当前位置:文档之家› 电力电子教材知识点全书总结

电力电子教材知识点全书总结

电力电子教材知识点全书总结
电力电子教材知识点全书总结

《电力电子技术》期末复习题

第1章绪论

1 电力电子技术定义:是使用电力电子器件对电能进行变换和控制的技术,是应用于电力领域的电子技术,主要用于电力变换。

2 电力变换的种类

(1)交流变直流AC-DC:整流

(2)直流变交流DC-AC:逆变

(3)直流变直流DC-DC:一般通过直流斩波电路实现

(4)交流变交流AC-AC:一般称作交流电力控制

3 电力电子技术分类:分为电力电子器件制造技术和变流技术。

第2章电力电子器件

1 电力电子器件与主电路的关系

(1)主电路:指能够直接承担电能变换或控制任务的电路。

(2)电力电子器件:指应用于主电路中,能够实现电能变换或控制的电子器件。

2 电力电子器件一般都工作于开关状态,以减小本身损耗。

3 电力电子系统基本组成与工作原理

(1)一般由主电路、控制电路、检测电路、驱动电路、保护电路等组成。

(2)检测主电路中的信号并送入控制电路,根据这些信号并按照系统工作要求形成电力电子器件的工作信号。

(3)控制信号通过驱动电路去控制主电路中电力电子器件的导通或关断。

(4)同时,在主电路和控制电路中附加一些保护电路,以保证系统正常可靠运行。

4 电力电子器件的分类

根据控制信号所控制的程度分类

(1)半控型器件:通过控制信号可以控制其导通而不能控制其关断的电力电子器件。如SCR晶闸管。

(2)全控型器件:通过控制信号既可以控制其导通,又可以控制其关断的电力电子器件。如GTO、GTR、MOSFET和IGBT。(3)不可控器件:不能用控制信号来控制其通断的电力电子器件。如电力二极管。

根据驱动信号的性质分类

(1)电流型器件:通过从控制端注入或抽出电流的方式来实现导通或关断的电力电子器件。如SCR、GTO、GTR。

(2)电压型器件:通过在控制端和公共端之间施加一定电压信号的方式来实现导通或关断的电力电子器件。如MOSFET、IGBT。

根据器件内部载流子参与导电的情况分类

(1)单极型器件:内部由一种载流子参与导电的器件。如MOSFET。

(2)双极型器件:由电子和空穴两种载流子参数导电的器件。如SCR、GTO、GTR。

(3)复合型器件:有单极型器件和双极型器件集成混合而成的器件。如IGBT。

5 半控型器件—晶闸管SCR

晶闸管的结构与工作原理

晶闸管的双晶体管模型

将器件N1、P2半导体取倾斜截面,则晶闸管变成V1-PNP和V2-NPN两个晶体管。

晶闸管的导通工作原理

(1)当AK间加正向电压A

E,晶闸管不能导通,主要是中间存在反向PN结。

(2)当GK间加正向电压G

E,NPN晶体管基极存在驱动电流G I,NPN晶体管导通,产生集电极电流2c I。

(3)集电极电流2c I构成PNP的基极驱动电流,PNP导通,进一步放大产生PNP集电极电流1c I。

(4)1c I与G I构成NPN的驱动电流,继续上述过程,形成强烈的负反馈,这样NPN和PNP两个晶体管完全饱和,晶闸管导通。

2.3.1.4.3 晶闸管是半控型器件的原因

(1)晶闸管导通后撤掉外部门极电流G

I,但是NPN基极仍然存在电流,由PNP集电极电流1c I供给,电流已经形成强烈正反馈,因此晶闸管继续维持导通。

(2)因此,晶闸管的门极电流只能触发控制其导通而不能控制其关断。

2.3.1.4.4 晶闸管的关断工作原理

满足下面条件,晶闸管才能关断:

(1)去掉AK间正向电压;

(2)AK间加反向电压;

(3)设法使流过晶闸管的电流降低到接近于零的某一数值以下。

2.3.2.1.1 晶闸管正常工作时的静态特性

(1)当晶闸管承受反向电压时,不论门极是否有触发电流,晶闸管都不会导通。

(2)当晶闸管承受正向电压时,仅在门极有触发电流的情况下晶闸管才能导通。

(3)晶闸管一旦导通,门极就失去控制作用,不论门极触发电流是否还存在,晶闸管都保持导通。

(4)若要使已导通的晶闸管关断,只能利用外加电压和外电路的作用使流过晶闸管的电流降到接近于零的某一数值以下。

2.4.1.1 GTO的结构

(1)GTO与普通晶闸管的相同点:是PNPN四层半导体结构,外部引出阳极、阴极和门极。

(2)GTO与普通晶闸管的不同点:GTO是一种多元的功率集成器件,其内部包含数十个甚至数百个供阳极的小GTO元,这些GTO元的阴极和门极在器件内部并联在一起,正是这种特殊结构才能实现门极关断作用。

2.4.1.2 GTO的静态特性

(1)当GTO承受反向电压时,不论门极是否有触发电流,晶闸管都不会导通。

(2)当GTO承受正向电压时,仅在门极有触发电流的情况下晶闸管才能导通。

(3)GTO导通后,若门极施加反向驱动电流,则GTO关断,也即可以通过门极电流控制GTO导通和关断。

(4)通过AK间施加反向电压同样可以保证GTO关断。

2.4.3 电力场效应晶体管MOSFET

(1)电力MOSFET是用栅极电压来控制漏极电流的,因此它是电压型器件。

(3)当GS

U时,栅极下P区表面的电子浓度将超过空穴浓度,从而使P型半导体反型成N型半导体,U大于某一电压值T

形成反型层。

2.4.4 绝缘栅双极晶体管IGBT

(1)GTR和GTO是双极型电流驱动器件,其优点是通流能力强,耐压及耐电流等级高,但不足是开关速度低,所需驱动功率大,驱动电路复杂。

(2)电力MOSFET是单极型电压驱动器件,其优点是开关速度快、所需驱动功率小,驱动电路简单。

(3)复合型器件:将上述两者器件相互取长补短结合而成,综合两者优点。

(4)绝缘栅双极晶体管IGBT是一种复合型器件,由GTR和MOSFET两个器件复合而成,具有GTR和MOSFET两者的优点,具有良好的特性。

2.4.4.1 IGBT的结构和工作原理

(1)IGBT是三端器件,具有栅极G、集电极C和发射极E。

(2)IGBT由MOSFET和GTR组合而成。

第3章整流电路

(1)整流电路定义:将交流电能变成直流电能供给直流用电设备的变流装置。

3.1.1 单相半波可控整流电路

(4)触发角 :

从晶闸管开始承受正向阳极电压起,到施加触发脉冲为止的电角度,称为触发角或控制角。

(7)几个定义

①“半波”整流:改变触发时刻,d u和d i波形随之改变,直流输出电压d u为极性不变但瞬时值变化的脉动直流,其波形只在2u正半周内出现,因此称“半波”整流。

②单相半波可控整流电路:如上半波整流,同时电路中采用了可控器件晶闸管,且交流输入为单相,因此为单相半波可控整流电路。

3.1.1.3 电力电子电路的基本特点及分析方法

(1)电力电子器件为非线性特性,因此电力电子电路是非线性电路。

(2)电力电子器件通常工作于通态或断态状态,当忽略器件的开通过程和关断过程时,可以将器件理想化,看作理想开关,即通态时认为开关闭合,其阻抗为零;断态时认为开关断开,其阻抗为无穷大。

3.1.2 单相桥式全控整流电路

3.1.2.1 带电阻负载的工作情况

(1)单相桥式全控整流电路带电阻负载时的原理图

① 由4个晶闸管(VT 1 ~VT 4)组成单相桥式全控整流电路。 ② VT 1 和VT 4组成一对桥臂,VT 2 和VT 3组成一对桥臂。 (2)单相桥式全控整流电路带电阻负载时的波形图

① α~0:

● VT 1 ~VT 4未触发导通,呈现断态,则0d =u 、0d =i 、02=i 。

2VT VT 41u u u =+,2VT VT 2

1

41u u u =

=。 ② πα~:

● 在α角度时,给VT 1 和VT 4加触发脉冲,此时a 点电压高于b 点,VT 1 和VT 4承受正向电压,因此可靠导通,041VT VT ==u u 。

● 电流从a 点经VT 1 、R 、VT 4流回b 点。 ● 2d u u =,d 2i i =,形状与电压相同。 ③ )(~αππ+:

电源2u 过零点,VT 1 和VT 4承受反向电压而关断,2VT VT 2

1

41u u u =

=(负半周)。 ● 同时,VT 2 和VT 3未触发导通,因此0d =u 、0d =i 、02=i 。 ④ παπ2~)(+:

● 在)(απ+角度时,给VT 2 和VT 3加触发脉冲,此时b 点电压高于a 点,VT 2 和VT 3承受正向电压,因此可靠导

通,03VT VT 2==u u 。

● VT 1 阳极为a 点,阴极为b 点;VT 4 阳极为a 点,阴极为b 点;因此2VT VT 41u u u ==。 ● 电流从b 点经VT 3 、R 、VT 2流回b 点。 ●

2d u u -=,d 2i i -=。

(3)全波整流

在交流电源的正负半周都有整流输出电流流过负载,因此该电路为全波整流。 (4)直流输出电压平均值

2

cos 19.02cos 122)(sin 212

22d α

απωωππ

α

+=+=

=

?

U U t td U U (5)负载直流电流平均值

2

cos 19.02cos 122R 2

2d d α

απ+=+==

R U R U U I

(6)晶闸管参数计算 ① 承受最大正向电压:

)2(2

1

2U ② 承受最大反向电压:22U

③ 触发角的移相范围:0=α时,2d 9.0U U =;o 180=α时,0d =U 。因此移相范围为o 180。

④ 晶闸管电流平均值:VT 1 、VT 4与VT 2 、VT 3轮流导电,因此晶闸管电流平均值只有输出直流电流平均值的一半,即2

cos 145.021

2d dVT α+==

R U I I 。 3.1.2.2 带阻感负载的工作情况

(1)单相桥式全控整流电路带阻感负载时的原理图

(2)单相桥式全控整流电路带阻感负载时的波形图

分析时,假设电路已经工作于稳态下。

假设负载电感很大,负载电流不能突变,使负载电流d i 连续且波形近似为一水平线。

① πα~:

● 在α角度时,给VT 1 和VT 4加触发脉冲,此时a 点电压高于b 点,VT 1 和VT 4承受正向电压,因此可靠导通,041VT VT ==u u 。

● 电流从a 点经VT 1 、L 、R 、VT 4流回b 点,2d u u =。

● d i 为一水平线,2d VT 1,4i i i ==。

VT 2 和VT 3为断态,02,3VT =i

● 虽然二次电压2u 已经过零点变负,但因大电感的存在使VT 1 和VT 4持续导通。 ●

041VT VT ==u u ,2d u u =,2d VT 1,4i i i ==,02,3VT =i 。

③ παπ2~)(+:

● 在)(απ+角度时,给VT 2 和VT 3加触发脉冲,此时b 点电压高于a 点,VT 2 和VT 3承受正向电压,因此可靠导通,03VT VT 2==u u 。

由于VT 2 和VT 3的导通,使VT 1 和VT 4承受反向电压而关断01,4VT =i 。VT 1 阳极为a 点,阴极为b 点;VT 4 阳极为a 点,阴极为b 点;因此2VT 1,4u u =。

● 电流从b 点经VT 3 、L 、R 、VT 2流回b 点,2d u u -=。

d i 为一水平线,2d VT 2,3i i i -==。

④ )2(~2αππ+:

● 虽然二次电压2u 已经过零点变正,但因大电感的存在使VT 2 和VT 3持续导通。 ●

032VT VT ==u u ,2VT 1,4u u =,2d u u -=,2d VT 2,3i i i -==,01,4VT =i 。

(3)直流输出电压平均值

ααπ

ωωπα

πα

cos 9.0cos 22)(sin 2122

2d U U t td U U ==

=

?

+

(4)触发角的移相范围

0=α时,2d 9.0U U =;o 90=α时,0d =U 。因此移相范围为o 90。

(5)晶闸管承受电压:正向:22U ;反向:22U 3.1.2.3 带反电动势负载时的工作情况

(1)单相桥式全控整流电路带反电动势负载时的原理图

① 当负载为蓄电池、直流电动机的电枢(忽略其中的电感)等时,负载可看成一个直流电压源,即反电动势负载。正常情况下,负载电压d u 最低为电动势E 。

② 负载侧只有2u 瞬时值的绝对值大于反电动势,即E u >2时,才有晶闸管承受正电压,有导通的可能。 (2)单相桥式全控整流电路带反电动势负载时的波形图

在α角度时,给VT 1 和VT 4加触发脉冲,此时E u >2,说明VT 1 和VT 4承受正向电压,因此可靠导通,2d u u =,R

d d E u i -=。

② )(~)(απθα++:

● 在)(θα+角度时,E u <2,说明VT 1 和VT 4已经开始承受反向电压关断。 ● 同时,由于VT 2 和VT 3还未触发导通,因此E u =d ,0d =i 。 ③ )(~)(θαπαπ+++:

此过程为VT 2 和VT 3导通阶段,由于是桥式全控整流,因此负载电压与电流同前一阶段,2d u u -=,

R

d d E

u i -=。

3.2 三相可控整流电路 3.2.1 三相半波可控整流电路

3.2.1.1 电阻负载

(1)三相半波可控整流电路带电阻负载时的原理图

① 变压器一次侧接成三角形,防止3次谐波流入电网。 ② 变压器二次侧接成星形,以得到零线。

③ 三个晶闸管分别接入a 、b 、c 三相电源,其所有阴极连接在一起,为共阴极接法。 (2)三相半波不可控整流电路带电阻负载时的波形图

● 将上面原理图中的三个晶闸管换成不可控二极管,分别采用VD 1、VD 2和VD 3表示。

工作过程分析基础:三个二极管对应的相电压中哪一个的值最大,则该相所对应的二极管导通,并使另两相的二极管

承受反压关断,输出整流电压即为该相的相电压。

① 21~t t ωω:a 相电压最高,则VD 1导通,VD 2和VD 3反压关断,a u u =d 。 ② 32~t t ωω:b 相电压最高,则VD 2导通,VD 3和VD 1反压关断,b u u =d 。 ③ 43~t t ωω:b 相电压最高,则VD 2导通,VD 3和VD 1反压关断,b u u =d 。 ④ 按照上述过程如此循环导通,每个二极管导通o 120。

⑤ 自然换向点:在相电压的交点1t ω、2t ω、3t ω处,出现二极管换相,即电流由一个二极管向另一个二极管转移,这些交点为自然换向点。

(3)三相半波可控整流电路带电阻负载时的波形图(o 0=α)

自然换向点:对于三相半波可控整流电路而言,自然换向点是各相晶闸管能触发导通的最早时刻(即开始承受正向电压),该时刻为各晶闸管触发角α的起点,即o 0=α。

① 21~t t ωω:

● a 相电压最高,VT 1开始承受正压,在1t ω时刻触发导通,01VT =u ,而VT 2和VT 3反压关断。

a u u =d ,R

u i i d

d VT 1=

=。 ② 32~t t ωω:

● b 相电压最高,VT 2开始承受正压,在2t ω时刻触发导通,02VT =u ,而VT 3和VT 1反压关断。

b d u u =,01VT =i ,VT 1承受a 点-b 点间电压,即ab VT 1u u =。

③ 43~t t ωω:

● c 相电压最高,VT 3开始承受正压,在3t ω时刻触发导通,03VT =u ,而VT 1和VT 2反压关断。

c d u u =,01VT =i ,VT 1承受a 点-c 点间电压,即ac VT 1u u =。

(4)三相半波可控整流电路带电阻负载时的波形图(o 30=α)

定义:1t ω时刻为自然换向点后o 30,2t ω和3t ω时刻依次间距o 120。 ① )90(~o 11+t t ωω:

● a 相电压最高,VT 1已经承受正压,但在1t ω时刻(即o 30=α)时开始触发导通,01VT =u ,而VT 2和VT 3反压关断。

a u u =d ,R

u i i d

d VT 1=

=。 ② 2o 1~)90(t t ωω+:

● 虽然已到a 相和b 相的自然换向点,b 相电压高于a 相电压,VT 2已经开始承受正压,但是VT 2没有门极触发脉冲,因此VT 2保持关断。

这样,原来已经导通的VT 1仍然承受正向电压(0a >u )而持续导通,01VT =u ,a u u =d ,R

u

i i d d VT 1==。

③ 32~t t ωω:

b 相电压最高,VT 2已经承受正压,2t ω时刻(即o 30=α)时开始触发导通VT 2,02VT =u ,这样VT 1开始承受反压而关断。

b d u u =,01VT =i ,VT 1承受a 点-b 点间电压,即ab VT 1u u =。

④ 43~t t ωω:

c 相电压最高,VT 3已经承受正压,3t ω时刻(即o 30=α)时开始触发导通VT 3,03VT =u ,这样VT 2开始承受反压而关断。

c d u u =,01VT =i ,VT 1承受a 点-c 点间电压,即ac VT 1u u =。

(5)三相半波可控整流电路带电阻负载时的波形图(o 60=α)

定义:1t ω时刻为自然换向点后o 60,2t ω和3t ω时刻依次间距o 120。 ① )90(~o 11+t t ωω:

a 相电压最高,VT 1在1t ω时刻(即o 60=α)时开始触发导通,即使过了自然换向点,但因VT 2未导通及0a >u ,而使VT 1持续导通,01VT =u ,而VT 2和VT 3反压关断。

a u u =d ,R

u i i d

d VT 1=

=。 ② 2o 1~)90(t t ωω+:

● a 相电压过零变负(0a

0d VT 1==i i ,0d =u 。

③ 32~t t ωω及43~t t ωω期间情况分别为VT 2和VT 3导通过程,与上述相同。 (6)三相半波可控整流电路带电阻负载不同触发角工作时的情况总结 ① 当o 30<α时,负载电流处于连续状态,各相导电o 120。

② 当o 30=α时,负载电流处于连续和断续的临界状态,各相仍导电o 120。 ③ 当o 30>α时,负载电流处于断续状态,直到o 150=α时,整流输出电压为零。

④ 结合上述分析,三相半波可控整流电路带电阻负载时α角的移相范围为o 150,其中经历了负载电流连续和断续的工作过程。 (7)数值计算

① o 30≤α时,整流电压平均值(负载电流连续):

ααπ

ωωπαπαπcos 17.1cos 26

3)(sin 23

212265

62d U U t td U U ===?

++

当o 0=α时,d U 最大,2d 17.1U U =。

② o 30>α时,整流电压平均值(负载电流断续):

)]6cos(1[675.0)]6cos(1[223)(sin 23

212262d απ

αππωωππαπ

++=++==?

+U U t td U U ●

当o 150=α时,d U 最小,0d =U 。

③ 负载电流平均值:R

U I d

d =

。 ④ 晶闸管承受的最大反向电压:

为变压器二次侧线电压的峰值,222RM 45.2632U U U U ==?=

⑤ 晶闸管承受的最大正向电压:

如a 相,二次侧a 相电压与晶闸管正向电压之和为负载整流输出电压d U ,由于d U 最小为0,因此晶闸管最大正向电压2FM 2U U =。 2.2.1.2 阻感负载

(1)三相半波可控整流电路带阻感负载时的原理图

① 当阻感负载中的电感值很大时,整流获得的电流d i 波形基本是平直的,即流过晶闸管的电流接近矩形波。 ② 当o 30≤α时,整流电压波形与电阻负载时相同,因为两种负载情况下,负载电流均连续。 (2)三相半波可控整流电路带阻感负载时的波形图(o 60=α)

定义:1t ω时刻为自然换向点后o 60,2t ω和3t ω时刻依次间距o 120。

① 21~t t ωω:

● VT 1承受正压并触发导通,过自然换向点后a 相电压仍大于0,VT 1仍持续导通。

● a 相过零点后,由于电感的存在,阻止电流下降,因而VT 1仍持续导通。

a d u u =,d d a I i i ==,0c

b ==i i ,01VT =u 。

② 32~t t ωω:

● 当2t ω时刻,b 相电压最高,同时触发导通,则VT 2导通,这样VT 1承受反压关断,由VT 2向负载供电。

b d u u =,d d b I i i ==,0

c a ==i i ,ab VT 1u u =。

③ 43~t t ωω:

● 工作过程与上述相同。

c d u u =,d d c I i i ==,0b a ==i i ,ac VT 1u u =。

(3)三相半波可控整流电路带阻感负载不同触发角工作时的情况总结

① 阻感负载状态下,由于大电感的存在,使负载电流始终处于连续状态,各相导电o 120。 ② 当o 30>α时,负载电压d u 波形将出现负的部分,并随着触发角的增大,使负的部分增多。 ③ 当o 90=α时,负载电压d u 波形中正负面积相等,d u 平均值为0。

④ 结合上述分析,三相半波可控整流电路带阻感负载时α角的移相范围为o 90。 (4)数值计算

① 整流电压平均值(负载电流始终连续):αcos 17.12d U U =。 ② 晶闸管承受的最大正反向电压:

为变压器二次侧线电压的峰值,222RM FM 45.2632U U U U U ==?==

3.2.2 三相桥式全控整流电路

三相桥式全控整流电路原理图:

(1)由6只晶闸管组成,形成三个桥臂,其中每个桥臂连接一相电源。

(2)阴极连接在一起的3只晶闸管(VT 1、VT 3、VT 5)称为共阴极组,处于桥臂上端。 (3)阳极连接在一起的3只晶闸管(VT 4、VT 6、VT 2)称为共阳极组,处于桥臂下端。 (4)晶闸管的导通顺序:VT 1、VT 2、VT 3、VT 4、VT 5、VT 6。 3.2.2.1 带电阻负载时的工作情况(o 0=α) (1)基本说明

① 自然换向点仍为a 、b 、c 相的交点。

② 将1t ω时刻(自然换向点)后的一个电源周期分成6段,每段电角度为o 60,分别为Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ、Ⅵ。 (2)波形图分析 ① 阶段Ⅰ:

● a 相电压最大,b 相电压最小,触发导通VT 1(事实上,VT 6已经导通)

ab d u u =,R

u i ab

VT 1=

,01VT =u 。 ② 阶段Ⅱ:

● a 相电压最大,c 相电压最小,触发导通VT 2,则VT 6承受反压(0cb

ac d u u =,R

u i ac

VT 1=

,01VT =u 。 ③ 阶段Ⅲ:

● b 相电压最大,c 相电压最小,触发导通VT 3,则VT 1承受反压(0ab

bc d u u =,R

u i bc

VT 1=

,ab VT 1u u =。 ④ 阶段Ⅳ:

● b 相电压最大,a 相电压最小,触发导通VT 4,则VT 2承受反压(0ac

ba d u u =,R

u i ba

VT 1=

,ab VT 1u u =。 ⑤ 阶段Ⅴ:

● c 相电压最大,a 相电压最小,触发导通VT 5,则VT 3承受反压(0bc

ca d u u =,R

u i ca

VT 1=

,ac VT 1u u =。 ⑥ 阶段Ⅵ:

● c 相电压最大,b 相电压最小,触发导通VT 6,则VT 4承受反压(0ba

cb d u u =,R

u i cb

VT 1=

,ac VT 1u u =。

① 对于共阴极组的3个晶闸管来说,阳极所接交流电压值最高的一个导通;对于共阳极组的3个晶闸管来说,阴极所接交流电压值最低的一个导通。

② 每个时刻均需2个晶闸管同时导通,形成向负载供电的回路,其中1个晶闸管是共阴极组的,1个是共阳极组的,且不能为同1相的晶闸管。

③ 对触发脉冲的要求:6个晶闸管的脉冲按VT 1—VT 2—VT 3—VT 4—VT 5—VT 6的顺序,相位依次差o 60。 ④ 共阴极组VT 1、VT 3、VT 5的脉冲依次差o 120,共阳极组VT 2、VT 4、VT 6的脉冲依次差o 120。 ⑤ 同一相的上下两个桥臂,即VT 1与VT 4,VT 3与VT 6,VT 5与VT 2,脉冲相差o 180。 ⑥ 整流输出电压d u 一周期脉动6次,每次脉动的波形都一样,故该电路为6脉冲整流电路。 3.2.2.2 带电阻负载时的工作情况(o 30=α) (1)基本说明

① 自然换向点仍为a 、b 、c 相的交点。

② 1t ω时刻为a 相o 30触发角位置,将该时刻后的一个电源周期o 360分成6段,每段电角度为o 60,分别为Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ、Ⅵ。 (2)波形图分析

① 阶段Ⅰ:

● a 相电压最大,b 相电压最小,触发导通VT 1(事实上,VT 6已经导通)

当过b 、c 相交点后,虽然b 电压高于c 相电压,但是由于未触发导通VT 2,且a 相电压仍高于b 相,因此整个阶段I 中,VT 1和VT 6持续导通。

ab d u u =,01VT =u ,R

u i i ab

d a =

=。

● 分析过程同阶段I ,VT 1和VT 2持续导通。

ac d u u =,01VT =u ,R

u i i ac

d a =

=。 ③ 阶段Ⅲ:

● 分析过程同阶段I ,VT 2和VT 3持续导通。

bc d u u =,ab VT 1u u =,0a =i 。

④ 阶段Ⅳ:

● 分析过程同阶段I ,VT 3和VT 4持续导通。

ba d u u =,ab VT 1u u =,R

u i i ba

d a -

=-=。 ⑤ 阶段Ⅴ:

● 分析过程同阶段I ,VT 4和VT 5持续导通。

ca d u u =,ac VT 1u u =,R

u i i ca

d a -

=-=。 ⑥ 阶段Ⅵ:

● 分析过程同阶段I ,VT 5和VT 6持续导通。

cb d u u =,ac VT 1u u =,0a =i 。

(3)总结

① 与o 0=α时相比,晶闸管起始导通时刻推迟了o 30,组成d u 的每一段线电压因此推迟o 30,d u 平均值降低。 ② VT 1处于通态的o 120期间,变压器二次侧a 相电流0a >i ,波形与同时段的d u 波形相同。VT 4处于通态的o 120期间,a i 波形与同时段的d u 波形相同,但为负值。 3.2.2.3 带电阻负载时的工作情况(o 60=α) (1)波形图分析

① 阶段Ⅰ:

● a 相电压最大,c 相电压最小,通过以往经验知道VT 6已经导通,此时触发导通VT 1,不触发VT 2,则整个阶段I 中,VT 1和VT 6持续导通。

ab d u u =,01VT =u 。

② 阶段Ⅱ:

● b 相电压最大,c 相电压最小,此时触发导通VT 2,则VT 6承受电压0cb

和VT 2持续导通。

ac d u u =,01VT =u 。

③ 阶段Ⅲ:

● 分析过程同阶段Ⅱ,VT 2和VT 3持续导通。

bc d u u =,ab VT 1u u =。

④ 阶段Ⅳ:

● 分析过程同阶段Ⅱ,VT 3和VT 4持续导通。

ba d u u =,ab VT 1u u =。

⑤ 阶段Ⅴ:

● 分析过程同阶段Ⅱ,VT 4和VT 5持续导通。

ca d u u =,ac VT 1u u =。

⑥ 阶段Ⅵ:

● 分析过程同阶段Ⅱ,VT 5和VT 6持续导通。

cb d u u =,ac VT 1u u =。

(2)总结

① 与o 30=α时相比,晶闸管起始导通时刻继续向后推迟o 30,d u 平均值继续降低,并出现了为零的点。 ② 当o 60≤α时,d u 波形均连续,对于电阻负载,d i 波形与d u 波形的形状一样,保持连续。 3.2.2.4 带电阻负载时的工作情况(o 90=α) (1)o 60≥α时整流电路触发脉冲要求

① o 60≥α时,负载电流将出现断续状态,这样为确保电路的正常工作,需保证同时导通的2个晶闸管均有触发脉冲。 ② 方法一:采用宽脉冲触发,即触发脉冲的宽度大于o 60,一般取o 80~o 100。

③ 方法二:采用双脉冲触发,即在触发某个晶闸管的同时,给序号紧前的一个晶闸管补发脉冲。即用两个窄脉冲代替宽脉冲,两个窄脉冲的前沿相差o 60,脉宽一般为o 20~o 30。 (2)波形图分析

① 阶段Ⅰ:

● 前半段内,c b a u u u >>,通过以往经验知道VT 6已经导通,此时触发导通VT 1,不触发VT 2,则VT 1和VT 6导通。

ab d u u =,R

u

i i i d a VT d 1===。

后半段内,c a b u u u >>,出现a 、b 相交点,则过交点后VT 6和VT 1承受反压关断。0d =u ,0a VT d 1===i i i 。

② 阶段Ⅱ:

● 前半段内,c a b u u u >>,此时触发导通VT 2,同时采用宽脉冲或双脉冲方式触发VT 1导通。ac d u u =,

R

u

i i i d a VT d 1===。

后半段内,a c b u u u >>,出现a 、c 相交点,则过交点后VT 1和VT 2承受反压关断。0d =u ,0a VT d 1===i i i 。

③ 阶段Ⅲ:

● 前半段内,VT 2和VT 3持续导通。bc d u u =,R

u

i d d =,0a VT 1==i i 。

后半段内,0d =u ,0a VT d 1===i i i 。

④ 阶段Ⅳ:

● 前半段内,VT 3和VT 4持续导通。ba d u u =,R

u

i i d a d =-=,01VT =i 。

后半段内,0d =u ,0a VT d 1===i i i 。

⑤ 阶段Ⅴ:

● 前半段内,VT 4和VT 5持续导通。ca d u u =,R

u

i i d a d =-=,01VT =i 。

后半段内,0d =u ,0a VT d 1===i i i 。

⑥ 阶段Ⅵ:

● 前半段内,VT 5和VT 6持续导通。cb d u u =,R

u

i d d =,0a VT 1==i i 。

后半段内,0d =u ,0a VT d 1===i i i 。

(3)总结

① 当o 60≥α时,负载电流将出现断续状态。

② 当o 120=α时,整流输出电压d u 波形全为零,因此带电阻负载时的三相桥式全控整流电路α角的移相范围是o 120。 3.2.2.7 三相桥式全控整流电路的定量分析 (1)带电阻负载时的平均值

① 特点:o 60≤α时,整流输出电压连续;o o 12060<<α时,整流输出电压断续。 ② 整流电压平均值计算公式:以d u 所处的线电压波形为背景,周期为

3

π。 ????

??

??

?++==<<==≤?

?

+++)]3cos(1[34.2)(sin 63112060cos 34.2)(sin 6316023

2d o

o 23232d o απωωπααωωπαπαπαπαπU t td U U U t td U U :: ③ 输出电流平均值计算公式:R

U I d

d =

。 3.7 整流电路的有源逆变工作状态

3.7.1 逆变的概念

3.7.1.1 什么是逆变?为什么要逆变?

(1)逆变定义:生产实践中,存在着与整流过程相反的要求,即要求把直流电转变成交流电,这种对应于整流的逆向过程,定义为逆变。

(3)逆变电路定义:把直流电逆变成交流电的电路。

(4)有源逆变电路:将交流侧和电网连结时的逆变电路,实质是整流电路形式。

(5)无源逆变电路:将交流侧不与电网连结,而直接接到负载的电路,即把直流电逆变为某一频率或可调频率的交流电供给负载的电路。

(6)有源逆变电路的工作状态:只要满足一定条件,可控整流电路即可以工作于整流状态,也可以工作于逆变状态。 3.7.1.3 逆变产生的条件

(1)单相全波电路(相当发电机)- 电动机系统

(2)单相全波电路(整流状态) - 电动机(电动状态)系统

① 电动机处于电动运行状态,全波电路处于整流工作状态(2

α<<),直流输出电压0d >U ,而且M d E U >,才能输

出电枢电流∑

-=

R E U I M

d d 。 ② 能量流向:交流电网输出电功率,电动机输入电功率。

(3)单相全波电路(有源逆变状态) - 电动机(发电回馈制动)系统

① 电动机处于发电回馈制动运行状态,由于晶闸管单向导电性,电路内d I 的方向依然不变。

② 这样,要保证电动机有电动运行变成发电回馈制动运行,必须改变M E 的极性,同时直流输出电压d U 也改变极性(0d

παπ

<<2

)。

③ 此时,必须保证d M U E >,∑

-=

R U E I d

M d ,才能把电能从直流侧送到交流侧,实现逆变。 ④ 能量流向:电动机输出电功率,交流电网吸收电功率。 ⑤ 全波电路有源逆变工作状态下,为什么晶闸管触发角处于

παπ

<<2

,仍能导通运行?

答:主要由于全波电路有外接直流电动势M E 的存在且d M U E >,这是电动机处于发电回馈制动状态时得到的,这样能够保证系统得到很大的续流,即使晶闸管的阳极电位大部分处于交流电压为负的半周期,但是仍能承受正向电压而导通。

(4)有源逆变产生的条件

① 变流电路外侧要有直流电动势,其极性必须和晶闸管的导通方向一致,其值应大于变流电路直流侧的平均电压。 ② 要求晶闸管的控制触发角2

π

α>

,使d U 为负值。 第4章 逆变电路

(1)逆变定义:将直流电能变成交流电能。

(2)有源逆变:逆变电路的交流输出侧接在电网上。 (3)无源逆变:逆变电路的交流输出侧直接和负载相连。

4.2 电压型逆变电路

(1)逆变电路分类:根据直流侧电源性质可以分为电压(源)型逆变电路和电流(源)型逆变电路。 (2)电压(源)型逆变电路VSI :直流侧为电压源。 (3)电流(源)型逆变电路CSI :直流侧为电流源。 (4)电压型逆变电路举例:

① 直流侧为电压源,或并联有大电容。直流侧电压基本无脉动,直流回路呈现低阻抗。

② 由于直流电压源的钳位作用,交流侧输出电压波形为矩形波,并且与负载阻抗角无关。而交流侧输出电流波形和相位因负载阻抗情况的不同而不同。

③ 当交流侧为阻感负载时,需要提供无功功率,直流侧电容起缓冲无功能量的作用。 ④ 图中逆变桥各臂都并联反馈二极管,为了给交流侧向直流侧反馈的无功能量提供通道。

4.2.1 单相电压型逆变电路

4.2.1.1 半桥逆变电路 (1)电路原理图

① 由两个桥臂组成,其中每个桥臂均包含一个可控器件和一个反并联二极管。

② 直流输入侧接有两个相互串联的足够大的电容,两个电容的连接点为直流电源的中点。 ③ 负载连接在直流电源中点和两个桥臂连接点之间。 (2)栅极驱动信号

① 开关器件V 1 和V 2 的栅极信号在一个周期内半周正偏,半周反偏,且二者互补。 ② 2~0t :V 1 栅极高电平,V 2 栅极低电平。 ③ 42~t t :V 2 栅极高电平,V 1栅极低电平。 ④ 64~t t :V 1 栅极高电平,V 2 栅极低电平。 (3)电压与电流波形图

电力电子课程学习心得

前沿 在大二学习模电之后,这学期我们开始接触电力电子器件和多种变换器。其中包括直流变直流,无源逆变电路,整流和有源逆变电路,交流变交流电路,软开关变换器。电力电子技术(Power Electronics Technology)是研究电能变换原理及功率变换装置的综合性学科,包括电压、电流、频率和波形变换,涉及电子学、自动控制原理和计算机技术等学科。电力电子技术与信息电子技术的主要不同就是效率问题,对于信息处理电路来说,效率大于15%就可以接受,而对于电力电子技术而言,大功率装置效率低于85%还是无法忍受。目前能源问题已是我国面临的主要问题之一,提高电源变换效率是电力电子工程师主要任务. 电力电子器件及应用 电力电子器件特点:1.具有较大的耗散功率2.工作在开关状态3.需要专门驱动电路来控制4.需要缓冲和保护电路。我们在本章学习了功率二极管,场效应二极管,电力二极管,IGBT . 可控整流器与有源逆变器: 主要内容: 整流器的结构形式、工作原理,分析整流器的工作波形,整流器各参数的数学关系和设计方法;整流器工作在逆变状态时的工作原理、工作波形。变压器漏抗对整流器的影响、整流器带电动机负载时的机械特性、触发电路等内容。 学习重点包括: (1) 学习不同型式整流电路的工作原理,波形分析与数值计算、各种负载对 整流电路工作情况的影响。 (2) 变压器漏抗对整流电路的影响,重点建立换相压降、换相重叠角等概念, 并掌握相关的计算,熟悉漏抗对整流电路工作情况的影响。 (3) 掌握产生有源逆变的条件、逆变失败及最小逆变角的限制等。 (4) 熟悉锯齿波移相触发电路的原理,建立同步的概念,掌握同步电压信号的 选取方法。 交-交变换器: 主要内容: 晶闸管单相和三相交流调压器;全控型器件的交流斩波电路;交-交变频器;交-交(AC-AC)变换器的应用。 交流调压电路通常由晶闸管组成,用于调节输出电压的有效值。与常规的调压变压器相比,晶闸管交流调压器有体积小、重量轻的特点。其输出是交流电压,但它不是正弦波形,其谐波分量较大,功率因数也较低。 控制方法: (1) 通断控制。即把晶闸管作为开关,通过改变通断时间比值达到调压的目的。这种控制方式电路简单,功率因数高,适用于有较大时间常数的负载;缺点是输出电压或功率调节不平滑。 (2) 相位控制。它是使晶闸管在电源电压每一周期中、在选定的时刻将负载与电源接通,改变选定的时刻可达到调压的目的。 基本结构和工作原理

电力电子技术课程重点知识点总结

1.解释GTO、GTR、电力MOSFET、BJT、IGBT,以及这些元件的应用范围、基本特性。 2.解释什么是整流、什么是逆变。 3.解释PN结的特性,以及正向偏置、反向偏置时会有什么样的电流通过。 4.肖特基二极管的结构,和普通二极管有什么不同 5.画出单相半波可控整流电路、单相全波可控整流电路、单相整流电路、单相桥式半控整流电路电路图。 6.如何选配二极管(选用二极管时考虑的电压电流裕量) 7.单相半波可控整流的输出电压计算(P44) 8.可控整流和不可控整流电路的区别在哪 9.当负载串联电感线圈时输出电压有什么变化(P45) 10.单相桥式全控整流电路中,元件承受的最大正向电压和反向电压。 11.保证电流连续所需电感量计算。 12.单相全波可控整流电路中元件承受的最大正向、反向电压(思考题,书上没答案,自己试着算) 13.什么是自然换相点,为什么会有自然换相点。 14.会画三相桥式全控整流电路电路图,波形图(P56、57、P58、P59、P60,对比着记忆),以及这些管子的导通顺序。

15.三相桥式全控整流输出电压、电流计算。 16.为什么会有换相重叠角换相压降和换相重叠角计算。 17.什么是无源逆变什么是有源逆变 18.逆变产生的条件。 19.逆变失败原因、最小逆变角如何确定公式。 做题:P95:1 3 5 13 16 17,重点会做 27 28,非常重要。 20.四种换流方式,实现的原理。 21.电压型、电流型逆变电路有什么区别这两个图要会画。 22.单相全桥逆变电路的电压计算。P102 23.会画buck、boost电路,以及这两种电路的输出电压计算。 24.这两种电路的电压、电流连续性有什么特点 做题,P138 2 3题,非常重要。 25.什么是PWM,SPWM。 26.什么是同步调制什么是异步调制什么是载波比,如何计算 27.载波频率过大过小有什么影响 28.会画同步调制单相PWM波形。 29.软开关技术实现原理。

电力电子技术总结

1、电力电子技术的概念:所谓电力电子技术就是应用于电力领域的电子技术。 2、电力电子技术的诞生是以 1957年美国通用电气公司研制出第一个晶闸管为标志的。 3、晶闸管是通过对门极的控制能够使其导通而不能使其关断的器件,属于半控型器件。对 晶闸管电路的控制方式主要是相位控制方式,简称相控方式。4、70年代后期,以门极可关断晶闸管( GTO )、电力双极型晶体管( BJT )和电力场效应晶 体管(Power-MOSFET )为代表的全控型器件迅速发展。 5、全控型器件的特点是,通过对门极(基极、栅极)的控制既可使其开通又可使其关断。 6、把驱动、控制、保护电路和电力电子器件集成在一起,构成电力电子集成电路( PIC )。 第二章 1、电力电子器件的特征 ◆所能处理电功率的大小,也就是其承受电压和电流的能力,是其最重要的参数,一般都远大于处理信息的电子器件。 ◆为了减小本身的损耗,提高效率,一般都工作在开关状态。◆由信息电子电路来控制 ,而且需要驱动电路。 ◆自身的功率损耗通常仍远大于信息电子器件,在其工作时一般都需要安装散热器2、电力电子器件的功率损耗 3、电力电子器件的分类 (1)按照能够被控制电路信号所控制的程度 ◆半控型器件:?主要是指晶闸管(Thyristor )及其大部分派生器件。 ?器件的关断完全是由其在主电路中承受的电压和电流决定的。◆全控型器件:?目前最常用的是 IGBT 和Power MOSFET 。 通态损耗断态损耗开关损耗 开通损耗关断损耗

?通过控制信号既可以控制其导通,又可以控制其关断。 ◆不可控器件:?电力二极管(Power Diode)?不能用控制信号来控制其通断。(2)按照驱动信号的性质 ◆电流驱动型:?通过从控制端注入或者抽出电流来实现导通或者关断的控制。 ◆电压驱动型 ?仅通过在控制端和公共端之间施加一定的电压信号就可实现导通或者关断的控 制。 (3)按照驱动信号的波形(电力二极管除外) ◆脉冲触发型 ?通过在控制端施加一个电压或电流的脉冲信号来实现器件的开通或者关断的控 制。 ◆电平控制型 ?必须通过持续在控制端和公共端之间施加一定电平的电压或电流信号来使器件 开通并维持在导通状态或者关断并维持在阻断状态。 4、几种常用的电力二极管:普通二极管、快恢复二极管、肖特基二极管 肖特基二极管优点在于:反向恢复时间很短(10~40ns),正向恢复过程中也不会有明显的电压过冲;在反向耐压较低的情况下其正向压降也很小,明显低于快恢复二极管;因此, 其开关损耗和正向导通损耗都比快速二极管还要小,效率高。 弱点在于:当所能承受的反向耐压提高时其正向压降也会高得不能满足要求,因此 多用于200V以下的低压场合;反向漏电流较大且对温度敏感,因此反向稳态损耗不能忽略,而且必须更严格地限制其工作温度。 5、晶闸管除门极触发外其他几种可能导通的情况 ◆阳极电压升高至相当高的数值造成雪崩效应◆阳极电压上升率du/dt过高 ◆结温较高◆光触发

电力电子技术知识点

(供学生平时课程学习、复习用,●为重点) 第一章绪论 1.电力电子技术:信息电子技术----信息处理,包括:模拟电子技术、数字电子技术 电力电子技术----电力的变换与控制 2. ●电力电子技术是实现电能转换和控制,能进行电压电流的变换、频率的变换及相 数的变换。 第二章电力电子器件 1.电力电子器件分类:不可控器件:电力二极管 可控器件:全控器件----门极可关断晶闸管GTO电力晶体管GTR 场效应管电力PMOSFET绝缘栅双极晶体管IGBT及其他器件 ☆半控器件----晶闸管●阳极A阴极K 门极G 2.晶闸管 1)●导通:当晶闸管承受正向电压时,仅在门极有触电电流的情况晶闸管才能开通。 ●关断:外加电压和外电路作用是流过晶闸管的电流降到接近于零 ●导通条件:晶闸管承受正向阳极电压,并在门极施加触发电流 ●维持导通条件:阳极电流大于维持电流 当晶闸管承受反向电压时,不论门极是否有触发电流,晶闸管都不会导通。 当晶闸管承受正向电压时,仅在门极有触发电流的情况下晶闸管才会开通。 当晶闸管导通,门极失去作用。 ●主要参数:额定电压、额定电流的计算,元件选择 第三章 ●整流电路 1.电路分类:单相----单相半波可控整流电路单相整流电路、桥式(全控、半控)、单相全波可控整流电路单相桥式(全控、半控)整流电路 三相----半波、●桥式(●全控、半控) 2.负载:电阻、电感、●电感+电阻、电容、●反电势 3.电路结构不同、负载不同●输出波形不同●电压计算公式不同

单相电路 1.●变压器的作用:变压、隔离、抑制高次谐波(三相、原副边星/三角形接法) 2.●不同负载下,整流输出电压波形特点 1)电阻电压、电流波形相同 2)电感电压电流不相同、电流不连续,存在续流问题 3)反电势停止导电角 3.●二极管的续流作用 1)防止整流输出电压下降 2)防止失控 4.●保持电流连续●串续流电抗器,●计算公式 5.电压、电流波形绘制,电压、电流参数计算公式 三相电路 1.共阴极接法、共阳极接法 2.触发角ā的确定 3.宽脉冲、双窄脉冲 4.●电压、电流波形绘制●电压、电流参数计算公式 5.变压器漏抗对整流电流的影响●换相重叠角产生原因计算方法 6.整流电路的谐波和功率因数 ●逆变电路 1.●逆变条件●电路极性●逆变波形 2.●逆变失败原因器件触发电路交流电源换向裕量 3.●防止逆变失败的措施 4.●最小逆变角的确定 触发电路 1.●触发电路组成 2.工作原理 3.触发电路定相 第四章逆变电路

基于Matlab的电力电子技术课程设计报告

《电力电子技术》 课程设计报告 题目:基于Matlab的电力电子技术 仿真分析 专业:电气工程及其自动化 班级:电气2班 学号:Z01114007 姓名:吴奇 指导教师:过希文 安徽大学电气工程与自动化学院 2015年 1 月7 日

中文题目 基于Matlab 的电力电子技术仿真分析 一、设计目的 (1)加深理解《电力电子技术》课程的基本理论; (2)掌握电力电子电路的一般设计方法,具备初步的独立设计能力; (3)学习Matlab 仿真软件及各模块参数的确定。 二、设计工作任务及工作量的要求〔包括课程设计计算说明书(论文)、图纸、实物样品等〕: (1)根据设计题目要求的指标,通过查阅有关资料分析其工作原理,设计电路原理图; (2)利用MATLAB 仿真软件绘制主电路结构模型图,设置相应的参数。 (3)用示波器模块观察和记录电源电压、控制信号、负载电压、电流的波形图。 三、设计内容 (1)设计一个降压变换器(Buck Chopper ),其输入电压为200V ,负载为阻感性带反电动势负载,电阻为2欧,电感为5mH ,反电动势为80V 。开关管采用IGBT ,驱动信号频率为1000Hz ,仿真时间设置为0.02s ,观察不同占空比下(25%、50%、75%)的驱动信号、负载电流、负载电压波形,并计算相应的电压、电流平均值。 然后,将负载反电动势改变为160V ,观察电流断续时的工作波形。(最大步长为5e-6,相对容忍率为1e-3,仿真解法器采用ode23tb ) (2)设计一个采用双极性调制的三相桥式逆变电路,主电路直流电源200V ,经由6只MOSFET 组成的桥式逆变电路与三相阻感性负载相连接,负载电阻为1欧,电感为5mH ,三角波频率为1000Hz ,调制度为0.7,试观察输入信号(载波、调制波)、与直流侧假想中点N ‘的三相电压Uun ’、Uvn ’、Uwn ’,输出线电压UV 以及负载侧相电压Uun 的波形。 四、设计方案 实验1:降压变换器 dc-dc 变流电路可以将直流电变成另一固定电压或可调电压的直流电,包括直接直流变流电路和间接直流变流电路。其中,直接直流变流电路又称为斩波电路,功能是将直流电变为另一直流电。本次实验主要是在Matlab 中设计一个降压斩波电路并仿真在所给条件下的波形和数值与理论计算相对比。降压斩波电路原理图如下所示,该电路使用一个全控型器件V ,这里用IGBT ,也可采用其他器件,例如晶闸管,若采用晶闸管,还需设置使晶闸管关断的辅助电路。为在V 关断时给负载中电感电流提供通道,设置了续流二极管VD 。斩波电路主要用于电子电路的供电电源,也可拖动直流电动机或带蓄电池负载等,后两种情况下负载中均会出现反电动势,图中用m E 表示。若无反电动势,只需令0m E ,以下的分析和表达式中均适用。

电力电子技术复习总结

电力电子技术复习题1 第1xx 电力电子器件 1. 电力电子器件一般工作在__开关__状态。 2. 在通常情况下,电力电子器件功率损耗主要为__通态损耗__,而当 器件开关频率较高时,功率损耗主要为__开关损耗__。 3. 电力电子器件组成的系统,一般由__控制电路__、_驱动电路_、 主电路_三部分组成,由于电路中存在电压和电流的过冲,往往需添 加_保护电路__。 4. 按内部电子和空穴两种载流子参与导电的情况,电力电子器件可分 为_单极型器件双极型器件复合型器件_三类。 5. 电力二极管的工作特性可概括为_承受正向电压导通,承受反相电 压截止_。 6. 电力二极管的主要类型有普通二极管、快恢复二极管、XX 二极管。7.XX二极管的开关损耗小于快恢复二极管的开关损耗。 8. 晶闸管的基本工作特性可概括为正向电压门极有触发则导通、 反向电压则截止。 9. 对同一晶闸管,维持电流IH 与擎住电流IL 在数值大小上有IL__ 大于IH 。 10. 晶闸管断态不重复电压UDSM与转折电压Ubo数值大小上应为, UDSM大于_UbQ 11. 逆导晶闸管是将_二极管_与晶闸管_反xx_ (如何连接)在同一管芯上的功率集成器件。 12. GTO的__多兀集成__结构是为了便于实现门极控制关断而设计的。 13. MOSFET勺漏极XX特性中的三个区域与GTF共发射极接法时的输 出特性中的三个区域有对应关系,其中前者的截止区对应后者的_截

后者的 _饱和区 __。 14. 电力MOSFE 的通态电阻具有正温度系数。 15.IGBT 的开启电压UGE (th )随温度升高而_略有下降开关速 度__小于__电力 MOSFET 。 16. 按照驱动电路加在电力电子器件控制端和公共端之间的性质,可 将电力电子器件分为 _电压驱动型 _和_电流驱动型 _两类。 17.IGBT 的通态压降在1/2或1/3额定电流以下区段具有 负 温 度系 数, 在1/2 或1/3 额定电流以上区段具有 __正___温度系数。 18.在如下器件:电力二极管(Power Diode )、晶闸管(SCR 、门 极可关断晶闸管(GTO 、电力晶体管(GTR 、电力场效应管(电力 MOSFET 、绝缘栅双极型晶体管(IGBT )中,属于不可控器件的是 电力二极管 __,属于半控型器件的是 __晶闸管_,属于全控型器件的 是_ GTO 、GTR 、电力MOSFET IGBT _;属于单极型电力电子器件 的有_电力 MOSFET ,_ 属于双极型器件的有 _电力二极管、晶闸管、 属于复合型电力电子器件得有 __ IGBT _ ;在可控的 器件中, 容量最大的是 _晶闸管_,工作频率最高的是 _电力 MOSFE , T 属于电压驱动的是电力 MOSFET 、 IGBT _,属于电流驱动的是 _晶闸 管、 GTO 、 GTR _。 第 2xx 整流电路 1. 电阻负载的特点是—电压和电流XX 且波形相同_,在单相半波 可控整流电阻性负载电路中,晶闸管控制角 a 的最大移相范围是 0-180O_。 2. 阻感负载的特点是 _流过电感的电流不能突变,在单相半波可 控整流带阻感负载XX 续流二极管的电路中,晶闸管控制角a 的最大 止区_、前者的饱和区对应后者的 放大区 __、前者的非饱和区对应 GTO 、 GTR

电力电子总结完美版

一、填空题 1、对SCR 、TRIAC 、GTO 、GTR 、Power MOSFET 、这六种电力电子器件,其中要用交流 电压相位控制的有SCR TRIAC 。可以用PWM 控制的有GTO GTR Power MOSFET IGBT;要用电流驱动的有SCR TRIAC GTO GTR (准确地讲SCR 、TRIAC 为电流触发型 器件),要用电压驱动的有Power MOSFET IGBT ;其中工作频率最高的一个是Power MOSFET ,功率容量最大的两个器件是SCR GTR;属于单极性的是Power MOSFET;可能发生 二次击穿的器件是GTR,可能会发生擎住效应的器件是IGBT ;属于多元集成结构的是Power MOSFET IGBT GTO GTR 。 2、SCR 导通原理可以用双晶体管模型来解释,其触发导通条件是阳极加正电压并且门极有触发电流,其关断条件是阳极电流小于维持电流。 3、GTO 要用门极负脉冲电流关断,其关断增益定义为最大可关断阳极电流与门极负脉冲电流最大值的比即off β=ATO GM I I ,其值约为5左右,其关断时会出现特殊的拖尾 电流。 4、Power MOSFET 通态电阻为正温度系数;其定义式为= |DS DS U GS I ≥0,比较特殊的是器件体内有寄生的反向二极管,此外,应防止其栅源极间发生擎住效应。 5、电力二极管额定电流是指最大工频正弦半波波形条件下测得值,对于应用于高频电力电子电路的电力二极管要用快恢复型二极管,但要求其反向恢复特性要软。 6、在电力电子电路中,半导体器件总是工作在开关状态,分析这类电路可以用理想开关等效电路;电力电子技术的基础是电力电子器件制造技术,追求的目标是高效地处理电力。 7、硬开关电路的电力电子器件在换流过程中会产生较大的开关损耗,主要原因是其电压波形与电流波形发生重叠,为了解决该缺陷,最好使电力电子器件工作在零电压开通,零电流关断状态;也可采用由无源元件构成的缓冲技术,但它们一般是有损耗 的。 8、电力电子电路对功率因数的定义与线性电路理论的定义在本质上的差别是有基波因数。 9、交流调压电路采用由两个SCR 反并联接法组成交流开关作为控制,若交流电路的大感性 负载阻抗角为80度,则SCR 开通角的移相范围80度到180度。 10、SCR 三相全控变流电路带直流电动机负载时,其处于整流状态时触发角应满足小于90度 条件;其处于有源逆变状态时触发角应满足大于90度 条件;SCR 的换流方式都为电网 换流。 11、有源逆变与无源逆变的差异是交流侧接在电网上还是接在负载上;加有续流二极管的任何整流电路都不能实现有源逆变的原因是负载被二极管短路不能产生负电压。逆变角的定义是α>90度时的控制角βπα=- 12、电压源逆变器的输出电压是交流方 波;其逆变桥各臂都要反并联 二极管。 13、SPWM 的全部中文意思是正弦脉冲宽度调制,这种技术可以控制输出交流的大小;产 生SPWM 波的模拟法用自然采样法。而计算机则采用规则采样法。 14、单端正激式DC/DC 变换电路要求在变压器上附加一个复位 绕组,构成磁复位 电路; 反激式DC/DC 变换电路与Buck-Boost 直流斩波器类似。 15、肖特基二极管具有工作频率高 ,耐压低 的应用特点。肖特基二极管具有反向恢复时间短,正向压降小,耐压低,效率高等特点。 16、GTR 关断是工作点应在 截止 区,导通时工作点应在 饱和 区;它有可能因存在 二 次击穿而永久失效的缺陷。

电力电子技术重点王兆安第五版打印版

第1章绪论 1 电力电子技术定义:是使用电力电子器件对电能进行变换和控制的技术,是应用于电力领域的电子技术,主要用于电力变换。 2 电力变换的种类 (1)交流变直流AC-DC:整流 (2)直流变交流DC-AC:逆变 (3)直流变直流DC-DC:一般通过直流斩波电路实现(4)交流变交流AC-AC:一般称作交流电力控制 3 电力电子技术分类:分为电力电子器件制造技术和变流技术。 第2章电力电子器件 1 电力电子器件与主电路的关系 (1)主电路:指能够直接承担电能变换或控制任务的电路。(2)电力电子器件:指应用于主电路中,能够实现电能变换或控制的电子器件。 2 电力电子器件一般都工作于开关状态,以减小本身损耗。 3 电力电子系统基本组成与工作原理 (1)一般由主电路、控制电路、检测电路、驱动电路、保护电路等组成。 (2)检测主电路中的信号并送入控制电路,根据这些信号并按照系统工作要求形成电力电子器件的工作信号。(3)控制信号通过驱动电路去控制主电路中电力电子器件的导通或关断。 (4)同时,在主电路和控制电路中附加一些保护电路,以保证系统正常可靠运行。 4 电力电子器件的分类 根据控制信号所控制的程度分类 (1)半控型器件:通过控制信号可以控制其导通而不能控制其关断的电力电子器件。如SCR晶闸管。 (2)全控型器件:通过控制信号既可以控制其导通,又可以控制其关断的电力电子器件。如GTO、GTR、MOSFET 和IGBT。 (3)不可控器件:不能用控制信号来控制其通断的电力电子器件。如电力二极管。 根据驱动信号的性质分类 (1)电流型器件:通过从控制端注入或抽出电流的方式来实现导通或关断的电力电子器件。如SCR、GTO、GTR。(2)电压型器件:通过在控制端和公共端之间施加一定电压信号的方式来实现导通或关断的电力电子器件。如MOSFET、IGBT。 根据器件内部载流子参与导电的情况分类 (1)单极型器件:内部由一种载流子参与导电的器件。如MOSFET。 (2)双极型器件:由电子和空穴两种载流子参数导电的器件。如SCR、GTO、GTR。(3)复合型器件:有单极型器件和双极型器件集成混合而成的器件。如IGBT。 5 半控型器件—晶闸管SCR 将器件N1、P2半导体取倾斜截面,则晶闸管变成V1-PNP 和V2-NPN两个晶体管。 晶闸管的导通工作原理 (1)当AK间加正向电压A E,晶闸管不能导通,主要是中间存在反向PN结。 (2)当GK间加正向电压G E,NPN晶体管基极存在驱动电流G I,NPN晶体管导通,产生集电极电流2c I。 (3)集电极电流2c I构成PNP的基极驱动电流,PNP导通,进一步放大产生PNP集电极电流1c I。 (4)1c I与G I构成NPN的驱动电流,继续上述过程,形成强烈的负反馈,这样NPN和PNP两个晶体管完全饱和,晶闸管导通。 2.3.1.4.3 晶闸管是半控型器件的原因 (1)晶闸管导通后撤掉外部门极电流G I,但是NPN基极仍然存在电流,由PNP集电极电流1c I供给,电流已经形成强烈正反馈,因此晶闸管继续维持导通。 (2)因此,晶闸管的门极电流只能触发控制其导通而不能控制其关断。 2.3.1.4.4 晶闸管的关断工作原理 满足下面条件,晶闸管才能关断: (1)去掉AK间正向电压; (2)AK间加反向电压; (3)设法使流过晶闸管的电流降低到接近于零的某一数值以下。 2.3.2.1.1 晶闸管正常工作时的静态特性 (1)当晶闸管承受反向电压时,不论门极是否有触发电流,晶闸管都不会导通。 (2)当晶闸管承受正向电压时,仅在门极有触发电流的情况下晶闸管才能导通。 (3)晶闸管一旦导通,门极就失去控制作用,不论门极触发电流是否还存在,晶闸管都保持导通。 (4)若要使已导通的晶闸管关断,只能利用外加电压和外电路的作用使流过晶闸管的电流降到接近于零的某一数值以下。 2.4.1.1 GTO的结构 (1)GTO与普通晶闸管的相同点:是PNPN四层半导体结构,外部引出阳极、阴极和门极。 (2)GTO与普通晶闸管的不同点:GTO是一种多元的功率集成器件,其内部包含数十个甚至数百个供阳极的小GTO元,这些GTO元的阴极和门极在器件内部并联在一起,正是这种特殊结构才能实现门极关断作用。 2.4.1.2 GTO的静态特性 (1)当GTO承受反向电压时,不论门极是否有触发电流,晶闸管都不会导通。 (2)当GTO承受正向电压时,仅在门极有触发电流的情

电力电子技术复习总结(王兆安)

电力电子技术复习题1 第1章电力电子器件 J电力电子器件一般工作在开关状态。 乙在通常情况下,电力电子器件功率损耗主要为—通态损耗—,而当器件开关频率较高时,功率损耗主要为开关损耗。 3. 电力电子器件组成的系统,一般由—控制电路__、_驱动电路_、_主电路_三 部分组成,由于电路中存在电压和电流的过冲,往往需添加保护电路。 4. 按内部电子和空穴两种载流子参与导电的情况,电力电子器件可分为_单极型 器件、双极型器件、复合型器件三类。 L电力二极管的工作特性可概括为承受正向电压导通,承受反相电压截止。 6.电力二极管的主要类型有—普通二极管_、_快恢复二极管_、_肖特基二极管_。乙肖特基二极管的开关损耗小于快恢复二极管的开关损耗。 匕晶闸管的基本工作特性可概括为正向电压门极有触发则导通、反向电压则 截止。 乞对同一晶闸管,维持电流IH与擎住电流IL在数值大小上有IL大于IH 。 10. 晶闸管断态不重复电压UDSMt转折电压Ubo数值大小上应为,UDSM大于 _UbQ 11. 逆导晶闸管是将二极管与晶闸管反并联(如何连接)在同一管芯上的功率集成器件。 12(TO的_多元集成_结构是为了便于实现门极控制关断而设计的。 13. MOSFET勺漏极伏安特性中的三个区域与GTRft发射极接法时的输出特性中的 三个区域有对应关系,其中前者的截止区对应后者的_截止区一、前者的饱和区对应后者的_放大区_、前者的非饱和区对应后者的_饱和区_ 。 14. 电力MOSFE的通态电阻具有正温度系数。 15JGBT的开启电压UGE(th )随温度升高而_略有下降一,开关速度—小于— 电力MOSFET 16.按照驱动电路加在电力电子器件控制端和公共端之间的性质,可将电力电子 器件分为电压驱动型和电流驱动型两类。 IZIGBT的通态压降在1/2或1/3额定电流以下区段具有__负—温度系数,在1/2或 1/3额定电流以上区段具有__正—温度系数。 18.在如下器件:电力二极管(Power Diode )、晶闸管(SCR、门极可关断晶闸管

电力电子技术总结

电力电子技术总结标准化管理部编码-[99968T-6889628-J68568-1689N]

1、电力电子技术的概念:所谓电力电子技术就是应用于电力领域的电子技术。 2、电力电子技术的诞生是以1957年美国通用电气公司研制出第一个晶闸管为标志的。 3、晶闸管是通过对门极的控制能够使其导通而不能使其关断的器件,属于半控型器件。对晶闸管电路的控制方式主要是相位控制方式,简称相控方式。 4、70年代后期,以门极可关断晶闸管(GTO )、电力双极型晶体管(BJT )和电力场效应晶体管(Power-MOSFET )为代表的全控型器件迅速发展。 5、全控型器件的特点是,通过对门极(基极、栅极)的控制既可使其开通又可使其关断。 6、把驱动、控制、保护电路和电力电子器件集成在一起,构成电力电子集成电路(PIC )。 第二章 1、电力电子器件的特征 ◆所能处理电功率的大小,也就是其承受电压和电流的能力,是其最重要的参数,一般都远大于处理信息的电子器件。 ◆为了减小本身的损耗,提高效率,一般都工作在开关状态。 ◆由信息电子电路来控制 ,而且需要驱动电路。 ◆自身的功率损耗通常仍远大于信息电子器件,在其工作时一般都需要安装散热器 2、电力电子器件的功率损耗 3、电力电子器件的分类 (1)按照能够被控制电路信号所控制的程度 ◆半控型器件:主要是指晶闸管(Thyristor )及其大部分派生器件。 器件的关断完全是由其在主电路中承受的电压和电流决定的。 ◆全控型器件:目前最常用的是 IGBT 和Power MOSFET 。 通过控制信号既可以控制其导通,又可以控制其关断。 ◆不可控器件: 电力二极管(Power Diode ) 不能用控制信号来控制其通断。 (2)按照驱动信号的性质 ◆电流驱动型 :通过从控制端注入或者抽出电流来实现导通或者关断的控制。 ◆电压驱动型 仅通过在控制端和公共端之间施加一定的电压信号就可实现导通或者关断的控制。 (3)按照驱动信号的波形(电力二极管除外 ) ◆脉冲触发型 通过在控制端施加一个电压或电流的脉冲信号来实现器件的开通或者关断的控制。 ◆电平控制型 必须通过持续在控制端和公共端之间施加一定电平的电压或电流信号来使器件开通并维持在导通状态或者关断并维持在阻断状态。 4、几种常用的电力二极管:普通二极管、快恢复二极管、肖特基二极管 通态损耗 断态损耗 开关损耗 开通损耗 关断损耗

电力电子技术课程设计报告

电力电子课程设计报告题目三相桥式全控整流电路设计 学院:电子与电气工程学院 年级专业:2015级电气工程及其自动化 姓名: 学号: 指导教师:高婷婷,林建华 成绩:

摘要 整流电路尤其是三相桥式可控整流电路是电力电子技术中最为重要同时也是应用得最为广泛的电路,不仅用于一般工业,也广泛应用于交通运输、电力系统、通信系统,能源系统及其他领域,因此对三相桥式可控整流电路的相关参数和不同性质负载的工作情况进行对比分析与研究具有很强的现实意义,这不仅是电力电子电路理论学习的重要一环,而且对工程实践的实际应用具有预测和指导作用,因此调试三相桥式可控整流电路的相关参数并对不同性质负载的工作情况进行对比分析与研究具有一定的现实意义。 关键词:电力电子,三相,整流

目录 1 设计的目的和意义………………………………………1 2 设计任务与要求 (1) 3 设计方案 (1) ?3.1三相全控整流电路设计 (1) 3.1.1三相全控整流电路图原理分析 (2) ?3.1.2整流变压器的设计 (2) ?3.1.3晶闸管的选择 (3) 3.2 保护电路的设计 (4) 3.2.1变压器二次侧过压保护 (4) ?3.2.2 晶闸管的过压保护………………………………………………4 3.2.3 晶闸管的过流保护………………………………………………5 3.3 触发电路的选择设计 (5) 4 实验调试与分析 (6) 4.1三相桥式全控整流电路的仿真模型 (6)

4.2仿真结果及其分析……………………………………………7 5 设计总结 (8) 6 参考文献 (9)

1 设计的目的和意义 本课程设计属于《电力电子技术》课程的延续,通过设计实践,进一步学习掌握《电力电子技术》,更进一步的掌握和了解他三相桥式全控整流电路。通过设计基本技能的训练,培养学生具备一定的工程实践能力。通过反复调试、训练、便于学生掌握规范系统的电子电力方面的知识,同时也提高了学生的动手能力。 2 设计任务与要求 三相桥式全控整流电路要求输入交流电压2150,10,0.5U V R L H ==Ω=为阻 感性负载。 1.写出三相桥式全控整流电路阻感性负载的移相范围,并计算出直流电压的变化范围 2.计算α=60°时,负载两端电压和电流,晶闸管平均电流和有效电流。 3.画出α=60°时,负载两端 d U 和晶闸管两端 1 VT U 波形。 4.分析纯电阻负载和大电感负载以及加续流二极管电路的区别。 5.晶闸管的型号选择。 3 设计方案 3.1三相全控整流电路设计

电力电子技术第二章总结

2016 电力电子技术 作业:第二章总结 班级:XXXXXX学号:XXXXXXX姓名:XXXXXX

第二章电力电子器件总结 1.概述 不可控器件——电力二极管(Power Diode) GPD FRD SBD 半控型器件——晶闸管(Thyristor) FST TRIAC LTT 典型全控型器件GTO GTR MOSFET IGBT 其他新型电力电子器件MCT SIT SITH IGCT 功率集成电路与集成电力电子模块HVIC SPIC IPM 1.1相关概念 主电路(Main Power Circuit):在电气设备或电力系统中,直接承担电能的变换或控制任务的电路? 电力电子器件(Power Electronic Device)是指可直接用于处理电能的主电路中,实现电能的变换或控制的电子器件? 1.2特点 电功率大,一般都远大于处理信息的电子器件? 一般都工作在开关状态? 由信息电子电路来控制,而且需要驱动电路(主要对控制信号进行放大)? 功率损耗大,工作时一般都需要安装散热器? 通态损耗,断态损耗,开关损耗(开通损耗关断损耗) 开关频率较高时,可能成为器件功率损耗的主要因素? 电力电子器件在实际应用中的系统组成 一般是由控制电路?驱动电路和以电力电子器件为核心的主电路组成一个系统? 关键词电力电子系统电气隔离检测电路保护电路三个端子 1.3电力电子器件的分类 按能够被控制电路信号控制的程度不同可分为半控型器件(开通可控,关断不可控) 全控型器件(开通,关断都可控) 不可控器件(开通,关断都不可控) 按照驱动信号的性质不同可分为电流驱动型电压驱动型 按照驱动信号的波形(电力二极管除外)不同可分为脉冲触发型电平控制型 按照载流子参与导电的情况不同可分为单极型器件(由一种载流子参与导电) 双极型器件(由电子和空穴两种载流子参与导电)复合型器件(由单极型器件和双极型器件集成混合而成,也称混合型器件) 关键词控制的程度驱动信号的性质?波形载流子参与导电的情况工作原理基本特性主要参数2不可控器件——电力二极管(Power Diode) 2.1结构与工作原理 电力二极管实际上是由一个面积较大的PN结和两端引线以及封装组成的? PN节(PN junction):采用不同的掺杂工艺,通过扩散作用,将P型半导体与N型半导体制作在同一块半导体(通常是硅或锗)基片上,在它们的交界面就形成空间电荷区称为PN结? N型半导体(N为Negative的字头,由于电子带负电荷而得此名):即自由电子浓度远大于空穴浓度的杂质半导体? P型半导体(P为Positive的字头,由于空穴带正电而得此名):即空穴浓度远大于自由电子浓度的杂质半导体? 正向电流IF :当PN结外加正向电压(正向偏置)时,在外电路上则形成自P区流入而从N区流出的电流? 反向截止状态:当PN结外加反向电压时(反向偏置)时,反向偏置的PN结表现为高阻态,几乎没有电流流过的状态? 反向击穿:PN结具有一定的反向耐压能力,但当施加的反向电压过大,反向电流将会急剧增大,破坏PN 结反向偏置为截止的工作状态?雪崩击穿齐纳击穿(可以恢复) 热击穿(不可恢复) P-i-N结构

电力电子技术复习要点

电力电子技术复习要点 第一章 电力电子器件及其应用 一、一般性概念 1、什么是场控(电压控制)器件、什么是电流控制器件?什么是半控型器件?什么是全控型器件?什么是复合器件? 2、波形系数的概念,如何利用波形计算相关的平均值、有效值 3、什么是器件的安全工作区,有何用途? 4、什么是器件的开通、关断时间,器件开关速度对电路工作有何影响? 二、二极管 1、常用二极管有哪些类型?各有什么特点? 2、二极管额定电流、额定电压的概念,如何利用波形系数选择二极管额定电流? 三、晶闸管 1、晶闸管的开通、关断条件、维持导通的条件 2、维持电流、擎住电流的概念 3、晶闸管额定电流、额定电压的概念,如何利用波形系数选择晶闸管额定电流? 四、GTR 1、GTR 如何控制工作? 2、GTR 正常工作对控制电流有何要求?为什么? 3、GTR 的安全工作区有何特别?什么是二次击穿现象,有何危害? 4、GTR 额定电流、额定电压的概念,如何利用波形系数选择GTR 额定电流? 五、MOSTFET 、IGBT 1、MOSTFET 、IGBT 如何控制工作? 2、MOSTFET 、IGBT 正常工作对控制电压有何要求?为什么? 3、MOSTFET 、IGBT 额定电流、额定电压的概念,如何利用波形系数选择MOSTFET 、IGBT 管额定电流? 六、如何设计RCD 缓冲电路的参数?各个约束条件的含义?如果增加m ax dt dU 、 瞬态冲击电流I max 限制,其约束条件如何表达?

第二章直流―直流变换电路 一、基本分析基础 1、电路稳态工作时,一个周期电容充放电平衡原理 2、电路稳态工作时,一个周期电感伏秒平衡原理 3、电路稳态工作时,小纹波近似原理 二、Buck、Boost、Buck-Boost、Flyback、Forward电路 1、电感电流连续时,电路稳态工作波形分析 2、利用工作波形分析计算输入输出关系 3、开关元件(VT、VD)的峰值电流、额定电流、承受的电压如何计算? 4、输出纹波如何计算? 第三章直流-交流变换电路 一、单相方波逆变电路 1、单相方波逆变电路控制规律、工作波形分析 2、利用波形分析计算单相方波逆变电路输入电流、电压、功率和输出的电流、 电压、功率 3、单相方波逆变电路移相调压、矩形波调制调压的原理 二、单相SPWM逆变 1、SPWM调制的原理 2、自然采样法、规则采样法、同步调制、异步调制、分段同步调制、幅度调制 比、载波比(频率调制比)的概念 3、桥式电路双极性SPWM逆变的控制方法、输入输出电压关系、如何实现输出 基波的调频调压 4、桥式电路单极性倍频SPWM逆变的控制方法、输入输出电压关系、如何实现 输出基波的调频调压 三、三相逆变 1、三相方波逆变的控制原理、纯电阻负载工作波形分析 2、三相方波逆变纯电阻负载输入、输出的电流、电压、功率计算 3、三相SPWM逆变的控制原理,纯电阻负载工作波形分析

电力电子技术课程设计报告

电力电子技术课程设计 报告书 专业班级:16电气2班 姓名:王浩淞 学号:2016330301054 指导教师:雷美珍

目录 1、webench电路设计 1.1设计任务要求 输入电压为(8V-10V),输出电压为5V,负载电流为1A 1.2设计方案分析 图1.3.1主电路原理图 图1.3.2元器件参数 图1.3.3额定负载时工作值

图1.3.4输出电流和系统效率间的关系 如图1.3.4所示,在输出电流相同的情况下,输入电压越小,系统的稳态效率越高,因此提高效率的最直接方式就是降低系统的输入电压,其次在输入电压相同的情况下,我们可以调节输出电压的大小,使系统效率达到最大,例如当输入电压为9.0V时,根据图像输出电流为0.40A的时候效率最高。第二种方法是改变元器件的参数,通过使用DCR(直流电阻)小的电感元件来实现输出纹波电压降低。 1.3主芯片介绍 TPS561201和TPS561208采用SOT-23封装,是一款简单易用的1A同步降压转换器。这些器件经过优化,可以在最少的外部元件数量下工作,并且还经过优化以实现低待机电流。这些开关模式电源(SMPS)器件采用D-CAP2模式控制,可提供快速瞬态响应,并支持低等效串联电阻(ESR)输出电容,如特种聚合物和超低ESR陶瓷电容,无需外部补偿元件。TPS561201以脉冲跳跃模式工作,在轻负载操作期间保持高效率。TPS561201和TPS561208采用6引脚1.6×2.9(mm)SOT(DDC)封装,工作在-40°C至125°C的结温范围内。 1.4电气仿真结果分析

图1.4.1启动仿真图1.4.2稳态仿真 图1.4.3暂态仿真图1.4.4 负载暂态仿真 二、基于电力系统工具箱的电力电子电路仿真 2.1 设计要求和方案分析 本课程设计主要应用了MATLAB软件及其组件之一Simulink,进行系统的设计与仿真系统主要包括:Boost升压斩波主电路部分、PWM控制部分和负载。Boost升压斩波主电路部分拖动带反电动势的电阻,模拟显示中的一般负载,若实际负载中没有反电动势,只需令其为零即可。负载为主电路部分提供脉冲信号,控制全控器件IGBT的导通和关断,实现整个系统的运行。在Simulink中完成各个功能模块的绘制后,即可进行仿真和调试,用Simulink 提供的示波器观察波形,进行相应的电压和电流等的计算,最后进行总结,完成整个Boost 变换器的研究与设计。 2.2 simulink仿真模型分析 电路设计好后主电路中的电感电容值已确定,此时只要调节触发波形的占空比即可调节Boost Chopper输出电压。电路设计好后主电路中的电感电容值已确定,此时只要调节触发波形的占空比即可调节Boost Chopper输出电压。占空比越大,Boost Chopper的输出电压值

电力电子技术总结完整版

电力电子技术总结 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

1、电力电子技术的概念:所谓电力电子技术就是应用于电力领域的电子技术。 2、电力电子技术的诞生是以1957年美国通用电气公司研制出第一个晶闸管为标志的。 3、晶闸管是通过对门极的控制能够使其导通而不能使其关断的器件,属于半控型器件。对晶闸管电路的控制方式主要是相位控制方式,简称相控方式。 4、70年代后期,以门极可关断晶闸管(GTO)、电力双极型晶体管(BJT)和电力场效应晶体管(Power-MOSFET)为代表的全控型器件迅速发展。 5、全控型器件的特点是,通过对门极(基极、栅极)的控制既可使其开通又可使其关断。 6、把驱动、控制、保护电路和电力电子器件集成在一起,构成电力电子集成电路(PIC)。 第二章 1、电力电子器件的特征 ◆所能处理电功率的大小,也就是其承受电压和电流的能力,是其最重要的参数,一般都远大于处理信息的电子器件。 ◆为了减小本身的损耗,提高效率,一般都工作在开关状态。 ◆由信息电子电路来控制 ,而且需要驱动电路。 ◆自身的功率损耗通常仍远大于信息电子器件,在其工作时一般都需要安装散热器

2、电力电子器件的功率损耗 3、电力电子器件的分类 (1)按照能够被控制电路信号所控制的程度 ◆半控型器件:主要是指晶闸管(Thyristor )及其大部分派生器件。 器件的关断完全是由其在主电路中承受的电压和电流决定的。 ◆全控型器件:目前最常用的是 IGBT 和Power MOSFET 。 通过控制信号既可以控制其导通,又可以控制其关断。 ◆不可控器件: 电力二极管(Power Diode ) 不能用控制信号来控制其通断。 (2)按照驱动信号的性质 ◆电流驱动型 :通过从控制端注入或者抽出电流来实现导通或者关断的控制。 ◆电压驱动型 通态损耗 断态损耗 开关损耗 开通损耗 关断损耗

电力电子技术的重要作用

1 电力电子技术的重要作用 电力电子是国民经济和国家安全领域的重要支撑技术。它是工业化和信息化融合的重要手段,它将各种能源高效率地变换成为高质量的电能,将电子信息技术和传统产业相融合的有效技术途径。同时,还是实现节能环保和提高人民生活质量的重要技术手段,在执行当前国家节能减排、发展新能源、实现低碳经济的基本国策中起着重要的作用。 电力电子器件在电力电子技术领域的应用和市场中起着决定性的作用,是节能减排、可再生能源产业的“绿色的芯”。电力电子半导体器件是伴随着以硅为基础的微电子技术一起发展的。在上世纪五十到六十年代,微电子的基本技术得到了完善,而功率晶体管和晶闸管则主导了电能变换的应用。从七十年代到八十年代,功率MOS技术得到了迅速发展并在很大程度上取代了功率晶体管。基于MOS技术的IGBT器件开始出现,并研发出CoolMOS。九十年代初以后,主要的研发力量集中在对IGBT器件性能的提高和完善。到了本世纪初,经过了若干代的连续发展,以德国英飞凌、瑞士ABB、美国国际整流器公司(IR)、日本东芝和富士等大公司为代表的电力电子器件产业已经拥有了趋于完美的IGBT技术,产品的电压覆盖300V到6.5kV范围。 电力电子器件与相关技术包括: (1)功率二极管; (2)晶闸管; (3)电力晶体管; (4)功率场效应晶体管(MOSFET); (5)绝缘栅双极型晶体管(IGBT); (6)复合型电力电子器件; (7)电力电子智能模块(IPM)和功率集成芯片(Power IC); (8)碳化硅和氮化镓功率器件; (9)功率无源元件; (10)功率模块的封装技术、热管技术; (11)串并联、驱动、保护技术。 2 电力电子技术发展现状和趋势 2.1电力电子器件发展现状和趋势 电力电子器件产业发展的主要方向: (1)高频化、集成化、标准模块化、智能化、大功率化; (2)新型电力电子器件结构:CoolMOS,新型IGBT ; (3)新型半导体材料的电力电子器件:碳化硅、氮化镓电力电子器件。 2.2 电力电子装置、应用的现状和趋势 (1)在新能源和电力系统中的应用 电力系统是电力电子技术应用中最重要和最有潜力的市场领域,电力电子技术在电能的发生、输送、分配和使用的全过程都得到了广泛而重要的应用。从用电角度来说,要利用电力电子技术进行节能技术改造,提高用电效率;从发、输配电角度来说,必须利用电力电子技术提高发电效率和提高输配电质量。 (2)在轨道交通和电动汽车中的应用 电力电子技术在轨道交通牵引系统中的应用主要分为三个方面:主传动系统、辅助传动系统、控制与辅助系统中的稳压电源。在电力电子技术的带动下,电传动系统由直流传动走向现代交流传动。电力电子器件容量和性能的提高、封装形式

文本预览
相关文档 最新文档