当前位置:文档之家› 高分子学科简介

高分子学科简介

高分子材料在国民经济中的作用及发展趋势

高分子材料在国民经济中的作用及发展趋势 摘要:材料是现代文明进步的基石。自高分子材料的问世以来,其发展突飞猛进,已开发 出许多性能优异,应用范围广的高分子材料,已在信息、生命、工农业以及航空航天等方面应用广泛,使高分子材料对于人们的日常生活以及国民经济社会发展方面都起到了非常重要的作用。本文主要介绍了高分子材料的分类,以及其在国民经济和人们生活中的作用和广泛的应用,同时也分析了高分子材料在未来的发展趋势。 关键词:功能高分子材料医用高分子材料离子交换树脂胶黏剂高分子光纤人造器官1.前言: 1.1 高分子材料的分类: 高分子材料,是指相对分子质量较大的化合物组成的材料。它是以高分子化合物为基体,再配以其它添加剂所构成的一类材料的总称。按其来源来分,可分为天然高分子材料和合成高分子材料。按性能和用途来分又可分为塑料、橡胶、纤维、胶黏剂、涂料,功能高分子材料及聚合物高分子材料。 1.2高分子材料的现状: 在这个科学技术迅猛发展的21世纪,人们对知识的不断探索以及对物质生活的高度要求,使得高分子材料的飞速发展。而高分子新材料的制备以及新应用领域的拓展,对国民经济又有重大的影响,以成为社会进步和发展的重要技术之一。 高分子材料已经普遍应用于生产,生活,科技等各个领域,我们日常生活所用所穿都离不开它,尤其是塑料,橡胶,纤维这三大高分子材料,已广泛存在我们周围。同时在航空、航天、交通运输、生物医学等方面已有突出的贡献,但是有些高分子材料在性能和使用期限,以及环保方面还有待提高,所以开发出新的高性能,高功能以及绿色化的高分子材料已成为现在高分子行业的迫切要求。 2.高分子材料在国民经济中的作用 2.1 通用高分子材料的作用 2.1.1 塑料: 塑料是一类重要的高分子材料,也是现如今人们日常生活不可缺少的一类物质,它具有质轻,绝缘性能好,耐腐蚀新能强,容易加工成型等优点,在某些方面甚至是木材和金属所不及的,可以说,没有塑料,我们今天的生活将会是另一番局面。 应用最广的当属聚乙烯,它具有突出的电绝缘性和节电性能,优良的化学稳定性以及无毒性,广泛的应用于食品包装中,主要制作板材、管、薄膜、贮槽和容器,用于工业、农业及日常生活用品。具有优良的机械性能的聚丙烯则应用于日用器皿,娱乐体育用品,玩具汽车部件,家电零件。聚苯乙烯则以其电绝缘性能好,刚性大,印刷性能好的特点广泛应用于工业装饰,各种仪器仪表零件、灯罩、电子工业等。氟塑料的用途产量最广,在国防、电子、航空航天、化工、冷藏、机械方面占有重要地位。 2.1.2 橡胶: 橡胶是有机高分子弹性体。天然橡胶具有优良的综合性能,大量用于制造各种轮胎及工业橡胶制品,如胶管胶带、胶鞋雨衣及医疗卫生用品等。合成橡胶因其高弹性和耐低温性能好,耐磨性,主要用于制造轮胎,胶鞋等耐磨制品,医疗制品,运动器材等。 2.1.3 纤维:

高分子材料加工技术专业个人简历模板原创

……………………….…………………………………………………………………………………姓名:杜宗飞专业:高分子材料加工技术专业 院校:浙江大学学历:本科……………………….…………………………………………………………………………………手机:×××E – mail:×××地址:浙江大学

自荐信 尊敬的领导: 您好!今天我怀着对人生事业的追求,怀着激动的心情向您毛遂自荐,希望您在百忙之中给予我片刻的关注。 我是高分子材料加工技术专业的2014届毕业生。大学四年的熏陶,让我形成了严谨求学的态度、稳重踏实的作风;同时激烈的竞争让我敢于不断挑战自己,形成了积极向上的人生态度和生活理想。 在大学四年里,我积极参加高分子材料加工技术专业学科相关的竞赛,并获得过多次奖项。在各占学科竞赛中我养成了求真务实、努力拼搏的精神,并在实践中,加强自己的创新能力和实际操作动手能力。 在大学就读期间,刻苦进取,兢兢业业,每个学期成绩能名列前茅。特别是在高分子材料加工技术专业必修课都力求达到90分以上。在平时,自学一些关于本专业相关知识,并在实践中锻炼自己。在工作上,我担任高分子材料加工技术01班班级班长、学习委员、协会部长等职务,从中锻炼自己的社会工作能力。 我的座右铭是“我相信执着不一定能感动上苍,但坚持一定能创出奇迹”!求学的艰辛磨砺出我坚韧的品质,不断的努力造就我扎实的知识,传统的熏陶塑造我朴实的作风,青春的朝气赋予我满怀的激情。手捧菲薄求职之书,心怀自信诚挚之念,期待贵单位给我一个机会,我会倍加珍惜。 下页是我的个人履历表,期待面谈。希望贵单位能够接纳我,让我有机会成为你们大家庭当中的一员,我将尽我最大的努力为贵单位发挥应有的水平与才能。 此致 敬礼! 自荐人:××× 2014年11月12日 唯图设计因为专业,所 以精美。为您的求职锦上添花,Word 版欢迎 下载。

高分子材料的发展历程及未来趋势

1 什么是高分子材料 高分子材料是由相对分子质量较高的化合物构成的材料。我们接触的很多天然材料通常是高分子材料组成的,如天然橡胶、棉花、人体器官等。人工合成的化学纤维、塑料和橡胶等也是如此。一般称在生活中大量采用的,已经形成工业化生产规模的高分子为通用高分子材料,称具有特殊用途与功能的为功能高分子。 2 高分子材料的发展历程 树枝,兽皮,稻草等天然高分子材料是人类或者类似人类的远古智能生物最先使用的材料。在历史的长河中,纸,树胶,丝绸等从天然高分子加工而来的产品一直同人类文明的发展交织在一起。 2.1从天然树脂到合成树脂 一些树木的分泌物常会形成树脂,不过琥珀却是树脂的化石,虫胶虽然也被看成树脂,但却是紫胶虫分泌在树上的沉积物。由虫胶制成的虫胶漆,最初只用作木材的防腐剂,但随着电机的发明又成为最早使用的绝缘漆。然而进入20世纪后,天然产物已无法满足电气化的需要,促使人们不得不寻找新的廉价代用品。 以煤焦油为原粒的酚醛树脂,在1940年以前一直居各种合成树脂产量之首,每年达20多万吨,但此后随着石油化工的发展,聚合型的合成树脂如:聚乙烯、聚丙烯、聚氯乙烯以及聚苯乙烯的产量也不断扩大,随着众多年产这类产品10万吨以上大型厂的建立,它们已成当今产量最多的四类合成树脂。合成树脂再加上添加剂,通过各种成型方法即得到塑料制品,到今天塑料的品种有几十种,世界年产量在1.2亿吨左右,我国也在500万吨以上,它们已经成为生产、生活及国防建设的基础材料。 2.2从天然纤维到合成纤维

人类使用棉、毛、丝、麻等天然纤维的历史已经有几千年,但由于全球人口的不断增加和对纺织品质量的更高要求,从19世纪起,人们就为寻求新的纺织品原料而努力。 1846年制成硝化纤维;1857年制成铜氨纤维;1865年制成醋酸纤维;1891年制成粘胶纤维。由于粘胶纤维的原料是来源丰富的木材浆粕、棉短绒及棉纱下脚料等,再加上制成的纤维性能好,以至它的产量到20世纪50年代已经超过羊毛。 尽管上述几种称为“纤维素纤维”或“人造纤维”的出现是继纺织机械发明之后的又一次纺织革命,但它仍意味着人只是用化学方法,对天然植物纤维的再加工,而通过化学方法,制取全合成的、性能更为优异的纺织纤维阶段,才迎来了第三次纺织革命。 1928年32岁的美国化学家卡罗塞斯经过6年后的研究,终于在合成的数百种产品中,找到有希望成为优良纺织纤维的聚酰胺-66(即尼龙Nylon)。 1938年德国研制出聚酰胺-6,即聚己内酰胺;1941年英国制出了聚对苯二甲酸乙二醇酯纤维,商品名Dacron、“的确凉”、或涤纶;1939年德国人又研制出聚丙烯腈纤维,但到1949年才在美国投产,商品名Orlon,我国称腈纶,此又出现多种新型合成纤维,满足了多种需要,但从应用范围和技术成熟等方面看,仍以上述几种为主,其产量约占总量的90%。 2.3从天然橡胶到合成橡胶 自然界中虽然含有橡胶的植物很多,但能大量采胶的主要是生长在热带雨区的巴西橡胶树。从树中流出的胶乳,经过凝胶等工艺制成的生橡胶,最初只用于制造一些防水织物、手套、水壶等,但它受温度的影响很大,热时变粘,冷时变硬、变脆,因而用途很少。 1839年美国一家小型橡胶厂的厂主古德易(Goodyear)经过反复摸索,发现生橡胶与硫黄混合加热后能成为一种弹性好、不发粘的弹性体,这一发现推进

微观经济学课程改革

微观经济学课程改革 微观经济学课程是一门理论性与实践性都较强的课程。微观经济学侧重于基本概念、基本图形、基本理论的教授,使学生对市场运行机制的一般原理和规范行为等方面的内容有比较全面的了解。通过本课程的学习,可以使学生掌握微观经济学的基本原理,并培养经济学直觉,培养运用基本的微观经济学方法分析现实经济问题的能力。在实际教学过程中,要精心设计教学内容,丰富教学手段,注重理论与实践相结合,从而提高微观经济学的教学质量。 《微观经济学》是高等院校经济类核心专业课程之一,对培养学生经济学思维和后续经济学课程的学习具有重要意义。该课程是一门理论性较强的课程,同时实践性也很强。微观经济学侧重于基本概念、基本图形、基本理论的教授,使学生对市场运行机制的一般原理和规范行为等方面的内容有比较全面的了解。通过本课程的学习,学生应掌握微观经济学的基本原理,并培养经济学直觉,运用基本的微观经济学方法分析现实经济问题的能力。但在实际教学过程中,如何让学生在有限的课时中将内容庞杂的微观经济学理论清晰、明确的掌握并做到学有所得就显得尤为重要。本文试图在对教学实践情况进行总结并分析的基础上,结合课程特点,对本科阶段的微观经济学教学改革做一些有益的探讨。 一、微观经济学课程的特点

(一)课程的系统性 高鸿业的《西方经济学—微观部分》(第5版)作为微观经济学的经典教材,十分适合本科生学习。该教材共有11章。首先简单介绍西方经济学,然后介绍了消费者理论,包括需求、供给理论、均衡价格和效用论,生产者理论,包括生产论和成本论。接下来讲述不同市场结构下生产者如何生产和定价,包括完全竞争市场和不完全竞争市场理论,以及生产要素的价格决定。最后,在介绍一般均衡的经济效率的基础上,重点分析了市场失灵和政府应如何行使职能避免这一情况。整个微观经济学理论条理清晰、逻辑严密,体现出很强的系统性和连贯性。 (二)理论的抽象性 作为经济学的基础课程,微观经济学对抽象思维有较高的要求。比如,在课程中广泛使用的弹性这一概念,学生在学习过程中就很难理解其含义且很容易混淆;此外,一些距离现实生活比较远的理论,如寡头垄断理论、市场失灵等在现实中也很难找到合适的案例来解释。再者,属于社会科学的微观经济学课程并非如自然科学一般可以在实验室再现,缺乏社会实践经验的学生对于理论的理解缺乏深度。

高分子材料简介

康尔高分子复合板板材结构及技术特点分析介绍 1、基材是用福人牌中密度板,密度为 710-730 ,达到欧洲环保的 E1 级标准。不含任何有害的易挥发性物质。 2、背面用进口耐污的纯三聚氢氨面材贴面,耐磨且更易清洗。 3、表面用世界先进的 PUR 胶水粘合一层高分子复合材料,胶水特性:目前航天部门指定胶水,永远不脱胶。高分子复合材料特性:是我公司用两年时间反复试验后,开发出的一种 PVC 、 PET 、 Acrylic 等高分子材料的聚合体,在抗黄变、抗冲击、阻燃、耐变形、耐污和耐磨等方面在同类产品上有显著提高,是目前国际上最优质的产品。 4、使用全中国引进的第一条欧洲最先进的贴合设备,有效提高了板材表面的平整度,克服了同类产品表面不平整的缺点。 5、高分子复合材料是在原先 UV 类产品上的改良产品,除拥有原先 UV 产品的特性外,还解决了 UV 类产品常见的色差、起皱等问题,而且颜色更趋于流行时尚。 6、门板封边采用欧式的封边技术,使门板更具完美品质。铝合金封边:简洁、大方、质感分明;同色封边:幽雅、柔和、浑然一体; 高分子复合材料产品与传统类 UV 产品的理化性能对比 PET材料,其化学名称是聚对苯二甲酸乙二酯。分子结构高度对称,具有很好的光学性能和耐侯性,PET做成的各种材料均具有强度大、透明性好、无毒、防渗透、高环保等优点。因此,被广泛应用在各类食品、药品、无毒无菌的包装材料,包装瓶,电子电器,汽车配件等方面。 PET板材是目前最为环保的橱柜、衣柜门板用材料之一,其性能解析如下: 一、材料解析:

PET材料因其高环保性、无毒、达到食品级(PET材料具有强度大、透明性好、无毒、防渗透、高环保等优点。被广泛应用在各类食品、药品、无毒无菌的包装材料:像保鲜膜、饮料瓶、食用油包装瓶均是由PET材料做成)而广泛受到国内外装饰业界的关注,这也是PET 材料的最大卖点,因为现在的消费者越来越关注环保,也愿意为这类产品多花价钱买单。现在国内知名品牌像海尔高端F0橱柜(即海尔零甲醛橱柜门板全面选用PET)、柯乐芙、东方邦太等厂家的PET产品也已全面上市。 二、面材构成: 表层材料由两层构成,上层采用PET材料(表面透明部分),下层为PVC颜色膜材料。采用当今世界耐磨、耐污的美国杜邦化工原料进口添加剂,使用当今流行的德国真空覆膜技术制作而成,具有耐磨、耐压、耐高温、抗腐蚀、耐老化等特点;基材为经过国家环保认证的高环保型E0/E1级优质中密度纤维板。 PE T复合材料具有强度大、透明性好、无毒、防渗透、高环保达到食品级等优点。因此,被广泛应用在各类食品、药品、无毒无菌的包装材料:像保鲜膜、饮料瓶、食用油包装瓶均是由PE T材料做成)现在国内很多知名品牌像海尔高端F0橱柜(即海尔零甲醛橱柜门板全面选用PE T)、柯乐芙、科宝等厂家的PE T产品已全面上市。 产品优势:

浅论高分子材料的发展前景

浅论高分子材料的发展前景 摘要:随着生产和科技的发展,以及人们对知识的追求,对高分子材料的性能提出了各种各样新的要求。现代,高分子材料已与金属材料、无机非金属材料相同,成为科学技术、经济建设中的重要材料。本文主要分析了高分子材料的发展前景和发展趋势。 关键词:高分子材料;发展;前景 作者:韩莹 一高分子材料的发展现状与趋势 高分子材料作为一种重要的材料,经过约半个世纪的发展巳在各个工业领域中发挥了巨大的作用。从高分子材料与国民经济、高技术和现代生活密切相关的角度说,人类已进人了高分子时代。高分子材料工业不仅要为工农业生产和人们的衣食住行用等不断提供许多量大面广、日新月异的新产品和新材料又要为发展高技术提供更多更有效的高性能结构材料和功能性材料。鉴于此,我国高分子材料应在进

一步开发通用高分子材料品种、提高技术水平、扩大生产以满足市场需要的基础上重点发展五个方向:工程塑料,复合材料,液晶高分子材料,高分子分离材料,生物医用高分子材料。近年来,随着电气、电子、信息、汽车、航空、航天、海洋开发等尖端技术领域的发展和为了适应这一发展的需要并健进其进?步的发展,高分子材料在不断向高功能化高性能化转变方面日趋活跃,并取得了重大突破。 二高分子材料各领域的应用 1高分子材料在机械工业中的应用 高分子材料在机械工业中的应用越来越广泛,“以塑代钢”,“塑代铁”成为目前材料科学研究的热门和重点。这类研究拓宽了材料选用范围,使机械产品从传统的安全笨重、高消耗向安全轻便、耐用和经济转变。如聚氨酉旨弹性体,聚氨醋弹性体的耐磨性尤为突出,在某些有机溶剂如煤油、砂浆混合液中,其磨耗低于其它材料。聚氨醋弹性体可制成浮选机叶轮、盖板,广泛使用在工况条件为磨粒磨损的浮选机械上。又如聚甲醛材料聚甲醛具有突出的耐磨性,对金属的同比磨耗量比尼龙小,用聚四氟乙烯、机油、二硫化钥、化学润滑等改

微观经济学教学大纲

《微观经济学》教学大纲 (Microeconomics) 课程代码:(06110170)学分: 3 总学时数:51理论时数:51实验(实践)时数: 先修课程:无开课对象:工商管理、电子商务、会计 一、课程的性质、目的与任务 1.课程的性质 微观经济学是经济类、管理类本科专业必修的基础课程和核心课程。 2.课程的目的 通过本课程的学习,使学生比较系统地掌握现代微观经济学的基本原理和主要方法,了解现代经济学发展的最新动态,联系实际,运用所学理论和方法分析当前国际经济和中国经济发展的重大问题,为继续学习其他经济和管理专业的基础课和专业课打下良好的基础,并为将来从事经济理论和政策研究或经济管理实际工作提供必要的经济学基础知识和经济分析的基本方法。 3.课程的任务 本课程的任务是使学生掌握微观经济学的基本概念、研究方法、基本理论模型和政策主张,了解现代经济社会市场机制的运行和作用,熟悉政府在市场经济中的作用和相应的微观经济政策。并能够将其运用于对现实问题的理解和分析,提出自己的观点并加以论证。 二、课程内容的基本要求 第一讲经济学十大原理(第一章) [教学目的和要求] 1.介绍经济学的研究对象和十大原理,并简要介绍经济学的基本发展脉络,使学生对经济学的研究对象、研究方法和研究内容先有大致的了解,引起学生学习经济学的兴趣。 2.要求学生掌握经济学研究的典型问题及提出的相应概念。 [教学内容] 1.1 人们如何作出决策 1.2 人们如何相互影响 1.3 整体经济如何运行 [教学重点与难点] 1.经济学的研究对象

2. 十大经济学原理之间的关系 [教学方法与手段] 1.制作内容丰富全面的课件 2.讲授为主,讨论为辅 第二讲像经济学家一样思考(第2章) [教学目的和要求] 1.理解并掌握经济模型的含义、构建过程和运用方法 2.明确经济学中实证分析与规范分析的联系与区别,并能够对各种不同的观点加以甄别。 [教学内容] 2.1作为经济学家的科学家 2.2作为政策顾问的经济学家 2.3经济学家意见分歧的原因 [教学重点与难点] 1.经济学研究的基本方法 2.构建经济模型的过程和步骤 3.如何运用实证分析和规范分析 [教学方法与手段] 1.制作内容丰富全面的课件 2.讲授为主,讨论为辅 3.当堂完成第一次作业 第三讲供给与需求的市场力量(第4章) [教学目的和要求] 1.掌握需求函数和供给函数 2.了解均衡价格的形成和变动 3.理解市场经济的价格机制

高分子物理复习资料归纳

高物第一章习题 1.测量数均分子量,不可以选择以下哪种方法:(B)。 A.气相渗透法B.光散射法C.渗透压法D.端基滴定法 2.对于三大合成材料来说,要恰当选择分子量,在满足加工要求的前提下,尽量( B )分子量。 A.降低 B.提高 C.保持 D.调节 3.凝胶色谱法(GPC)分离不同分子量的样品时,最先流出的是分子量(大)的部分,是依据(体积排除)机理进行分离的。 4.测量重均分子量可以选择以下哪种方法:(D) A.粘度法B.端基滴定法C.渗透压法D.光散射法 5. 下列相同分子量的聚合物,在相同条件下用稀溶液粘度法测得的特性粘数最大的为( D ) (A)高支化度聚合物(B)中支化度聚合物(C)低支化度聚合物(D)线性聚合物 6. 内聚能密度:定义克服分子间作用力,1mol的凝聚体汽化时所需的能量为内聚能密度,表征分子间作用力的强弱。 7. 同样都是高分子材料,在具体用途分类中为什么有的是纤维,有的是塑料,有的是橡胶?同样是纯的塑料薄膜,为什么有的是全透明的,有的是半透明的? 答:(1)塑料橡胶的分类主要是取决于使用温度和弹性大小。塑料的使用温度要控制在 玻璃化温度以下且比Tg室温低很多。 而橡胶的使用温度控制在玻璃化温度以上且Tg比室温高很多,否则的话,塑料就软 化了,或者橡胶硬化变脆了,都无法正常使用。玻璃化温度你可以理解为高分子材料由 软变硬的一个临界温度。塑料拉伸率很小,而有的橡胶可以拉伸10倍以上。 纤维是指长径比大于100以上的高分子材料,纤维常用PA(聚酰胺)等材料,这类材料有分子间和分子内氢键,结晶度大,所以模量和拉伸强度都很高,不容易拉断。 (2)结晶的高聚物常不透明,非结晶高聚物通常透明。不同的塑料其结晶性是不同的。加工条件不同对大分空间构型有影响,对结晶有影响,这些都能导致透明性不同。大多数聚合物是晶区和非晶区并存的,因而是半透明的。 8. 在用凝胶渗透色谱方法测定聚合物分子量时,假如没有该聚合物的标样,但是有其它聚合物的标样, 如何对所测聚合物的分子量进行普适标定?需要知道哪些参数? 参考答案:可以用其它聚合物标样来标定所测聚合物的分子量。当淋洗体积相同时,二者的特性粘数与分子量的乘积相等,即: 根据Mark-Houwink 所以需要知道被测聚合物和标样的K,a值(在GPC实验所用的溶剂中)

高分子液晶材料的应用及发展趋势讲解

# 16 #陶瓷2009. No. 3 高分子液晶材料的应用及发展趋势 王瑾菲蒲永平杨公安杨文虎 ( 陕西科技大学材料科学与工程学院西安710021) 摘要液晶相是不同于固相和液相的一种中介相态。系统地阐述了液晶的发现、形成机制以及分类,简单介绍了液晶高分子的结构特点,介绍了主链型和侧链型液晶高分子研究的新进展,并对液晶在各个领域的应用研究和潜在性能进展作了简要的阐述。 关键词液晶高分子液晶研究进展 Application and the Development of Liquid Crystal Polymer Materials Wang Jinfei, Pu Yongping, Yang Gongan, Yang Wenhu( School of Materials Science & Engineering, Shaanxi University of Science and Technology, Xi. an, 710021) Abstract: Liquid crystal phase is different from the solid phase and an intermediate liquid phase. This paper described the discovery of the LCD, and the mechanism for the formation and classification, briefly introducd the liquid crystalline polymer structural, researched new progress of the main- chain and side- chain type liquid crystal polymer and indicated the application progress and potential properties of LCD in all fields. Key words: Liquid crystalline polymer; Liquid crystal; Study progress 1 液晶的发现 液晶是某些物质在熔融态或在溶液状态下形成的有序流体的总称。液晶的发现可以追溯到1888年,奥 地利植物学家 F Reinitzer发现,把胆甾醇苯酸脂( Cho-l esteryl Benzoate, C6 H5 CO2 C27 H45 , 简称 CB) 晶体加热到145. 5 e 会熔融成为混浊的液体, 145. 5 e 就是该物质的熔点。继续加热到178. 5e,混浊的液体会突然变成清亮的液体,而且这种由混浊到清亮的过程是可逆的。O Lehmann经过系统地研究指出,在一定的温度范围内,有些物质的机械性能与各向同性液体相似;但是它们的光学性质却和晶体相似,是各向异性的。因此,这些介于液体和晶体之间的相被称为液晶相[ 1]。 2 液晶高分子的分类 液晶是一类具有特殊性质的液体,既有液体的流动性又有晶体的各向异性特征。现在研究及应用的液晶主要为有机高分子材料。一般聚合物晶体中原子或

高分子物理知识点

构象:具有一定组成和构型的高分子链通过单键的内旋转而形成的分子中的原子在空间的排列 柔性: 高分子链中单键内旋的能力; 高分子链改变构象的能力; 高分子链中链段的运动能力; 高分子链自由状态下的卷曲程度。 链段:两个可旋转单键之间的一段链,称为链段 影响柔性因素: 1支链长,柔性降低;交联度增加,柔顺性减低。 2一般分子链越长,构象数越多,链的柔顺性越好。 3分子间作用力越大,聚合物分子链所表现出的柔顺性越小。分子链的规整性好,结晶,从而分子链表现不出柔性。 控制球晶大小的方法: 1控制形成速度; 2采用共聚方法,破坏链的均一性和规整性,生成较小的球晶; 3外加成核剂,可获得小甚至微小的球晶。 聚合物的结晶形态: 1单晶:稀溶液,慢降温,螺旋生长 2球晶:浓溶液或熔体冷却 3树枝状晶:溶液中析出,低温或浓度大,分子量大时析出; 4纤维状晶:存在流动场,分子量伸展,并沿流动方向平行排列; 5串晶:溶液低温,边结晶边搅拌; 6柱晶:熔体在应力作用下冷却结晶; 7伸直链晶:高压下融融结晶,或熔体结晶加压热处理。 结晶的必要条件: 1内因: 化学结构及几何结构的规整性; 2外因:一定的温度、时间。 结晶速度的影响因素: 1温度——最大结晶温度:低温有利于晶核形成和稳定,高温有利于晶体生长; 2压力、溶剂、杂质:压力、应力加速结晶,小分子溶剂诱导结晶; 3分子量:M 小结晶速度块,M 大结晶速度慢; 熔融热焓?H m :与分子间作用力强弱有关。作用力强,?H m 高 熔融熵?S m :与分子间链柔顺性有关。分子链越刚,?S m 小 聚合物的熔点和熔限和结晶形成的温度T c 有一定的关系: 结晶温度Tc 低(< Tm ),分子链活动能力低,结晶所得晶体不完善,从而熔限宽,熔点低; 结晶温度Tc 高(~ Tm ),分子链活动力强,结晶所得晶体更加完善,从而熔限窄,熔点高。 取向:在外力作用下,分子链沿外力方向平行排列。聚合物的取向现象包括分子链、链段的取向以及结晶聚合物的晶片等沿特定方向的择优排列。 取向机理: 1高弹态:单键的内旋转。外力作用下,链段取向;外力解除,链段解取向 2粘流态:高分子各链段的协同运动。外力作用下,分子链取向;外力解除,分子链解取向 3结晶高聚物:非晶区取向,可以解取向;晶粒取向,不易解取向 取向度: 高分子合金又称多组分聚合物, 在该体系中存在两种或两种以上不同的聚合物, θ θθ22sin 2 3 1)1cos 3(2 1-=-=f

有机高分子化合物简介例子

高二(下)化学39(杭州学军中学陈进前编制) 8-1-1 有机高分子化合物简介 [教学目标] 1.知识目标 (1)初步了解有机高分子化合物的结构特点和基本性质. (2)常识性介绍高分子材料在国民经济发展和现代科学技术中的重要作用。 (3)了解烃、烃的衍生物等有机化合物跟天然有机高分子化合物、合成有机高分子化合物的主要差别。 (4)理解“结构单元”“链节”“聚合度”“单体”等基本概念。 2.能力和方法目标 通过有机高分子化合物的学习,学会判断跟有机高分子化合物有关的“结构单元”“链节”“聚合度”“单体”等方法。 通过有机高分子化合物的结构特点、基本性质的学习,提高解决某些实际问题的能力。 3.情感和价值观目标 通过有机高分子化合物的学习,进一步强化“结构决定性质、性质决定用途”的观点.通过有机高分子化合物的学习,了解有机高分子化合物在社会生产和日常生活中的应用,增强学生对化学为提高人类生活质量作出重大贡献的认识,提高化学学习的兴趣.[重点与难点] 教学难点是乙酸的酯化反应。 [教学过程] 由教师质疑,师生共同释疑讨论。 教师提问: 1.什么叫高分子化合物?你学过哪些高分子化合物?能否说出这些实物的主要组成成份,并写出它们的分子式? 要求学生答出:相对分子质量很大(至少在10000以上)的化合物叫高分子化合物,简称高分子。 要求学生写出:聚乙烯(食品袋)、聚氯乙烯(服装袋)、酚醛树脂(电木)、聚异戊二烯(硬橡皮或橡皮筋)的分子式,并能说出它们的名称。 2.判断上述高分子化合物中哪些是天然高分子?哪些是人工合成高分子? 要求学生答出:天然高分子有淀粉、纤维素、蛋白质。合成高分子有电木、聚乙烯、聚氯乙烯、人工合成橡胶等。 3.天然的或人工合成的高分子化合物它们有哪些主要的共同特征呢?(学生回答或教师自问自答) (1)组成上:高分子是以一定数量的结构单元重复组成,例如:聚乙烯

高分子材料未来与发展前景

高分子材料相对于传统材料如玻璃、陶瓷、水泥、金属而言是后起之秀,但其发展的速度及应用的广泛性却远远超过了许多传统材料,在当今世界乃至未来的世纪都充当着举足重轻的角色,已成为工业、农业、国防和科技等领域的重要材料,尤其是在开发新型替代能源、节约资源和保护生态环境方面更是发挥着不可替代的作用。新时代的高分子材料已成为现代工程材料的主要支柱,与信息技术、生物技术一起,推动着社会的进步,今天,我将就高分子材料的发展历程及未来趋势做一个简单的概述。 说起高分子材料的发展历程,可能会比我们想象中要长远的多,最早关于高分子材料的应用要追溯到几万年前人类或者类似人类的远古智能生物最先使用的树枝,兽皮,稻草等天然高分子材料。在历史的长河中,纸,树胶,丝绸等从天然高分子加工而来的产品一直同人类文明的发展交织在一起,奏响了一首久远流长的高分子之歌。 然而随着社会的发展,人类已经不满足于对这些材料的简单利用,相应的天然高分子材料的改性和加工工艺应运而生,这其中比较具有代表性的是19世纪中叶,德国人用硝酸溶解纤维素,然后纺织成丝或制成膜,并利用其易燃的特性制成炸药,但是硝化纤维素难于加工成型,因此人们在其中加入樟脑,使其易于加工成型,做成了之后闻名遐迩的“赛璐珞”的塑料材料。再比如,橡胶的改性,早在11世纪美洲的劳动人民已经在长期的生产实践中开始利用橡胶了,但当时橡胶制品遇冷就变硬,加热则发粘受温度的影响比较大。1839年美国科学家发现了橡胶与硫磺一起加热可以消除上述变硬发粘的缺点,并可以大大增加橡胶的弹性和强度。通过硫化改性,有力的推动了橡胶工业的发展,因为硫化胶的性能比生胶优异很多,从而开辟了橡胶制品广泛应用的前景。同时,橡胶的加工方法也在逐渐完善,形成了塑炼、混炼、压延、压出、成型这一完整的加工过程,使得橡胶工业蓬勃兴起,一日千里的突飞猛进。 从二十世纪初开始,高分子材料进入了工业合成高分子的重要阶段,而合成高分子的诞生和发展则是从酚醛树脂开始的。化学家们研究了苯酚与甲醛的反应,发现在不同的反应条件下可以得到两类树脂,一种是在酸催化下生成可融化可溶解的线型酚醛树脂,另一种则是在碱催化下生成的不溶解不熔化的体型酚醛树脂,这种酚醛树脂是人类历史上第一个完全靠化学合成方法生产出来的合成树

微观经济学课程思政教学大纲

****大学 教学大纲 课程代码: 课程名称:微观经济学 授课专业:金融学 授课教师: 职称/学位:副教授 开课时间:二○二○至二○二一学年第一学期《微观经济学》课程教学大纲

一、课程性质与设置目标要求 《西方经济学》是高等院校经济学和管理学两大一级学科下属各专业的专业核心基础课程,在专业课程体系中起承前启后的作用。内容较多,难度较大,是广大学生顺利完成经济学和管理学本科学业和今后继续深造的重要基础。其基本内容包括:微观经济学和宏观经济学两部分。微观经济学主要包括微观经济学概论,供求理论,消费理论,厂商理论,市场理论,分配理论,一般均衡理论,福利经济理论和市场失灵及政府的微观决策理论。运用马克思主义基本观点、立场和方法学习和理解各章节术语指标分析,熟练掌握思考和研究各类经济发展问题的基础和能力,并为进一步的理论学习打下扎实的专业基础。引入我国经济市场化改革和政府参与经济运行取得的成效,把社会主义核心价值观内容融入教学内容,开展课堂教学,增强学生对社会主义制度和国家经济政策实施的认同感,帮助树立学生民族自尊心和自豪感,增强作为社会主义爱国青年责任感、使命感,增强他们的凝聚力和向心力,并为进一步的理论学习打下扎实的专业基础,最终达到专业育人和育才的统一。 通过理论教学和实践活动,达到以下课程目标: 课程目标1:理解和掌握有关微观经济学的基本概念、基本理论和基本分析方法,了解微观经济学的基本架构和分析逻辑; 课程目标2:能够运用经济学原理观察、分析和解释现实生活中比较简单和典型的经济现象和问题;

课程目标3:初步培养学会运用微观经济学的基本方法、思维方式分析和解决我国市场经济运行中存在的各种经济问题的能力,为进一步学习其他专业知识打下一个坚实的基础。 课程目标4:使学生建立起微观经济学的基础知识框架,为进一步学习经济学及其相关课程提供必要的知识和能力储备 课程目标5:运用马克思主义基本观点、立场和方法学习和理解掌握课程内容重点,引入我国经济市场化改革和政府参与经济运行取得的成效,把社会主义核心价值观内容融入教学内容,开展课堂教学,增强学生对社会主义制度和国家经济政策实施的认同感,帮助树立学生民族自尊心和自豪感,增强他们的凝聚力和向心力。 学习本课程的要求是:(1)通过本课程的学习,使学生全面系统地把握微观经济学的总体内容、主要结论和应用条件;(2)了解市场经济运行的基本规律和微观经济主体的行为方式,认清市场机制和政府的作用及其局限;(3)运用马克思主义的基本立场、观点和方法正确地认识微观经济学,吸收微观经济学中科学的分析方法和对市场机制运行的正确看法;(4)培养学生分析问题、解决问题的能力和团结、协作的团队精神。(5)帮助学生树立民族自尊心和自豪感,增强他们的凝聚力和向心力。 选用教材:《西方经济学》上册.《西方经济学》编写组.高等教育出版社,2019年第2版。 二、课程教学环节及基本要求 教学进程安排表、课程教学详细内容与要求如下: 表1 教学进程安排表

高分子物理名词解释22426讲课稿

第一章概论 分子量分布,是指聚合物试样中各组分含量与分子量的关系。 黏弹性,对一整块聚合物熔体在短时间内可以观察到它有一定的形状和弹性,但是经长时间观察这种熔体会表现出液体的流动性。这种长时间观察到的粘性流动和短时间内观察到的弹性两者相结合,而且与时间有关的力学性质称为黏弹性。 玻璃化转变,无定形和结晶热塑性聚合物低温时都呈玻璃态,受热至某一较窄温度,则转变为橡胶态或柔韧的可塑状态,这一转变过程称为玻璃化转变。转变时对应的温度称为玻璃化转变温度Tg。高弹性,聚合物材料在受到外力时,分子中的链段发生了运动,使长链分子由蜷曲状变成伸展状,产生很大的形变,但不导致高分子链之间产生滑移,当解除外力后,形变可完全恢复,材料的这种性质称为高弹性。 第二章高分子的链结构 高分子的链结构又分近程结构和远程结构。近程结构属于化学结构,又称一级结构。远程结构包括分子的大小与形态,链的柔顺性及分子在各种环境中所采取的构象,又称二级结构。聚集态结构是指高分子材料整体的内部结构,包括晶态结构、非晶态结构、取向态结构、液晶态结构以及织态结构,它们是描述高分子聚集体中的分子之间是如何堆砌的,又称三级结构。织态结构和高分子在生物体中的结构则属于更高级的结构。 高分子链的构型包括单体单元的键合顺序、空间构型的规整性、支化度、交联度以及共聚物的组成及序列结构。 高分子链序列结构:共聚物中不同结构单元的交替次数,不同结构单元在分子链中的平均长度。 全同立构,高分子全部由一种旋光异构体键接而成,称为全同立构; 间同立构,由两种旋光异构体交替键接而成,称为间同立构; 无规立构,两种旋光异构体完全无规键接时,则称为无规立构。 等规立构,全同异构和间同异构统称为等规立构。定向聚合,通常自由基聚合的高聚物大都是无规的,只有用特殊的催化剂才能制得等规立构的高聚物,这种聚合方法称为定向聚合。 等规度是指高聚物中含有全同立构和间同立构的总的百分数。 交联结构,高分子链之间通过支化联结成一个三维空间网型大分子时即称为交联结构。 交联度,通常用两个交联点之间的平均分子量Mc 来表示。交联度愈高,Mc愈小。或者用交联点的密度表示。 交联点密度的定义为,交联的结构单元占总结构单元的分数,即每一结构单元的交联几率。 由于单键内旋转而产生的分子在不同形态称为构象。 构型是指分子中由化学键所固定的原子在空间的几何排列,要改变构型必须经过化学键的断裂和重组。 无规线团,单键的内旋转导致高分子呈蜷曲构象,这种不规则的蜷曲的高分子链的构象称为无规线团。 柔顺性,高分子能够改变其构象的性质称为柔顺 精品文档

生物医用高分子材料的发展现状、前景和趋势

生物医用高分子材料的发展现状、前 景和趋势 据相关研究调查显示,我国生物医用高分子材料研制和生产发展迅速。随着我国开始慢慢进入老龄化社会和经济发展水平的逐步提高,植入性医疗器械的需求日益增长,对生物医用高分子材料的需求也将日益旺盛。 根据evaluate MedTech公司基于全球300家顶尖医疗器械生产商的公开数据而得出的报告《2015-2020全球医疗器械市场》预测,2020年全球医疗器械市场将达到4775亿美元,2016-2020年间的复合年均增长率为4.1%。世界医疗器械格局的前6大领域包括:诊断、心血管、影像大型设备、骨科、眼科、内窥镜,其中生物医用高分子材料在其中都得到了广泛的应用,主要体现在人工器官、医用塑料和医用高分子材料 3个领域。 1. 人工器官人工器官指的是能植入人体或能与生物组织或生物流体相接触的材料;或者说是具有天然器官组织或部件功能的材料,如人工心瓣膜、人工血管、人工肾、人工关节、人工骨、人工肌腱等,通

常被认为是植入性医疗器械。人工器官主要分为机械性人工器官、半机械性半生物性人工器官、生物性人工器官 3种。第1种是指用高分子材料仿造器官,通常不具有生物活性;第2种是指将电子技术和生物技术结合;第3种是指用干细胞等纯生物的方法,人为“制造”出器官。生物医用高分子材料主要应用在第1种人工器官中。 目前,植入性医疗器械中骨科占据约为38%的市场份额;随后是心血管领域的 36% ;伤口护理和整形外科分别为 8%左右。人工重建骨骼在骨科产品市场中占据了超过31%的市场份额,主要产品是人工膝盖,人工髋关节以及骨骼生物活性材料等,主要应用的生物医用高分子材料有聚甲基丙烯酸甲酯、高密度聚乙烯、聚砜、聚左旋乳酸、乙醇酸共聚物、液晶自增强聚乳酸、自增强聚乙醇酸等。心血管产品市场中支架占据了一半以上的市场份额,此外还有周边血管导管移植、血管通路装置和心跳节律器等。 目前各国都认识到了人工器官的重要价值,加大了研发力度,取得了一些进展。2015年,美国康奈尔大学的研究人员开发出了一种轻量级的柔性材料,并准备将其用于创建一个人工心脏。在我国,3D打印人工髋关节产品获得国家食品药品监督管理总局(CFDA)

谈谈高分子材料在现代生活中的应用

谈谈高分子材料在现代生活中的应用 高分子材料是以高分子化合物为基础的材料,由相对分子质量较高的化合物构成。高分子材料的高分子链通常是由103~105 个结构单元组成,高分子链结构和许许多多高分子链聚在一起的聚集态结构形成了高分子材料的特殊结构。因而高分子材料除具有低分子化合物所具有的结构特征(如同分异构体、几何结构、旋转异构)外,还具有许多特殊的结构特征。高分子结构通常分为链结构和聚集态结构两个部分。链结构是指单个高分子化合物分子的结构和形态,所以链结构又可分为近程和远程结构。近程结构属于化学结构,也称一级结构,包括链中原子的种类和排列、取代基和端基的种类、结构单元的排列顺序、支链类型和长度等。远程结构是指分子的尺寸、形态,链的柔顺性以及分子在环境中的构象,也称二级结构。聚集态结构是指高聚物材料整体的内部结构,包括晶体结构、非晶态结构、取向态结构、液晶态结构等有关高聚物材料中分子的堆积情况,统称为三级结构。 一高分子材料在生活中的应用简介高分子按来源分为天然、半合成(改性天然高分子材料)和合成高分子材料。天然高分子是生命起源和进化的基础,我们接触的很多天然材料通常是高分子材料组成的,如天然橡胶、棉花、人体器官等。人类社会一开始就利用天然高分子材料作为生活资料和生产资料,并掌握了其加工技术。如利用蚕丝、棉、毛织成

织物,用木材、棉、麻造纸等。19世纪30年代末期,进入天然 高分子化学改性阶段,出现半合成高分子材料。1907年出现合 成高分子酚醛树脂,标志着人类应用合成高分子材料的开始。现代,高分子材料已与金属材料、无机非金属材料相同,成为科学技术、经济建设中的重要材料;高分子材料按用途又分为普通高分子材料和功能高分子材料。功能高分子材料除具有聚合物的一般力学性能、绝缘性能和热性能外,还具有物质、能量和信息的转换、传递和储存等特殊功能。已实用的有高分子信息转换材料、高分子透明材料、高分子模拟酶、生物降解高分子材料、高分子形状记忆材料和医用、药用高分子材料等 一般将高分子材料按特性分为五类,即橡胶、纤维、塑料、 胶粘剂、涂料。 橡胶是一类线型柔性高分子聚合物。其分子链间次价力小,分子链柔性好,在外力作用下可产生较大形变,除去外力后能迅速恢复原状,有天然橡胶和合成橡胶两种。天然橡胶的主要成分是聚异戊二烯;合成橡胶的主要品种有丁基橡胶、顺丁橡胶、氯丁橡胶、三元乙丙橡胶、丙烯酸酯橡胶、聚氨酯橡胶、硅橡胶、氟橡胶等等。天然橡胶因其具有很强的弹性和良好的绝缘性、可塑性、隔水隔气、抗拉和耐磨等特点,广泛地运用于工业、农业、国防、交通、运输、机械制造、医药卫生领域和日常生活等方面,如交通运输上用的各种轮胎;工业上用的运输带、传动带、各种密封圈;医用的手套、输血管;日常生活中所用的胶鞋、雨衣、

高分子物理详细重点总结

名词解释: 1.时间依赖性:在一定的温度和外力作用下,高聚物分子从一种平衡态过渡到另一种平衡态需要一定的时间 2.松弛时间τ:橡皮由ΔX(t)恢复到ΔX(0)的1/e时所需的时间 3. 4. 5.松弛时间谱:松弛过程与高聚物的相对分子质量有关,而高聚物存在一定的分子量分布,因此其松弛时间不是一个定值,而呈现一定的分布。 6.时温等效原理:升高温度或者延长观察时间(外力作用时间)对于聚合物的分子运动是等效的,对于观察同一个松弛过程也是等效的。 7.模量:材料受力时,应力与应变的比值 8.玻璃化温度:为模量下降最大处的温度。 9.自由体积:任何分子的转变都需要有一个自由活动的空间,高分子链活动的空间 10.自由体积分数(f):自由体积与总体积之比。 11.自由体积理论:当自由体积分数为2.5%时,它不能够再容纳链段的运动,链段运动的冻结导致玻璃化转变发生。 12.物理老化:聚合物的某些性质随时间而变化的现象 13.化学老化:聚合物由于光、热等作用下发生的老化 14.外增塑:添加某些低分子组分使聚合物T g下降的现象 15.次级转变或多重转变:Tg以下,链段运动被冻结,存在需要能量小的小尺寸运动单元的运动 16.结晶速率:物品结晶过程进行到一半所需要时间的倒数 17.结晶成核剂:能促进结晶的杂质在结晶过程中起到晶核的作用 18.熔融:物质从结晶态转变为液态的过程 19.熔限:结晶聚合物的熔融过程,呈现一个较宽的熔融温度范围 20.熔融熵S m:熔融前后分子混乱程度的变化

21.橡胶: 施加外力时发生大的形变,外力除去后可以恢复的弹性材料 22.应变: 材料受到外力作用而所处的条件使其不能产生惯性移动时,它的几何形 状和尺寸将发生变化 23.附加应力:可以抵抗外力的力 24.泊松比:拉伸实验中材料横向应变与纵向应变比值的负数 25.热塑性弹性体:兼有橡胶和塑料两者的特性,在常温下显示高弹,高温下又能 塑化成型 26.力学松弛:聚合物的各种性能表现出对时间的依赖性 27.蠕变:在一定的温度下和较小恒应力的持续作用下,材料应变随时间的增加而 增大的现象 28.应力松驰:在恒定温度和形变保持不变条件下,聚合物内部应力随时间的增加 而逐渐衰减的现象 29.滞后:聚合物在交变应力作用下形变落后于应力变化的现象 30.力学损耗或者内耗:单位体积橡胶经过一个拉伸~回缩循环后所消耗的功 31.储存模量E’:同相位的应力与应变的比值 32.损耗模量E”:相差90度相位的应力振幅与应变振幅的比值 33.Boltzmann叠加原理:聚合物的力学松弛行为是其整个历史上各松弛过程的 线性加和 34.应变软化:随应变增大,应力不再增加反而有所下降 35.银纹屈服:聚合物受到张应力作用后,由于应力集中产生分子链局部取向和塑 性变形,在材料表面或内部垂直于应力方向上形成的长100、宽10、厚为1微米左右的微细凹槽或裂纹的现象 36.裂纹:由于分子链断裂而在材料内部形成的空隙,不具有强度,也不能恢复。 37.应力银纹——当应力达到临界应力值后在聚合物材料内部引发形成的银纹 38.环境银纹——在环境和应力的共同作用下,在远低于临界应力值时在聚合物材 料内部引发形成的银纹 39.剪切屈服:拉伸韧性聚合物材料到达屈服点时,试样在与拉伸方向成450角

相关主题
文本预览
相关文档 最新文档