当前位置:文档之家› 电磁感应与暂态过程要点

电磁感应与暂态过程要点

电磁感应与暂态过程要点
电磁感应与暂态过程要点

第七章电磁感应与暂态过程

一电磁感应与暂态过程教学内容

1.法拉第电磁感应定律

(1)电磁感应现象

(2)法拉第电磁感应定律

2.楞次定律

(1)楞次定律的两种表述

(2)考虑楞次定律后法拉第电磁感应定律的表达式

3.动生电动势

(1)动生电动势与洛仑兹力

(2)动生电动势的计算

(3)交流发电机基本原理

4.感生电动势

(1)感生电动势与感生电场

(2)感生电场的性质

(3)感生电动势的计算

(4)电子感应加速器

5.自感和互感

(1)自感现象

(2)自感系数和自感电动势

(3)互感现象

(4)互感系数和互感电动势

(5)互感线圈的串联

(6)感应圈

6.涡电流

(1)涡电流热效应的应用与危害

(2)电磁阻力

(3)趋肤效应

7.磁场能量

(1)自感磁能

(2)互感磁能

(3)磁能密度

8.暂态过程

(1)RL电路的暂态过程

(2)RC电路的暂态过程

(3)RLC电路的暂态过程

说明与要求:

1.本章介绍电磁感应现象、规律及应用。

2.本章重点是1、3、4、5节,难点是感生电场概念及RLC电路的暂态过程。

3.RLC电路只要求列出方程,给出结果,讲清物理意义。电流计内容可在实验课中研究。

二、电磁感应与暂态过程教学目标

三电磁感应与暂态过程重难点分析

重点:法拉第电磁感应定律和楞次定律,动生电动势和感生电动势及磁场的能量。

难点:感生电场的概念及感生电动势的计算,磁场能量的计算及暂态过程的理解。(一)电磁感应现象

采用实验归纳的方法得出:当穿过闭合线圈的磁通量发生变化时,线圈中就产生电流,这种现象就称为电磁感应现象。电磁感应现象中产生的电流称为感应电流,形成感应电流的电动势称为感应电动势。

电磁感应现象产生的条件是:穿过回路的磁通量(不论什么原因)发生了变化。在一个回路里,假若有磁通量穿过,但磁通量并没有变化,则此回路中是没有感应电动势的。

由于穿过一个回路的磁通量可表示为:????=?=Φs

s

ds B s d B θcos 式中B

为磁感应强度,

s d 为回路上的有向面积元,θ为B 与s d

的夹角,所以无论B 、s 、θ中任意一个量的变

化,均将引起穿过回路的磁通量的变化,从而产生感应电动势。如果导体回路闭合,则产生感应电流:如果导体开路,则只产生感应电动势。

(二)楞次定律

楞次定律是确定感应电动势方向的实验定律,它通过判断感应电流的方向从而确定感应电动势的方向。

楞次定律有两种表述,第一种表述为闭合回路中感应电流的方向,总是企图使感应电流本身所产生的穿过回路的磁通量,去阻碍引起感应电流的磁通的变化;第二种表述为当导体在磁场中运动时,导体中由于出现感应电流而受到的磁场力,必然阻碍此导体的运动。

(三)法拉第电磁感应定律

法拉第电磁感应定律的数学表示式为dt

d Φ

-

=ε,应用此定律时注意:1、Φ是—个代数量,规定回路的绕行方向与回路的法矢量n 之间构成右手螺旋关系,当B 的方向与n

的方向之间

成锐角时Φ值为正,即0>Φ;反之,Φ值为负,即0<Φ;2、ε的大小与Φ的大小及?Φ无直接关系,ε的大小只决定于Φ的变化率

dt

d Φ;3、dt d Φ

-=ε中负号是在感应电动势的

正方向与磁通量的正方向构成右手螺旋关系时楞次定律的数学表示,将它引入公式以后,不

仅可以计算电动势的大小,而且还包含对其方向的判断。

(四)动生电动撕口感生电动势

1.特点。动生电动势是磁场不变,闭合回路的整体或局部在磁场中运动导致磁通量的变化所产生的电动势;感生电动势是闭合回路的任何部分都不动,而空间磁场发生变化导致回路中磁通量的变化所产生的电动势。

2.非静电力。动生电动势中的非静电力是洛仑兹力;感生电动势中的非静电力是变化的磁场产生的感生电场力。

3.主要应用实例。动生电动势主要应用于发电机技术;感生电动势主要应用于电子感应加速度器及感应加热技术。

4.计算方法。动生电动势可以利用动生电动势公式???=L

l d B

)(υε计算,也可以利用电

磁感应定律dt

d Φ

-

=ε计算;感生电动势可以利用感生电动势公式??????-=?=L s

s d t B l d E

ε计算,也可以利用电磁感应定律dt d Φ-=ε计算。 (五)感生电场

1.感生电场的性质。麦克斯韦假设,变化的磁场在其周围空间激发电场,这种电场称为感生电场。感生电场的性质由感生电场的通量和环量所满足的规律决定。根据法拉第电磁感应

定律和麦克斯韦的假说,感生电场的通量和环量所满足的规律为

??????-=?L s s d t B l d E

0=???s d E s

上述两个方程说明感生电场是无源有旋场。 2.感生电场与静电场的异同

共同点:感生电场与静电场都对电荷有力的作用 不同点:

(1)感生电场与静电场的产生机制不同 (2)感生电场与静电场的性质不同

(3)感生电场与静电场的场线的特点不同

(六)磁场的能量

磁场能量密度:22

1

21H H B w μ=?= 磁场能量:??????==

V V

dV H wdV W 221μ 真空中磁场能量:??????==

V V

dV H wdV W 2

021μ 四 检测题

(一)公式类

1.法拉第电磁感应定律的数学表示式。

2.动生电动势公式。 3.感生电动势公式。 4.自感电动势公式。 5.互感电动势公式。 6.磁场能量密度公式。

7.RL 串联暂态电路的时间常数。 8.RC 串联暂态电路的时间常数。

(二)概念类

1.电磁感应现象。 2.感生电场。 3.自感现象。 4.互感现象。 5.涡电流。 6.趋肤效应。 7.暂态过程。

8.时间常数。

(三)计算题类

1.有一长为L 的金属棒ab ,在垂直于纸面向里的均匀磁场B

中,以中心点o 为轴(轴线与B

平行),沿逆时针方向以角速度ω转动。计算棒的两个端点到中心点的电势差ao U 和

bo U ,以及棒两端的电势差ab U 。

2.有一无限长导结载有稳恒电流I ,旁边有一矩形导体线圈,当线圈

以速度υ

离开导线运动到如图7-1所示的位置时,求此线圈中感应电动势的大小和方向。

3.有一长为L 的金属棒ab ,在垂直于纸面各里的均匀磁场B

中,沿逆时针方向绕距a 端5

L

处的o 点为轴(轴线与B 平行),以角速度ω转动。

求棒两端的电势差ab U 。

4.如图7-2所示,金属棒AB 以速度υ

平行于一稳恒电流为I 的长直导线运动,求金属棒中感应电动势的大小和方向。

5.一无限长载流导线,电流I 均匀地分布在它的横截面上。证明:这

导线内部单位长度上的磁场能量为π

μ162

I o (设导线内1=r μ)。

6.如图7-3所示,无限长载流直导线与一个矩形线圈共面,已知

t I i o ωsin =,求线圈中感应电动势。

法拉第电磁感应定律及应用

电磁感应定律的应用(一) 知识点1、感生电动势 例题1、一匀强磁场,磁场方向垂直纸面,规定向里的方向为正。在磁场中有一细金属圆环,线圈平面位于纸面内,如图甲所示。现令磁感应强度B 随时间t 变化,先按图乙中所示的Oa 图象变化,后来又按图象bc 和cd 变化,令E 1、E 2、E 3分别表示这三段变化过程中感应电动势的大小,I 1,I 2,I 3分别表示对应的感应电流,则( BD ) A .E 1>E 2,I 1沿逆时针方向,I 2沿顺时针方向 B .E 10)那么在t 为多大时,金属棒开始移动? 2 212211,L L k mgR t mg R L kL L kt μμ==? ? 知识点2、动生电动势 例题.如图所示,空间存在两个磁场,磁感应强度大小均为,方向相反且垂直纸面,、为其边界,OO ′为其对称轴。一导线折成边长为的正方形闭合回路,回路在纸面内以恒定速度向右运动,当运动到关于OO ′对称的位置时( ACD ) A .穿过回路的磁通量为零 B .回路中感应电动势大小为2B C .回路中感应电流的方向为顺时针方向 D .回路中边与边所受安培力方向相同 练习1、如图,电阻r =5Ω的金属棒ab 放在水平光滑平行导轨PQMN 上(导轨足够长),ab 棒与导轨垂直放置,导轨间间距L =30cm ,导轨上接有一电阻R =10Ω,整个导轨置于竖直向下的磁感强度B =的匀强磁场中,其余电阻均不计。现使ab 棒以速度v =2.0m/s 向右作匀速直线运动,试求: (1)ab 棒中的电流方向及ab 棒两端的电压U ab ; (2)ab 棒所受的安培力大小F ab 和方向。 练习2.如图所示,平行于y 轴的导体棒以速度v 向右匀速直线运动,经过半径为R 、磁感应强度为 B 的圆形匀强磁场区域,导体棒中的感应电动势ε与导体棒位置x 关系的图像是( A ) 知识点3、动生中的图像描绘 例题、匀强磁场磁感应强度 B= T ,磁场宽度L=3rn ,一正方形金属框边长ab=l =1m ,每边电阻r=Ω,金属框以v =10m/s 的速度匀速穿过磁场区,其平面始终保持与磁感线方向垂直,如图所示,求: (1)画出金属框穿过磁场区的过程中,金属框内感应电流的I-t 图线 (2)画出ab 两端电压的U-t 图线

法拉第电磁感应定律教案新人教版选修Word版

高二物理选修3-2《法拉第电磁感应定律》教案 目的要求 复习法拉第电磁感应定律及其应用。 知识要点 1.法拉第电磁感应定律 (1)电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比,即t k E ??Φ=,在国际单位制中可以证明其中的k =1,所以有t E ??Φ=。对于n 匝线圈有t n E ??Φ=。(平均值) 将均匀电阻丝做成的边长为l 的正方形线圈abcd 从匀强磁场中向右匀速拉出过程,仅ab 边上有感应电动势E =Blv ,ab 边相当于电源,另3边相当于外电路。ab 边两端的电压为3Blv /4,另3边每边两端的电压均为Blv /4。 将均匀电阻丝做成的边长为l 的正方形线圈abcd 放在匀强磁场 中,当磁感应强度均匀减小时,回路中有感应电动势产生,大小为E =l 2(ΔB /Δt ),这种情况下,每条边两端的电压U =E /4-I r = 0均为零。 (2)感应电流的电场线是封闭曲线,静电场的电场线是不封闭的,这一点和静电场不同。 (3)在导线切割磁感线产生感应电动势的情况下,由法拉第电磁感应定律可推导出感应电动势大小的表达式是:E=BLv sin α(α是B 与v 之间的夹角)。(瞬时值) 2.转动产生的感应电动势 ⑴转动轴与磁感线平行。如图,磁感应强度为B 的匀强磁场方向垂直于纸面向外,长L 的金属棒oa 以o 为轴在该平面内以角速度ω逆时针匀速转动。求金属棒中的感应电动势。在应用感应电动势的公式时,必须注意其中的速度v 应该指导线上各点的平均速度,在本题中 应该是金属棒中点的速度,因此有22 12L B L BL E ωω=?=。 ⑵线圈的转动轴与磁感线垂直。如图,矩形线圈的长、宽分 别为L 1、L 2,所围面积为S ,向右的匀强磁场的磁感应强度为B ,线圈绕图示的轴以角速度ω匀速转动。线圈的ab 、cd 两边切割磁 感线,产生的感应电动势相加可得E=BS ω。如果线圈由n 匝导线 绕制而成,则E=nBS ω。从图示位置开始计时,则感应电动势的瞬时值为e=nBS ωcos ωt 。该结论与线圈的形状和转动轴的具体 位置无关(但是轴必须与B 垂直)。 实际上,这就是交流发电机发出的交流电的瞬时电动势公式。 3.电磁感应中的能量守恒 只要有感应电流产生,电磁感应现象中总伴随着能量的转化。电磁感应的题目往往与能量守恒的知识相结合。这种综合是很重要的。要牢固树立起能量守恒的思想。 例题分析 例1:如图所示,长L 1宽L 2的矩形线圈电阻为R ,处于磁感 L 1 v c B l a b d l v a b d ω o a v b c L 1 L 2 ω

第九章电磁感应电磁场(一)答案

一.选择题 [ D ]1.(基础训练3)在一自感线圈中通过的电流I 随时间t 的变化规律如图(a)所示,若以I 的正流向作为 的正方向,则代表线圈内自感电动势 随时间t 变化规律的曲线应为图(b)中(A)、(B)、(C)、(D)中的哪一个? 【解答】 dt dI L L -=ε, 在每一段都是常量。dt dI [ D ]2. (基础训练5)在圆柱形空间内有一磁感强度为B 的均匀 磁场,如图所示.B 的大小以速率d B /d t 变化.在磁场中有A 、B 两点,其间可放直导线AB 和弯曲的导线AB ,则 (A) 电动势只在导线AB 中产生. (B) 电动势只在AB 导线中产生. (C) 电动势在AB 和AB 中都产生,且两者大小相等. (D) AB 导线中的电动势小于导线中的电动势 【解答】 连接oa 与ob ,ob ab ob oab εεεε++=。因为涡旋电场总是与圆柱截面垂直,所以oa 和ob 上的涡旋电场方向处处垂直于oa 、ob ,即0=?= =? → →l d E ob ob εε oab ob d dB S dt dt φεε==- =- o ab oab d d dt dt ??∴< [ B ]3.(基础训练6)如图12-16所示,直角三角形金属框架abc 放在均匀磁场 中,磁场B 平行于ab 边,bc 的长度为l .当金属框架绕ab 边以匀角速度ω转动 时,abc 回路中的感应电动势和a 、c 两点间的电势差U a – U c 为 (A) 0ε= 2 2 1l B U U c a ω=- (B) 0ε= 221l B U U c a ω-=- (C)2 B l εω=221l B U U c a ω=- (D) 2B l εω= 221l B U U c a ω-=- 【解答】 ab 边以匀速转动时 0=- =dt d abc φ ε 22 l B l d B v U U U U L c b c a ω-=???? ? ??=-=-?→→→ [ B ]4.(自测提高2)真空中一根无限长直细导线上通电流I ,则距导线垂直距离为a 的空间 t t t t t (b) (a) B a b c l ω图12-16

第7章 电磁感应 暂态过程

第7章 电磁感应 暂态过程 一、目的与要求 1.掌握法拉第电磁感应定律,能熟练地应用法拉第电磁感应定律计算感应电动势, 并能应用楞次定律判断感应电动势的方向。 2.掌握动生电动势和感生电动势、感生电场的概念、规律和计算方法。 3.理解自感和互感现象,掌握简单情况下自感系数、自感电动势,互感系数,互感 电动势的计算方法。 4.理解磁场能量的概念,掌握磁场能量的计算方法。 5.理解位移电流和全电流的概念,了解麦克斯韦方程组积分形式的物理意义。 6.了解暂态过程中的物理特征,掌握RL 、RC 串联电路暂态过程的计算方法。 二、内容提要 1.电源电动势 ?+ - ?=l E d k ε 2.法拉第电磁感应定律 t i d d Φ - =ε 3.根据产生原因不同,感应电动势可分为 (1)动生电动势 ???=b a i l B d )(v ε (2)感生电动势 ????-=Φ- =?=S L V i t t S B l E d d d d d d ε 4.根据产生方式不同,感应电动势可分为 (1)自感电动势: t I L L d d -=ε 其中I L Φ = 为自感系数,是在无铁磁质存在时,与回路中的电流无关,仅由回路的匝数、几何形状和大小以及周围介质的磁导率决定的物理量。 (2)互感电动势 t I M M d d -=ε 其中M 为互感系数,是在无铁磁质存在时,与回路中的电流无关,仅由回路的几何形 状、尺寸、匝数、周围介质的磁导率以及回路的相对位置决定的物理量。 5.磁能 自感磁能 22 1LI W m =

磁场能量密度 μ μ2212122 B H BH w m = == 磁场能量 ??==V V m m V BH V w W d 2 1 d 6.全电流安培环路定理 ∑?+=?)(d D L I I l H 其中I 为传导电流,t I D D d d Φ=,为位移电流。 7.麦克斯韦方程组 (1)通量公式: ∑?=?0 d q S S D 其中,式中的∑0 q 为高斯面内包围的自由电荷量的代数和。 0d =??S S B (2)环流公式: ? ????-=?S L t S B l E d d ∑?+=?)(d D L I I l H 8.暂态过程 (1)LR 电路的暂态过程(如图7.1)。 接通1 )e 1(t L R R I --=ε 当开关K 拨向2 t L R R I -= e ε (2)RC 电路的暂态过程(如图7.2) 充电时 )e 1(1t RC C q - -=ε 放电时 t RC C q 1e -=ε 三、例题 7-1 一长直导线通有电流I ,其附近有正方形线圈。线圈绕o o '轴以匀角速旋转。转 轴与导线平行,两者相距为b ,且在线圈平面内与其一边平行并过中心。求任意时刻线圈中的感应电动势。 分析 线圈旋转,穿过线圈所围面积的磁通量随时间变化,线圈中必有感应电动势。 用法拉第电磁感应定律求解。 解 线圈在转动过程中,通过它的磁通量随时间变化。当线圈转过角度t ωθ=时,通

第九章 电磁感应

第九章电磁感应 1、教学目标和基本要求 1、理解电动势的概念。 2、掌握法拉第电磁感应定律及楞次定律,理解动生电动势及感生电动势的概念和规律并能计算 3、理解自感系数和互感系数的定义及其物理意义并能作出计算2、教学内容 §9-1 电磁感应的基本定律 §9-2 动生电动势 §9-3 自感、互感 3、教学重点 法拉第电磁感应定律及其应用,动生电动势、感生电动势的概念和规律,自感系数、互感系数的定义即物理意义,磁场能密度、磁场能量4、教学难点 动生电动势及感生电动势的计算,自感系数及互感系数的计算 §9-1 电磁感应的基本定律 一、电磁感应现象 (1)磁棒插入或抽出线圈时,线圈中产生感生电流; (2)通有电流的线圈替代上述磁棒,线圈中产生感生电流; (3)两个位置固定的相互靠近的线圈,当其中一个线圈上电流发生变化时,也会在另一个线圈内引起电流; (4)放在稳恒磁场中的导线框在磁场中转动时有电流。 (5)放在稳恒磁场中的导线框,一边导线运动时线框中有电流。 二、电动势 1、电源 能够提供非静电力的装置。 2、非静电力做功 由于非静电力只存在电源内部,在外部。积分变为 根据电场与受力关系,可建立非静电场 2)、电源电动势:描述非静电力做功的本领,或描述把其它形式

的能量转化为电势能的能力。 三、楞次定律(1833年,判断感应电流方向) 1、内容: 闭合回路中感应电流的方向,总是使得它所激发的磁场来阻止或补偿引起感应电流的磁通量的变化。或:感应电流的效果总是反抗引起感应电流的原因。 2、理解: “效果”可以理解为感应电流激发的磁场,也可以理解为因感应电流出现而引起的机械作用。“原因”既可以指磁通量的变化,也可指引起磁通量变化的相对运动或回路的形变。 3、实质: 感应电流取楞次定律所述的方向,是能量守恒和转化定律的必然结果。 4、判断感应电流的方向的步骤: (1)判明穿过闭合回路内原磁场的方向; (2)根据原磁通量的变化,按照楞次定律的要求确定感应电流的磁场的方向; (3)按右手法则由感应电流磁场的方向来确定感应电流的方向。 四、法拉第电磁感应定律 1、内容:导体回路中感应电动势的大小与穿过回路的磁通量的变化率成正比。 或 在国际单位制中: K=1 (适用于单匝导线组成的回路) 对于多匝线圈: (磁通链) 2、感应电流: 3、感应电量

法拉第电磁感应定律的应用

法拉第电磁感应定律 2.确定目标 本节课讲解应用法拉第电磁感应定律计算感应电动势问题,会区别感应电动势平均值和瞬时值。 二 精讲精练 (一)回归教材、注重基础 例 (见教材练习题P21 T2)如图甲所示,匝数为100匝,电阻为5Ω的线圈(为表示线 圈的绕向图中只画了2匝)两端A 、B 与一个电压表相连,线圈内有指向纸内方向的磁场,线圈中的磁通量按图乙所示规律变化。 (1)求电压表的读数?确定电压表的正极应接在A 还是接在B ? (2)若在电压表两端并联一个阻值为20Ω的电阻R .求通过电阻R 的电流大小和 方向? ,面 时间内,匀强磁场平行于线圈轴线向右穿过,则该段时间线圈两12)t B --

变式3.如图所示,匀强磁场的磁感应强度方向竖直向上,大小为 B,用电阻率为ρ、横 截面积为S的导线做成的边长为L的正方形线框abcd水平放置,OO′为过ad、bc 两边中点的直线,线框全部都位于磁场中.现把线框右半部分固定不动,而把线框 左半部分以OO′为轴向上转动60°,如图中虚线所示。若转动后磁感应强度随时 间按kt 变化(k为常量),求: B B+ = (1)在0到t 0时间内通过导线横截面的电荷量? (2)t0时刻ab边受到的安培力? (三)真题检测,品味高考 1.(2014·新课标全国Ⅰ)如图 (a),线圈ab、cd绕在同一软铁芯上.在ab线圈中通以变化的电流,用示波器测得线圈cd间电压如图(b)所示.已知线圈内部的磁场与流经线圈的电流成正比,则下列描述线圈ab中电流随时间变化关系的图中,可能正确的是( )

2. (2012·福建)如图甲,在圆柱形区域内存在一方向竖直向下、磁感应强度大小为B 的匀 强磁场,在此区域内,沿水平面固定一半径为r 的圆环形光滑细玻璃管,环心0在区域中心。一质量为m 、带电量为q (q>0)的小球,在管内沿逆时针方向(从上向下看)做圆周运动。已知磁感应强度大小B 随时间t 的变化关系如图乙所示(T0为已知量)。设小球在运动过程中电量保持不变,对原磁场的影响可忽略。当t=0T 到t=05.1T 这段时间内的磁感应强度增大过程中,将产生涡旋电场,其电场线是在水平面内一系列沿逆时针方向的同心圆,同一条电场线上各点的场强大小相等.求:这段时间内,细管内涡旋电场的场强大小E 。 (四)拓展深挖、把握先机 拓展:如图甲所示,匝数为n 匝,电阻为r,半径为a 的线圈两端A 、B 与电容为C 的电容器 和电阻R 相连,线圈中的磁感应强度按图乙所示规律变化(取垂直纸面向内方向为正方向)。求: (1)流过电阻的电流大小为多少? (2)电容器的电量为多少? 三 总结归纳 1. 应用法拉第电磁感应定律计算感应电动势。 2. 会判断导体两端电势的高低。

法拉第电磁感应定律教学设计及教学反思

《法拉第电磁感应定律》教学设计及教学反思 通榆蒙校林万生 一、教学目标 (一)知识和能力目标 1、知道感应电动势的概念,会区分Φ、ΔΦ、的物理意义。 2、理解法拉第电磁感应定律的内容和数学表达式,会推导公式知道适用范围并能应 用解答有关的简单问题。 3、通过学生对实验的观察、分析、思考,找出规律,培养学生的逻辑思维能力,观 察、分析、总结规律的能力。 (二)过程与方法目标 1.教师通过回顾上节内容引入感应电动势,通过演示实验,指导学生观察分析,总结规律。5 2.学生积极思考认真比较,理解感应电动势的存在,通过观察实验现象的分析讨论,总结影响感应电动势大小的因素。5 3.教师用类比法区分Φ、ΔΦ、的物理意义和它们与感应电动势的关系。2 4.讲解法拉第电磁感应定律的内容和推导数学表达式。 (三)情感、态度、价值观目标 1.通过使用类比让学生找到适合自己的记忆法,多方面提高自己的能力。 2.通过演示、推导让学生知道把抽象具体化,化难为简。 3.课后让学生体会科学家的探究精神。 二、教学重点 1. 区分Φ、ΔΦ、?Ф/?t的物理意义的理解; 2. 法拉第电磁感应定律的建立过程以及对公式E=?Ф/?t的理解。 三、教学难点 1. 区分Φ、ΔΦ、?Ф/?t的物理意义的理解; 2. 法拉第电磁感应定律的建立过程以及对公式E=?Ф/?t的理解。 四、教学准备 准备实验仪器:灵敏电流计、电流计、条形磁铁、蹄形磁铁、螺线管、铁芯、学生电源、 单匝线圈、滑动变阻器、开关、导线若干。 五、教学过程 (一)引入新课 教师和学生一起回顾第一节中的三个实验。在这三个实验中,闭合电路中都产生了感 应电流,则电路中必须要有电源,电源提供了电动势,从而产生电流。在电磁感应现象中产 生的电动势叫做感应电动势。那么感应电动势的大小跟哪些因素有关呢?本节课我们就来共 同研究这个问题。

第九章 电磁感应

1.关于磁通量,下列说法中正确的是( ) A.磁通量是反映磁场强弱和方向的物理量 B.穿过某个面积的磁感线的条数越多则磁通量越大 C.穿过某一面积的磁通量等于面积S与该处的磁感应强度B的乘积 D.若穿插过某一面积的磁通量为0,则该处的磁感应强度B也一定为0 2.如图12-1-3所示,四面体OABC处在沿Ox方向的匀强磁场中,下列关于磁 场穿过各个面的磁通量的说法中正确的是( ) A.穿过AOB面的磁通量为0 B.穿过ABC面和BOC面的磁通量相等 C.穿过AOC面的磁通量为0 D.穿过ABC面的磁通量大于穿过BOC面的磁通量 3.下列关于电磁感应的说法中正确的是( ) A.只要导线做切割磁感线的运动,导线中就产生感应电流 B.只要闭合金属线圈在磁场中运动,线圈中就产生感应电流 C.闭合金属线圈放在磁场中,只要磁感应强度发生变化,线圈中就产生感 应电流 D.闭合金属线圈放在磁场中,只要线圈中磁通量发生变化,线圈就产生感 应电流 4.线圈在长直导线电流的磁场中,做如图12-1-1的运动:A向右平动;B向 下平动;C绕轴转动(边bc向外);D从纸面向纸外做平动,E向上平动(边bc上有个缺口);则线圈中有感应电流的是( )

5. 用同样材料和规格的导线做成的圆环a 和b ,它们的半径之比r a :r b =2: 1,连接两圆环部分的两根直导线的电阻不计,均匀变化的磁场具有理想的边界如图所示,磁感应强度以恒定的变化率变化.那么当a 环置于磁场中与b 环置于磁场中两种情况下,A 、B 两点电势差之比U 1 / U 2 为 . 6. 有一边长为l 、匝数为n 、电阻为R 的正方形闭合线框处于磁感应强度为B 匀强磁场中,磁场方向垂直于线圈平面,若将线框在磁场中翻转180°,求在这个过程中通过导线横截面的电量。 7. 单匝矩形线圈在匀强磁场中匀速转动,转轴垂直于磁场,若线圈所围面积 里磁通量随时间变化的规律如图所示,则线圈中 [ ] A .O 时刻感应电动势最大 B .D 时刻感应电动势为零 C . D 时刻感应电动势最大 D .O 至D 时间内平均感生电动势为0.4V 8. 将一条形磁铁插入螺线管线圈,第一次插入用0.2秒,第二次插入用0.4秒 ,并且两次起始和终了位置相同,则( ) A. 第一次磁通量变化比第二次大 B. 第一次磁通量变化比第二次快 C. 第一次产生的感应电动势比第二次大 D. 若断开电键S ,两次均无感应电流 两次线圈中磁通量之比为 ,感应电动势之比为 ,电流强度之比为 ,通过线圈的电量之比为 ,线圈放出的热量之比为 。 B A B A

法拉第电磁感应定律及其应用

法拉第电磁感应定律及其应用 1. (法拉第电磁感应定律的应用)(优质试题·北京卷)如图所示,匀强磁场中有两个导体圆环a、b,磁场方向与圆环所在平面垂直。磁感应强度B随时间均匀增大。两圆环半径之比为2∶1,圆环中产生的感应电动势分别为E a和E b,不考虑两圆环间的相互影响。下列说法正确的是() A.E a∶E b=4∶1,感应电流均沿逆时针方向 B.E a∶E b=4∶1,感应电流均沿顺时针方向 C.E a∶E b=2∶1,感应电流均沿逆时针方向 D.E a∶E b=2∶1,感应电流均沿顺时针方向 ,感应电流产生的磁场方向垂直圆环所在平面向里,由右手定则知,两圆环中电流均沿顺时针方向。圆环的半径之比为2∶1,则面积之比为4∶1,据法拉第电磁感应定律得E=为定值,故E a∶E b=4∶1,故选项B正确。 2.

(法拉第电磁感应定律的应用)如图所示,在水平面内固定着U形光滑金属导轨,轨道间距为50 cm,金属导体棒ab质量为0.1 kg,电阻为0.2 Ω,横放在导轨上,电阻R的阻值是0.8 Ω(导轨其余部分电阻不计)。现加上竖直向下的磁感应强度为0.2 T的匀强磁场。用水平向右的恒力F=0.1 N拉动ab,使其从静止开始运动,则() A.导体棒ab开始运动后,电阻R中的电流方向是从P流向M B.导体棒ab运动的最大速度为10 m/s C.导体棒ab开始运动后,a、b两点的电势差逐渐增加到1 V后保持不变 D.导体棒ab开始运动后任一时刻,F的功率总等于导体棒ab和电阻R的发热功率之和 R中的感应电流方向是从M流向P,A错;当金属导体棒受力平衡时,其速度将达到最大值,由F=BIl,I= 可得 总总 ,代入数据解得v m=10 m/s,B对;感应电动势的最大值E m=1 V,a、b F= 总 两点的电势差为路端电压,最大值小于1 V,C错;在达到最大速度以前,F所做的功一部分转化为内能,另一部分转化为导体棒的动能,D错。 3.(法拉第电磁感应定律的应用)(优质试题·海南文昌中学期中)关于电磁感应,下列说法正确的是() A.穿过回路的磁通量越大,则产生的感应电动势越大

电磁感应定律的应用教案

电磁感应定律应用 【学习目标】 1.了解感生电动势和动生电动势的概念及不同。 2.了解感生电动势和动生电动势产生的原因。 3.能用动生电动势和感生电动势的公式进行分析和计算。 【要点梳理】 知识点一、感生电动势和动生电动势 由于引起磁通量的变化的原因不同感应电动势产生的机理也不同,一般分为两种:一种是磁场不变,导体运动引起的磁通量的变化而产生的感应电动势,这种电动势称作动生电动势,另外一种是导体不动,由于磁场变化引起磁通量的变化而产生的电动势称作感生电动势。 1.感应电场 19世纪60年代,英国物理学家麦克斯韦在他的电磁场理论中指出,变化的磁场会在周围空间激发一种电场,我们把这种电场叫做感应电场。 静止的电荷激发的电场叫静电场,静电场的电场线是由正电荷发出,到负电荷终止,电场线不闭合,而感应电场是一种涡旋电场,电场线是封闭的,如图所示,如果空间存在闭合导体,导体中的自由电荷就会在电场力的作用下定向移动,而产生感应电流,或者说导体中产生感应电动势。 要点诠释:感应电场是产生感应电流或感应电动势的原因,感应电场的方向也可以由楞次定律来判断。感应电流的方向与感应电场的方向相同。 2.感生电动势 (1)产生:磁场变化时会在空间激发电场,闭合导体中的自由电子在电场力的作用下定向运动,产生感应电流,即产生了感应电动势。 (2)定义:由感生电场产生的感应电动势成为感生电动势。 (3)感生电场方向判断:右手螺旋定则。 3、感生电动势的产生 由感应电场使导体产生的电动势叫做感生电动势,感生电动势在电路中的作用就是充当电源,其电路是内电路,当它和外电路连接后就会对外电路供电。 变化的磁场在闭合导体所在的空间产生电场,导体内自由电荷在电场力作用下产生感应电流,或者说产生感应电动势。其中感应电场就相当于电源内部所谓的非静电力,对电荷产生作用。例如磁场变化时产生的感应电动势为cos B E nS t ?θ?= . 知识点二、洛伦兹力与动生电动势 导体切割磁感线时会产生感应电动势,该电动势产生的机理是什么呢?导体切割磁感线产生的感应电动势与哪些因素有关?他是如何将其他形式的能转化为电能的? 1、动生电动势

大学物理(少学时)第9章电磁感应与电磁场课后习题答案

9-1两个半径分别为R 和r 的同轴圆形线圈相距x ,且R >>r ,x >>R .若大线圈通有电流I 而小线圈沿x 轴方向以速率v 运动,试求小线圈回路中产生的感应电动势的大小. 解:在轴线上的磁场 () ()2 2 003 3 2 2 2 22IR IR B x R x R x μμ= ≈ >>+ 3 2 202x r IR BS πμφ= = v x r IR dt dx x r IR dt d 4 22042202332πμπμφ ε=--=-= 9-2如图所示,有一弯成θ 角的金属架COD 放在磁场中,磁感强度B ? 的方向垂直于金属架 COD 所在平面.一导体杆MN 垂直于OD 边,并在金属架上以恒定速度v ?向右滑动,v ? 与 MN 垂直.设t =0时,x = 0.求当磁场分布均匀,且B ? 不随时间改变,框架内的感应电动势i ε. 解:12m B S B xy Φ=?=?,θtg x y ?=,vt x = 22212/()/i d dt d Bv t tg dt Bv t tg ε?θθ=-=-=?,电动势方向:由M 指向N 9-3 真空中,一无限长直导线,通有电流I ,一个与之共面的直角三角形线圈ABC 放置在此长直导线右侧。已知AC 边长为b ,且与长直导线平行,BC 边长为a ,如图所示。若线圈以垂直于导线方向的速度v 向右平移,当B 点与直导线的距离为d 时,求线圈ABC 内的感应电动势的大小和方向。 解:当线圈ABC 向右平移时,AB 和AC 边中会产 生动生电动势。当C 点与长直导线的距离为d 时,AC 边所在位置磁感应强度大小为:02() I B a d μπ= + AC 中产生的动生电动势大小为: x r I R x v C D O x M θ B ? v ?

第二十二讲-电磁感应与动量结合

第二十二讲电磁感应与动量结合 电磁感应与动量的结合主要有两个考点: 对与单杆模型,则是与动量定理结合。例如在光滑水平轨道上运动的单杆(不受其他力作用),由于在磁场中运动的单杆为变速运动,则运动过程所受的安培力为变力,依据动量定理 F t P ?=?安,而又由于F t BIL t BLq ?=?= 安 ,= BLx q N N R R ?Φ = 总总 , 21 P mv mv ?=-,由以上四 式将流经杆电量q、杆位移x及速度变化结合一起。 对于双杆模型,在受到安培力之外,受到的其他外力和为零,则是与动量守恒结合考察较多一、安培力冲量的应用 例1:★★如图所示,在光滑的水平面上,有一垂直向下的匀强磁场分布在宽度为L的区域内,现有一个边长为a(a﹤L)的正方形闭合线圈以初速度v0垂直磁场边界滑过磁场后,速度为v(v﹤v0),那么线圈(B ) A.完全进入磁场中时的速度大于(v0+v)/2 B.完全进入磁场中时的速度等于(v0+v)/2 C.完全进入磁场中时的速度小于(v0+v)/2 D.以上情况均有可能 分析:进入和离开磁场的过程分别写动量定理(安培力的冲量与电荷量有关,电荷量与磁通量的变化量有关,进出磁场的安培力冲量相等) 点评:重点考察了安培力冲量与电荷量关系。 例2:★★★如图所示,在水平面上有两条导电导轨MN、PQ,导轨间距为d,匀强磁场垂直于导轨所在的平面向里,磁感应强度的大小为B,两根完全相同的金属杆1、2间隔一定的距离摆开放在导轨上,且与导轨垂直。它们的电阻均为R,两杆与导轨接触良好,导轨电阻不计,金属杆的摩擦不计。杆1以初速度v0滑向杆2,为使两杆不相碰,则杆2固定与不固定两种情况下,最初摆放两杆时的最少距离之比为( C )

电磁感应定律及变压器的规律

第8题 电磁感应定律及变压器的规律 (限时:45分钟) 1. (多选)如图1,圆环形导体线圈a 平放在水平桌面上,在a 的正上方固定一竖直螺线管b ,二者轴线重合,螺线管与电源和滑动变阻器连接成如图所示的电路.若将滑动变阻器的滑片P 向下滑动,下列表述准确的是 ( ) 图1 A .线圈a 中将产生俯视顺时针方向的感应电流 C .线圈a 有缩小的趋势 答案 CD 解析 若将滑动变阻器的滑片P 向下滑动,螺线管b 中的电流增大,根据楞次定律,线圈a 中将产生俯视逆时针方向的感应电流,穿过线圈a 的磁通量变大,线圈a 有缩小的趋势,线圈a 对水平桌面的压力F N 将变大,选项C 、D 准确. 2. (多选)水平面上的光滑平行导轨MN 、PQ 上放着光滑导体棒ab 、cd ,两棒用绝缘拉直的细线系住.t =0时刻的匀强磁场的方向如图2甲所示,磁感应强度B 随时间t 的变化图线如图乙所示,不计ab 、cd 间电流的相互作用,则 ( ) 图2 A .在0~t 2时间内回路中的电流先顺时针后逆时针 B .在0~t 2时间内回路中的电流大小先减小后增大 C .在0~t 2时间内回路中的电流大小不变 D .在0~t 1时间内细线的张力逐渐减小 答案 CD 解析 0~t 2时间内,磁场先向里减小,再向外增大,由楞次定律可知,电流一直为顺时 针方向,A 错误;由E =ΔB Δt S =kS 可知,产生的感应电动势、感应电流大小不变,B 错误,C 准确;导体棒受到的安培力F =BIl,0~t 1时间内电流恒定而磁场减小,则安培力减小,细线的张力逐渐减小,D 准确. 3. (单选)如图3所示,B 是一个螺线管,C 是与螺线管相连接的金属线圈,在B 的正上方用绝缘丝线悬挂一个金属圆环A ,A 的环面水平且与螺线管的横截面平行.若仅在金属

第九章 电磁感应 电磁场(一)作业答案

一。选择题 [ D ]1.(基础训练3)在一自感线圈中通过的电流I 随时间t 的变化规律如图(a)所示,若以I 的正流向作为 的正方向,则代表线圈内自感电动势 随时间t 变化规律的曲线应为图(b)中(A)、(B)、(C)、(D)中的哪一个? 【分析】 dt dI L L -=ε, 在每一段都是常量。dt dI [ D ]2. (基础训练5)在圆柱形空间内有一磁感强度为B 的 均匀磁场,如图所示.B 的大小以速率d B /d t 变化.在磁场中有A 、 B 两点,其间可放直导线AB 和弯曲的导线AB ,则 (A) 电动势只在导线AB 中产生. (B) 电动势只在AB 导线中产生. (C) 电动势在AB 和AB 中都产生,且两者大小相等. (D) AB 导线中的电动势小于导线中的电动势 【分析】 连接oa 与ob ,ob ab ob oab εεεε++=。因为涡旋电场总是与圆柱截面垂直,所以oa 和ob 上的涡旋电场方向处处垂直于oa 、ob ,即0=?= =? → →l d E ob ob εε oab ob d dB S dt dt φεε==-=- o ab oab d d dt dt ??∴< [ B ]3.(基础训练6)如图12-16所示,直角三角形金属框架abc 放在均匀磁 场中,磁场B 平行于ab 边,bc 的长度为l .当金属框架绕ab 边以匀角速度ω转动 时,abc 回路中的感应电动势和a 、c 两点间的电势差U a – U c 为 (A) 0ε= 2 2 1l B U U c a ω=- (B) 0ε= 221l B U U c a ω-=- (C)2 B l εω=22 1l B U U c a ω=- (D) 2B l εω= 221l B U U c a ω-=- 【分析】 ab 边以匀速转动时 0=- =dt d abc φ ε 22 l B l d B v U U U U L c b c a ω-=???? ? ??=-=-?→→→ t t t t t (b) (a) B a b c l ω图12-16

专题四:41电磁感应定律及其应用

专题四:4.1电磁感应定律及其应用 一、单项选择题 1.下列说法正确的是( ) A .线圈中磁通量变化越大,线圈中产生的感应电动势一定越大 B .线圈中的磁通量越大,线圈中产生的感应电动势一定越大 C .线圈处在磁场越强的位置,线圈中产生的感应电动势一定越大 D .线圈中磁通量变化得越快,线圈中产生的感应电动势越大 [答案] D 2.如图所示,闭合线圈abcd 在磁场中运动到如图位置时,ab 边受到的磁场力竖直向上,此线圈的运动情况可能是( ) A .向右进入磁场 B .向左移出磁场 C .以ab 为轴转动 D .以ad 为轴转动 [答案] B 3.(2012·吉林期末质检) 如图所示,两块水平放置的金属板距离为d ,用导线、开关K 与一个n 匝的线圈连接,线圈置于方向竖直向上的变化磁场B 中.两板间放一台小压力传感器,压力传感器上表面静止放置一个质量为m 、电荷量为+q 的小球,K 断开时传感器上有示数,K 闭合稳定后传感器上恰好无示数,则线圈中的磁场B 的变化情况和磁通量变化率分别是( ) A .正在增加,ΔΦΔt =mgd q B .正在减弱,ΔΦΔt =mgd nq C .正在减弱,ΔΦΔt =mgd q D .正在增加,ΔΦΔt =mgd nq

[答案] D 5.(2012·海南卷)如图,一质量为m的条形磁铁用细线悬挂在天花板上,细线从一水平金属圆环中穿过.现将环从位置Ⅰ释放,环经过磁铁到达位置Ⅱ.设环经过磁铁上端和下端附近时细线的张力分别为T1和T2,重力加速度大小为g,则() A.T1>mg,T2>mg B.T1mg,T2mg [答案] A 二、双项选择题 6.如图所示是验证楞次定律实验的示意图,竖直放置的线圈固定不动,将磁铁从线圈上方插入或拔出,线圈和电流表构成的闭合回路中就会产生感应电流.各图中分别标出了磁铁的极性、磁铁相对线圈的运动方向以及线圈中产生的感应电流的方向等情况,其中正确的是() [答案]CD 7.(2012·长沙名校模考)如图所示,通过水平绝缘传送带输送完全相同的铜线圈,线圈等距离排列,且与传送带以相同的速度匀速运动.为了检测出个别未闭合的不合格线圈,让传送带通过一固定匀强磁场区域,磁场方向垂直于传送带,根据穿过磁场后线圈间的距离,就能够检测出不合格线圈,通过观察图形.判断下列说法正确的是()

第十讲法拉第电磁感应定律应用一磁感应定律应用一95

第十一讲、法拉第电磁感应定律(一) 一、要点导学: 法拉第电磁感应定律: 二、例题精选: (一)、对感应电动势概念的理解 例:下列说法正确的是(D ) A .穿过线圈的磁通量为零时,感应电动势也一定为零 B .穿过线圈的磁通量不为零时,感应电动势也一定不为零 C .穿过线圈的磁通量均匀变化时,感应电动势也均匀变化 D .穿过线圈的磁通量变化越快,感应电动势越大 (二)、感应电动势方向(判断电势高低) 例:飞机在我国上空匀速巡航。机翼保持水平,飞行高度不变。由于地磁场的作用,金属 机翼上有电势差。设飞行员左方机翼末端处的电势为U 1,右方机翼末端处的电势为U 2,(A,C ) A .若飞机从西往东飞,U 1比U 2高 B .若飞机从东往西飞,U 2比U 1高 C .若飞机从南往北飞,U 1比U 2高 D .若飞机从北往南飞,U 2比U 1高 (三)、感应电动势大小计算 例:在如图所示的平面中, L 1、L 2是两根平行的直导线, ab 是垂直跨在L 1、L 2上并且可以 左右滑动的直导线, 它的长度是d , 电阻是r . 在线路中接入定值电阻R 和电容器C , 如图所示. 当ab 以速度v 向右匀速滑动时, 电容器上极板带什么电荷? 电量多少? ( 四)法拉第电磁感应定律与直流电综合 (1)、求回路电流、及由电流计算安培力和电热 例: 如图所示,PN 与QM 两平行金属导轨相距1m ,电阻不计,两端分别接有电阻R 1和 R 2,且R 1=6Ω,ab 导体的电阻为2Ω,与导轨良好接触并可在导轨上无摩擦地滑动,垂直穿过导轨平面的匀强磁场的磁感应强度为1T 。现ab 以恒定速度v =3m/s 匀速向右 a b R C L L 2 L 1

一电磁感应中的电路问题要点

电磁感应中的电路问题 ▲知识梳理 1.求解电磁感应中电路问题的关键是分析清楚内电路和外电路。 “切割”磁感线的导体和磁通量变化的线圈都相当于“电源”,该部分导体的电阻相当于内电阻,而其余部分的电路则是外电路。 2.几个概念 (1)电源电动势或。 (2)电源内电路电压降,r是发生电磁感应现象导体上的电阻。(r是内电路的电阻) (3)电源的路端电压U,(R是外电路的电阻)。 3.解决此类问题的基本步骤 (1)用法拉第电磁感应定律和楞次定律或右手定则确定感应电动势的大小和方向。(2)画等效电路:感应电流方向是电源内部电流的方向。 (3)运用闭合电路欧姆定律结合串、并联电路规律以及电功率计算公式等各关系式联立求解。 特别提醒:路端电压、电动势和某电阻两端的电压三者的区别: (1)某段导体作为外电路时,它两端的电压就是电流与其电阻的乘积。 (2)某段导体作为电源时,它两端的电压就是路端电压,等于电流与外电阻的乘积,或等于电动势减去内电压,当其内阻不计时路端电压等于电源电动势。 (3)某段导体作为电源时,电路断路时导体两端的电压等于电源电动势 1:图中EF、GH为平行的金属导轨,其电阻可不计,R为电阻器,C为电容器,AB为可在EF和GH上滑动的导体横杆。有均匀磁场垂直于导轨平面。若用和分别表示图中该处导线中的电流,则当横杆AB() A.匀速滑动时,=0,=0 B.匀速滑动时,≠0,≠0 C.加速滑动时,=0,=0 D.加速滑动时,≠0,≠0

2、两根光滑的长直金属导轨、平行置于同一水平面内,导轨间距为l,电阻不计,M、处接有如图所示的电路,电路中各电阻的阻值均为R,电容器的电容为C。 长度也为l、阻值同为R的金属棒ab垂直于导轨放置,导轨处于磁感应强度为B、方向竖直向下的匀强磁场中。ab在外力作用下向右匀速运动且与导轨保持良好接触,在ab运动距离为s的过程中,整个回路中产生的焦耳热为Q。求: (1)ab运动速度v的大小; (2)电容器所带的电荷量q。 3、如图所示,两条平行的光滑水平导轨上,用套环连着一质量为0.2kg、电阻为2Ω的导体杆ab,导轨间匀强磁场的方向垂直纸面向里。已知=3Ω,= 6Ω,电压表的量 程为0~10 V,电流表的量程为0~3 A(导轨的电阻不计)。求: (1)将R调到30Ω时,用垂直于杆ab的力F=40 N,使杆ab沿着导轨向右移动且达到最大速度时,两表中有一表的示数恰好满量程,另一表又能安全使用,则杆ab的速度多大?(2)将R调到3Ω时,欲使杆ab运动达到稳定状态时,两表中有一表的示数恰好满量程,另一表又能安全使用,则拉力应为多大? (3)在第(1)小题的条件下,当杆ab运动达到最大速度时突然撤去拉力,则电阻上还能产生多少热量?

暂态过程

短路:是指电力系统正常运行情况以外的相与相之间或相与地(或中性线)之间的连接。 产生短路原因:电气设备载流部分的相间绝缘或向对地绝缘被损坏。重合闸:当短路发生后断路器迅速断开,是故障部分与系统隔离,经过一定时间再将断路器合上。 电力系统的短路故障有时也称为横向故障,因为它是相对相(或相对地)的故障纵向故障:断线故障 短路危害:短路电流增大,热效应,电动力冲击,电网中电压降低,造成大面积停电。 短路类型:三相短路,两相短路,单相接地短路,两相接地短路。 无限的大功率电源:是指电力系统中,电源距离短路点较远时由短路引起的电源输出功率的变化远小于电源的的容量。 无限大功率电源特点:1电源电压和频率保持恒定。2内阻抗为零 判断:若供电电源的内阻抗小于短路回路总阻抗的10%时,则可认为供电电源为无限大功率电源。 无限大功率电源:基频交流分量不衰减,直流分量衰减。 无论是定子短路电流还是励磁回路电流,在突然短路瞬间均不突变,即三相定子电流均为0,励磁回路电流等于if|0| 当短路发生在电感电路中、短路前为空载的情况下直流分量电流最大,若初始相交满足|α-φ|=90°,则一相短路电流的直流分量起始值的绝对值达到最大值,即等于稳态短路电流幅值。 短路冲击电流:短路电流在前述最恶劣短路情况下的最大瞬间值。 冲击电流主要用于检验电气设备和载流导体的动稳定度 派克变换:是一种坐标系数的变换,是将静止的a、b、c坐标系统表示的电磁量转化成与转子一起旋转的d、q两相直角坐标系统和静止的O轴系统的电磁量,变系数微分方程转化成常系数微分方程。 (1)同步发电机在三相突然短路后,短路电流中除了基频交流分量外,还有直流分量和两倍基频交流分量。 (2)短路电流基频交流分量初始幅值很大,经过衰减而到稳定值。 基频交流分量的初始值是由次暂态电动势和次暂态电抗或暂 态电动势和暂态电抗决定的。短路电流稳态值总是由空载电动 势稳态值和x d决定的 (3)直流分量的衰减规律主要取决于定子电阻和定子的等值电抗。 基频交流分量的衰减规律和转子绕组中直流分量的衰减规律 是一致的,后者取决于转子绕组的等值回路。 对于电源:各电源电势同相位Z|0|=1 U i|0|=1 Z ij|0|=0 在电网方面作:短路电流计算时一般可以忽略线路对地点燃和变压器的励磁回路,对于电压高于110KV的线路可以忽略电阻,对于电压等级较低的线路近似用阻抗模值Z代替X,综合性负荷非短路点处的负荷完全忽略,只计算短路点出大容量异步电动机的负荷 影响短路电流变化规律的主要因素有两个,一个是发电机的类型和参数,另一个是发电机对短路点的电气距离。 影响短路电流变化规律的主要因素:1发电机的类型和参数,2发电

相关主题
文本预览
相关文档 最新文档