当前位置:文档之家› (8)The core features of CSCL_ Social situation, collaborative knowledge processes and their design

(8)The core features of CSCL_ Social situation, collaborative knowledge processes and their design

(8)The core features of CSCL_ Social situation, collaborative knowledge processes and their design
(8)The core features of CSCL_ Social situation, collaborative knowledge processes and their design

Computer-Supported Collaborative Learning (2015)

The core features of CSCL: Social situation, collaborative knowledge processes and their design

Ulrike Cress * Gerry Stahl * Sten Ludvigsen * Nancy Law

The four articles presented in this issue cover a broad spectrum of topics: the hierarchy of learners, different forms of awareness, group composition and classroom orchestration. The learning contexts also differ significantly, considering collaborative learning in university courses, in organizational e-learning and in vocational training. Accordingly, the student actions and interactions that the different settings aim to induce vary strongly (but return to themes in previous articles): sending and answering requests (Wise, Hausknecht & Zhao 2014), building knowledge using Knowledge Forum (Zhao & Chan 2014) or creating tangible artifacts (Damsa 2014).

Even though the surface structures of the four articles are quite different, they all contribute to understanding core underlying topics of CSCL: the influence of social aspects of the collaboration scenario, the type of learning that takes place in collaborative groups and the design of collaborative learning processes.

The influence of the social situation

This issue concerns how the social aspects of the collaborative situation influence collaboration and learning. It considers qualities of the group that the learners are part of, but also characteristics of the group’s members. In CSCL, the interaction between group members is generally mediated through a technical tool. This tool communicates cues about the members and the group. The social cues that the CSCL tool delivers can be at least as influential as the objective features of the social situation.

In the 1980s, when computers first became common means of communication, research on “computer-mediated communication” (CMC) mainly regarded its differences from face-to-face communication (e.g., Kiesler, Siegel & McGuire 1984). Early theories assumed that CMC would be deficient, because—compared to direct communication—it would only deliver a limited subset of social cues. For example, if communication partners communicate via text messages, they cannot see each other; this visual anonymity was expected to influence people’s interaction negatively.

Later on, research in CMC observed that computer mediation need not necessarily be a hindrance for collaboration. Even the anonymity that may result from remote communication can be seen to be a means to overcoming problems inherent in socially richer face-to face communication situations (Spears & Lea 1994; Walter 1996). For instance, in face-to-face situations people of low status contribute less than those of high status and their contributions do not attract the same amount of attention as those from high-status people. A computer-mediated scenario that hides participants’ identity provides low-status participants a

higher chance to be equally involved and as influential as high status participants (Sproull & Kielser 1986).

It was also found that in anonymous situations group members can develop an even stronger group identity than in non-anonymous face-to-face situations (Cress 2005; Postmes, Spears, Sakhel & deGroot 2001). This is the case because anonymity can hide the fact that the group members may be quite heterogeneous. If communication takes place in a scenario where others are not visually present in person, an individual may focus more on the group as a whole instead of on its single members. If individuals interact without seeing each other, they may develop a stronger group identity and behave more as group members than as individuals (Reicher 1984).

In contrast to the view that computer mediation provides a socially impoverished environment (where social context cues are filtered out), research in CSCL assumes that mediational tools may also offer social enhancements to the interaction. For example, some technical tools can make cues visible that would not be visible in non-mediated interactions. Many such possibilities are included within the notion of “awareness tools.” These tools may present information about the social situation or about the group members, which would not be available in normal, non-mediated communication (Buder 2011). For example, such tools can provide information about characteristics of people, such as their knowledge, activities, expertise, social status or social relations. They can even present this information in an aggregated way that makes particular conclusions salient. An awareness tool can provide information about peers’ activity levels or recommend suitable learning partners.

Differentiating the type of learning that takes place in collaborative groups

Probably the most important aspect of CSCL research is the detailed analysis of interaction processes and the learning that takes place during collaborative activities. Collaboration, as it is understood in CSCL (Dillenbourg 1999), is much more than just communication between individuals, contributing information to each other, exchanging ideas, or coordinating activities to reach individual or shared goals. It is more specific than just a general benefit of individuals learning from each other. CSCL is especially interested in situations where people do not just exchange information, but jointly create something new, which could be new knowledge or understanding that none of the participants had before. Joint meaning making and constructing new knowledge can be regarded as a kind of gold standard in CSCL.

Group cognition (Stahl 2006) is achieved when the group not only brings different people together, where the members may or may not benefit from some other members, but when the group as a whole starts to make meaning, develops collective cognitive responsibility (Zhang, Scardamalia, Reeve & Messina 2009) or creates new knowledge (Cress & Kimmerle 2008; van Aalst 2009). CSCL has the vision that being in a group can not only empower individual learning and performance, but can also enable emergent meaning-making processes at the group unit of analysis (Oeberst, Halatchliyski, Kimmerle & Cress 2014; Stahl 2013).

CSCL aims not only to show that learning in a group is efficient—as research in cooperative learning has done for many years (Johnson & Johnson 1999; Slavin 1980). It also aims to demonstrate that the group interaction has a learning or knowledge-constructing effect. This is why CSCL studies go beyond comparing learning in different collaborative situations and try to find out what kind of learning takes place, and how exactly a group benefits from the activities and interactions of its members.

Microanalysis and ethnomethodology can be useful approaches for understanding processes underlying learner outcomes and production of knowledge artifacts. It is not easy to quantify and predict the pivotal moments when collaborative knowledge creation or collaborative meaning making really happen (Law & Wong 2013; Suthers et al. 2013). It still seems to be a “magic” moment (Roschelle & Teasley 1995) when such a pivotal process of shared meaning making takes place. Current research in

CSCL shows that we may identify such events in retrospect, but we are far away from understanding how they happen or reliably predicting them. They remain rare, poorly understood and unpredictable. Designing computer support for collaborative learning

A central aim of CSCL research is to generate situations that make collaborative learning effective and to enhance the probability that emergent processes may take place. Consequently, a core activity of CSCL research is to design adequate CSCL tools and settings. How can activities of deep learning and effective interaction be best induced? Which learning materials can stimulate such processes? What kinds of collaboration scripts are needed (Fischer, Mandl, Haake & Kollar 2006)? How can learning at individual, small-group and classroom levels be orchestrated to support each other fluidly (Dillenbourg 2013)?

Several approaches may be mentioned here: The knowledge building theory (Scardamalia & Bereiter 2014) envisions that learners would collectively build knowledge through taking collective responsibility to improve their understanding of authentic problems. The Knowledge Forum software was designed as a discourse tool that scaffolds learners’ sharing of ideas, structures the process of critical evaluation, refinement or improvement of ideas, as well as supports the construction of rise-above summaries or the identification of problems of understanding.

Scripting emerged as a necessity in situations where self-regulation of the learning process needs increased external guidance and structure (Fischer et al. 2006; Kobbe et al. 2007). Scripts assign roles and responsibilities to the learners, coordinate their activities and give implicit instructions. Thus, scripts structure the social situation as well as the learning process.

The construction of artifacts (Kafai & Resnick 1996; Stahl, Ludvigsen, Law & Cress 2014) was seen as a possibility to ensure that knowledge exchange does not remain abstract, but also comprises practical and tacit knowledge. Collaboratively working on such artifacts enables natural forms of internalization and externalization, which are essential mechanisms of interpersonal learning (Kimmerle, Moskaliuk, Oeberst & Cress 2015; Tee & Lee 2013). However, we have found that the use of well-established CSCL tools and environments alone does not guarantee that collective knowledge construction will take place (Overdijk, van Diggelen, Andriessen & Kirschner 2014).

How the four articles of this issue contribute to these core concerns in CSCL

In the following sections, we do not intend to provide summaries of the studies in exactly the way they were presented by the authors. Instead, we try to relate the four studies to the above mentioned core topics in CSCL and ask what each study can contribute to these aspects.

Hierarchical positions

The article by Martin Rhem, Wim Gijselaers and Mien Segers deals with the impact of hierarchical positions on communities of learning. It contributes to our understanding of how the characteristics of group members influences collaborative learning interactions. The authors provide an empirical analysis of a field setting in which an organization’s members interact in an organizational-learning setting. The authors find the effects they expected: Participants in the higher hierarchy positions were more active and had better learning performances than those at a lower level.

A surprising result of their study is revealed by a cluster analysis that identifies different clusters of learners: As expected, three groups are determined by the different hierarchy levels (low, medium, high) and their activity pattern is consistent with their hierarchical status. Interestingly the study identifies a

fourth group, consisting of the most active participants. These were the drivers of the learning communities, as their agency directed the groups’ activities. They authored the most contributions and those with the highest quality. Half of the members in this group were from a high and the other half from a low position in the hierarchy. This second half is the interesting group. They were highly active and valuable leaders in the learning communities—despite their low hierarchical level.

The study reveals a correlation that probably does not result from a causal effect. It might even be expected that people of higher hierarchical positions are more active and more dominant in general. Therefore, it is natural that they also take over the leadership in their learning communities. However, it remains unclear what enables and motivates some low-status members to take over the lead. Are these people who would in principle have leadership qualities, but did not have an adequate career? Does the online setting give them a chance to be more active and to become leaders? What would have been the situation if the collaboration did not take place in a remote e-learning setting, but in a face-to-face scenario? We do not know the answers, but it would be worthwhile to research it. What factors in these learning communities helped at least single learners unfold their leadership potential?

An interesting finding of the study, which is reported more marginally, is the fact that no group effects were found. The non-significant intra-group correlation seems to express that the different groups did not have any specific influence on people’s learning and performance. A leader may unfold leadership potential in any group, independent of the group composition. Is this a hint that group composition and the social influence of being in a special group is not as high as we might expect in CSCL? Are such social influences perhaps negligible compared to the characteristics of the single learner? Is this due to the special social setting that was chosen or is this a more general finding? These questions refer to the core of CSCL when it comes to analyzing the influence of the social setting on CSCL.

Social awareness and knowledge awareness

The second article, by Jian-Wei Lin, Li-Jung Mai and Yuan-Cheng La, compares the influence of two forms of awareness: social awareness and knowledge awareness. Both were quite commonly researched in earlier CSCL research, but their effect has not been compared directly. The reported study finds that social awareness had much greater effects than knowledge awareness. Especially over time, it unfolded its influence. Social awareness stimulated peer interaction, led to denser networks and resulted in more social connections among group members. It also resulted in better performance of the individual learners. This is interesting because one might have expected that the awareness of others’ knowledge can help a learner to find the best partner who can complement the learner’s own knowledge optimally. Therefore, it is surprising that the social aspect of others’ activities and social relations has a stronger effect (even on performance) than the knowledge about others’ expertise. We may ask if this is a result of how the study operationalized both forms of awareness or if it is generalizable to other situations.

This study also leads to interesting questions for future research: What kind of collaboration and learning take place? When learners provided with social awareness perform better in a knowledge test than learners provided with knowledge awareness, does this also mean that learning is more efficient at the level of the group? Did the different types of awareness have an effect on people’s interaction, on group cognition and knowledge construction? Was the learning discourse different across the two conditions?

Fixed and opportunistic grouping

The study by Tuya Siqin, Jan van Aalst and Samuel Kai Wah Chu about the effect of fixed group vs. opportunistic collaboration tries to answer the kinds of questions raised with regard to the last study. In

the fixed-group condition, learners were organized in small groups, where five learners were randomly assigned to a group in order to complete certain tasks. In the opportunistic-collaboration condition, in contrast, learners individually and explicitly decided about the partners they wanted to collaborate with for a particular problem. They disbanded the group when the problem had been solved and flexibly formed new groups to achieve subsequent goals.

In order to compare the two conditions, the authors apply a multi-faceted analysis. They consider quantitative features of participation and interactivity as well as the content of the dialogs and the quality of knowledge construction that took place in the groups. The authors differentiate between knowledge sharing, knowledge construction and knowledge creation (van Aalst 2009). It is interesting that they do not find any knowledge creation at all in any group. The majority of interactions are coded as knowledge sharing (where knowledge was just accumulated), about one third as knowledge construction (where the group got a deeper understanding of a focal problem), but no activity shows knowledge creation (where understanding took place, beyond what was already known in the group). This is the case for both types of groups.

The rarity of knowledge creation is an important result, which has also been found in other CSCL research and that needs to be acknowledged. Even if CSCL environments have the ideal goal of supporting learners to effectively create knowledge, this appears to be a rare occurrence. It remains an ideal that does not take place frequently, and if it takes place, it may not be measured easily. May this be because deep learning in groups needs time to happen? Groups must interact for an extended period to develop effective group practices for collaboration and knowledge construction within a classroom climate that values and nurtures knowledge building (Ritella & Hakkarainen 2012; Stahl 2015)? Even then, it may be a serendipitous result, situated in the unique discourse of students working together in a structured educational setting (Hakkarainen 2009; Hakkarainen & Lipponen 2002), which makes it difficult to predict.

Classroom orchestration using tabletops

The article by Sebastien Cuendet, Jessica Dehler-Zufferey, Giulia Ortoleva and Pierre Dillenbourg on an integrated way to orchestrate tangible user interfaces in a classroom addresses aspects of designing effective environments and orchestrating classroom activities. The knowledge domain is vocational training for carpenters. The design of the environment is based on detailed studies of how carpenters do their work, in order to minimize the problems of tacit knowledge and of weak knowledge transfer between school and work.

The learning setting involves a tangible user interface called TaraCarp. This top-down camera-projector tabletop system combines real and virtual artifacts. The tabletop is also used as a tool for scripting the collaboration (Dillenbourg & Evans 2011; Dillenbourg & Hong 2008). First, each student has to cut an object virtually on the tabletop and print the developed plan. After having critically reflected and improved on their own individual plans, the apprentices have to pair up and exchange their plans. Each one then marks out a real block and cuts it according to the plan of the other learner. The two apprentices are then brought together to compare the objects. The tabletops are used not only as part of the tangible interfaces, but also as orchestration tools for the teacher.

The study is a great example of how CSCL can combine work on real and virtual artifacts, how it can structure collaboration and make the complex situation manageable in a classroom. Further studies with this setting could perhaps make clear, how exactly the students benefit from the collaboration. Does the collaboration in dyads have specific effects? Can we trace the interpersonal knowledge transfer of practical knowledge? Does the collaboration just have a motivational effect or can we also identify a more specific effect on the types of learning that take place in such a practical setting? As the article shows, tangible interfaces may provide interesting and innovative means for CSCL that lead to new questions

about the nature of what students can learn through collaboration and what kind of knowledge is shared or created.

CSCL 2015

The four articles in this second issue of 2015 contribute to furthering our understanding of CSCL. They raise highly relevant questions about the social nature of collaborative learning, about the kind of knowledge that is collaboratively constructed in a group and about how we can use technical tools to structure or design ongoing social and knowledge-related processes for learning. They also show that the goal of collaboration to improve understanding and to construct new knowledge is not easy to achieve.

The theme of the upcoming 11th Conference on Computer-Supported Collaborative Learning that will take place in Gothenburg is “Exploring the Material Conditions of Learning: Opportunities and Challenges for CSCL.” This may direct our attention to further aspects of collaboration and learning—how social, cognitive and collaborative processes are structured through artifacts, affordances and forces associated with the sociotechnical environment in CSCL.

References

Buder, J. (2011). Group awareness tools for learning: Current and future directions. Computers in Human Behavior. 27, 1114–1117.

Cress, U. (2005). Ambivalent effect of member portraits in virtual groups. Journal of Computer-Assisted Learning. 21, 281-291.

Cress, U., & Kimmerle, J. (2008). A systemic and cognitive view on collaborative knowledge building with wikis. International Journal of Computer-Supported Collaborative Learning. 3(2), 105-122. Damsa, C. I. (2014). The multi-layered nature of small-group learning: Productive interactions in object-oriented collaboration. International Journal of Computer-Supported Collaborative Learning.

9(3), 247-281.

Dillenbourg, P. (1999). What do you mean by "collaborative learning"? In P. Dillenbourg (Ed.), Collaborative learning: Cognitive and computational approaches.(pp. 1-16). Amsterdam, NL: Pergamon, Elsevier Science.

Dillenbourg, P. (2013). Design for classroom orchestration. Unpublished manuscript. Web: https://www.doczj.com/doc/a212647254.html,/2863702/_Design_for_Classroom_Orchestration_position_paper. Dillenbourg, P., & Evans, M. (2011). Interactive tabletops in education. International Journal of Computer-Supported Collaborative Learning. 6(4), 491-514.

Dillenbourg, P., & Hong, F. (2008). The mechanics of CSCL macro scripts. International Journal of Computer-Supported Collaborative Learning. 3(1), 5-23.

Fischer, F., Mandl, H., Haake, J., & Kollar, I. (Eds.). (2006). Scripting computer-supported collaborative learning: Cognitive, computational and educational perspectives. Dordrecht, Netherlands: Kluwer Academic Publishers. Computer-supported collaborative learning book series, vol 6. Hakkarainen, K. (2009). A knowledge-practice perspective on technology-mediated learning.

International Journal of Computer-Supported Collaborative Learning. 4(2), 213-231.. Hakkarainen, K., & Lipponen, L. (2002). Epistemology of inquiry and computer-supported collaborative learning. In T. Koschmann, R. Hall & N. Miyake (Eds.), Cscl2: Carrying forward the conversation. (pp. 129-156). Mahwah, NJ: Lawrence Erlbaum Associates.

Johnson, D. W., & Johnson, R. T. (1999). Making cooperative learning work. Theory Into Practice. 38, 67-73.

Kafai, J., & Resnick, M. (1996). Constructionism in practice: Designing, thinking, and learning in a digital world. New York, NY: Routledge.

Kiesler, S., Siegel, J., & McGuire, T. W. (1984). Social psychological aspects of computer-mediated communication. American Psychologist,. 39, 1123-1134.

Kimmerle, J., Moskaliuk, J., Oeberst, A., & Cress, U. (2015). Learning and collective knowledge construction with social media: A process-oriented perspective. Educational Psychologist.

Kobbe, L., Weinberger, A., Dillenbourg, P., Harrer, A., Hamalainen, R., Hakkinen, P., et al. (2007).

Specifying computer-supported collaboration scripts. International Journal of Computer-

Supported Collaborative Learning. 2(2-3), 211-224.

Law, N., & Wong, O. W. (2013). Exploring pivotal moments in students' knowledge building progress using participation and discourse marker indicators as heuristic guides. In D. D. Suthers, K.

Lund, C. Penstein Rosé, C. Teplovs & N. Law (Eds.), Productive multivocality in the analysis of

group interactions. (pp. 397-415). New York, NY: Springer.

Oeberst, A., Halatchliyski, I., Kimmerle, J., & Cress, U. (2014). Knowledge construction in wikipedia: A systemic-constructivist analysis. Journal of the Learning Sciences. 23, 149-176.

Overdijk, M., van Diggelen, W., Andriessen, J., & Kirschner, P. A. (2014). How to bring a technical artifact into use: A micro-developmental perspective. International Journal of Computer-

Supported Collaborative Learning. 9(3), 283-303.

Postmes, T., Spears, R., Sakhel, K., & deGroot, D. (2001). Social influence in computer-mediated communication: The effects of anonymity on group behavior. Personality and Social Psychology

Bulletin. 27, 1243-1254.

Reicher, S. D. (1984). Social influence in the crowed: Attitudinal and behavioural effects of de-individuation in conditions of high and low group salience. British Journal of Social Psychology.

23, 341-450.

Ritella, G., & Hakkarainen, K. (2012). Instrumental genesis in technology-mediated learning: From double stimulation to expansive knowledge practices. International Journal of Computer-

Supported Collaborative Learning. 7(2), 239-258.

Roschelle, J., & Teasley, S. (1995). The construction of shared knowledge in collaborative problem solving. In C. O'Malley (Ed.), Computer-supported collaborative learning. (pp. 69-197). Berlin,

Germany: Springer Verlag.

Scardamalia, M., & Bereiter, C. (2014). Knowledge building and knowledge creation: Theory, pedagogy and technology. In K. Sawyer (Ed.), Cambridge handbook of the learning sciences.(2nd ed.).

Cambridge, UK: Cambridge University Press.

Slavin, R. (1980). Cooperative learning. Review of Educational Research. 50(2), 315-342.

Spears, R., & Lea, M. (1994). Panacea or panopticon? The hidden power in computer-mediated communication. Communication Research. 427-459.

Sproull, L., & Kielser, S. (1986). Reducing social contet cues: Electornic mail in organizational communication. Management Science. 32, 1492-1512.

Stahl, G. (2006). Group cognition: Computer support for building collaborative knowledge. Cambridge, MA: MIT Press. Web: https://www.doczj.com/doc/a212647254.html,/elibrary/gc. Doi: https://www.doczj.com/doc/a212647254.html,/books/group-cognition.

Stahl, G. (2013). Translating Euclid: Designing a human-centered mathematics. San Rafael, CA: Morgan & Claypool Publishers. Web: https://www.doczj.com/doc/a212647254.html,/elibrary/euclid. Doi: https://www.doczj.com/doc/a212647254.html,/10.2200/S00492ED1V01Y201303HCI017.

Stahl, G. (2015). Constructing dynamic triangles together: The development of mathematical group cognition. Cambridge, UK: Cambridge University Press. Web: https://www.doczj.com/doc/a212647254.html,/elibrary/analysis.

Stahl, G., Ludvigsen, S., Law, N., & Cress, U. (2014). CSCL artifacts. International Journal of Computer-Supported Collaborative Learning. 9(3), 237-245.

Suthers, D. D., Lund, K., Rosé, C. P., Teplovs, C., & Law, N. (Eds.). (2013). Productive multivocality in the analysis of group interactions. New York, NY: Springer. Doi: https://www.doczj.com/doc/a212647254.html,/10.1007/978-

1-4614-8960-3.

Tee, M. Y., & Lee, S. S. (2013). Advancing understanding using nonaka's model of knowledge creation and problem-based learning. International Journal of Computer-Supported Collaborative Learning. 8(3), 313-331.

van Aalst, J. (2009). Distinguishing knowledge-sharing, knowledge-construction, and knowledge-creation discourses. International Journal of Computer-Supported Collaborative Learning. 4(3), 259-287. Walter, J. B. (1996). Computer-mediated communication – impersonal, interpersonal, and hyperpersonal interaction. Communication Research. 23, 3-43.

Wise, A. F., Hausknecht, S. N., & Zhao, Y. T. (2014). Attending to others' posts in asynchronous discussions: Learners' online "listening" and its relationship to speaking. International Journal of Computer-Supported Collaborative Learning. 9(2), 185-209.

Zhang, J., Scardamalia, M., Reeve, R., & Messina, R. (2009). Designs for collective cognitive responsibility in knowledge-building communities. Journal of the Learning Sciences. 18

Zhao, K., & Chan, C. K. K. (2014). Fostering collective and individual learning through knowledge building. International Journal of Computer-Supported Collaborative Learning. 9(1), 63-95.

计算机硬件课程设计--简单模型机设计

计算机硬件课程设计--简单模型机设计

计算机硬件综合课程设计报告

简单模型机设计 一、设计要求 硬件:TDN-CM+计算机组成原理实验系统一台,PC机一台,排线若干,串口线一根。 软件:CMP软件 二、设计目的 1.通过对一个简单计算机的设计,对计算机的基 本组成、部件的设计、部件间的连接、微程序控制器的设计、微指令和微程序的编制与调试等过程有更深的了解,加深对理论课程的理解。 2.通过这次课程设计,建立整机的概念,对程序 进行编辑,校验,锻炼理论联系实际的能力。 3.通过本次课程设计熟悉和训练设计思路与实 现方法。 4.通过本次课程设计锻炼团队合作的能力和团 队问题的解决。

三、设计电路及连线 设计电路及连线实验图如下图1-1所示。 图1-1 简单模型机连线图 四、设计说明 本次课程设计将能在微程序控制下自动产生各部件单元控制信号,实现特定指令的功能。这里,计算机数据通路的控制将由微程序控制器

来完成,CPU 从内存中取出一条机器指令到指令执行结束的一个指令周期全部由微指令组成的序列来完成,即一条机器指令对应一个微程序。 本次课程设计采用五条机器指令:IN (输入)、ADD (二进制加法)、STA (存数)、OUT (输出)、JMP (无条件转移),其指令格式如下(前4位为操作码): 助记符 机器指令码 说 明 微程序入口地址 IN 0000 0000 “INPUT DEVICE ”中 10 的开关状态→R0 0001 0000 ×××× ×××× R0+[addr]→R0 11 0010 0000 ×××× ×××× R0→[addr] 12 0011 0000 ×××× ×××× [addr]→BUS 13 0100 0000 ×××× ×××× addr →PC 14 ADD addr STA

材料收集系统

计算机工程学院 CBT模块 实习报告 选题名称:高校材料收集系统 专业:计算机科学与技术 班级: 姓名: xxx 学号: 指导教师: 2014 年 06 月 14 日

C B T模块实习任务书 指导教师(签章): 年月日

摘要: 我国高校对材料的收集本来就存在很多问题,其中一个比较突出的问题就是手工操作程度比较高,在高等学校扩招之前,这个问题并不是很突出,但是随着高校的扩招,高校需要处理的材料比过去增加了一倍以上,如何高效的收集这些材料成为一个急需解决的问题。随着科学技术的不断提高,计算机科学日渐成熟,其强大的功能人们已经深刻意识到,它已进入人类社会的各个领域并发挥着越来越重要的作用,同时与我们的生活和工作也息息相关。作为计算机应用的一部分,使用计算机对高校材料进行收集,具有手工收集所无法比拟的优点。例如:收集迅速、查找方便、可靠性高、存储量大、保密性好、成本低等。这些优点能够极大地提高高校材料收集的效率。在以人为本的设计理念下,本系统非常容易被接受,它具有简单实用、便于管理等特点。 关键词:材料收集;以人为本;简单实用

目录 1 课题综述 (3) 1.1 开发背景 (3) 1.2 开发意义 (3) 1.3 实现目标 (3) 2 系统分析 (3) 2.1 应用程序设计图 (3) 2.1.1 管理员登陆 (4) 2.1.2教师登录 (4) 2.1.3管理员管理模块 (5) 3 数据库设计 (6) 3.1 数据库概念设计 (6) 3.2 数据库逻辑设计 (7) 3.3 数据库物理设计 (7) 4 运行与代码 (8) 4. 1 管理员登录 (8) 4. 2 教师登录 (9) 4. 3 关键代码 (10) 总结 (12) 致谢 (13) 参考文献 (14)

船公司名缩写及英文全称汇总

船公司简称与缩写 公司简称缩写 澳大利亚国家航运公司澳国航运 ANL 美国总统轮船私人有限公司美国总统 APL 邦拿美船务有限公司邦拿美 BNML 波罗的海航运公司波罗的海 BOL 中波轮船股份公司中波 C-P 南美邮船公司南美邮船 CLAN S.A. 南美智利国家航运公司智利航运 CCNI 中日国际轮渡有限公司中日轮渡 CHINJIF 天敬海运天敬海运 CK 法国达飞轮船公司达飞轮船 CMA 京汉海运有限公司京汉海运 CO-HEUNG 中国远洋集装箱运输有限公司中远集运 COSCO 朝阳商船有限公司朝阳商船 CHOYANG 达贸国际轮船公司达贸国际 DELIMAS

德国胜利航运公司德国胜利 SENATOR 埃及国际轮船公司埃及船务 EIL 长荣海运股份有限公司长荣海运 EVERGREEN 远东轮船公司远东轮船 FESCO 金发船务有限公司金发船务 GFNG 浩洲船务公司浩洲船务 HCSC 韩进海运有限公司韩进海运 HANJIN 香港航运有限公司香港海运 HKMSH 香港明华船务有限公司香港明华 HKMW 赫伯罗特船务有限公司赫伯罗特 HAPPAG-LLOYD 现代商船有限公司现代商船 HYUNDAI 上海海隆轮船有限公司海隆轮船 HNT 金华航运有限公司金华航运 JH 川崎汽船株式会社川崎汽船 K LINE 高丽海运株氏会社高丽海运 KMTC 七星轮船有限公司七星轮船 SSCL 上海育海航运公司育海航运 SYH 上海中福轮船公司中福轮船 SZFSC 墨西哥航运有限公司墨西哥航运 TMM 上海天海货运有限公司天海货运 TMSC 东航船务有限公司东航船务 TOHO 宁波泛洋船务有限公司宁波泛洋 TOS 阿拉伯联合国家轮船公司阿拉伯轮船 UASC 立荣海运股份有限公司立荣海运 UNIGLORY

企业内部管理系统

企业内部管理系统 Modified by JEEP on December 26th, 2020.

摘要 随着社会的发展,信息化成为时代的主题,企事业内部文档管理系统是企业管理中一个较重要的环节,是从业人员日常工作和个人信息的一项基本资料的保留,也是信息保密及防止资料外泄的重要手段,实现文档管理的电子化是现在的发展要求。企业内部文档管理系统有效的解决了纸质手工处理时效率低下和文件易丢失的问题,使得资料保留更完整查询更方便快捷。由此本课题进行企事业内部文档管理系统的研究是具有深刻意义的。 经过详细的需求分析和系统设计之后,系统选择以动态网页技术、SQL server 2000数据库开发工具等为开发工具,在此基础上基于B/S(浏览器/服务器)系统模式,实现数据库的连接并完成企事业内部文档管理系统的功能,以更好地满足各单位的需求。 经过详细设计后将系统主要分为以下的功能模块:目录管理模块、用户登录模块、文件管理模块、文件检索模块、系统管理模块,完成了用户信息管理及查询等方面的基本功能,更有效的提高系统处理的效率以适应人员的工作需求。 本文简单的介绍了系统的需求分析、总体设计,对数据库设计、详细设计以及系统实现的技术和方法进行了详细的说明。 社会在发展。一切都应该进步否则都将会逐步被淘汰,只有不断完善不断进取才可以更好适应于社会,生存与社会,发展于社会,才可以更好的服务于社会。 关键字:信息化、文档管理系统、、B/S系统模式 目录 8 8 9 9 2 5 5 5 6 7 8

第1章引言 1.1概述 社会的发展是多元的,由此在丰富了我们生活的同时也使得管理更繁冗,更沉重。应运而生的企事业内部文档管理系统,是利用计算机对公司内部人员和文档资料进行的信息管理,它可以对企业中的工作人员进行管理和查询,也可以对文档进行合理的处理如添加、删除、附加等等。文档管理信息化避免了以往手工录入的种种弊端,提高了信息管理的效率,节省了工作的时间和管理人员的劳力。而且它通过数据库的统一管理减少了数据处理的诸多错误,保证了系统管理的统一性,也增加了保密性。另外,文档信息是公司进行其它管理的前提,所以说内部文档管理系统是企业管理中一项重要的组成部分。采用文档管理的信息化不仅可以很好的避免以往的信息处理的弊端,还可以拓宽出更多的功能应用,比如说文件的权限设置,在系统中可以对重要的文件进行安全设置保证它的访问权限,增强文件的安全性。企业信息管理信息化在现在的发展中具有不可忽视的优势,也是未来企业管理不可缺少的,也是社会发展进步所必需,是进行一切行为的根本。 1.2课题背景 文档管理是企业日常管理的一部分,对于工作的日常运行来说是很重要的。然而现在许多机关、企事业单位的文档管理仍停留在基于纸介质的手工处理阶段,手工处理文档有许多缺点,比如说文档堆积多、重复劳动的工作多、分类管理困难、查询困难、利用率低、纸张浪费严重等问题,同时,另一个较严重的问题就是纸介质的文档,保存的时候容易受环境因素的影响,保存期限很受限制,而且纸质文档对森林的破坏也是较严重的。在企事业单位信息化建设中,文档管理的电子化是一项比较基本和典型的要求。企事业文档管理的电子化,有助于文档的长期保存、方便使用者的查询、也节省纸张开支。此外,电子文档的集中管理可以保证数据的统一性,也可对数据库的管理进行权限的设置,这就有助于保障文档的安全性和保密性。 针对这个方面国外发展相对较迅速,国外很多国家地方已配备了十分先进的管理信息系统,而且由许多国外开发的带有图形化界面的文档管理信息系统,以其高质量和高安全性一直享有相当好的口碑,但是这一类软件结构复杂,由于语言的障碍等诸多原因,不便于我们某些企业的迅速掌握,其次我们也可能很难接受相对高昂的价格,所以我们应该开发出拥有自主知识产权的高水平软件产品,为管理做好强大的支撑平台。现在,建立在计算机网络基础之上的企事业内部文档管理系统的应用和概念正逐渐的进入人们的生活,向文档管理信息化管理更进了一步。 在当前信息产业的强烈影响下企业的发展都在发生着变化,主要一个方面就发生在管理信息系统上。企业内部管理等多方面的需要,使现在的企业不得不建设管理信息系统,虽说现在已经有很多成型的税务MIS系统,但是多数是基于C/S结构开发的。针对

8位模型机课程设计

xxxxx 课程设计报告学院机电信息学院 课程课程设计 专业计算机科学与技术班级xxxxx 姓名xxxxxxx x 学号xxxxxxxxxx 指导教师xxxxxx 日期201x年x月x日

目录 1.概述 0 2.总体设计 0 3.详细设计 (2) 3.1 运算器 (2) 3.2 存储器 (3) 3.3 微控制器 (5) 3.4 基本模型机设计与实现 (8) 4. 总结 (10) 参考文献 (11)

8位模型机的设计与仿真 1.概述 在掌握部件单元电路设计与仿真的基础上,进一步将其组成系统构造一台8位模型机。字长是8位纯整型,包含基本的五大件:运算器、存储器、控制器、I/O设备。它的结构框图如下图1-1所示. 这基本的五大件通过数据总线连接,实现数据的处理和控制。 部件实验过程中,各部件单元的控制信号是人为模拟产生的,而综合实验将能在微程序控制下自动产生各部件单元控制信号,实现特定指令的功能。这里,计算机数据通路的控制将由微程序控制器来完成,CPU从内存中取出一条机器指令到指令执行结束的一个指令周期全部由微指令组成的序列来完成,即一条机器指令对应一个微程序。 2.总体设计 模型机主要由运算器、控制器、存储器、数据总线、输入输出和时序产生器组成,模型机的结构图如图2-1所示。 图2-1 模型机结构图 在图2-1中T1、T2、T3和T4等控制信号都是由时序产生器生产,时序产生器由时序电路实现如图2-2所示,时序产生器一个周期中产生四个脉冲信号T1~T4,这四个脉冲信号用于控制组件的执行顺序,组件在这些信号的控制下有序的执行,一个周期中完成一条微指令的执行。 图2-2 时序产生器

集体智慧收集系统及其方法与制作流程

本技术涉及集体智慧收集系统。本技术提供集体智慧收集系统及用此的集体智慧收集方法,包括:专家意见管理部,其接收和存储关于提出的事项由至少一个专家参与并传输的赞成或反对意见、有关该意见的至少一个依据以及说明等专家意见数据;背景知识管理部,其将所述专家意见管理部接收的至少一个专家意见数据提供给多个参与者,将多个专家意见数据加工后将此保存为有关所述事项的背景知识数据;参与数据管理部,其将保存在背景知识管理部的背景知识数据提供给参与者,接收所述参与者输入的参与者意见数据后处理为集体智慧收集数据;专家意见顺序管理部,其基于保存在所述参与数据管理部的所述集体智慧数据决定顺序,基于所述顺序更新必读意见数据和选读意见数据,提供给所述背景知识管理部。 技术要求 1.一种集体智慧接收系统,其特征在于,包括: 专家意见管理手段,其接收和存储关于提出的事项由至少一个专家参与并传输的赞成或 反对意见、有关该意见的至少一个依据以及说明等专家意见数据; 背景知识管理手段,其将所述专家意见管理部接收的至少一个专家意见数据提供给多个 参与者,基于对多个专家意见数据的同意和不同意数据、赋予分数数据分成至少一个必 读意见数据和至少一个选读意见数据,将此保存为有关所述事项的背景知识数据;

参与数据管理手段,其将保存在所述背景知识管理手段的背景知识数据提供给参与者,并接收所述参与者阅读所述背景知识数据后输入的对所述必读意见数据和选读意见数据的同意或不同意数据,以及包括赋予分数数据的参与者意见数据后处理成集体智慧收集数据; 专家意见顺序管理手段,其基于保存所述参与数据管理手段的所述参与者意见数据决定顺序,基于所述顺序更新必读意见数据和选读意见数据后提供给所述背景知识管理部。 2.根据权利要求1所述的集体智慧收集系统,其特征在于, 还包括:通过所述参加者或参与者收到少数的同意但对于赋分高的意见赋予顺序上升地位的少数意见管理手段。 3.根据权利要求2所述的集体智慧收集系统,其特征在于, 所述少数意见管理手段管理的意见是至少一个所述选读意见数据。 4.根据权利要求1所述的集体智慧收集系统,其特征在于, 还包括:所述参与者阅读所述必读意见数据和选读意见数据的过程中提供该意见数据的出处及反对或补充意见等信息数据的意见历史记录管理手段。 5.根据权利要求1所述的集体智慧收集系统,其特征在于, 还包括:基于保存在所述参与数据管理手段的集体智慧收集数据生成设定形态的报告书提供给所述事项的提供者,为了使所述事项的提供者验证,提供作为所述报告书基础的集体智慧数据的结果验证管理手段。 6.根据权利要求1所述的集体智慧收集系统,其特征在于, 根据所述专家意见顺序管理手段的所述必读意见数据和选读意见数据被实时更新。 7.根据权利要求1所述的集体智慧收集系统,其特征在于,

世界各国船公司英文缩写

世界各国船公司英文缩写 1、AMERICAN PRESIDENT LINE CO.,LTD:简写APL,中文名“美国总统轮船有限公司”,中文简称“美国总统”,美国船公司; 2、ANL CONTAINER LINE:简写ANL,中文名“澳大利亚航运”,中文简称“澳航”,澳大利亚船公司; 3、BEN LINE AGENCIES LTD.:简写BEN LINE,中文译名和简称都是“边航”,英国船公司; 4、CHENG LIE NAOIGATION CO.,LTD.:简写CNC,中文名“正利行业股份有限公司”,中文简称“正利”,台湾船公司; 5、CHINA SHIPPING CONTAINER LINES CO.,LTD.:简写CSCL,中文名“中海集装箱运输”,中文简称“中海”,中国船公司; 6、CMA CGM SHIPPING CO.,LTD.:简写CMA,中文名“达飞轮船有限公司”,中文简称“达飞”,法国船公司; 7、COHEUNG MARINE SHIPPING CO.,LTD.:中文名“京汉航运有限公司”,简称“京汉”,韩国船公司; 8、COMPANIA CHILENA DE NAVEGACION INTEROCEANICA S.A:简写CCNI,中文名“智利航运国际有限公司”,中文简称“智航”,智利船公司; 9、COSCO LOGISTICS CO.,LTD.:简写COSCO,中文名“中远物流有限公司”,中文简称“中远”,中国船公司; 10、CSAV GROUP AGENCIES LIMITED.:简写CSAV,中文名“南美船务集团代理有限公司”,中文简称“南美邮船”,智利船公司; 11、DELMAS S.A.:中文名“达贸国际轮船公司”,中文简称“达贸”,法国船公司; 12、DONGNAMA SHIPPING CO.,LTD.:简写DONGNAMA,中文名“东南亚海运株式会社”,中文简称“东南亚海运”,香港船公司; 13、EVERGREEN MARINE CORPORATION:简写EMC,中文名“长荣海运股份有限公司”,中文简称“长荣”,台湾船公司; 14、GOLD STAR LINE LTD.:简写GOLD STAR,中文名“香港金星轮船公司”,中文简称“金星”,香港船公司;

公司内部管理系统.

内部管理系统(人事管理系统+客户关系管理系统) 需 求 分 析 说 明 书 2015.10.9 一、人事管理系统部分 1、系统人员类型

公司的人员类型有以下几种:普通员工、部门经理、总经理、人事部经理和人事助 2、系统基本功能图解 2.1 基本机构图 2.2用例图解

3、功能详情 3.3.1 登录页面 需要登录的人员,对于不同的身份,他们的权限是不一样的。当用户输入ID和密码时,查询数据库,如用户名和密码正确,则进入相应的员工信息页面,若不正确,则提示用户用户名或密码错误,仍显示当前页面 3.3.2 查询员工资料 该模块主要查看自己/同事的资料,以更好促进公司员工之间的相互了解。同时也可以修改自己的部分信息。 主要功能包括:

●查询自己的详细信息:员工ID、员工姓名、电子邮件、所在部门名称(不是部门ID)、经理、 分机和自我介绍等 ●修改自己的自我介绍 ●修改自己的登录密码 ●查询、搜索其他同事的相关信息 3.3.3 员工资料管理 人事部门负责维护员工的基本资料。当员工第一天来公司报道时,人事部门将员工的基本资料(姓名、性别、出生日期、电子邮件及所属部门等)录入到数据中,并打印一份报道单给员工,上门列出了该员工的登录ID、公司邮件的地址、该员工的部门名称以及该员工的同部门同事列表。 主要功能包括: ●添加/修改/删除员工 ●按任意条件搜索员工(支持模糊查询) ●打印员工报道单 上传/修改员工的照片。 3.3.4请假模块 请假申请: 员工根据工龄享受年假。如果员工是本年度才加入公司的,则需根据报到日期按公司规章制度计算假期期数。员工请假不可以超过规定的请假小时数。员工可以通过本模块提交/查看/取消申请。 主要功能包括: ●显示员工本人年假总小时数、已使用小时数、当前可用小时数 ●用日历的方式显示可请假的日期,并突出显示国定节假日 查看员工本人某段时期内的请假记录、申请、批准状态等。 请假审核: 该模块只允许经理访问。经理可以查看下属的请假记录,批准/否决其中申请。

8位CISC计算机设计

8位CISC计算机设计 班级:09电子信息工程C班 学号:091524**** 姓名:*** 日期:2012年4月26日

一.实验目的 1.深入理解基本模型计算机的功能、组成知识; 2.深入学习计算机各类典型指令的执行流程; 3.学习微程序控制器的设计过程和相关技术,掌握LPM_RO M的配置方法。 4.在掌握部件单元电路实验的基础上,进一步将单元电路组成系统,构造一台基本模型计算机。 5.定义五条机器指令,并编写相应的微程序,上机调试,掌握计算机整机概念。掌握微程序的设计方法,学会编写二进制微指令代码表。 6.通过熟悉较完整的计算机的设计,全面了解并掌握微程序控制方式计算机的设计方法。 二.实验原理 1.在部件实验过程中,各部件单元的控制信号是人为模拟产生的,而本实验将能在微过程控制下自动产生各部件单元控制信号,实现特定的功能。实验中,计算机数据通路的控制将由微过程控制器来完成,C PU 从内存中取出一条机器指令到指令执行结束的一个指令周期,全部由微指令组成的序列来完成,即一条机器指令对应一个微程序。 2.指令格式 (1)指令格式 采用寄存器直接寻址方式,其格式如下: 其中,OP-CODE 为操作码,r s为源寄存器,rd 为目的寄存器,并规定: 其中IN 为单字长(8位二进制),其余为双字长指令,XX H 为addr 对应的十六进制地址码。为了向R AM 中装入程序和数据,检查写入是否正确,并能启动程序执行,还必须设计三个控制台操作微程序。

8位CISC 计算机设计 1,存储器读操作(KRD):下载实验程序后按总清除按键(CLR)后,控制台S WA 、SWB 为“0 0”时,可对RAM 连续手动读入操作。 2,存储器写操作(KWE):下载实验程序后按总清除按键(CLR )后,控制台SW A 、SWB 为“0 1”时,可对R AM 连续手动写操作。 3、启动程序(RP):下载实验程序后按总清除按键(C LR)后,控制台SWA 、S WB 为“1 1”时,即可转入到微地址“01”号“取指令”微指令,启动程序运行。 根据以上 要求设计 数据通路 框图,如 图5-1所 示。 表6-1 24位微代码定义: 24 23 22 21 2 14 13 12 11 10 987 6 5 4 3 2 1 S3 S2 S 1 S0 M Cn WE A9 A8 A B C uA5 u A4 uA 3 uA2 uA 1 uA 0 表6-2 A 、B 、C各字段功能说明:A 字段 B 字段 C字段 15 14 13 选择 12 11 10 选择 9 8 7 选择 0 0 0 0 0 0 0 0 0 0 0 1 LDRi 0 0 1 RS-B 0 0 1 P(1) 0 1 0 L DDR1 0 1 0 0 1 0 0 1 1 LDD R 2 0 1 1 0 1 1 1 0 0 L DIR 1 0 0 1 0 0 P(4) 1 0 1 LOA D 1 0 1 ALU-B 1 0 1 LD AR 1 1 0 LDAR 1 1 0 P C-B 1 1 0 LDPC 24位微代码中各信号的功能 (1) uA5—uA0:微程序控制器的微地址输出信号,是下一条要执行的微指令的微地址。 (2) S 3、S2、Sl、S0:由微程序控制器输出的ALU 操作选择信号,以控制执行16种算术操作或16种逻辑操作中的某一种操作。 (3) M :微程序控制输出的ALU 操作方式选择信号端。M=0执行算术操作;M=l 执行逻辑操作。 (4) Cn :微程序控制器输出的进位标志信号,C n=0表示A LU 运算时最低位有进位,Cn=1则表示无进位。 (5)WE :微程序控制器输出的RAM 控制信号。当/C E=0时,如WE=0为存储器读;如WE =1为存储器写。 (6) A9、A8——译码后产生CS0、CS1、CS2信号,分别作为SW_B 、RAM 、LE D的选通控制信号。 (7) A 字段(15、14、13)——译码后产生与总线相连接的各单元的输入选通信号(见表6-1)。 (8) B字段(12、11、10)——译码后产生与总线相连接的各单元的输出选通信号。 (9) C 字段(9、8、7) ——译码后产生分支判断测试信号P (1)~P(4)和LD PC信号。 系统涉及到的微程序流程见图6-2。当执行“取指令”微指令时,该微指令的判断测试字段为P (1)测试。由于“取指令”微指令是所有微程序都使用的公用微指令,因此P(1)的测试结果出现多路分支(见图6-2左图)。用指令寄存器的高4位(IR7-IR4)作为测试条件,出现5路分支,占用5个固定地址单元。 控制台操作为P(4)测试(见图6-2右图),它以控制台信号SW B、S WA 作为测试条件,出现了3路分支,占用3个固定微地址单元。当分支微地址单元固定后,剩下的其它地方就可以一条微指令占用控制存储器的一个微地址单元,随意填 SWB SWA 控制台指令 0 0 1 0 1 1 读内存(KRD) 写内存(K WE ) 启动程序(RP ) 图6-1 数据通路框图

主要船公司名称以及缩写

主要船公司名称以及缩写: 1.ANL CONTAINER LINE PTY LIMITED 澳大利亚国家航运简写:ANL 网址:https://www.doczj.com/doc/a212647254.html,.au 2. AMERICAN PRESIDENT LINES,LTD. 美国总统油轮简写:APL 网址:https://www.doczj.com/doc/a212647254.html, 3. CHINA SHIPPING COMPANY LINES 中海简写:CSCL 网址:https://www.doczj.com/doc/a212647254.html, 4. CGMU COMPAGNIE MARITIME DAFFRETEMEN 法国达飞简写:CMA 网址:https://www.doczj.com/doc/a212647254.html, 5. CHENG LIE NAVIGATION 正利航运简写:CNC 网址:https://www.doczj.com/doc/a212647254.html, 6. COSCO CONTAINER LINE AGENCIES LTD。中远货柜代理有限公司简写:COSCO 网址:https://www.doczj.com/doc/a212647254.html, 7. EVERGREEN MARINE LTD 长荣海运股份有限公司简写:EMC 网址:https://www.doczj.com/doc/a212647254.html, 8.EMIRATES SHIPPING LINE 阿联酋航运简写:EMI 网址:https://www.doczj.com/doc/a212647254.html, 9.ISLAMIC REPUBLIC OF IRAN SHIPPING LINES 伊朗国航简写:IRISL 网址:https://www.doczj.com/doc/a212647254.html, 10. HEUNG-A SHIPPING CO.,LTD 兴亚海运简写:HEUNG-A 网址:www.heung-a.co.kr

11. HYUNDAI MERCHANT MARINE LTD.现代商船有限公司简写:HMM 网址:https://www.doczj.com/doc/a212647254.html, 12. HANJIN SHIPPING CO.,LTD 韩进海运简写:HJ 网址:https://www.doczj.com/doc/a212647254.html, 13.HAPAG-LLOYD(H.K) LTD赫伯罗特有限公司简写:HPL 网址:https://www.doczj.com/doc/a212647254.html, 14. K-LINE KAWASAKI KISEN KAISHA LTD川崎汽船简写:“K”LINE 网址:https://www.doczj.com/doc/a212647254.html, 15. KOREA MARINE TRANSPORT CO.,LTD 韩国高丽海运简写:KMTC 网址:www.kmtc.co.kr 16. LLOYD TRIESTINO LTD(ITALIA MARITTIMA .S.P.A)意大利邮船简写:LT 网址:www.italiamarittima.it 17. MAERSK SHIPPING CO.LTD马士基航运有限公司简写:MSK 网址:https://www.doczj.com/doc/a212647254.html, 18. MISC INTERGROUP SHIPPING LTD 威球船务(马来西亚航运)简写:MISC 网址:https://www.doczj.com/doc/a212647254.html,.my 19. MOL (CHINA)CO.,LTD 商船三井(中国)有限公司简写:MOL 网址:https://www.doczj.com/doc/a212647254.html, 20. MEDITERRANEAN SHIPPING COMPANY 地中海航运简写:MSC 网址:https://www.doczj.com/doc/a212647254.html, 21. CSAV GROUP(CHINA)SHIPPING COMPANY LTD 南美油轮(又叫北欧亚)简写:NORASIA NCL

问题收集系统数据库

—现场采集EQMS电子化问题解决系统用户手操作册

目录 第一章功能介绍 (3) 第二章软件登陆 (4) 2.1 软件登陆 (4) 2.2 密码修改 (4) 2.3 退出系统 (6) 第三章操作步骤 (7) 3.1 生产工序问题采集 (7) 3.2 客户退回问题采集 (13) 3.3 仓库翻板问题采集 (18) 3.4 线上采集返修明细 (23) 3.5 线上采集综合查询 (24) 3.6 线上采集分析报表 (25) 3.7 线上采集TOP10排名 (29) 第四章常见问题(FAQ) (34)

第一章功能介绍 现场采集主要实现如下功能 ●质量数据的采集录入和查询 ●多维度数据汇总和报表统计 ●TOP问题分析决策及问题上升

第二章软件登陆 2.1 软件登陆 ●点击用户名:输入管理员分配给你的用户名 ●例如:周琴的用户名是”zhouqin” ●点击密码:输入管理员分配给你的密码,初始密码为1234 ●点击登陆按钮,登陆系统 2.2 密码修改

●登陆进入系统后,方能修改用户密码 ●查看欢迎您确认登陆系统的是你本人 ●点击修改密码按钮 ●弹出小窗口 ●输入旧密码:输入你原来的密码,如果忘记原密码请联系管理员 ●输入新密码:输入你想要设置的新密码 ●校验密码:再次输入你想要设置的新密码 ●点击确认按钮:确认你修改的信息 ●出现右图错误表示你输入的旧密码有误 ●出现下图错误表示你输入的两次密码数据不匹配,请核实你的输入密码信息,或重新录入

2.3 退出系统 ●正常的退出系统有助于信息数据的不丢失,不被篡改 ●尤其是多人使用同一台机器的时候,希望使用完系统的用户能安全退出 ●点击退出按钮安全退出

内部管理系统详细设计方案完整版

内部管理系统详细设计 方案 集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]

内部管理系统详细设计方案【最新资料,WORD文档,可编辑】

设计方案简介 本设计方案是为内部管理程序开发而编写的,它包括了系统可行性研究,系统模块设计,模块的具体流程设计,一些需要进一步讨论或者研究的问题,需要的资料与硬件,数据表的定义等。但它没有包含关于编码的更多主题。例如编码的约定,注解的格式等。尽管这些问题对于实现这个系统都是非常重要的,但因为是设计方案它没有被包括在其中。 整个设计方案的大致目录如下: 一.内部管理系统项目方案(第2页-第20页) 1.项目开发背景(第2页) 2.项目可行性研究(第2页-第6页) 3.系统的大致模块划分(第6页-第18页) 3.1 市场部(第6页-第17页) 3.1.1 系统登陆模块(第8页) 3.1.2 系统设置模块(第8页) 3.1.3 事件添加模块(第8页-第9页) 3.1.4 事件查找编辑(第9页-第11页) 3.1.5 事件参数设置(第11页) 3.1.6 事件跟踪模块(第11页-第13页) 3.1.7 人事基本管理(第13页) 3.1.8 部门参数设置(第14页) 3.1.9 资料票据管理(第14页-第15页) 3.1.10 业务收入统计(第15页) 3.1.11 工资参数设置(第15页) 3.1.12 员工工资管理(第15页-第16页) 3.1.13 数据加密备份模块(第16页) 3.1.14 数据库管理模块(第16页-第17页) 3.2 网管部(第17页) 3.3 制作部(第17页-第18页) 4.数据流图(第19页-第20页) 4.1 市场部业务数据流图(第19页) 4.2 市场部工资数据流图(第20页) 二.内部管理系统所需资料(第21页) 三.内部管理系统所需硬件(第22页) 四.数据库设计(第23页-第25页) 1.上层数据库设计(第23页) 2.市场部数据库设计(第24页-第25页) 五.项目工作量估算(第26页) 内部管理系统项目方案

模型计算机系统的设计与实现

题目:模型计算机系统的设计与实现学生姓名: 学院: 班级: 指导教师: 2010年1 月8 日

内蒙古工业大学课程设计(论文)任务书 课程名称:计算机组成与结构课程设计学院:信息工程学院班级:计07-_3班__ 学生姓名:武宝全 _ 学号: 200710210023 指导教师:董志学王晓荣邢红梅

摘要 本次课程设计要求设计实现一个简单8位模型计算机系统,包括用可编程器件实现的运算器,微程序控制器,存储器,简单输入/输出接口和设备,时序和启停控制等电路。通过自己定义的一套指令系统,主要实现算术A加B,A+/B运算,逻辑A·B,置B运算,输入指令,输出指令和存储器存数指令。由微程序控制器按照微指令格式给出下地址,并将结果存入存储器。用Protel电路设计软件画出所设计的模型机系统的电路原理图,包括运算器,微程序控制器,存储器、简单输入/输出设备、时序和启停等电路。用可编程器件EPM7123实现运算器,并借助MAXPLUSII软件实现其功能。在QDKJ-CMH-CPLD试验平台上调试并进行验证。 关键字:微程序、控制器、存储器、

引言 通过俩周的组成与结构设计,设计一个8位模型计算机系统,包括用可编程器件实现的运算器,微程序控制器,存储器,简单输入/输出接口和设备,时序和启停控制等电路。设计工作是在之前的验证实验基础之上完成的,通过自己的思维,实现微程序机的一些基本的逻辑运算。根据现有的二进制指令系统,条件为模型计算机系统为8位模型机,运算器为8位运算器,数据总线和地址总线都为8位,输入设备为8位开关,输出设备为8位发光二级管指示灯。在现有的芯片内烧制自行设计的微指令,达到在输入一个数据后自加,减一,实现自行跳转。 在设计完成后,再输入数据04后得出07的结果,并实现跳转。

常见船公司一览表

常见船公司一览表 英文简称中文简称英文全称船公司全称 ANL 澳航ANL CONTAINER LINE PTY LID 澳大利亚国家航运公司 APL 美国总统AMERICAN PRESIDENT LINES LID 美国总统轮船有限公司 CCNI 智利航运COMPANIA CHILENA DE NAVEGACION INTEROCEANICA S.A 智利航运国际有限公司 CLAN S.A. 南美邮船CLAN S.A. 南美邮船公司 CSAV 南美货运CONPANIA SUD AMERICANA DE VAPORES S.A 南美洲轮船公司(智利) CMA 达飞CMA CGM SHIPPING CO.,LTD. 法国达飞船务代理有限公司 CNC 正利CHENGLIE NAVIGATIONAL CO.,LTD. 正利航业股份有限公司 COSCO 中远COSCO CONTAINER LINES AGENCIES LTD. 中远集装箱运输有限公司 CSCL 中海CHINA SHIPPING CONTAINER LINES CO.,LTD. 中国海运集团总公司 DELMAS 达贸DELMAS S.A 达贸国际轮船公司 DONG WOO 东宇DONGNAMA SHIPPING CO.,LTD. 东南亚海运株式会社 EMC 长荣EVERGREEN MARINE CO.,LTD. 长荣海运股份有限公司 EK 阿联酋航运EMIRATES SHIPPING LINE 阿联酋航运 FESCO 远东海洋FAR-EASTERN SHIPPING COMPANY LTD. 远东海洋轮船公司 GOLD STAR 金星轮船GOLD STAR LINE LTD. 香港金星轮船公司 HANJIN 韩进HANJIN SHIPPING CO.,LTD. 韩进海运株式会社 HAMBURG SUD 汉堡南美HAMBURG SUD 汉堡南美航运公司 HEUNG-A 兴亚HEUNG-A SHIPPING CO.,LTD. 兴亚海运株式会社 HAPAG-LLOYD 赫伯罗特HAPAG-LLOYD COMPANY LIMITED 赫伯罗特有限公司 HMM 现代HYUNDAI MERCHANT MARINE CO.,LTD. 现代商船有限公司 IRISL 伊朗国航ISLAMIC REPUBLIC OF IRAN SHIPPING LINES 伊朗伊斯兰共和国航运公司 K LINE 川崎KAWASAKI KISEN KAISHA LTD. 川崎汽船株式会社 KMTC 高丽海运KOREA MARINE TRANSPORT CO.,LTD. 高丽海运株式会社 KHL 建恒KIEN HUNG SHIPPING CO.,LTD. 建恒海运有限公司 MISC 马来西亚国航MALAYSIA INTERNATIONAL SHIPPING CORPORATION BERHAND 马来西亚国际航运有限公司 MOL 商船三井MOL (CHINA)CO.,LTD. 商船三井有限公司 MSC 地中海航运MEDITERRANEAN SHIPPING COMPANY 地中海航运公司 MAERSK 马士基MAERSK LINE 马士基海陆航运有限公司 NYK 日本邮船NYK LINE 日本邮船有限公司 OOCL 东方海外ORIENT OVERSEAS CONTAINER LINE.LTD. 东方海外货柜航运有限公司 PIL 太平船务PACIFIC INTERNATIONAL LINES (CHINA)LTD 太平船务有限公司 PAN OCEAN 泛洋商船PAN OCEAN SHIPPING CO.,LTD. 泛洋商船株式会社 RCL 宏海REGIONAL CONTAINER LINES PUBLIC COMPANY LTD. 宏海箱运有限公司

雨水收集系统操作

系统操作说明及维护事项 一、系统工作概述 当降雨开始时,雨水经过安全分流井、电动弃流及过滤装置预处理之后流入雨水蓄水池,当雨水蓄水池的液位达到高水位时,雨水不再进入雨水蓄水池,从前段安全分流井排放掉。 雨水经过预处理后存储于地下蓄水池内,后面设置一体净化消毒器,通过增压泵提升并经一体化器将处理好的净化雨水送至清水箱,最后送至各用水点。 具体完成的功能如下: (1)、雨水在进入蓄水池之前,设置了安全分流井,当蓄水池高位时,多余的雨水可以在室外从安全井溢流掉,无需在地下室设置排污井; (2)、雨水弃流井配备我公司电动弃流装置和过滤装置,可以拦截前期的污染物,同时抛弃掉污染严重的前期雨水,使进入水池的雨水干净; (3)、系统控制采用雨水变频系统控制器进行控制,控制器采用芯片程序控制,配有显示屏,可以做到对各蓄水液位的监控,水泵的工作,净 化设备的控制,同时监控供水、排水、补水等情况; (4)、当蓄水池1使用至中水位时,蓄水池2自动向蓄水池1补水,当蓄水池2没水时,自来水补水会自动向蓄水池 1补水,以达到净化系统 能够持续的向清水池; (5)、当蓄水池使用至低水位时,雨水提升泵会停泵,自动保护; (6)、系统可以手自动供水并在缺水时进行自来水补水。 二、系统控制操作说明

在控制箱中分别都有手自动控制部分,都可以实现手动控制,自动控制两种模式,同时具备变频控制,下面分别介绍: 雨水系统控制箱: 该系统的控制箱是集成控制,对整个系统进行控制,面板介绍(如图是多功能控制箱): (1)、“手自动切换”是用于控制中的手动状态和自动状态以及停止状态的切换。 当自动状态时,净化设备会随用水需求自动启动进行净化处理,完成供水,当缺水时也会自动停泵,进行市政自来水补水。

最齐全的船公司Logo名称

美国总统轮船有限公司-APL(美国) American President Lines Co., Ltd https://www.doczj.com/doc/a212647254.html,/ 京汉海运有限公司-co heung(韩国) CO-HEUNG MARINE SHIPPING CO., LTD. https://www.doczj.com/doc/a212647254.html,/ 智利航运国际有限公司-CCNI(智利) COMPANIA CHILENA DE NAVEGACION INTEROCEANICA S.A. https://www.doczj.com/doc/a212647254.html,ni.cl/ 智利南美轮船公司-CSAV(智利) COMPANIA SUD AMERICANA DE VAPORES S.A. http://www.village.it/csav/ 中国远洋运输(集团)总公司(中国) https://www.doczj.com/doc/a212647254.html,/ 中远集装箱运输有限公司 COSCO CONTAINER LINES CO., LTD. https://www.doczj.com/doc/a212647254.html,/日本奥新,北美、(欧洲线也很强的主要体现在欧洲代理覆盖面广,还箱点多,服务也比较好) 中国海运集团总公司-CSCL(中国) 中海集装箱运输有限公司China Shipping (group) Company https://www.doczj.com/doc/a212647254.html,/南韩美加欧地

法国达飞轮船有限公司-CMA-CGM(法国) CMA CGM-the French Line https://www.doczj.com/doc/a212647254.html,/ 达贸国际轮船公司-DELMAS(法国) DELMAS S.A. h ttp://https://www.doczj.com/doc/a212647254.html,/ 德国胜利航运-环球航线服务(德国) SENATOR LINES GMBH https://www.doczj.com/doc/a212647254.html,/ 长荣海运股份有限公司-EMC(中国台湾) Evergreen Marine Corporation https://www.doczj.com/doc/a212647254.html,/中南美南美东台湾、克罗地亚,美国 远东海洋轮船公司-FESCO(俄罗斯) Far-Eastern Shipping Co., Ltd http://www.fesco.ru/ 德国赫伯罗特轮船公司HAPAG-LLOYD(德国) HAPAG-LLOYD CONTAINER LINE GMBH w https://www.doczj.com/doc/a212647254.html,/ 韩进海运-HJ(韩国) HANJIN SHIPPING CO., LTD. https://www.doczj.com/doc/a212647254.html,/ 现代商船有限公司-HYUNDAI(韩国) Merchant Marine Co.,Ltd https://www.doczj.com/doc/a212647254.html,/ 株式会社韩星船舶-HSLN(韩国) Hansung Shipping Co.,Ltd https://www.doczj.com/doc/a212647254.html,/

世界主要船公司名录及缩写

世界主要船公司名录及缩写,网址大全 世界主要船公司名录及缩写 公司简称缩写 澳大利亚国家航运公司澳国航运ANL 美国总统轮船私人有限公司美国总统APL 邦拿美船务有限公司邦拿美BNML 波罗的海航运公司波罗的海BOL 中波轮船股份公司中波C-P 南美邮船公司南美邮船CLAN 南美智利国家航运公司智利航运CCNI 中日国际轮渡有限公司中日轮渡CHINJIF 天敬海运天敬海运CK 法国达飞轮船公司达飞轮船CMA 京汉海运有限公司京汉海运CO-HEUNG 中国远洋集装箱运输有限公司中远集运COSCO 朝阳商船有限公司朝阳商船CHOYANG 达贸国际轮船公司达贸国际DELIMAS 德国胜利航运公司德国胜利SENATOR 埃及国际轮船公司埃及船务EIL 长荣海运股份有限公司长荣海运EVERGREEN

远东轮船公司远东轮船FESCO 金发船务有限公司金发船务GFNG 浩洲船务公司浩洲船务HCSC 韩进海运有限公司韩进海运HANJIN 香港航运有限公司香港海运HKMSH 香港明华船务有限公司香港明华HKMW 赫伯罗特船务有限公司赫伯罗特HAPPAG-LLOYD 现代商船有限公司现代商船HYUNDAI 上海海隆轮船有限公司海隆轮船 金华航运有限公司金华航运 川崎汽船株式会社川崎汽船 高丽海运株氏会社高丽海运 七星轮船有限公司七星轮船 上海育海航运公司育海航运 上海中福轮船公司中福轮船 墨西哥航运有限公司墨西哥航运 上海天海货运有限公司天海货运 东航船务有限公司东航船务 宁波泛洋船务有限公司宁波泛洋 阿拉伯联合国家轮船公司阿拉伯轮船 立荣海运股份有限公司立荣海运

环球船务有限公司环球船务 万海航运股份有限公司万海航运 伟航船务有限公司伟航船务 阳明海运股份有限公司阳明海运HNT JH KLINE KMTC SSCL SYH SZFSC TMM TMSC TOHO TOS UASC UNIGLORY UNIWD WANHAI WH YANGMING 以星轮船船务有限公司以星轮船ZIM

相关主题
文本预览
相关文档 最新文档