度和相位无关。但在实际情况中并非这么简单,由于晶体管的特性,在达到一定输入功率时,放大器将呈现出非线性。信号的输入输出不在是上面简单的函数关系。放大器随着输入信号的增大,从线性区进入非线性区,此时功放的增益不再是常数,而是一个与输入信号有关的变量,输入输出呈非线性,甚至在达到一定输入功率后,功放输出将不再增加。此外功率放大器输出端产生了与输入频率有关的新的频率分量,当信号输入时,除了基波分量,还会出现各阶互调分量和高次谐波分量。这种非线性特性,在通信系统中对相邻信道的干扰,降低系统的性能。对于

射频功率放大器的发展现状

1.1 研究背景 随着人类社会进入信息化时代,无线通信技术有了飞速的发展,从手机,无线局域网,蓝牙等,到航空航天宇宙探测,已经深入到当今社会生活的各个方面,成为社 会生活和发展不可或缺的一部分。无线通信设备由最初体积庞大且功能单一的时代, 发展到如今的口袋尺寸,方寸之间集成了各类功能强大的电路。这些翻天覆地的变化,都离不开射频与微波技术的支持。而急速增长的应用需求又促使着射频微波领域不断 的研究,更新换代。快速的发展使得射频微波领域的研究进入了白热化阶段,而在几乎所有的射频与微波系统中,都离不开信号的放大,射频与微波功率放大器作为系统中功耗最大,产生非线性最强的模块,它的性能将直接影响系统性能的优劣,由于其在射频微波系统中的突出位置,功率放大器的研究也成为射频微波领域研究的一个十 分重要的方向[1]。 功率放大器作为射频微波系统中最重要的有源模块,其理论方面已经十分成熟。 A 类、 B 类、 C 类、 D 类、AB 类、E/I E 类、F/I F 类、Doherty等各类功率放大器也已经成功应用到各个领域。 1.2射频功率放大器的发展现状 射频功率放大器的核心器件为其功率元器件——晶体管,它是一种非线性三端口有源半导体器件,它的放大作用,并不是晶体管能凭空产生能量,使能量放大,而是 完全由集电极(BJT)或漏极(FET)电源的直流功率转换而来的。晶体管只是起到了一种控制作用,即用比较小的信号去控制直流电源产生随小信号变化的大信号,从而把电源的直流功率转换成为负载上的信号功率。功率放大器的理论知识发展已经十分完 善,其面临的更多是一些工程的问题。所以,射频功率放大器性能的提升主要来自于 晶体管性能的提升,即半导体技术的发展,和放大器本身电路形式的改进。根据晶体管所用的半导体材料的不同,可以大体将其分为三个不同的发展阶段。第一代半导体材料以硅(Si)和锗( Ge)等元素半导体为主。第二代半导体材料以砷化镓(GaAs)、磷化铟( InP)、锗硅(SiGe)等化合物半导体为代表,相比于第一代半导体材料,其禁带更宽、

高效音频功率放大器

高效音频功率放大器 一、设计任务与要求 1、设计任务 设计并制作一个高效率音频功率放大器及其参数的测量、显示装置。功率放大器的电源电压为+5V(电路其他部分的电源电压不限),负载为8Ω电阻。 2、设计要求 ⑴基本要求 ①功率放大器 a.3 dB通频带为300~3400Hz,输出正弦信号无明显失真。 b.最大不失真输出功率≥1W。 c.输入阻抗>10kΩ,电压放大倍数1~20连续可调。 d.低频噪声电压(20kHz以下)≤10mV,在电压放大倍数为10、输入端对地交流短路时测量。 e.在输出功率500mW时测量的功率放大器效率(输出功率/放大器总功耗)≥50%。 ②设计并制作一个放大倍数为1的信号变换电路,将功率放大器双端输出的信号转换为单端输出,经RC滤波供外接测试仪表用,如下图所示。图中,高效率功率放大器组成框图可参见本题第3项“说明”。 图1 系统组成框图 ③设计并制作一个测量放大器输出功率的装置,要求具有3位数字显示,精度优于5%。 ⑵发挥部分 ① 3dB通频带扩展至300Hz~20kHz。 ②输出功率保持为200mW,尽量提高放大器效率。 ③输出功率保持为200mW,尽量降低放大器电源电压。 ④增加输出短路保护功能。 ⑤其他。 1、说明 ⑴采用开关方式实现低频功率放大(即D类放大)是提高效率的主要途径之一,D类放大原理框图如下图所示。本设计中如果采用D类放大方式,不允许使用D类功率放大集成电路。

图2 D类放大原理框图 ⑵效率计算中的放大器总功耗是指功率放大器部分的总电流乘以供电电压(+5 v),不包括“基本要求”中第(2)、(3)项涉及的电路部分功耗。制作时要注意便于效率测试。 ⑶在整个测试过程中,要求输出波形无明显失真。 二、方案论证与比较 根据设计任务的要求,本系统的组成方框图如图1所示。下面对每个框电路的设计方案分别进行论证与比较。 1、高效率功率放大器 ⑴高效率功放类型的选择 方案一:采用A类、B类、AB类功率放大器。这三类功放的效率均达不到题目的要求。 方案二:采用D类功率放大器。D类功率放大器是用音频信号的幅度去线性调制高频脉冲的宽度,功率输出管工作在高频开关状态,通过LC低通滤波器后输出音频信号。由于输出管工作在开关状态,故具有极高的效率。理论上为100%,实际电路也可达到80%~95%,所以我们决定采用D类功率放大器。 ⑵高效D类功率放大器实现电路的选择本题目的核心就是功率放大器部分,采用何种电路形式以达到题目要求的性能指标,这是关键。 图3 脉宽调制器电路 ①脉宽调制器(PWM) 方案一:可选用专用的脉宽调制集成块,但通常有电源电压的限制,不利于本题发挥部分的实现。 方案二:采用图3所示方式来实现。三角波产生器及比较器分别采用通用集成电路,各部分的功能清晰,实现灵活,便于调试。若合理的选择器件参数,可使其能在较低的电压下工作,故选用此方案。 ②高速开关电路

微波线性功率放大器设计研究

微波线性功率放大器设计研究 摘要随着4G无线通信和军事领域新标准新技术的迅速发展,对于作为微波通信系统、雷达、电子对抗、宽带频率调制发射机、数字电视发射机等系统核心部件的功率放大器来说,它不仅仅是将信号放大到足够的功率电平,以实现信号的发射、远距离传输和可靠接收,而且对带宽、输出功率、线性度、效率和可靠性方面都提出了更高的要求。功率放大器的好坏成为制约系统发展的瓶颈。因此对于微波功率放大器的研究和设计有着重要的意义。 关键词微波;线性功率放大器;设计 前言 在宽带通信系统中,如多载波调制OFDM、长期演进系统LTE,都是非恒包络调制信号,信号的峰均比很高,回退放大器会大大降低工作效率,有必要采取有源线性化技术,射频预失真技术顺势而生,它只需在射频通路增加很少的射频元器件,就可达到提高功放输出功率、降低系统功耗、节约系统成本的效果。 1 原理 美国Scintera公司推出的射频数字预失真(RF DPD)产品RFPALSC18xx 系列,为数字预失真提出了新的解决方案。RFPAL工作午射频频率上,只涉及到射频通路的信号输入和输出,比较方便和功放集成,它具有较高的集成度,电路设计简单。其最新产品SC 1894,工作频率168MHz至3800MHz,输入信号带宽25kHz至75MHz,它利用功放输出信号和输入信号计算功放非线性参数,具有自适应调节功能,与工作在SW至60 W平均输出功率的A/AB类或Doherty 放大器一起使用,最高能達到28dB。的临波道抑制和38dB的三阶交调系数改善。它采用QFN管脚封装,支持外部时钟输入,低功耗设计,最大功耗仅为990mW。SC1894所采用的射频预失真技术可补偿调幅至调幅(AM~AM)和调幅至调相(AM-PM)失真、互调失真和功放记忆效应,采用反馈信息补偿由于温差和功放老化造成的信号失真。图1a)是SC1894管脚封装及典型外围电路,b)是基于SCI894实现射频预失真的原理框图。 射频信号经过输入定向耦合器耦合出输入信号RFin,经过巴伦匹配和阻抗变换进入芯片,功放输出信号进过反馈定向耦合器和阻抗匹配后进入芯片RFFB 管脚,SC1894通过处理这两个信号对功放进行建模和预失真处理,并输出预失真处理信号,通过定向耦合器叠加至输入信号端,最后输出预失真以后的信号。 当频率高于3800MHz时,我们采用变频模式的射频预失真电路,如图2所示,输入信号从中频通过定向耦合器进入SC1894的RFIN端口,功放输出信号经过定向耦合器,下变频至3800MHz以内的中频频率,送入芯片RFFB端口,进行自适应预失真处理,输出信号RFOUT通过反向定向耦合器进入发射通路[1]。

高效率功率放大器的现状及发展趋势

高效率功率放大器的现状及发展趋势 学院:电子工程学院 专业:电磁场与微波技术 :王元佳 学号:201320000289 报告日期:2013.11.05

一、引言 现代通信系统中的射频系统要求功耗低、效率高以及体积小。近年来,无线通讯朝大容量、多电平、多载波、高峰均比和宽频带方向飞速发展,宽带数字传输技术(如OFDM、CDMA等)和高频谱效率的调制方式(如QPSK、QAM等)正获得越来越广泛的应用,从而对射频系统性能提出更为苛刻的要求。功率放大器作为射频系统的关键部件,其所消耗的功率在整个射频系统所占比例相当大。低效率的功率放大器严重影响系统的整体性能。所以,设计高效率射频功率放大器对于减少电源消耗,提高系统稳定性,节约系统成本都由十分重大的意义。 传统的功率放大器通过调整工作状态(即调整晶体管导通角)来提高效率,这就是A类、B类、AB类、C类功率放大器的演进过程。其中C类功率放大器的理论效率最高达到100%,但此时其输出功率却为零。其根本原因在于,上述功率放大器工作状态下电流、电压同时存在于晶体管中,要使晶体管的耗散功率为零,必然使输出功率也为零。通过不断减小导通角的方式已不能满足不断提高效率的要求。为进一步提高效率,晶体管工作在开关状态的功率放大器应运而生。 二、研究现状 2.1 高效率功率放大器 2.1.1 D类功率放大器 当前,国内外高效率射频功率放大器的研究都集中在开关模型功率放大器及高效率功率放大器结构上。开关模型功率放大器主要有D、E两类。其设计思想都是使晶体管上“电流、电压不同时出现”。D类功率放大器一般由两个晶体

管构成,两只晶体管轮流导通、截止,实现电流、电压的不同时出现条件。但其晶体管和寄生电容耗能都是单管放大电路的双倍。同时,在开关瞬间存在两晶体管同时导通或截止引起二次击穿造成晶体管损坏的危险。工作频率比较低时,晶体管开关延时可以忽略,晶体管近似理想开关,不会产生损耗;在高频下,晶体管开关延时不可忽略,会引入损耗,另外元器件本身也会有损耗。因此,D类功放适合于频率较低的应用,并不适用于射频领域,D类放大器现在主要应用于音频领域。如图所示为D类功率放大器的电路结构。 2.1.2 E类功率放大器 为了克服D类功放在不完全导通与不完全截止过程中引入的较大损耗,提出了E类功放的设计。与D类功放不同,E类功率放大器采用单只晶体管,可工作于较高的频段,漏极电流为直流和漏极分路电容的充电电流之和。E类放大器是一种开关式的高效率放大器,理想情况下,效率可达100%。在这种功率放大器中,足够强的驱动电压使得输出功率管在完全导通和完全截止之间瞬时切换,流过开关的电流与开关上电压波形没有重叠,因而开关不消耗功耗。E类功率放大器的主要设

为了提高效率高频功率放大器一般工作在C类工作状态

2007~2008学年高频期末考试(A 卷) 一、选择题(每题1分,共10分): 1. 为了提高效率,高频功率放大器一般工作在( C )工作状态。 (A) 甲类 (B)乙类 (C)丙类 (D)甲乙类 2. 在高频放大器中,多用调谐回路作为负载,其作用不包括 ( D )。 (A)选出有用频率 (B)滤除谐波成分 (C)阻抗匹配 (D)产生新的频率 成分 3. 利用高频功率放大器的基极调制特性完成功放和调幅,功率放大器工作 状态应选( A )。 (A)欠压 (B)临界 (C)过压 (D)超临界 4. 以下振荡器频率稳定度最高的是( C ) (A)互感反馈??? (B)克拉泼电路??? (C)西勒电路???(D)电容三端式振荡电路 5. 调谐放大回路的通频带与( A )有关。 (A) 回路谐振频率和品质因数 (B) 品质因数和频率稳定度 (C) 回路谐振频率和失谐量 (D) 失谐量和频率稳定度 6. 如下图所示的传输线变压器是一种( D ) (A) 2:1阻抗变换传输线变压器, (B) 1:2阻抗变换传输线变压器, (C) 1:4阻抗变换传输线变压器, (D) 4:1阻抗变换传输线变压器。 7. 相位鉴频器的输出电压值为比例鉴频器输出电压值的( B ) (A) 4倍, (B) 2倍, (C) 1/2, (D) 1/4。 8.调幅信号()()()V t t t u c c ωcos cos 1Ω+=,则上、下边频分量的功率占总功率的( D )

(A)1/2, (B)2/3, (C)1/6, (D)1/3。 9. 单频调制时,调相波的最大相偏Δφm 正比于 ( A ) (A) ? u Ω(t)?max , (B) u Ω(t), (C) Ω, (D) ? du Ω(t)/dt ?max 。 10. 石英晶体振荡器的主要优点是 ( C ) (A)容易起振 (B)振幅稳定 (C)频率稳定度高 (D)减小谐波分量 二、填空题(共20分): 1. 单调谐放大器经过级联后一般会使电压增益 变大 (1分)、通频带 变窄 (1分)、选择性 变好 (1分)。 2. 正弦波振器的振荡平衡条件是 A(ω0)F(ω0)=1(2 分)和 2A F n ??π+=(0,1,2,n =±±L )(2分)。 3. 振幅解调方法可分为包络检波 (1分)和 同步检波 (1分)两大类。 4. 已知调频信号()63 ()5cos 5102cos 210u t t t ππ??=?-??? (V),若调频灵敏度k f =104Hz/V ,则调制信号u ?(t)= 0.2sin(2??103t) (V) (2分),该调频波的最大频偏为?f m = 2?103 (Hz) (2分)。 5.减少高频功放晶体管Pc 的方法主要有:减少集电极电流的 流通角 (2分)和在集电极 电流流通时 集电极电压 (2分)最小; 6. 已调波信号336()(53cos 210sin 410)cos 410u t t t t πππ=+?-???伏,则该信号为 AM/调幅/幅度 (1分)调制波,其载波频率为 2?106Hz (1分),调制信号为 33(3cos 210sin 410)k t t ππ?-?(1分)。 三、综合题(共70分) 1. 变频器的非线性转移特性为 设cos cos ,Lm L cm c Q v V t V t V ωω=++并且Lm cm V V >>,试求: 1)当Q Lm V V =时,对于(c L ωω-)和(c L ωω-2)的变频跨导;10% 2)当0Q V =时,对于(c L ωω-)的变频跨导。5%

音频功率放大器的设计与实现

模拟电子电路实验课程设计 ——音频功率放大器的设计与实现 一、设计任务 设计并制作一个音频功率放大电路(电路形式不限),负载为扬声器,阻抗8 。要求直流稳压电源供电,多级电压、功率放大,所设计的电路满足以下基本指标: (1)频带宽度50Hz~20kHz,输出波形基本不失真; (2)电路输出功率大于8W; (3)输入阻抗:≥10kΩ; (4)放大倍数:≥40dB; (5)具有音调控制功能:低音100Hz处有±12dB的调节范围,高音10kHz 处有±12dB的调节范围; (6)所设计的电路具有一定的抗干扰能力; (7)具有合适频响宽度、保真度要好、动态特性好。 发挥部分: (1)增加电路输出短路保护功能; (2)尽量提高放大器效率; (3)尽量降低放大器电源电压; (4)采用交流220V,50Hz电源供电。 二、设计要求 正确理解有关要求,完成系统设计,具体要求如下: (1)画出电路原理图; (2)确定元器件及元件参数; (3)进行电路模拟仿真; (4)SCH文件生成与打印输出; (5)PCB文件生成与打印输出; (6)PCB版图制作与焊接; (7)电路调试及参数测量。 根据以上设计要求编写设计报告,写出设计的全过程,附上有关资料和图纸。设计报告格式请参见附录一。 三、实验原理 音频功率放大器是一种应用广泛、实用性强的电子音响设备,它主要应用于

对弱音频信号的放大以及音频信号的传输增强和处理。按其构成可分为前置放大级、音调控制级和功率放大级三部分,如图1所示。 v 图1 音频功率放大器的组成框图 1.前置放大级 音频功率放大器的作用是将声音源输入的信号进行放大,然后输出驱动扬声器。声音源的种类有多种,如传声器(话筒)、电唱机、录音机(放音磁头)、CD 唱机及线路传输等,这些声音源的输出信号的电压差别很大,从零点几毫伏到几百毫伏。一般功率放大器的输入灵敏度是一定的,这些不同的声音源信号如果直接输入到功率放大器中的话,对于输入过低的信号,功率放大器输出功率不足,不能充分发挥功放的作用;假如输入信号的幅值过大,功率放大器的输出信号将严重过载失真,这样将失去了音频放大的意义。所以一个实用的音频功率放大系统必须设置前置放大器,以便使放大器适应不同的输入信号,或放大,或衰减,或进行阻抗变换,使其与功率放大器的输入灵敏度相匹配。另外在各种声音源中,除了信号的幅度差别外,它们的频率特性有的也不同,如电唱机输出信号和磁带放音的输出信号频率特性曲线呈上翘形,即低音被衰减,高音被提升。对于这样的输入信号,在进行功率放大器之前,需要进行频率补偿,使其频率特性曲线恢复到接近平坦的状态,即加入频率均衡网络放大器。 对于话筒和线路输入信号,一般只需将输入信号进行放大和衰减,不需要进行频率均衡。前置放大器的主要功能一是使话筒的输出阻抗与前置放大器的输入阻抗相匹配;二是使前置放大器的输出电压幅度与功率放大器的输入灵敏度相匹配。由于话筒输出信号非常微弱,一般只有100μV~几毫伏,所以前置放大器输入级的噪声对整个放大器的信噪比影响很大。前置放大器的输入级首先采用低噪声电路,对于由晶体管组成的分立元件组成的前置放大器,首先要选择低噪声的晶体管,另外还要设置合适的静态工作点。由于场效应管的噪声系数一般比晶体管小,而且它几乎与静态工作点无关,在要求高输入阻抗的前置放大器的情况下,采用低噪声场效应管组成放大器是合理的选择。如果采用集成运算放大器构成前置放大器,一定要选择低噪声、低漂移的集成运算放大器。对于前置放大器的另外一要求是要有足够宽的频带,以保证音频信号进行不失真的放大。 常用的前置放大器按结构划分有五种类型: (1)单管前置放大器 (2)双管阻容耦合前置放大器

微波功率放大器发展概述

微波功率放大器发展概述 微波功率放大器主要分为真空和固态两种形式。基于真空器件的功率放大器,曾在军事装备的发展史上扮演过重要角色,而且由于其功率与效率的优势,现在仍广泛应用于雷达、通信、电子对抗等领域。后随着GaAs晶体管的问世,固态器件开始在低频段替代真空管,尤其是随着GaN,SiC等新材料的应用,固态器件的竞争力已大幅提高[1]。本文将对两种器件以及它们竞争与融合的产物——微波功率模块(MPM)的发展情况作一介绍与分析,以充分了解国际先进水平,也对促进国内技术的发展有所助益。 1. 真空放大器件 跟固态器件相比,真空器件的主要优点是工作频率高、频带宽、功率大、效率高,主要缺点是体积和质量均较大。真空器件主要包括行波管、磁控管和速调管,它们具有各自的优势,应用于不同的领域。其中,行波管主要优势为频带宽,速调管主要优势为功率大,磁控管主要优势为效率高。行波管应用最为广泛,因此本文主要以行波管为例介绍真空器件。 1.1 历史发展 真空电子器件的发展可追溯到二战期间。1963年,TWTA技术在设计变革方面取得了实质性进展,提高了射频输出的功率和效率,封装也更加紧凑。1973年,欧洲首个行波管放大器研制成功。然而,到了20世纪70年代中期,半导体器件异军突起,真空器件投入大幅减少,其发展遭遇极大困难。直到21世纪初,美国三军特设委员会详细讨论了功率器件的历史、现状和发展,指出真空器件和固态器件之间的平衡投资战略。2015年,美国先进计划研究局DARPA分别启动了INVEST,HAVOC计划,支持真空功率器件的发展和不断增长的军事系统需要,特别是毫米波及THz行波管[2-4]。当前真空器件已取得长足进步,在雷达、通信、电子战等系统中应用广泛。 1.2 研究与应用现状 随着技术的不断进步,现阶段行波管主要呈现以下特点。一是高频率、宽带、高效率的特点,可有效减小系统的体积、重量、功耗和热耗,在星载、弹载、机载等平台上适应性更强,从而在军事应用上优势突出。二是耐高温特性,使行波管的功率和相位随着温度的变化波动微小,对系统的环境控制要求大大降低。三是

高效率音频功率放大器设计【开题报告】

开题报告 高效率音频功率放大器设计 专业:电子信息工程 一、综述本课题国内外研究动态,说明选题的依据和意义: 为了节约电路的成本,提高放大器的效率,采用普通的电子元器件设计高效率音频功率放大器的方法,使用基本的运算放大器,构成PWM路,形成D类功率放大器,实现了高效率,低失真的设计要求。为了提高电路的抗干扰性能,在设计中使用了电压跟随器,差动放大器,有源带通滤波器等。使设计获得了良好的效果。 传统的音频功率放大器主要有A类(甲类)、B类(乙类)和AB(甲乙类)。A类功率放大器在整个输入信号周期内都有电流连续流过功率放大器件,它的优点是输出信号的失真比较小,缺点是输出信号的动态范围小、效率低,理想情况下其最高效率为50%,考虑到晶体管的饱和压降及穿透电流造成的损耗,A类功率放大器的最高效率仅为45%左右。B类功率放大器在整个输入信号周期内功率器件的导通时间为50%,它的优点是在理想情况下效率可达78.5%,但缺点是会产生交越失真,增加噪声。AB类(甲乙类)功率放大器是以上两种放大器的结合,每个功率器件的导通时间在50%~100%之间,兼有甲类失真小和乙类效率高的特点,其工作效率介于二者之间。传统音频功率放大器效率偏低,体积偏大的缺点与音频功率放大高效、节能和小型化的发展趋势的矛盾,催生了D类(丁类)音频功率放大器出现和发展。 功率放大电路是一种能量转换电路,要求在失真许可的范围内,高效地为负载提供尽可能大的功率。一般的功放电路可以由两种方式实现:用分离元件组成或用集成器件实现。分立元件是电子电路的基础,一般的功放电路都能用分立元件实现,但由于使用分立元件所用的单个器件比较多,从而考虑的各种反馈电路和保护电路会比较多,实现起来会相对复杂。由于电子技术的日益更新,集成器件发展的比较快,在一定程度上已经可以代替分立元件。 二、功率放大电路的特殊问题

高效率微波功放现状

高效率微波功放现状 功率放大器常应用在发射机的末端,是收发信机中最重要的耗能元件。随着通信产业的发展,无线通信系统的耗能问题受到越来越多的重视。在无线通信系统中,射频系统是其重要的部分,功率放大器作为射频系统的前端模块,它的成本大约占到基站的三分之一。而射频功率放大器作为重要的耗能元件,在整个无线通信系统中的耗能占了很大比重,追求更高的功放效率已经成了设备制造商们的重要目标。 针对功放效率,国内外在开关模式放大器技术、EE&R技术、LINC 技术和Doherty 放大器、谐波控制技术等方向进行过研究。同其它几种技术相比,Doherty 技术有着工作效率高、实现方式简单,成本相对低廉,对系统的线性度的影响相对较小等多个优点,并且可以方便地和改善线性度的前馈和预失真技术相结合,因此在现代无线通信系统中得到广泛的研究和应用。本文将简要介绍高效率微波功放技术中的谐波控制技术、Doherty技术、EE&R技术。 一、谐波控制技术 理想情况下,A 类放大器的最大效率只有50%,B 类放大器的最大效率为78.5%,C 类放大器的最大效率为100%时输出功率为0,这在功率放大器设计中是不可取的。由负载线理论可知,负载阻抗(主要是基波阻抗)决定晶体管的最大输出功率,必然会影响其最大效率。大信号下的功放早已产生谐波分量,推而广之,谐波阻抗必然也会影响功放的效率。当漏极电压与电流波形交错,即没有重叠部分时,直流能量可以完全地转化为了交流能量。而如何获得理想的电压电流波形便成了提高功放效率的关键。谐波控制类功放是从频域出发,利用特定比例的谐波分量来调控波形,从而实现高效率的。F类,逆F类,J类功放均是典型的谐波控制类功放。下面分别对F类、逆F类功放中谐波控制技术的应用进行说明。 为获得理想F类波形,功放输出需要对偶次谐波短路,奇次谐波开路。即负载匹配电路的偶次谐波阻抗为零,奇次谐波阻抗呈现无限大。这也是F类功放设计的精要。在物理现实中,因为漏源电容等因素作用,无法对所有高次谐波进行控制。因此,工程上通常利用二、三次谐波分量调整功放输出波形。 不同的输出电压电流波形能够使放大器工作时产生不同量的耗散功率。耗散功率越小,功率放大器将能量转化能力就越强。逆F类功放提高效率的原理也即是此:通过对谐波分量的控制,来输出最佳的波形(电压为半正弦,电流为方波)。要实现逆F功放的理想波形必须满足两个条件:(l)电压中只有偶次谐波分量,电流中只有奇次谐波分量;(2)剩余的谐波分量形成一定的幅度相位关系。要满足以上两个条件,不仅需要在输出端进行谐波负载控制,输入谐波控制也是必要的。 二、EE&R技术 EE&R技术是提取出信号的幅度和相位信息,分别放大后再进行相位和幅度的合成,输出射频信号。相位和幅度的合成一般使用高效率的开关类功率放大器,管子的栅极接相位信号,电源电压用幅度信号进行调制。这种方法的优点是平均效率比较高,一般是线性功放的3~5倍,且线性度只与包络通道有关,提高线性性能比较方便。缺点是需要补偿相位、幅度两路径的延时差。除了两个通道的时间队列之外,EE&R系统的线性受到两个支路的限制带宽的影响,特别是包络通路。信号分离为包络和相位(即从笛卡尔坐标到极坐标的转换)展宽了频谱。 EE&R技术的系统图大致如下图所示:

完整word高效率PWM音频功率放大器

高效率PWM 音频功率放大器 本设计主要由功率放大器、信号变换电路、输出功率显示电路和保护电路组成。功率放 大器部分采用D 类功率放大器确保高效,在 5V 供电情况下输出功率大于 1W ,且输出波形 无明显失真,低频输出噪声电压很低 (输出频率为20kHz 以下时,低频噪声电压约 1mV ); 信号变换部分采用差分放大电路,将双端输出信号变为 1 : 1的单端输出信号;输出功率显 1、题目分析及设计方案论证与比较 根据题目要求,整个系统由D 类PWM 功率放大器、信号转换电路及功率测量显示装置 组成。其中核心部分为 D 类PWM 功率放大器。之所以选择此方案是因为 D 类PWM 功放 能够达到更高的效率,且更好地确保波形不失真,加之以合理的滤波网络又进一步克服了高 频干扰, 从而使系统成为高效率、低失真、低干扰的功率放大系统。系统组成框图如图 3.1 所示。下面我们分别论述框图中各部分设计方案。 图3.1系统组成框图 2、总体设计思路 根据题目要求,经过认真分析,决定采用脉宽调制方式实现低频功率放大器 (即D 类功 率放大器)。脉宽调制电路(PWM )的脉宽调制原理 如图3.2所示。 图3.2脉宽调制原理图 一般的D 类放大器电路的工作原理是用 “振荡发生器”输出的三角波与来自外部的模拟 音频信号进行比较,在“脉宽调制比较器”输出端产生一个其脉宽变化与音频信号幅值成正 比例的可变脉宽方波。此方波通过“数字逻辑电路”输出反相的方波。 在音频信号的前半周 (正电压),脉宽调制方波的占空比小于 50%,使高端MOS 管饱和导通,输出瞬间脉冲电压 V ec — 0=V cc 。在音频信号的后半周(负电压),低端MOS 饱和导通,电压 0— V ec = — V cc o 将输 亠 PWM — 高速开关电路 及滤波网络 D 类功率放大器 796D Vin=O,占空比-50%

微波功率放大器线性化技术

微波功率放大器线性化技术 刘海涛 京信射频技术研究部产品部 摘要:现代无线通信飞速发展,有限的频谱资源上需要承载越来越高的数据流量,4G LTE技术将达到100Mbps的传输速率。在这种情况下,无线传输系统的设计和工作将承受着巨大的压力。为了提高效率,作为系统中的核心部件——微波功率放大器一般都处于在非线性工作状态,而包络变化的调制信号经过非线性微波功率放大器后会产生互调失真,造成严重的码间干扰和邻信道干扰。为了保证通信质量,必须采用线性化技术。本文对目前常用的各种线性化进行梳理,并分析了工作原理、介绍了技术特点,为高线性高效率微波功率放大器的设计提供了重要的参考依据。 关键词:无线通信微波功率放大器线性化技术前馈预失真 1.引言 功率放大器的线性化技术研究可以追溯到上个世纪二十年代。1928在贝尔实验室工作的美国人Harold.S.Black发明了前馈和负反馈技术并应用到放大器设计中,有效地减少了放大器失真,可以认为是线性化功率放大器技术研究的开端。但那时主要是从器件本身的角度来提高功率放大器的线性度,所研究的功率放大器频率也较低。 随着通信技术的飞速发展,以下一些原因促使线性化功率放大器技术得到广泛研究并迅速发展: 1)早期的移动通信采用恒包络调制方式与单载波传输覆盖,对于功率放大器的线性要求并不高;而进入21世纪,无线通信的飞速发展和宽带通信业务的开展,通信频段变得越来越拥挤,为了在有限的频谱范围内容纳更多的通信信道,要求采用频谱利用率更高的传输技术与复杂调制模式;因此线性调制技术如QAM ( Quadrature Amplitude Modulation )、QPSK ( Quadrature Phase Shift Keying)等在现代无线通信系统中被广泛采用。但对于包络变化的线性调制技术,发射机系统会产生较大的失真分量,从而对传输信道或邻道产生不同程度的干扰,因此必须采用线性化的发射机系统。射频功率放大器是发射机系统中非线性最强的器件,特别是为了提高功率效率,射频功放基本工作在非线性状态,因此线性化功率放大器设计技术己成为线性化发射机系统的关键技术; 2)简单的功率回退技术不能满足现代系统要求:简单的功率回退技术虽然能获得较好的线性,但是由于器件本身的原因,纵使再深的回退,也无法达到很高的线性水平,满足不了系统的高线性要求,再者,功率回退技术使得电源利用率很低,一般仅为5%,会产生导致终端自主时间过短、基站热管理等一系列问题; 3)多载波调制技术的逐渐采用要求线性化的功率放大器:以OFDM ( Orthogonal Frequency Division Multiplexing)为代表的多载波调制技术具有高传输速率、不需均衡等明显优点,己为许多标准如802. 11, HDTV ( High Definition Television )、4G LTE等所采用。由

线性微波功放设计

第30卷 第2期 2007年4月 电子器件 Chinese J ournal Of Elect ron Devices Vol.30 No.2Ap r.2007 LDMOS Linear Microw ave Pow er Amplif ier Design 3 H A N Hon g 2bo ,H A O Yue ,F EN G H ui ,L I De 2chang 1.Research I nst.of Microelect ronics ,X i di an Univ.,X i ’an 710071,China; 2.S chool of Technical Physics ,X i dian Univ.,X i ’an 710071,China Abstract :LDMOS is widely applied for it s high linearity gain and efficiency.The inp ut and outp ut imped 2ance of MRF18030t ransistor are obtained by 22tone load 2p ull met hod.Matching networks ,which are changed into corresponding MOM EN TUM component s and used in schematic designing wit h well improve 2ment design accuracy ,are designed by t he conjugate match met hod basing on t he analysis of unconditional stability.A new met hod of carrier complex power series (CCPS ),which accurately calculate t he nonlinear 2ity AM 2AM and AM 2PM synchronously ,has advantage over classical Taylor series in which only t he AM 2AM can be analyzed.In order to eliminate t he nonlinearity of PA ,according to t he expression of inverse CCPS (ICCPS ),a linearizer predistorter ,simple in configuration and easy to implement ,is designed and simulated by using t he nonlinearity of diode.The accurate exp ression of circuit model is deduced and p re 2cise value of amplit ude and angle are obtained.ADS simulation result s show t hat IMD3is improved by 27dB.Finally ,LDMOS microwave power amplifier of high power high efficiency and well linearity is suc 2cessf ully designed. K ey w ords :LDMOS ;ADS ;power amplifier ;load 2p ull met hod ;conjugate match EEACC :1350H;1220 LDMOS 线性微波功率放大器设计 3 韩红波,郝 跃,冯 辉,李德昌 1.西安电子科技大学微电子研究所,西安710071; 2.西安电子科技大学技术物理学院,西安710071 收稿日期:2006207214 基金项目:国防预研和陕西省发展基金项目资助(Y20050608) 作者简介:韩红波(19812)男,硕士研究生,研究方向为LDMOS 微波功率放大器研究,hhbanl @https://www.doczj.com/doc/ab12792482.html, ; 郝 跃(19582)男,教授,博士生导师,主要研究方向为超深亚微米VL SI 可靠性理论与设计方法、新型宽禁带半导 体器件与关键技术,以及系统集成设计与设计方法学等; 冯 辉(19612)男,研究员,主要从事微波功率放大器和微电子器件方面的研究. 摘 要:LDMOS 以其大功率、高线性度和高效率等优点得到广泛的应用.采用22tone 负载牵引法得到了LDMOS 晶体管 MRF 18030的输入和输出阻抗.在对晶体管绝对稳定性分析的基础上,运用共轭匹配法设计出匹配网络,并将匹配网络转化 为MOM EN TUM 元件运用在电路设计中,大大提高了设计的准确性.采用载波复幂级数法对PA 的AM 2AM 和AM 2PM 非线性特性进行了准确计算,弥补了传统泰勒级数只能分析AM 2AM 的不足.得到了用来消除PA 非线性的反载波复幂级数.根据所得反载波复幂级数,利用二极管非线性特性设计出一种新的结构简单、易于实现的预失真器,给出其准确的电路模型表达式,得到了幅值、角度等参数的精确值.ADS 仿真结果表明,IMD3改善了27dB.最终,成功设计出大功率、高效率、高线性的 LDMOS 微波功率放大器. 关键词:LDMOS ;ADS ;功率放大器;负载牵引法;共轭匹配 中图分类号:TN 43;TN 722.16 文献标识码:A 文章编号:100529490(2007)022*******

相关主题
文本预览
相关文档 最新文档