当前位置:文档之家› 单片机和数字电路怎么抗干扰

单片机和数字电路怎么抗干扰

单片机和数字电路怎么抗干扰
单片机和数字电路怎么抗干扰

单片机和数字电路怎么抗干扰

形成干扰的基本要素有三个:

(1)干扰源,指产生干扰的元件、设备或信号,用数学语言描述如下:du/dt,di/dt大的地方就是干扰源。如:雷电、继电器、可控硅、电机、高频时钟等都可能成为干扰源。

(2)传播路径,指干扰从干扰源传播到敏感器件的通路或媒介。典型的干扰传播路径是通过导线的传导和空间的辐射。

(3)敏感器件,指容易被干扰的对象。如:A/D、D/A变换器,单片机,数字IC,弱信号放大器等。

抗干扰设计的基本原则是:抑制干扰源,切断干扰传播路径,提高敏感器件的抗干扰性能。(类似于传染病的预防)

1、抑制干扰源

抑制干扰源就是尽可能的减小干扰源的du/dt,di/dt。这是抗干扰设计中最优先考虑和最重要的原则,常常会起到事半功倍的效果。减小干扰源的du/dt主要是通过在干扰源两端并联电容来实现。减小干扰源的di/dt则是在干扰源回路串联电感或电阻以及增加续流二极管来实现。

抑制干扰源的常用措施如下:

(1)继电器线圈增加续流二极管,消除断开线圈时产生的反电动势干扰。仅加续流二极管会使继电器的断开时间滞后,增加稳压二极管后继电器在单位时间内可动作更多的次数。

(2)在继电器接点两端并接火花抑制电路(一般是RC串联电路,电阻一般选几K到几十K,电容选0.01uF),减小电火花影响。

(3)给电机加滤波电路,注意电容、电感引线要尽量短。

(4)电路板上每个IC要并接一个0.01μF~0.1μF高频电容,以减小IC对电源的影响。注意高频电容的布线,连线应靠近电源端并尽量粗短,否则,等于增大了电容的等效串联电阻,会影响滤波效果。

(5)布线时避免90度折线,减少高频噪声发射。

(6)可控硅两端并接RC抑制电路,减小可控硅产生的噪声(这个噪声严重时可能会把可控硅击穿的)。

按干扰的传播路径可分为传导干扰和辐射干扰两类。

所谓传导干扰是指通过导线传播到敏感器件的干扰。高频干扰噪声和有用信号的频带不同,

可以通过在导线上增加滤波器的方法切断高频干扰噪声的传播,有时也可加隔离光耦来解决。电源噪声的危害最大,要特别注意处理。所谓辐射干扰是指通过空间辐射传播到敏感器件的干扰。一般的解决方法是增加干扰源与敏感器件的距离,用地线把它们隔离和在敏感器件上加蔽罩。

2、切断干扰传播路径的常用措施如下

(1)充分考虑电源对单片机的影响。电源做得好,整个电路的抗干扰就解决了一大半。许多单片机对电源噪声很敏感,要给单片机电源加滤波电路或稳压器,以减小电源噪声对单片机的干扰。比如,可以利用磁珠和电容组成π形滤波电路,当然条件要求不高时也可用100Ω电阻代替磁珠。

(2)如果单片机的I/O口用来控制电机等噪声器件,在I/O口与噪声源之间应加隔离(增加π形滤波电路)。控制电机等噪声器件,在I/O口与噪声源之间应加隔离(增加π形滤波电路)。

(3)注意晶振布线。晶振与单片机引脚尽量靠近,用地线把时钟区隔离起来,晶振外壳接地并固定。此措施可解决许多疑难问题。

(4)电路板合理分区,如强、弱信号,数字、模拟信号。尽可能把干扰源(如电机,继电器)与敏感元件(如单片机)远离。

(5)用地线把数字区与模拟区隔离,数字地与模拟地要分离,最后在一点接于电源地。A/D、D/A芯片布线也以此为原则,厂家分配A/D、D/A芯片引脚排列时已考虑此要求。

(6)单片机和大功率器件的地线要单独接地,以减小相互干扰。大功率器件尽可能放在电路板边缘。

(7)在单片机I/O口,电源线,电路板连接线等关键地方使用抗干扰元件如磁珠、磁环、电源滤波器,屏蔽罩,可显着提高电路的抗干扰性能。

3、提高敏感器件的抗干扰性能

提高敏感器件的抗干扰性能是指从敏感器件这边考虑尽量减少对干扰噪声的拾取,以及从不正常状态尽快恢复的方法。

提高敏感器件抗干扰性能的常用措施如下:

(1)布线时尽量减少回路环的面积,以降低感应噪声。

(2)布线时,电源线和地线要尽量粗。除减小压降外,更重要的是降低耦合噪声。

(3)对于单片机闲置的I/O口,不要悬空,要接地或接电源。其它IC的闲置端在不改变系统逻辑的情况下接地或接电源。

(4)对单片机使用电源监控及看门狗电路,如:IMP809,IMP706,IMP813,X25043,X25045等,可大幅度提高整个电路的抗干扰性能。

(5)在速度能满足要求的前提下,尽量降低单片机的晶振和选用低速数字电路。

(6)IC器件尽量直接焊在电路板上,少用IC座。

接下来再说说在这方面的经验。

软件方面:

1、常将不用的代码空间全清成“0”,因为这等效于NOP,可在程序跑飞时归位;

2、在跳转指令前加几个NOP,目的同1;

3、在无硬件WatchDog时可采用软件模拟WatchDog,以监测程序的运行;

4、涉及处理外部器件参数调整或设置时,为防止外部器件因受干扰而出错可定时将参数重新发送一遍,这样可使外部器件尽快恢复正确;

5、通讯中的抗干扰,可加数据校验位,可采取3取2或5取3策略;

6、在有通讯线时,如I^2C、三线制等,实际中我们发现将Data线、CLK线、INH线常态置为高,其抗干扰效果要好过置为低。

硬件方面:

1、地线、电源线的部线肯定重要了!

2、线路的去偶;

3、数、模地的分开;

4、每个数字元件在地与电源之间都要104电容;

5、在有继电器的应用场合,尤其是大电流时,防继电器触点火花对电路的干扰,可在继电器线圈间并一104和二极管,在触点和常开端间接472电容,效果不错!

6、为防I/O口的串扰,可将I/O口隔离,方法有二极管隔离、门电路隔离、光偶隔离、电磁隔离等;

7、当然多层板的抗干扰肯定好过单面板,但成本却高了几倍。

8、选择一个抗干扰能力强的器件比之任何方法都有效,这点应该最重要。

单片机抗干扰能力

单片机抗干扰能力 单片机的抗干扰性能历来为大家所重视,现在市面上的单片机就我所接触过的,就有 十家左右了,韩国的三星和现代;日本的三菱,日立,东芝,富士通,NEC;台湾的 EMC,松汉,麦肯特,合泰;美国的摩托罗拉,国半的cop8系列,microchip系列,TI 的msp430系列,AVR系列,51系列,欧洲意法半导体的ST系列。。。。。。 这些单片机的抗干扰性能大多数鄙人亲自测试过,所用机器是上海三基出的两种 高频脉冲干扰仪,一种是欧洲采用的标准,一种是日本采用的标准;

日本的标准是高 频脉冲连续发出,脉冲宽度从50ns到250ns可调,欧洲采用的标准是脉冲间歇(间歇 时间和发出时间可调)发出,脉宽也是从50ns到250ns可调;我们国家采用的是欧洲 标准。 一般情况下,脉冲干扰这一项能够耐受2000V以上就算不错了(好像我国家电标准 是1200V),有些可以达到3000V,于是很多人为此很得意。 单片机在高频脉冲干扰下程序运行是否正常,或者说抗干扰是否通过,有些人以

程序不飞掉,或者说“死机”为标准,有些人以不复位并且程序正常运行为标准。 很多情况下,芯片复位程序是可以继续运行的,表面上看的不是很清楚。我一般就看 单片机在干扰下是否复位,复位了我就认为不行了。不复位并且程序正常运行当然比 复位来说要好了。 好多人看到自己做的电路抗干扰达到2000V或者3000V就很高兴,实际上芯片的抗 干扰并不一定就很好。这里我不能不说一下日本的标准,高频脉冲连续发出的形式。 别小看一个连续和一个间歇的区别,实际上,大家如果有机会,用日本的标准测试一

下你的芯片和电路,你就会发现,几乎和欧洲标准差别很大很大,采用日本标准你会 很伤心,因为大多数单片机过不了! 日本的标准是1600V。上面我提到的十几家单片机: 意法的也就是ST的≥1800 三菱的≥1800 富士通和日立的≥1600V nec的≥1500 东芝的≥1300V 摩托罗拉的≥1300

单片机抗干扰问题浅析

- 116 - 杜 川 付会凯 (新乡学院机电工程学院,河南 新乡 453003) 【摘 要】分析了单片机系统的干扰来源,主要从抗干扰和稳定性方面入手,利用硬件与软件相结合的方法,解决了一些单片机系统的抗干扰问题。 【关键词】抗干扰;指令冗余;软件陷阱;定时中断 【中图分类号】TP368 【文献标识码】A 【文章编号】1008-1151(2010)02-0116-02 引言 随着微电子技术和信息技术的发展,计算机技术已经深 入到了人们生产和生活的各个领域当中。单片机技术作为基 于计算机的原理而出现的一种新兴的技术手段,在当今的信 息社会中扮演着重要的角色。但是,由于单片机的工作环境 往往比较恶劣,尤其是系统周围存在强烈的电磁干扰情况, 这些因素都将严重影响单片机的可靠性和稳定性,甚至有可 能导致系统瘫痪。因此,提高单片机系统的抗干扰能力尤其 具有现实意义。 (一)单片机干扰来源的分析 所谓干扰就是叠加在有用信号上的不需要的信号。干扰 以某种电信号的形式,通过一定的渠道,混入有用信号中进 入单片机系统,造成系统工作不稳。在各种实际环境中,这 些干扰降低了单片机系统的准确性,要加以避免[1] 。 单片机的干扰主要来自于两个方面的影响: 1.外部环境所产生的干扰 单片机控制系统是为工业生产而设计制造的,所以单片 机系统经常工作于工业生产现场。在实际的生产现场,存在 着大量的电磁干扰信号,对单片机控制系统的正常工作造成极大的危害,甚至有可能带来系统复位乃至失控的危险。 2.单片机系统本身产生的干扰 单片机系统的本身由各种线路互相连接组成,线路之间会产生相互影响的磁场,从而引发干扰;单片机电源的供电方式以及各种元件的电气性能,也是产生干扰的重要来源;还有就是对单片机接地方式的处理。由于社会发展迅速,自动化进程加快,在工业环境较复杂的场所,地下密布着各种电气设备的导线,这些导线之间的相互影响也对单片机的稳定性构成了巨大的威胁。 (二)增强单片机抗干扰能力的方案 单片机抗干扰一般是从硬件和软件两方面入手。硬件抗 干扰设计主要是通过抑制干扰源,切断干扰传播路径,提高 敏感器件的抗干扰性能方面入手。而软件抗干扰措施主要是 通过对程序区、RAM 空间区、表格区进行特殊处理来实现的,在存储空间允许的条件下,可充分利用软件抗干扰措施,提高单片机系统的程序运行的可靠性和数据的安全性[2] 。 1.硬件抗干扰 (1)电源系统的处理 采用大功率电源,防止从电源系统引入干扰。条件允许的情况下可采取交流稳压器保证供电的稳定性,防止电源的过压和欠压。使用隔离变压器滤掉高频噪声,低通滤波器滤掉工频干扰。 (2)接地方案的分析 在电路设计中,要尽量减小接地回路中的电阻,同时要尽量保证一点接地,避免多点接地的情况;单片机是小功率器件,要避免和大功率器件接地距离较近而产生干扰[3]。 (3)输入、输出信号的保护 在数字信号的长距离传输时用双绞线,可以对传输过程 中的干扰起到很好的抑制作用。也可以在输入、输出信号上 加光电隔离器,从而切断主机以及各向通道的相互联系,从 而有效的防止干扰进入主机系统。 2.软件抗干扰 (1)指令冗余法 单片机操作流程完全由程序计数器P C 控制,一旦P C 受到干扰,程序便会脱离正常轨道,使程序“跑飞”,从而出现改变操作数数值以及将操作数误认为操作码等情况。为了使“跑飞”的程序能迅速纳入正轨,程序中应该多用单字节指令,并且在关键地方插入一些空操作指令NOP 或者将有效单字节指令重写,这就叫做指令冗余。 这种方法通常是在双字节指令和三字节指令后插入两个字节以上的空操作指令NOP,这样即使“跑飞”程序飞到操作 数上,由于NOP 的存在,也可以避免后面的指令被当作操作数执行,程序自动纳入正轨。此外,对程序执行方向起重要作用的控制转移类指令,如RET、RETI、LCALL、LJMP、JC 等指令之前插入两条NOP,也可将“跑飞”程序纳入正轨,保证程序的正确执行。 【收稿日期】2009-12-21 【作者简介】杜川(1982-),男,河南新乡人,新乡学院机电工程学院助教,从事信息工程、电气自动化方面的研究;付会凯(1980-),男,河南长葛人,新乡学院机电工程学院讲师,硕士,从事通信、电路与系统教学与研究。

单片机上拉电阻的抗干扰设计方案

单片机上拉电阻的抗干扰设计 在电子电路设计中,干扰的存在让设计者们苦不堪言,干扰会导致电路发生异常,甚至会导致最终的产品无法正常使用。如何巧妙地减少甚至避免干扰始终是设计者们关心的重点,其中单片机的抗干扰设计就是较为重要的一环,本文将为大家介绍与上拉电阻有关的单片机抗干扰。 想要实现单片机抗干扰,首先要综合考虑各I/O 口的输入阻抗,采集速率等因素设计I/O 口的外围电路。一般决定一个I/O 口的输入阻抗有3种情况。 第一种情况:I/O 口有上拉电阻,上拉电阻值就是I/O 口的输入阻抗。人们大多用4K-20K电阻做上拉,(PIC的B 口内部上拉电阻约 20K)。 由于干扰信号也遵循欧姆定律,所以在越存在干扰的场合,选择上拉电阻就要越小,因为干扰信号在电阻上产生的电压就越小。 由于上拉电阻越小就越耗电,所以在家用设计上,上拉电阻一般都是10-20K,而在强干扰场合上拉电阻甚至可以低到1K。(如果在强干扰场合要抛弃B口上拉功能,一定要用外部上拉。) 第二种:I/O 口与其它数字电路输出脚相连,此时I/O 口输入阻抗就是数字电路输出口的阻抗,一般是几十到几百欧。

可以看出用数字电路做中介可以把阻抗减低到最理想,在许多工业控制板上可以看见大量的数字电路就是为了保证性能和保护MCU 第三种:I/O 口并联了小电容。 由于电容是通交流阻直流的,并且干扰信号是瞬间产生,瞬间熄灭的,所以电容可以把干扰信号滤除。但代价是造成I/O 口收集信号的速率下降,比如在串口上并电容是绝不可取的,因为电容会把数字信号当干扰信号滤掉。 对于一些特殊器件,如检测开关、霍尔元件等,是能够进行并电 容设计的,这主要是因为其开关量的变化较为迟缓,并不能形成很高的速率,所以即便电路中并联电容,对信号的采集也是不会有任何影响的。本文主主要对于上拉电阻有关的如何规避单片机干扰进行了介绍,正被单片机干扰困扰的朋友不妨花上几分钟阅读,相信一定会有所收获。

如何提高视频的抗干扰能力

视频监控系统中的各种干扰解决方法大全监控系统在各领域中的应用越来越多,在不同环境、不同安装条件和不同施工人员下,由于线路、电气环境的不同,或是在施工中疏忽,容易引发各种不同的干扰。这些干扰就会通过传输线缆进入闭路电视监控系统,造成视频图像质量下降、系统控制失灵、运行不稳定等现像,直接影响到整个系统的质量。因此了解视频监控系统有哪些干扰,有助于根据不同的情况采取相应的措施,对提高监控系统工程质量,确保系统的稳定运行非常有益。 1视频监控中的各种干扰 1.1木纹状的干扰 这种干扰的出现,轻微时不会淹没正常图像,而严重时图像就无法观看了(甚至破坏同步)。这种故障现象产生的原因较多也较复杂。大致有如下几种原因: (1)视频传输线的质量不好,特别是屏蔽性能差(屏蔽网不是质量很好的铜线网,或屏蔽网过稀而起不到屏蔽作用)。与此同时,这类视频线的线电阻过大,因而造成信号产生较大衰减也是加重故障的原因。此外,这类视频线的特性阻抗不是75Ω以及参数超出规定也是产生故障的原因之一。由于产生上述的干扰现象不一定就是视频线不良而产生的故障,因此这种故障原因在判断时要准确和慎重。只有当排除了其它可能后,才能从视频线不良的角度去考虑。若真是电缆质量问题,最好的办法当然是把所有的这种电缆全部换掉,换成符合要求的电缆,这是彻底解决问题的最好办法。 (2)由于供电系统的电源不“洁净”而引起的。这里所指的电源不“洁净”,是指在正常的电源(50周的正弦波)上叠加有干扰信号。而这种电源上的干扰信号,多来自本电网中使用可控硅的设备。特别是大电流、高电压的可控硅设备,对电网的污染非常严重,这就导致了同一电网中的电源不“洁净”。比如本电网中有大功率可控硅调频调速装置、可控硅整流装置、可控硅交直流变换装置等等,都会对电源产生污染。这种情况的解决方法比较简单,只要对整个系统采用净化电源或在线UPS供电就基本上可以得到解决。

单片机的抗干扰能力

单片机的抗干扰能力 在我一次产品中有AVR 和PIC 两种芯片同时存在,当用AVR 推动继电器-- 再推动接触器。用PIC 来显示。发现PIC 居然有点小小的干扰,不得不在外围电路上加措施才解决问题。都说PIC 的抗干扰一流的,我怀疑之下对两种单片机做一个小小的测试。首先说明,我只是比较单个芯片的最小系统,比较单片机的自身抗干扰能力。 1。电源用变压器变压12V ,7805 稳压,输入输出均接电解电容和104 电容。 2。单片机最小系统,用3 个I/O ,按钮,指示灯,驱动三极管(继电器-- 再推动接触器)不用的管脚不管。 3。干扰源,由于没有仪器,只好用接触器的线圈来做干扰源,为了加强干扰,接触器线圈两端没有加104 电容。 4。软件,最小最简单,不加任何处理只推动作用。 5。元件选择,PIC 的用PIC16C54 ,PIC16F54 ,PIC16F877A , PIC16F716。AVR 的选用M8。AT28 , AT13。 接下来做测试了: PIC16C54 :先是接触器放在芯片旁边。无论怎么按动按钮,接触器的干扰对它一点反映也没有,真是稳如泰山。再用接触器线圈引线缠绕芯片。在6 圈以下还是稳如泰山。上了7 圈就有干扰 了。看来PIC16C54 真是强悍啊。佩服。接下去就试PIC16F54

了。 PIC16F54 :先是接触器放在芯片旁边。不得了!程序简直没有办法运行,和PIC16C54 简直一个在天上,一个在地下。万思不得其解。查阅PIC 资料都说PIC 的F 系列比C 系列差,就是F 系列的不同产品抗干扰也不一样。于是又测试 PIC16F716 。PIC16F716 : 先是接触器放在芯片旁边。果然好多了,10 次也就1 次复位。PIC16F877A : 先是接触器放在芯片旁边。无论怎么按动按钮,接触器的干扰对它一点反映也没有,再用接触器线圈引线缠绕芯片。在 1 圈就有干扰复位了。 以上就是对我有的几种PIC 片子的测试结果。接下来对AVR 的M8 做测试。 M8:先是接触器放在芯片旁边。先是接触器放在芯片旁边。无论怎么按动按钮,接触器的干扰对它一点反映也没有,再用接触器线圈引线缠绕芯片。在1 圈就有干扰复位了。 AT28 :结果和PIC16F54 一样。 AT13 :先是接触器放在芯片旁边。先是接触器放在芯片旁边。无论 怎么按动按钮,接触器的干扰对它一点反映也没有,再用接触器线圈引线缠绕芯片。在1-2 圈就有干扰复位了。从我自己测试的效果看,PIC 的C 系列很好。F 系列的早期产品如PIC16F54 很

单片机自身的抗干扰措施

单片机自身的抗干扰措施 为提高单片机本身的可靠性。近年来单片机的制造商在单片机设计上 采取了一系列措施以期提高可靠性。这些技术主要体现在以下几方面。 1.降低外时钟频率 外时钟是高频的噪声源,除能引起对本应用系统的干扰之外,还可能产 生对外界的干扰,使电磁兼容检测不能达标。在对系统可靠性要求很高的应用 系统中,选用频率低的单片机是降低系统噪声的原则之一。以8051 单片机为例,最短指令周期1μs时,外时钟是12MHz。而同样速度的Motorola 单片机系统时钟只需4MHz,更适合用于工控系统。近年来,一些生产8051 兼容单片机的厂商也采用了一些新技术,在不牺牲运算速度的前提下将对外时钟的需求 降至原来的1/3。而Motorola 单片机在新推出的68HC08 系列以及其16/32 位单片机中普遍采用了内部琐相环技术,将外部时钟频率降至32KHz,而内部总线速度却提高到8MHz 乃至更高。 2.低噪声系列单片机 传统的集成电路设计中,在电源、地的引出上通常将其安排在对称的两边。如左下角是地,右下角是电源。这使得电源噪声穿过整个硅片。改进的技 术将电源、地安排在两个相邻的引脚上,这样一方面降低了穿过整个硅片的电流,一方面使外部去耦电容在PCB 设计上更容易安排,以降低系统噪声。另一个在集成电路设计上降低噪声的例子是驱动电路的设计。一些单片机提供若干 个大电流的输出引脚,从几十毫安到数百毫安。这些大功率的驱动电路集成到 单片机内部无疑增加了噪声源。而跳变沿的软化技术可消除这方面的影响,办 法是将一个大功率管做成若干个小管子的并联,再为每个管子输出端串上不同 等效阻值的电阻。以降低di/dt。

单片机抗干扰方法

如何提高抗干扰性能 搞过产品的朋友都有体会,一个设计看似简单,硬件设计和代码编写很快就搞定,但在调试过程中却或多或少的意外,这些都是抗干扰能力不够的体现。 下面讨论一下如何让你的设计避免走弯路: 抗干扰体现在2个方面,一是硬件设计上,二是软件编写上。 这里重点提醒:在MCU设计中主要抗干扰设计是在硬件上,软件为辅。因为MCU的计算能力有限,所以要在硬件上花大工夫。 看看干扰的途径: 1:干扰信号干扰MCU的主要路径是通过I/O口,一是影响了MCU的数据采集,二是影响内部其它寄存器。 解决方法:后面讨论。 2:电源干扰:MCU虽然适应电压较宽(3-5。5V),但对于电源的波动却很敏感,比如说MCU可以在3V电压下稳定工作,但却不能在电压在3V-5。5V波动的情况下稳定工作。 解决方法:用电源稳压块,做好电源的滤波等工作,提示:一定要在电源旁路并上0。1UF 的瓷片电容来滤除高频干扰,因为电解电容对超过几十KHZ的高频干扰不起作用。 3:上下电干扰:但每个MCU系统在上电时候都要经过这样一个过程,所以要尤其注意。MCU虽然可以在3V电压下稳定工作,但并不是说它不能在3V以下的电压下工作,当然在如此低的电压下MCU是超不稳定状态的。在系统加电时候,系统电源电压是从0V上升到额定电压的,比如当电压到2V时候,MCU开始工作了,但这时是超不稳定的工作,极容易跑飞。 解决方法:1让MCU在电源稳定后才开始工作。PIC在片内集成了POR(内部上电延时复位),这功能一定要在配置位中打开。 外部上电延时复位电路。有多种形式,低成本的就是在复位脚接个阻容电路。高成本的是用专用芯片。这方面的资料特多,到处都可以查找。 最难排除的就是上面第一种干扰,并且干扰信号随时可以发生,干扰信号的强度也不尽相同。但它们也有相同点:干扰信号也遵循欧姆定律,干扰信号偶合路径无非是电磁干扰,一是电火花,二是磁场。 其中干扰最厉害的是电火花干扰,其次是磁场干扰。电火花干扰表现场合主要是附近有大功率开关、继电器、接触器、有刷电机等。磁场干扰表现场合主要是附近有大功率的交流电机、变压器等。 解决方法: 第一点:也是最经典的,就是在PCB步线和元件位置安排上下工夫,这中间学问很多,说几天都说不完^^。 二:综合考虑各I/O口的输入阻抗,采集速率等因素设计I/O口的外围电路。 一般决定一个I/O口的输入阻抗有3种情况: A:I/O口有上拉电阻,上拉电阻值就是I/O口的输入阻抗。 一般大家都用4K-20K电阻做上拉,(PIC的B口内部上拉电阻约20K)。 由于干扰信号也遵循欧姆定律,所以在越存在干扰的场合,选择上拉电阻就要越小,因为干扰信号在电阻上产生的电压就越小。 由于上拉电阻越小就越耗电,所以在家用设计上,上拉电阻一般都是10-20K,而在强干扰场合上拉电阻甚至可以低到1K。 (如果在强干扰场合要抛弃B口上拉功能,一定要用外部上拉。)

过零比较器的性质及其抗干扰能力的提高

过零比较器的性质及其抗干扰能力的提高 1114211班郝建响01 能够实现对两个或多个进行比较,以确定它们是否相等,或确定它们之间的大小关系及排列顺序的比较功能的或装置称为比较器。其基本功能是对两个输入电压进行比较,并根据比较结果输出高电平或低电平电压,据此来判断输入信号的大小和极性。电压比较器常用于自动控制、波形产生与变换,模数转换以及越限报警等许多场合。比较器是将一个模拟电压与一个基准电压相比较的。比较器的两路输入为,输出则为信号,当输入电压的差值增大或减小时,其输出保持恒定。 过零比较器被用于检测一个输入值是否是零。原理是利用比较器对两个输入电压进行比较。两个输入电压一个是参考电压Vr,一个是待测Vu。一般Vr从正相输入端接入,Vu从反相输入端接入。根据比较输入电压的结果输出正向或反向饱和电压。当参考电压已知时就可以得出待测电压的测量结果,参考电压为零时即为过零比较器。 用比较器构造的过零比较器存在一定的测量误差。当两个输入端的电压差与开环放大倍数之积小于输出阈值时探测器都会给出零值。例如,开环放大倍数为106,输出阈值为6v时若两输入级电压差小于6微伏探测器输出零。这也可以被认为是测量的不确定度。 零电平比较器(过零比较器) 电压比较器是将一个模拟输入信号ui与一个固定的参考电压UR进行比较和鉴别的电路。 参考电压为零的比较器称为零电平比较器。按输入方式的不同可分为反相输入和同相输入两种零电位比较器,如图1(a)、(b)所示 (a)反相输入;(b)同相输入

通常用阈值电压和传特性来描述比较器的工作特性。 阈值电压(又称门槛电平)是使比较器输出电压发生跳变时的输入电压值,简称为阈值,用符号UTH表示。 估算阈值主要应抓住输入信号使输出电压发生跳变时的临界条件。这个临界条件是集成运放两个输入端的电位相等(两个输入端的电流也视为零),即U+=U–。对于图1(a)U–=Ui, U+=0, UTH=0。 传输特性是比较器的输出电压uo与输入电压ui在平面直角坐标上的关系。 画传输特性的一般步骤是:先求阈值,再根据电压比较器的具体电路,分析在输入电压由最低变到最高(正向过程)和输入电压由最高到最低(负向过程)两种 情况下,输出电压的变化规律,然后画出传输特性。 分析如下电路: 1)R11作为上拉电阻,作用不大,取值范围很宽,当运放使用LM358的时候,不用也可以。不过,有些比较器是集电极开路的,当使用集电极开路的比较器的时候,这个上拉电阻是必须的。 2)运算放大器组成一个施密特触发器(也叫做滞回触发器),使触发信号有一个滞回,从而使触发后能够可靠翻转,避免小的干扰信号造成触发器误动作。R10叫做滞回电阻,也可以称作正反馈电阻。 由于有了R10,电路才有了滞回特性。调节R10的大小,可以调节滞回的深浅。当R10 无穷大(开路)的时候,电路就失去了滞回特性,从而变成了一个单纯的比较器。 为了更好地说明R10 的作用,我们假定VCC是10伏。那么,当没有R10的时候(R10 开路),输入到2脚的电压低于5负的时候,1脚输出为高电平。2脚高于5伏的时候,1脚输出低电平。这里没有滞回特性。运放就是作为一个比较器。如果在5伏左右,有一个零点几伏的干扰信号叠加进来,就会使比较器产生误动作,频繁地来回翻转。

如何解决单片机的抗干扰问题

如何解决单片机的抗干扰问题 随着单片机的发展,单片机在家用电器、工业自动化、生产过程控制、智能仪器仪表等领域的应用越来越广泛。然而处于同一电力系统中的各种电气设备通过电或磁的联系彼此紧密相连,相互影响,由于运行方式的改变,故障,开关操作等引起的电磁振荡会波及很多电气设备。这对我们单片机系统的可靠性与安全性构成了极大的威胁。单片机测控系统必须长期稳定、可靠运行,否则将导致控制误差加大,严重时会使系统失灵,甚至造成巨大损失。因此单片机的抗干扰问题已经成为不容忽视的问题。 1 干扰对单片机应用系统的影响 1.1测量数据误差加大 干扰侵入单片机系统测量单元模拟信号的输入通道,叠加在测量信号上,会使数据采集误差加大。特别是检测一些微弱信号,干扰信号甚至淹没测量信号。 1.2 控制系统失灵 单片机输出的控制信号通常依赖于某些条件的状态输入信号和对这些信号的逻辑处理结果。若这些输入的状态信号受到干扰,引入虚假状态信息,将导致输出控制误差加大,甚至控制失灵。 1.3 影响单片机RAM存储器和E2PROM等 在单片机系统中,程序及表格、数据存在程序存储器EPROM或FLASH中,避免了这些数据受干扰破坏。但是,对于片内RAM、外扩RAM、E2PROM 中的数据都有可能受到外界干扰而变化。 1.4 程序运行失常 外界的干扰有时导致机器频繁复位而影响程序的正常运行。若外界干扰导致单片机程序计数器PC值的改变,则破坏了程序的正常运行。由于受干扰后的PC 值是随机的,程序将执行一系列毫无意义的指令,最后进入“死循环”,这将使输出严重混乱或死机。 2 如何提高我们设备的抗干扰能力 2.1 解决来自电源端的干扰

如何提高工控设备的抗干扰能力-

如何提高工控设备的抗干扰能力? 工控设备的核心问题,就是抗干扰能力,如果抗干扰能力不够高,那么,这个设备就是没有多大用处。 要提高工控设备的抗干扰能力,首先就是要学会正确的使用plc。 1.PLC的内核电源和输入输出接口电源应该独立。 绝大多数的用户,在设计系统电源时,只有一个电源,PLC的内核和接口都用这个电源。懂得光耦原理的人就会发现,这种接法,会把光耦旁路掉,也就是说,光耦完全没有起到隔离的作用,整个PLC完全是在“裸奔”,没有任何的保护能力,非常危险的!正确的做法是多加一个电源,专门只给PLC内核供电。输入输出接口可以共用一个电源。 2.PLC的输出口如果接到感性负载,例如电磁阀,继电器等有线圈的负载,需要在负载两端反向加一个吸收二极管。具体的方法,可以到我们的网站查看产品的接线图。 如果没有这个反向二极管,在电磁阀或继电器断开的瞬间,会产生一个反向电动势。这个反向电动势,和输出口的电源叠加在一起,会大大超过输出三极管(或场效应管)的电压承受极限,导致三极管击穿。对于反向二极管的参数,只要是电流不小于继电器电流,耐压不低于接口电源电压就

行了,像1N4004,1N4007都没有任何问题。另外,市场上的电磁阀,接线如果标有正负极的,就表示里面已经有了吸收电路,不用外接二极管了。 3.电源的选择。 干扰信号都是高频信号。比较典型的干扰信号源有变频器,可控硅调压电路。现在市面上的电源大多是开关电源,体积小,效率也很高,但是,最大的缺点就是,高频干扰信号可以长驱直入。而过去的老式电源,里面有个很大体积的变压器那种,体积大,效率低,但是对于高频干扰信号却可以很有效的抑制。所以,在选择内核电源时,应该选择老式变压器电源。 如果找不到老式变压器电源,可以在开关电源前接一个1:1的隔离变压器,或在内核电源的输入端接共模线圈,用来阻隔高频干扰。 4.布局。 干扰有2个途径,一是导线传导,二是空间辐射传导。以上的1和3就可以解决导线传导的干扰。对付空间干扰,最有效的办法就是加屏蔽罩(千万不要以为加屏蔽罩是可有可无的)。配电柜就是个很好的屏蔽罩。但是,屏蔽罩对于来自内部的干扰却束手无策。由于继电器甚至接触器一般也装配在在配电柜里面,继电器在断开的瞬间会产生一个高频干扰,这个干扰就会通过空间辐射,干扰PLC的工作。这时

上拉电阻&单片机硬件抗干扰

上拉电阻的作用 上下拉电阻: 1、当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于COMS电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。 2、OC门电路必须加上拉电阻,以提高输出的高电平值。 3、为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。 4、在CMOS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。 5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限增强抗干扰能力。 6、提高总线的抗电磁干扰能力。管脚悬空就比较容易接受外界的电磁干扰。 7、长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。 上拉电阻阻值的选择原则包括: 1、从节约功耗及芯片的灌电流能力考虑应当足够大;电阻大,电流小。 2、从确保足够的驱动电流考虑应当足够小;电阻小,电流大。 3、对于高速电路,过大的上拉电阻可能边沿变平缓。综合考虑以上三点,通常在1k到10k之间选取。对下拉电阻也有类似道理. 如果有10V的电源 串联了两个两欧的的电阻那么这两个电阻中间的电位就是10除以4再乘以2 ,那么就是5V了,如过我要提高中间的电位,我在在中间电位点和另一个2欧电阻串联一个1欧的电阻  那么这个中间电位点就是 10除以5在乘以3,那么就是6v了所以相对与5v就提高了1v,只是电流降了0.5A 关于单片机硬件抗干扰 在研制带处理器的电子产品时,如何提高抗干扰能力和电磁兼容性? 一、下面的一些系统要特别注意抗电磁干扰: 1、微控制器时钟频率特别高,总线周期特别快的系统。 2、系统含有大功率,大电流驱动电路,如产生火花的继电器,大电流开关等。 3、含微弱模拟信号电路以及高精度A/D变换电路的系统。 二、为增加系统的抗电磁干扰能力采取如下措施: 1、选用频率低的微控制器: 选用外时钟频率低的微控制器可以有效降低噪声和提高系统的抗干扰能力。同样频率的方波和正弦波,方波中的高频成份比正弦波多得多。虽然方波的高频成份的波的幅度,比基波小,但频率越高越容易发射出成为噪声源,微控制器产生的最有影响的高频噪声大约是时钟频率的3倍。 2、减小信号传输中的畸变 微控制器主要采用高速CMOS技术制造。信号输入端静态输入电流在1mA左右,输入电容10PF左右,输入阻抗相当高,高速CMOS电路的输出端都有相当的带载能力,即相当大的输出值,将一个门的输出端通过一段很长线引到输入阻抗相当高的输入端,反射问题就很严重,它会引起信号畸变,增加系统噪声。当Tpd>Tr时,就成了一个传输线问题,必须考虑信号反射,阻抗匹配等问题。

电子产品的抗干扰能力和电磁兼容性要点

如何提升电子产品的抗干扰能力和电磁兼容性 在研制带处理器的电子产品时,如何提升抗干扰能力和电磁兼容性? 1、下面的一些系统要特别注意抗电磁干扰? (1) 微控制单元时钟频率特别高,总线周期特别快的系统。 (2) 系统含有大功率,大电流驱动电路,如产生火花的继电器,大电流开关等。 (3) 含微弱模拟信号电路以及高精度A/D 变换电路的系统。 2、为增加系统的抗电磁干扰能力采取如下措施? (1) 选用频率低的微控制单元? 选用外时钟频率低的微控制单元可以有效降低噪声和提升系统的抗干扰能力。同样频率的方波和正弦波,方波中的高频成份比正弦波多得多。虽然方波的高频成份的波的幅度,比基波小,但频率越高越容易发射出成为噪声源,微控制单元产生的最有影响的高频噪声大约是时钟频率的3 倍。 (2) 减小信号传输中的畸变 微控制单元主要采用高速CMOS 技术制造。信号输入端静态输入电流在1mA 左右,输入电容10PF 左右,输入阻抗相当高,高速CMOS 电路的输出端都有相当的带载能力,即相当大的输出值,将一个门的输出端透过一段很长线引到输入阻抗相当高的输入端,反射问题就很严重,它会引起信号畸变,增加系统噪声。当Tpd〉Tr 时,就成了一个传输线问题,必须考虑信号反射,阻抗匹配等问题。 信号在印制板上的延迟时间与引线的特性阻抗有关,即与印制线路板材料的介电常数有关。可以粗略地认为,信号在印制板引线的传输速度,约为光速的1/3 到1/2 之间。微控制单元构成的系统中常用逻辑电话组件的Tr(标准延迟时间)为3 到18ns 之间。 在印制线路板上,信号透过一个7W 的电阻和一段25cm 长的引线,在线延迟时间大致在4~20ns 之间。也就是说,信号在印刷线路上的引线越短越好,最长不宜超过25cm。而且过孔数目也应尽量少,最好不多于2 个。 当信号的上升时间快于信号延迟时间,就要按照快电子学处理。此时要考虑传输线的阻抗匹配,对于一块印刷线路板上的集成块之间的信号传输,要避免出现Td〉Trd 的情况,印刷线路板越大系统的速度就越不能太快。 用以下结论归纳印刷线路板设计的一个规则? 信号在印刷板上传输,其延迟时间不应大于所用器件的标称延迟时间。 (3) 减小信号线间的交叉干扰? A 点一个上升时间为Tr 的阶跃信号透过引线A B 传向B 端。信号在AB 在线的延迟时间是Td。在D 点,由于A 点信号的向前传输,到达B 点后的信号反射和AB 线的延迟,Td 时间以后会感应出一个宽度为Tr 的页脉波信号。在 C 点,由于AB 上信号的传输与反射,会感应出一个宽度为信号在AB 在线的延迟时间的两倍,即2Td 的正脉波信号。这就是信号间的交叉干扰。干扰信号的强度与C 点信号的di/at 有关,与线间距离有关。当两信号线不是很长时,AB 上看到的实际是两个脉波的迭加。 CMOS 工艺制造的微控制由输入阻抗高,噪声高,噪声容限也很高,数字电路是迭加100~200mv 噪声并不影响其工作。若图中AB 线是一模拟信号,这种干扰就变为不能容忍。如印刷线路板为四层板,其中有一层是大面积的地,或双面板,信号线的反面是大面积的地时,这种信号间的交叉干扰就会变小。原因是,大面积的地减小了信号线的特性阻抗,信号

单片机控制系统的抗干扰设计

单片机控制系统的抗干扰设计 摘要:单片机相关控制的灵敏度和系统所受的干扰具有一定的正相关关系,对 单片机的控制系统而言,具有较高的灵敏度才能确保系统运行正常,但灵敏度越高,系统受到的干扰就越强,设计单片机控制系统时需要重视其抗干扰能力,确 保系统能够稳定运行。 关键词:单片机;控制系统;抗干扰设计 引言 单片机控制系统是集通信技术、计算机技术以及自动化控制技术于一体的工 业通用自动控制系统,其不但操作便捷、扩展性能好,而且还具有较强的控制功能,目前已在我国电力、化工、交通以及冶金等行业得到广泛的应用。但由于工 业作业环境较为恶劣,使得单片机容易被电源波形畸变、电磁设备启停等影响而 受到干扰,使得信号接收能力大大下降,进而对测量的质量与效率造成了影响, 严重的还会对单片机的软件、硬件造成损坏,使其难以正常运作。所以,加强单 片机控制系统的抗干扰设计,正确掌握其干扰源,并采取针对性的改进措施来提 高其抗干扰能力,对单片机控制系统功能的正常发挥有着重要的作用。 1系统干扰源及干扰因素 1.1现场干扰源 电磁干扰一般分为两类,即传导和辐射。传导类型的干扰主要是通过金属、 电感、电容以及变压器传播的;而辐射类型干扰的传播途径很多,比如设备外壳 和外壳上的缝隙,设备间的连接电缆,甚至是一根导线也可以成为辐射类型干扰 的传统途径。这两种干扰往往是相辅相成的,并且在干扰吸收上可以相互转化。 在测控系统中,电磁干扰主要通过“场”进入,即电磁干扰源的能量通过电磁场传 递给测控系统。电场主要是电容性耦合干扰,在导线和电路分布的电容中,干扰 信号进入测控系统。而磁场干扰是互感性耦合干扰,借助导线和电路的互感耦合,干扰信号进入测控系统。 1.2单片机控制系统自身干扰源 单片机控制系统自身干扰源主要包括了散粒噪声、热噪声、常模噪声、共模 噪声以及接触噪声等几方面内容。散粒噪声是由于晶体管基区内的载流子发生随 即扩散,与电子空穴发生复合反应而形成的,其主要存在于半导体原件内部;热 噪声是指在没有连接电源的情况下,仍然有微弱电压存在于电阻两端,电阻两端 出现电子热运动而形成的噪音电压;常模噪声即线间感应噪声或对称噪声,往往 难以将其完全消除;共模噪声恰好与常模噪声相反,其指的是地感应噪声、不对 称噪声或是纵向噪声,该类噪声可以进行消除,但也可由共模噪声转变为常模噪声;接触噪声通常是由于两种材料进行不完全接触,使得电导率出现变化而产生的,常出现在导体连接部位。 2单片机硬件抗干扰设计 2.1电源电路的设计 在单片机控制系统中,将模拟电路电源和逻辑电路电源分离,不仅有利于去 除电源耦合逻辑电路产生的干扰,还可以抑制通过电源耦合对ECU干扰。那么单 片机控制系统电源电路设计过程中,可以采用7812和7805三端稳压集成芯片, 对电源进行负压差保护,避免因其中一个稳压电源故障导致整个电路崩溃。为改 善电源波形,可以采用低通滤波器,从而减少以高次谐波为主的干扰源,从而确

雷达抗干扰性能的评估模型

雷达抗干扰性能的评估模型研究 胡中泽1,曹菲1,乔术旗1,那熙宇2 (1.第二炮兵工程大学陕西西安710025;2.二炮装备研究院北京100161) 摘要:雷达的抗干扰(ECCM )性能成为现代雷达的重要参数,如何客观、全面地评估雷达性能,是装备研制和使用均关注的问题,分析了雷达干扰环境,构建了雷达评估指标体系,建立了抗干扰评估模型,得到了评估结果,最后对结果进行了简要分析。 关键词:雷达;抗干扰;评估模型;研究中图分类号:TN97 文献标识码:A 文章编号:1674-6236(2012)24-0134-03 Radar ECCM performance assessment model HU Zhong -ze 1,CAO Fei 1,QIAO Shu -qi 1,NA Xi -yu 2 (1.The Second Artillery Engineering University ,Xi ’an 710025,China ; 2.The Second Artillery Academy of Armament ,Beijing 100161,China ) Abstract:The performance of radar anti -jamming (ECCM )to become an important parameter in modern radar ,how objective and comprehensive assessment of the performance of radar equipment development and use are of concern ,this paper analyzes the radar -jamming environment ,build a radar evaluation index systemestablished anti -interference assessment models ,the results of the assessment ,and finally a brief analysis of the results.Key words:radar ;ECCM ;evaluation model ;research 收稿日期:2012-09-03 稿件编号:201209010 作者简介:胡中泽(1984—),男,湖南怀化人,硕士,助理工程师。研究方向:兵器科学与技术。 电子对抗是现代战争的三大支柱之一,随着现代战争中电子对抗(ECM )的日趋激烈,干扰技术和雷达抗干扰技术不断得到发展,雷达的抗干扰(ECCM )性能成为现代雷达的重要参数,如何客观、全面地评估雷达性能,是装备研制和使用均关注的问题,因此,对雷达抗干扰效能评估进行研究是很有意义的,本文介绍了雷达抗干扰效能评估的一般步骤和方法。 1 对雷达实施的干扰和雷达抗干扰的措施 1.1 对雷达实施的干扰 电子干扰按干扰源区分,可分为有源干扰与无源干扰; 按其目的可分为有意和无意干扰;按其作用可分为压制性干扰和欺骗性干扰。雷达干扰的分类方法很多,图1给出了一种典型的分类结果。 1.2雷达的抗干扰措施 目前,雷达抗干扰措施较多,每一种抗干扰措施的使用 都有其目的。雷达采取了一种抗干扰措施以后,其某些方面的抗干扰性能将会得到改善,通过分析哪些性能得到改善,以及寻找相应的评估指标来体现这些性能的改善,就可以建立雷达抗干扰措施评估指标集。以下是对几种常用抗干扰措施的分析: 1)副瓣对消(SLC ):目的是抑制通过雷达副瓣进入的具有 高占空比和类似噪声的干扰,从而提高雷达接收机的信干比。 2)频率捷变和频率分集:目的是强迫干扰机将其能量在 雷达带宽上扩展以减小其干扰效果,这相当于减小干扰机的功率密度从而提高雷达接收机的信干比。同时,频率捷变和频率分集将信息载体信号在频率、空间、时间上展开以减小被 ESM ,ARM 探测到的概率,从而提高雷达抗欺骗式干扰概率。 3)降低雷达发射天线副瓣:目的是降低被侦查的概率, 从而增大雷达抗欺骗式干扰概率。 电子设计工程 Electronic Design Engineering 第20卷Vol.20第24期No.242012年12月Dec.2012 图1 雷达干扰分类图 Fig.1Radar jamming classificat

从六方面提高单片机系统的抗干扰能力

从六方面提高单片机系统的抗干扰能力 干扰问题,一直是电力设备仪器的一个难点。对于单片机也不例外。单片机又称单片微控制器,它不是完成某一个逻辑功能的芯片,而是把一个计算机系统集成到一个芯片上。单片机测控系统必须长期稳定、可靠运行,否则将导致控制误差加大,严重时会使系统失灵,甚至造成巨大损失。因此单片机的抗干扰问题已经成为不容忽视的问题。单片机的干扰问题,一般可以从六个方面来解决。 模拟信号采样干扰 单片机应用系统中通常要对一个或多个模拟信号进行采样,并将其通过A/D转换成数字信号进行处理。为了提高测量精度和稳定性,不仅要保证传感器本身的转换精度、传感器供电电源的稳定、测量放大器的稳定、A/D转换基准电压的稳定,而且要防止外部电磁感应噪声的影响,如果处理不当,微弱的有用信号可能完全被无用的噪音信号淹没。在实际工作中,可以采用具有差动输入的测量放大器,采用屏蔽双胶线传输测量信号,或将电压信号改变为电流信号,以及采用阻容滤波等技术。 数字信号传输通道的干扰 数字输出信号可作为系统被控设备的驱动信号(如继电器等),数字输入信号可作为设备的响应回答和指令信号(如行程开关、启动按钮等)。数字信号接口部分是外界干扰进入单片机系统的主要通道之一。在工程设计中,对数字信号的输入/输出过程采取的抗干扰措施有:传输线的屏蔽技术,如采用屏蔽线、双胶线等;采用信号隔离措施;合理接地,由于数字信号在电平转换过程中形成公共阻抗干扰,选择合适的接地点可以有效抑制地线噪声。 硬件监控电路的干扰 在单片机系统中,为了保证系统可靠、稳定地运行,增强抗干扰能力,需要配置硬件监控电路,硬件监控电路从功能上包括以下几个方面: (1)上电复位:保证系统加电时能正确地启动; (2)掉电复位:当电源失效或电压降到某一电压值以下时,产生复位信号对系统进行复位; (3)电源监测:供电电压出现异常时,给出报警指示信号或中断请求信号; (4)硬件看门狗:当处理器遇到干扰或程序运行混乱产生“死锁”时,对系统进行复位。 解决来自电源端的干扰 单片机系统中的各个单元都需要使用直流电源,而直流电源一般是市电电网的交流电经过变压、整流、滤波、稳压后产生的,因此电网上的各种干扰便会引入系统。除此之外,由于交流电源共用,各电子设备之间通过电源也会产生相互干扰,因此抑制电源干扰尤其重要。电源干扰主要有以下几类: 1.电源线中的高频干扰(传导骚扰) 供电电力线相当于一个接受天线,能把雷电、电弧、广播电台等辐射的高频干扰信号通过电源变压器初级耦合到次级,形成对单片机系统的干扰;解决这种干扰,一般通过接口防护;在接口增加滤波器、或者使用隔离电源模块解决。 2.感性负载产生的瞬变噪音(EFT) 切断大容量感性负载时,能产生很大的电流和电压变化率,从而形成瞬变噪音干扰,成为电磁干扰的主要形式;解决这种干扰,一般通过屏蔽线与双胶线,或在电源接口、信号接口进行滤波处理。这二种方法都需要在系统接地良好的情况下进行,滤波器、接口滤波电路都必须良好的接地,这样才能有效的将干扰泄放。 软件抗干扰原理及方法 尽管我们采取了硬件抗干扰措施,但由于干扰信号产生的原因错综复杂,且具有很大的

单片机和数字电路怎么抗干扰

单片机和数字电路怎么抗干扰 形成干扰的基本要素有三个: (1)干扰源,指产生干扰的元件、设备或信号,用数学语言描述如下:du/dt,di/dt大的地方就是干扰源。如:雷电、继电器、可控硅、电机、高频时钟等都可能成为干扰源。 (2)传播路径,指干扰从干扰源传播到敏感器件的通路或媒介。典型的干扰传播路径是通过导线的传导和空间的辐射。 (3)敏感器件,指容易被干扰的对象。如:A/D、D/A变换器,单片机,数字IC,弱信号放大器等。 抗干扰设计的基本原则是:抑制干扰源,切断干扰传播路径,提高敏感器件的抗干扰性能。(类似于传染病的预防) 1、抑制干扰源 抑制干扰源就是尽可能的减小干扰源的du/dt,di/dt。这是抗干扰设计中最优先考虑和最重要的原则,常常会起到事半功倍的效果。减小干扰源的du/dt主要是通过在干扰源两端并联电容来实现。减小干扰源的di/dt则是在干扰源回路串联电感或电阻以及增加续流二极管来实现。 抑制干扰源的常用措施如下: (1)继电器线圈增加续流二极管,消除断开线圈时产生的反电动势干扰。仅加续流二极管会使继电器的断开时间滞后,增加稳压二极管后继电器在单位时间内可动作更多的次数。 (2)在继电器接点两端并接火花抑制电路(一般是RC串联电路,电阻一般选几K到几十K,电容选0.01uF),减小电火花影响。 (3)给电机加滤波电路,注意电容、电感引线要尽量短。 (4)电路板上每个IC要并接一个0.01μF~0.1μF高频电容,以减小IC对电源的影响。注意高频电容的布线,连线应靠近电源端并尽量粗短,否则,等于增大了电容的等效串联电阻,会影响滤波效果。 (5)布线时避免90度折线,减少高频噪声发射。 (6)可控硅两端并接RC抑制电路,减小可控硅产生的噪声(这个噪声严重时可能会把可控硅击穿的)。 按干扰的传播路径可分为传导干扰和辐射干扰两类。 所谓传导干扰是指通过导线传播到敏感器件的干扰。高频干扰噪声和有用信号的频带不同,

相关主题
文本预览
相关文档 最新文档