当前位置:文档之家› 电源设计经验:RC吸收电路篇

电源设计经验:RC吸收电路篇

电源设计经验:RC吸收电路篇
电源设计经验:RC吸收电路篇

电源设计经验:RC吸收电路篇

开关电源设计中,我们常常使用到一个电阻串联一个电容构成的RC电路,RC电路性能会直接影响到产品性能和稳定性。本文将为大家介绍一种既能降低开关管损耗,且可降低变压器的漏感和尖峰电压的RC电路。

高频开关电源在开关管关断时,电压和电流的重叠引起的损耗是开关电源损耗的主要部分,同时,由于电路中存在寄生电感和寄生电容,在功率开关管关断时,电路中也会出现过电压并且产生振荡。如果尖峰电压过高,就会损坏开关管。同时,振荡的存在也会使输出纹波增大。为了降低关断损耗和尖峰电压,需要在开关管两端并联RC缓冲电路以改善电路的性能。

图1

图1所示的是一个简单的反激式开关电源电路,从图中可以看出RC电路在图中的出现过6次从RaCa—RfCf,每个RC电路的位置不同,作用也不一样。本文介绍的是图1中RbCb,RcCc构成的RC吸收电路。这两个RC电路在图中主要作用是:

●减少导通或关断损耗;

●降低电压或电流尖峰;

●可以间接的改善EMI特性。

在设计RC吸收电路时,我们必须了解整个电源网络的几个重要参数,比如输入电压、输入电流、尖峰电压、尖峰电流等。在图1所示当Q1关断时,源极电压开始上升到2Vdc,而电容Cb限制了源极(D)电压的上升速度,同时减小了上升电压和下降电流的重叠,从而减低了开关管Q1的损耗。而在下次开关关断之前,Cb必须将已经充满的电压放完,放电路径为Cb、Rb、Q1。

图2 开关管源极(D)的Vds电压波形

图2-A表示的是开关管Q1没有加RC吸收电路的Vds电压波形,图中明显的看出,当开关管Q1断开时,Vds电压迅速上升至最高点,而后伴随这震荡下跌,震荡频率为20MHZ。

图2-B表示的是开关管上加了RC吸收电路的Vds电压波形,相对与图2-A,在加了RC吸收电路后,开关管断开瞬间,Vds电压上升比较平缓,且在上升到最高电压跌落时不会产生高频震荡,EMI特性也会偏好。

在感性负载中,开关器件关断的瞬间,如果此时感性负载的磁通不为零,根据愣次定律便会产生一个自感电动势,对外界辞放磁场储能,为简单起见,一般都采用RC吸收回路,将这部份能量以热能的方式消耗掉。

设计RC吸收回路参数,需要先确定磁场储能的大小,在反激变压器中,磁场储能由两部份辞放,其中大部份是通过互感向二次侧提供能量,只有漏感部份要通过RC回路处理,需要测量励磁电感,互感及漏感值,再求得RC回路的初始电流值。

●R的取值,以开关所能承受的瞬时反压,比初始电流值;此值过小则动态功耗过大,

引值过大则达不到保护开关的作用;

●C的取值,则需要满足在钳位电平下能够储存磁能的一半,且满足一定的dV/dt,

C关断缓冲,R开通限流,电阻的阻值基本可以按照;

R=(sqrt(Llk/Cj))/n 这个公式计算,功率根据实际情况选择,C一般都在102——103之间选择,选C时在考虑吸收效果的同时还需考虑EMI的相位和后面输出电容的纹波电流应力,则有:

C=(Ip*Tf)/(2*2*Vdc)

Ip:峰值电流

Tf:集电极电流从初始值下降到零的时间

Vdc:输入的直流电压

R=Ton(min)/(3C)

Ton(min):开关管最小的导通时间

总结

根据以上给出的公式,可以很方便地选择出合适的RC吸收电路。但在设计时,应该根据整个电源设计的性能指标,通过实际调试才能得到真正合适的参数。有时候,为了达到系统的性能指标,牺牲一定的效率也是必要的。总之,在设计RC吸收电路参数时,必须综合考虑性能和效率,最终选择合适的RC参数。

ZLG致远电子自主研发、生产的隔离电源模块已有近20年的行业积累,目前产品具有宽输入电压范围,隔离1000VDC、1500VDC、3000VDC及6000VDC等多个系列,封装形式多样,兼容国际标准的SIP、DIP等封装。

同时,ZLG致远电子为保证电源产品性能建设了行业内一流的测试实验室,配备最先进、齐全的测试设备,全系列隔离DC-DC电源通过完整的EMC测试,静电抗扰度高达4KV、浪涌抗扰度高达2KV,可应用于绝大部分复杂恶劣的工业现场,为用户提供稳定、可靠的电源隔离解决方案。

开关稳压电源电路设计及应用

摘要:在对线性稳压集成电路与开关稳压集成电路的应用特性进行比较的基础上,简单介绍了LM2576的特性,给出了基本开关稳压电源、工作模式可控的开关稳压电源和开关与线性结合式稳压电路的设计方案及元器件参数的计算方法。 关键词:LM2576 电源设计 MCU 嵌入式控制系统的MCU一般都需要一个稳定的工作电压才能可靠工作。而设计者多习惯采用线性稳压器件(如78xx系列三端稳压器件)作为电压调节和稳压器件来将较高的直流电压转变M CU所需的工作电压。这种线性稳压电源的线性调整工作方式在工作中会大的“热损失”(其值为V压降×I负荷),其工作效率仅为30%~50%[1]。加之工作在高粉尘等恶劣环境下往往将嵌入式工业控制系统置于密闭容器内的聚集也加剧了MCU的恶劣工况,从而使嵌入式控制系统的稳定性能变得更差。 而开关电源调节器件则以完全导通或关断的方式工作。因此,工作时要么是大电流流过低导通电压的开关管、要么是完全截止无电流流过。因此,开关稳压电源的功耗极低,其平均工作效率可达70%~90%[1]。在相同电压降的条件下,开关电源调节器件与线性稳压器件相比具有少得多的“热损失”。因此,开关稳压电源可大大减少散热片体积和PCB板的面积,甚至在大多数情况

下不需要加装散热片,从而减少了对MCU工作环境的有害影响。 采用开关稳压电源来替代线性稳压电源作为MCU电源的另一个优势是:开关管的高频通断特性以及串联滤波电感的使用对来自于电源的高频干扰具有较强的抑制作用。此外,由于开关稳压电源“热损失”的减少,设计时还可提高稳压电源的输入电压,这有助于提高交流电压抗跌落干扰的能力。 LM2576系列开关稳压集成电路是线性三端稳压器件(如78xx 系列端稳压集成电路)的替代品,它具有可靠的工作性能、较高的工作效率和较强的输出电流驱动能力,从而为MCU的稳定、可靠工作提供了强有力的保证。 一、LM2576简介 LM2576系列是美国国家半导体公司生产的3A电流输出降压开关型集成稳压电路,它内含固定频率振荡器(52kHz)和基准稳压器(1.23V),并具有完善的保护电路,包括电流限制及热关断电路等,利用该器件只需极少的外围器件便可构成高效稳压电路。LM2576系列包括LM2576(最高输入电压40V)及LM257 6HV(最高输入电压60V)二个系列。各系列产品均提供有3.3

DCDC电源设计方案

DCDC电源设计方案 1、DC/DC电源电路简介 DC/DC电源电路又称为DC/DC转换电路,其主要功能就是进行输入输出电压转换。一般我们把输入电源电压在72V以内的电压变换过程称为DC/DC转换。常见的电源主要分为车载与通讯系列和通用工业与消费系列,前者的使用的电压一般为48V、36V、24V等,后者使用的电源电压一般在24V以下。不同应用领域规律不同,如PC中常用的是12V、5V、3.3V,模拟电路电源常用5V 15V,数字电路常用3.3V等。结合到本公司产品,这里主要总结24V以下的DC/DC电源电路常用的设计方案。 2、DC/DC转换电路分类 DC/DC转换电路主要分为以下三大类: (1)稳压管稳压电路。 (2)线性(模拟)稳压电路。 (3)开关型稳压电路 3、稳压管稳压电路设计方案 稳压管稳压电路电路结构简单,但是带负载能力差,输出功率小,一般只为芯片提供基准电压,不做电源使用。比较常用的是并联型稳压电路,其电路简图如图(1)所示, 选择稳压管时一般可按下述式子估算: (1) Uz=V out; (2)Izmax=(1.5-3)I Lmax (3)Vin=(2-3)V out 这种电路结构简单,可以抑制输入电压的扰动,但由于受到稳压管最大工作电流限制,同时输出电压又不能任意调节,因此该电路适应于输出电压不需调节,负载电流小,要求不高的场合,该电路常用作对供电电压要求不高的芯片供电。 有些芯片对供电电压要求比较高,例如AD DA芯片的基准电压等,这时候可以采用常用的一些电压基准芯片如MC1403 ,REF02,TL431等。这里主要介绍TL431、REF02的应用方案。 3.1 TL431常用电路设计方案 TL431是一个有良好的热稳定性能的三端可调分流基准电压源。它的输出

分压电路设计经验

前些天有人问我如何实现精密的分压,他认为电阻分压不够精密.其实分压的目的就是为了符合AD转换的输入围,但其实有时候不但输入围超出AD量程,甚至会是一个负电压,这个时候需要将电压平移.反正今天双 休有空,我就说说自己的做法,疏漏之处敬请谅解 现今大多数的AD芯片都采用单电源+5V、+3.3V甚至更低的+1.8V供电,其差模输入围一般是±Vref(差分输入)、0~ +Vref,部分允许使用外部基准的芯片允许0~ VDD的输入围,但是无论如何无法对一个负的输入电压进行A to D的转换(也许有一些双电源的AD芯片可以,但我是个新手没仔细研究过)。如果要对一个过零的正负信号进行AD转换就必须进行电平的平移。理论上如图1所示的差分放大器就可以完成电平平移的效果,差分放大器的增益等于1,因此Vout = Vin + 5.000。 Vin = -5 ~ +5V,因此经过平移后Vout = 0 ~ 10V,再经过电阻R18、R19二分压到符合AD系统输入围的电压。 但是图1所示的电路并不理想。第一,放大电路的输入阻抗约等于R16 + R17 = 20K,低的输入阻抗要求信号源必须是低阻具有衡压输出特性的信号源,否则将造成很大的误差;第二,R8 R9 R16 R17的匹配程度将直接影响增益精度;第三,R18 R19的二分压也将带来2%的最大误差,如果并非二分压那么R18≠R19,由于消耗的功率不一样导致R18温度与R19不相等,温漂将使得分压误差加大;第四,任何接入的电路将等效

成一个负载,即使AD系统只吸收很低的电流,等效阻抗很大,也将进一步加大分压的误差。 对于第一个问题,可以在差分放大前加入一级电压跟随器作为缓冲,利用运放的高输入阻抗减少对信号源的影响,并且运放的低输出阻抗衡压输出的特性可以很好的满足差分放大级的“特殊”要求。对于第二和第三个问题,使用0.1%低温漂的精密电阻器可以大为改善。对于第四个问题,再运放负载能力允许的情况下使用阻值更小的电阻器可以将影响降低,但是应当注意的是-----使用阻值更小的电阻器将会使消耗功率增加,而消耗功率的增加又使得温度上升,温漂问题加重。经过改进的电路如图2所示: 当然,你还可以使用单片集成差分放大器去替换后端的用精密运放和精密电阻器构建的差分放大电路,例如单位增益的AMP03。其高共模抑制比(CMRR):100 dB(典型值) 、低非线性度:0.001%(最大值) 、低失真:0.001%(典型值) 、总增益误差0.0080% 的性能是绝对优胜于分立器件构建的差分放大电路的。然而成本是否增加很多我就不知道了,我不是采购不知道价格,哈哈。

开关电源反馈设计

第六章 开关电源反馈设计 除了磁元件设计以外,反馈网络设计也是开关电源了解最少、且非常麻烦的工作。它涉及到模拟电子技术、控制理论、测量和计算技术等相关问题。 开关电源环路设计的目标是要在输入电压和负载变动范围内,达到要求的输出(电压或电流)精度,同时在任何情况下应稳定工作。当负载或输入电压突变时,快速响应和较小的过冲。同时能够抑制低频脉动分量和开关纹波等等。 为了较好地了解反馈设计方法,首先复习模拟电路中频率特性、负反馈和运算放大器基本知识,然后以正激变换器为例,讨论反馈补偿设计基本方法。并介绍如何通过使用惠普网络分析仪HP3562A 测试开环响应,再根据测试特性设计校正网络和验证设计结果。最后对仿真作相应介绍。 6.1 频率响应 在电子电路中,不可避免存在电抗(电感和电容)元件,对于不同的频率,它们的阻抗随着频率变化而变化。经过它们的电信号不仅发生幅值的变化,而且还发生相位改变。我们把电路对不同频率正弦信号的输出与输入关系称为频率响应。 6.1.1 频率响应基本概念 电路的输出与输入比称为传递函数或增益。传递函数与频率的关系-即频率响应可以用下式表示 )()(f f G G ?∠= 其中G (f )表示为传递函数的模(幅值)与频率的关系,称为幅频响应;而∠?(f )表示输出信号与输入信号的相位差与频率的关系,称为相频响应。 典型的对数幅频响应如图6.1所示,图6.1(a)为幅频特性,它是画在以对数频率f 为横坐标的单对数坐标上,纵轴增益用20log G (f )表示。图6.1(b)为相频特性,同样以对数频率f 为横坐标的单对数坐标上,纵轴表示相角?。两者一起称为波特图。 在幅频特性上,有一个增益基本不变的频率区间,而当频率高于某一频率或低于某一频率,增益都会下降。当高频增高时,当达到增益比恒定部分低3dB 时的频率我们称为上限频率,或上限截止频率f H ,大于截止频率的区域称为高频区;在低频降低时,当达到增益比恒定部分低3dB 时的频率我们称为下限频率,或下限截止频率f L ,低于下限截止频率的区域称为低频区;在高 频截止频率与低频截止频率之间称为中频区。在这个区域内增益基本不变。同时定义 L H f f BW -= (6-1) 为系统的带宽。 6.1.2 基本电路的频率响应 1. 高频响应 在高频区,影响系统(电路)的高频响应的电路如图6.2所示。以图6.2a 为例,输出电压与输入电压之比随频率增高而下降,同时相位随之滞后。利用复变量s 得到 R s C sC R sC s U s U s G i o +=+== 11 /1/1)()()( (6-2) 对于实际频率,s =j ω=j 2πf ,并令 BW f H 103 103 (b) 图6.1 波特图

硬件电路设计过程经验分享 (1)

献给那些刚开始或即将开始设计硬件电路的人。时光飞逝,离俺最初画第一块电路已有3年。刚刚开始接触电路板的时候,与你一样,俺充满了疑惑同时又带着些兴奋。在网上许多关于硬件电路的经验、知识让人目不暇接。像信号完整性,EMI,PS设计准会把你搞晕。别急,一切要慢慢来。 1)总体思路。 设计硬件电路,大的框架和架构要搞清楚,但要做到这一点还真不容易。有些大框架也许自己的老板、老师已经想好,自己只是把思路具体实现;但也有些要自己设计框架的,那就要搞清楚要实现什么功能,然后找找有否能实现同样或相似功能的参考电路板(要懂得尽量利用他人的成果,越是有经验的工程师越会懂得借鉴他人的成果)。 2)理解电路。 如果你找到了的参考设计,那么恭喜你,你可以节约很多时间了(包括前期设计和后期调试)。马上就copy?NO,还是先看懂理解了再说,一方面能提高我们的电路理解能力,而且能避免设计中的错误。 3)没有找到参考设计? 没关系。先确定大IC芯片,找datasheet,看其关键参数是否符合自己的要求,哪些才是自己需要的关键参数,以及能否看懂这些关键参数,都是硬件工程师的能力的体现,这也需要长期地慢慢地积累。这期间,要善于提问,因为自己不懂的东西,别人往往一句话就能点醒你,尤其是硬件设计。 4)硬件电路设计主要是三个部分,原理图,pcb,物料清单(BOM)表。 原理图设计就是将前面的思路转化为电路原理图。它很像我们教科书上的电路图。

pcb涉及到实际的电路板,它根据原理图转化而来的网表(网表是沟通原理图和pcb之间的桥梁),而将具体的元器件的封装放置(布局)在电路板上,然后根据飞线(也叫预拉线)连接其电信号(布线)。完成了pcb布局布线后,要用到哪些元器件应该有所归纳,所以我们将用到BOM表。 5)用什么工具? Protel,也就是altimuml容易上手,在国内也比较流行,应付一般的工作已经足够,适合初入门的设计者使用。 6)to be continued...... 其实无论用简单的protel或者复杂的cadence工具,硬件设计大环节是一样的(protel上的操作类似windwos,是post-command型的;而cadence的产品concept&allegro是pre-command型的,用惯了protel,突然转向cadence的工具,会不习惯就是这个原因)。设计大环节都要有1)原理图设计。2)pcb设计。3)制作BOM 表。现在简要谈一下设计流程(步骤): 1)原理图库建立。要将一个新元件摆放在原理图上,我们必须得建立改元件的库。库中主要定义了该新元件的管脚定义及其属性,并且以具体的图形形式来代表(我们常常看到的是一个矩形(代表其IC BODY),周围许多短线(代表IC管脚))。protel创建库及其简单,而且因为用的人多,许多元件都能找到现成的库,这一点对使用者极为方便。应搞清楚ic body,ic pins,input pin,output pin,analog pin,digital pin,power pin等区别。 2)有了充足的库之后,就可以在原理图上画图了,按照datasheet和系统设计的要

电源电路设计

众所皆知,电源电路设计,乃是在整体电路设计中最基础的必备功夫,因此,在接下来的文章中,将会针对实体电源电路设计的案例做基本的探讨。 电源device电路 ※输出电压可变的基准电源电路 (特征:使用专用IC基准电源电路) 图1是分流基准(shunt regulator)IC构成的基准电源电路,本电路可以利用外置电阻与的设定,使输出电压在范围内变化,输出电压可利用下式求得: ----------------------(1) :内部的基准电压。 图中的TL431是TI的编号,NEC的编号是μPC1093,新日本无线电的编号是NJM2380,日立的编号是HA17431,东芝的编号是TA76431。 (特征:高精度、电压可变)

类似REF-02C属于高精度、输出电压不可变的基准电源IC,因此设计上必需追加图2的OP增幅IC,利用该IC的gain使输出电压变成可变,它的电压变化范围为,输出电流为。 ※利用单电源制作正负电压同时站立的电源电路 (特征:正负电压同时站立) 虽然电池device的电源单元,通常是由电池构成单电源电路,不过某些情况要求电源电路具备负电源电压。 图3的电源电路可输出由单电源送出的稳定化正、负电源,一般这类型的电源电路是以正电压当作基准再产生负电压,因此负电压的站立较缓慢,不过图3的电源电路正、负电压却可以同时站立,图中的TPS60403 IC可使的电压极性反转。

※40V最大输出电压的Serial Regulator (特征:可以输出三端子Regulator IC无法提供的高电压) 虽然三端子Regulator IC的输出电压大约是24V,不过若超过该电压时电路设计上必需与IC 以disk lead等组件整合。 图5的Serial Regulator最大可以输出+40V 的电压,图中D2 Zener二极管的输出电压被设定成一半左右,再用R7 VR1 R8 将输出电压分压,使该电压能与VZ2 的电压一致藉此才能决定定数。必需注意的是R7 R8 若太大的话,会引发输出电压噪声上升与波动等问题;反R7 R8之若太小的话,会有发热耗损电力之虞,因此一般以R7 R8 2-5K 比较合适。 ※输出电压为40-80的Serial Regulator (特征:利用disk lead组件输出高电压) 图6是可以输出电压为40-80 的Serial Regulator,由于本电路的输出电压非常高,因此无法使用OP增幅IC。图中的VCEO是利用120V的2SC2240-GR构成误差增幅器。此外本电路还追加TR5 与Cascode增幅器,藉此改善误差增幅器的频率特性。 2SK373-Y是VDS=100V的FET,它可以构成高耐压的定电流电源。除了FET之外还可以使用最大使用电压为100V ,定格电力为300MW ,石冢电子的定电流二极管E-202。

电源反馈设计速成篇之五设计篇(Voltage mode,CCM)

电源反馈设计速成篇之五: 设计篇 (Voltage mode, CCM) 设计的目的是为了系统稳定且有足够频率响应使系统在负载变化时得到较小的电压波动. 传统的无差运放调节器分为一类(Type 1), 二类(Type 2)和三类(Type 1), 对应其有一个, 两个和三个极点. 图1为Type 1补偿器. 其传递函数为一积分器.应用Type1补偿器时,为了系统稳定,剪切频率必须远在LC 谐振双极点之前.一般应用于对负载变化要求不高的场合. 1 111C R s G I ??= 图2为Type 2补偿器, 其传递函数为 ) /1()/1(1)(1211p z II s s s C C R G ωω++??+?=, 其中 2 12121C C C C R p +??=ω,221C R z ?=ω 图3为Type 2补偿器波特图.相比Type1多引入了一个零点和极点,零点在前极点在后因此可以提升相位,推高剪切频率提高系统响应速度.图4为Type 2补偿器系统设计波特图,黑色为主电路开环频率响应,粉红色为补偿器频率响应,蓝色为整个系统开环回路增益(Loop Gain),虚线为运放开环增益.剪切频率可在LC 谐振双极点之后.其前提是ESR 零点在剪切频率之前靠近LC 谐振双极点,否则相位裕量不够.设计要点是放零点在LC 谐振双极点之前如0.1倍处,极点在0.5倍开关频率之前以衰减高频噪声. 图5为Type 3补偿器波特图.相比Type2又多引入了一个零点和极点,零点在前极点在后因此可以提升更多相位,推高剪切频率提高系统响应速度.图6为Type 3补偿器系统设计波特图,黑色为主电路开环频率响应,粉红色为补偿器频率响应,蓝色为整个系统开环回路增益(Loop Gain),虚线为运放开环增益.剪切频率可在LC 谐振双极点之后.设计要点是放两个零点在LC 谐振双极点之前如0.5和1倍处以抵消LC 谐振双极点,一个极点在ESR 零点处抵消ESR 零点,处另一个极点在0.5倍开关频率之前以衰减高频噪声. 图1. Type 1补偿器

二十年经验浓缩:PCB布线设计经验谈附原理图

二十年经验浓缩:PCB布线设计经验谈附原理图 在当今激烈竞争的电池供电市场中,由于成本指标限制,设计人员常常使用双面板。尽管多层板(4层、6层及8层)方案在尺寸、噪声和性能方面具有明显优势,成本压力却促使工程师们重新考虑其布线策略,采用双面板。在本文中,我们将讨论自动布线功能的正确使用和错误使用,有无地平面时电流回路的设计策略,以及对双面板元件布局的建议。 自动布线的优缺点以及模拟电路布线的注意事项 设计PCB时,往往很想使用自动布线。通常,纯数字的电路板(尤其信号电平比较低,电路密度比较小时)采用自动布线是没有问题的。但是,在设计模拟、混合信号或高速电路板时,如果采用布线软件的自动布线工具,可能会出现一些问题,甚至很可能带来严重的电路性能问题。 例如,图1中显示了一个采用自动布线设计的双面板的顶层。此双面板的底层如图2所示,这些布线层的电路原理图如图3a和图3b所示。设计此混合信号电路板时,经仔细考虑,将器件手工放在板上,以便将数字和模拟器件分开放置。采用这种布线方案时,有几个方面需要注意,但最麻烦的是接地。如果在顶层布地线,则顶层的器件都通过走线接地。器件还在底层接地,顶层和底层的地线通过电路板最右侧的过孔连接。当检查这种布线策略时,首先发现的弊端是存在多个地环路。另外,还会发现底层的地线返回路径被水平信号线隔断了。这种接地方案的可取之处是,模拟器件(12位A/D转换器MCP3202和2.5V参考电压源MCP4125)放在电路板的最右侧,这种布局确保了这些模拟芯片下面不会有数字地信号经过。 图3a和图3b所示电路的手工布线如图4、图5所示。在手工布线时,为确保正确实现电路,需要遵循一些通用的设计准则:尽量采用地平面作为电流回路;将模拟地平面和数字地平面分开;如果地平面被信号走线隔断,为降低对地电流回路的干扰,应使信号走线与地平面垂直;模拟电路尽量靠近电路板边缘放置,数字电路尽量靠近电源连接端放置,这样做可以降低由数字开关引起的di/dt效应。 这两种双面板都在底层布有地平面,这种做法是为了方便工程师解决问题,使其可快速明了电路板的布线。厂商的演示板和评估板通常采用这种布线策略。但是,更为普遍的做法是将地平面布在电路板顶层,以降低电磁干扰。

+-12V直流稳压电源设计

12V直流稳压电源设计 一、摘要 直流稳压电源是一种当电网电压波动或温度、负载改变时,能保持输出直流电压基本不变的电源。其电源电路包括电源变压器、整流电路、滤波电路和稳压电路四个环节。设计中要用的元件有变压器、稳压器、整流二极管、电解电容等。实测结果表明,该装置实现了题目要求的全部功能,实现了题目的基本要求。 关键词:直流、整流、稳压、滤波、电源 二、设计目的 1.学会选择变压器、整流二极管、滤波电容及集成稳压器来设计直流稳压电源。 2.掌握直流稳压电源的调试及主要技术指标的测试方法。 3.培养实践技能,提高分析和解决实际问题的能力。 三、设计任务 设计一个直流稳压线性电源,输入220V,50Hz的正弦交流信号,输出±12V对称稳压直流电。 四、遇到问题 因为是模拟电路所以误差会比较大,电路的准确性往往取决于整个电路的线路连接及器件,一旦某条线路出现问题则整个电路无法正常工作,或者某个器件因为电压过大而烧坏则此电路失败。要注意输入电压的器件如稳压管,一旦输入过大电压那么它绝对会烧坏,只

能换新的来替代。 五、原理电路和程序设计电路原理方框图 1.直流稳压电源的基本原理 下面将就直流稳压电源各部分的作用作简单陈述。 (1)是降压变压器,它将电网220V交流电压变换成符合需要的交流电压,并送给整流电路,变压器的变比由变压器的副边电压确定。 (2)整流滤波电路:利用单向导电元件,把50Hz的正弦交流电变换成脉动的直流电。可以将整流电路输出电压中的交流成分大部分加以滤除,从而得到比较平滑的直流电压。 (3)稳压电路:稳压电路的功能是使输出的直流电压稳定,不随交流电网电压和负载的变化而变化。 六、电路图和各部分波形图

一位工程师8层板设计经验

一位工程师8层板设计经验 A.创建网络表 1.网络表是原理图与PCB的接口文件,PCB设计人员应根据所用的原理图和PCB设计工具的特性,选用正确的网络表格式,创建符合要求的网络表。 2.创建网络表的过程中,应根据原理图设计工具的特性,积极协助原理图设计者排除错误。保证网络表的正确性和完整性。 3.确定器件的封装(PCB FOOTPRINT). 4.创建PCB板 根据单板结构图或对应的标准板框,创建PCB设计文件; 注意正确选定单板坐标原点的位置,原点的设置原则: A.单板左边和下边的延长线交汇点。 B.单板左下角的第一个焊盘。 板框四周倒圆角,倒角半径3.5mm。特殊情况参考结构设计要求。 B.布局 1.根据结构图设置板框尺寸,按结构要素布置安装孔、接插件等需要定位的器件,并给这些器件赋予不可移动属性(锁定)。按

工艺设计规范的要求进行尺寸标注。 2.根据结构图和生产加工时所须的夹持边设置印制板的禁止布线区、禁止布局区域。根据某些元件的特殊要求,设置禁止布线区。 3.综合考虑PCB性能和加工的效率选择加工流程。 加工工艺的优选顺序为:元件面单面贴装——元件面贴、插混装(元件面插装焊接面贴装一次波峰成型)——双面贴装——元件面贴插混装、焊接面贴装。 4.布局操作的基本原则 A.遵照“先大后小,先难后易”的布置原则,即重要的单元电路、核心元器件应当优先布局. B.布局中应参考原理框图,根据单板的主信号流向规律安排主要元器件. C.布局应尽量满足以下要求:总的连线尽可能短,关键信号线最短;高电压、大电流信号与小电流,低电压的弱信号完全分开;模拟信号与数字信号分开;高频信号与低频信号分开;高频元器件的间隔要充分. D.相同结构电路部分,尽可能采用“对称式”标准布局; E.按照均匀分布、重心平衡、版面美观的标准优化布局; F.器件布局栅格的设置,一般IC器件布局时,栅格应为5--20mil,小型表面安装器件,如表面贴装元件布局时,栅格设置应不少于5mil。

电源电路设计模块图

电源电路单元 前面介绍了电路图中的元器件的作用和符号。一张电路图通常有几十乃至几百个元器件,它们的连线纵横交叉,形式变化多端,初学者往往不知道该从什么地方开始,怎样才能读懂它。其实电子电路本身有很强的规律性,不管多复杂的电路,经过分析可以发现,它是由少数几个单元电路组成的。好象孩子们玩的积木,虽然只有十来种或二三十种块块,可是在孩子们手中却可以搭成几十乃至几百种平面图形或立体模型。同样道理,再复杂的电路,经过分析就可发现,它也是由少数几个单元电路组成的。因此初学者只要先熟悉常用的基本单元电路,再学会分析和分解电路的本领,看懂一般的电路图应该是不难的。 按单元电路的功能可以把它们分成若干类,每一类又有好多种,全部单元电路大概总有几百种。下面我们选最常用的基本单元电路来介绍。让我们从电源电路开始。 一、电源电路的功能和组成 每个电子设备都有一个供给能量的电源电路。电源电路有整流电源、逆变电源和变频器三种。常见的家用电器中多数要用到直流电源。直流电源的最简单的供电方法是用电池。但电池有成本高、体积大、需要不时更换(蓄电池则要经常充电)的缺点,因此最经济可靠而又方便的是使用整流电源。 电子电路中的电源一般是低压直流电,所以要想从 220 伏市电变换成直流电,应该先把220 伏交流变成低压交流电,再用整流电路变成脉动的直流电,最后用滤波电路滤除脉动直流电中的交流成分后才能得到直流电。有的电子设备对电源的质量要求很高,所以有时还需要再增加一个稳压电路。因此整流电源的组成一般有四大部分,见图 1 。其中变压电路其实就是一个铁芯变压器,需要介绍的只是后面三种单元电路。 二、整流电路 整流电路是利用半导体二极管的单向导电性能把交流电变成单向脉动直流电的电路。 ( 1 )半波整流 半波整流电路只需一个二极管,见图 2 ( a )。在交流电正半周时 VD 导通,负半周时 VD 截止,负载 R 上得到的是脉动的直流电

分压电路设计经验

前些天有人问我如何实现精密的分压,他认为电阻分压不够精密.其实分压的目的就是为了符合AD转换的输入范围,但其实有时候不但输入范围超出AD量程,甚至会是一个负电压,这个时候需要将电压平移?反正今天双休有空,我就说说自己的做法,疏漏之处敬请谅解 现今大多数的AD芯片都采用单电源+5V、+3.3V甚至更低的+1.8V供电,其差模输入范围一般是土Vref(差分输入)、0?+Vref,部分允许使用外部基准的芯片允许0?VDD的输入范围,但是无论如何无法对一个负的输 入电压进行A to D的转换(也许有一些双电源的AD芯片可以,但我是个新手没仔细研究过)。如果要对一个过零的正负信号进行AD转换就必须进行电平的平移。理论上如图1所示的差分放大器就可以完成电平平移 的效果,差分放大器的增益等于1,因此Vout = Vin + 5.000。Vin = -5?+5V,因此经过平移后Vout = 0?10V, 再经过电阻R18、R19二分压到符合AD系统输入范围的电压。 但是图1所示的电路并不理想。第一,放大电路的输入阻抗约等于R16 + R17 = 20K,低的输入阻抗要求信 号源必须是低内阻具有衡压输出特性的信号源,否则将造成很大的误差;第二,R8 R9 R16 R17的匹配程度 将直接影响增益精度;第三,R18 R19的二分压也将带来2%的最大误差,如果并非二分压那么R18工R19,由于消耗的功率不一样导致R18温度与R19不相等,温漂将使得分压误差加大;第四,任何接入的电路将等效成一个

负载,即使AD系统只吸收很低的电流,等效阻抗很大,也将进一步加大分压的误差。 对于第一个问题,可以在差分放大前加入一级电压跟随器作为缓冲,利用运放的高输入阻抗减少对信号源 的影响,并且运放的低输出阻抗衡压输出的特性可以很好的满足差分放大级的“特殊”要求。对于第二和第三个问题,使用0.1%低温漂的精密电阻器可以大为改善。对于第四个问题,再运放负载能力允许的情况下使用阻值更小的电阻器可以将影响降低,但是应当注意的是-----使用阻值更小的电阻器将会使消耗功率增加,而消耗功率的增加又使得温度上升,温漂问题加重。经过改进的电路如图2所示: 当然,你还可以使用单片集成差分放大器去替换后端的用精密运放和精密电阻器构建的差分放大电路,例如单位增益的AMP03。其高共模抑制比(CMRR): 100 dB(典型值)、低非线性度:0.001%(最大值)、低失真:0.001%(典型值)、总增益误差0.0080% 的性能是绝对优胜于分立器件构建的差分放大电路的。然而成本是否增加很多我就不知道了,我不是采购不知道价格,哈哈。

5V电源电路设计(包括电路各模块的详解)

5v电源电路的设计 本设计是要设计一个+5V直流电源供电,这里没有直接的+5V电压,而直流电源的输入电压为220V的电网电压,在正常情况下,这一电网电压是远远的高于本设计所需的电压值,因而需要先使用变压器,将220V的电网电压降低后,再进行下一阶段的处理[4]。 变压器是这一电源电路起始部分,将220V的电网电压转变为本设计所需的较低的电压,就可以进行下一阶段的整流部分。一般规定v1为变压器的高压侧,v2为变压器的低压侧,v1侧的线圈要比v2侧的线圈要多,这样就可以将220V 的电网电压降低,如图1所示: 图1变压器 单相桥式整流电路,就是将交流电网电压转换为所需电压,整流电路由四只整流二极管组成。下面简单介绍一下单相桥式整流电路的工作原理,为简便起见,这里所选的二极管都是理想的二极管,二极管正向导通时电阻为零,反向导通时电阻无穷大。在v2的正半周,电流从变压器副边线圈的上端流出,经过二极管D1,再由二极管D4流回变压器,所以D1、D4正向导通,D2、D3反向截止,产生一个极性为上正下负的输出电压。在v2的负半周,其极性正好相反,电流从变压器副边线圈的下端流出,经过二极管D2,再由二极管D3流回变压器,所以D1、D4反向截止,D2、D3正向导通。桥式整流电路利用了二极管的单向导电性,利用四个二极管,是它们交替导通,从而负载上始终可以得到一个单方向的脉动电压[6]。单相桥式整流电路如图2所示:

图2单相桥式整流电路 本设计的滤波电路采用的是电解电容和二极管并联方式滤波,简单的讲就是电容两端电压升高时,电容充电,电压降低时,电容放电,让电压降低时的坡度变得平缓,从而起到滤波的作用。这里选用电解电容是因为电解电容单位体积的电容量非常大,能比其它种类的电容大几十到数百倍,并且其额定的容量可以做到非常大,价格比其它种类相比具有相当大的优势,因为其组成材料都是普通的工业材料,比如铝等等。电解电容并联二极管,有效防止了电压反相。滤波电路如图3所示: 图3滤波电路 三端稳压器MC78M05CT将输出电压稳定在+5V上,三端稳压器如图4所示:

最详细的开关电源反馈回路设计

最详细的开关电源反馈回 路设计 Prepared on 22 November 2020

开关电源反馈回路设计 开关电源反馈回路主要由光耦(如PC817)、电压精密可调并联稳压器(如TL431)等器件组成。要研究如何设计反馈回路,首先先要了解这两个最主要元器件的基本参数。 1、光耦 PC817的基本参数如下表: 2、可调并联稳压器 由TL431的等效电路图可以看到,Uref是一个内部的基准源,接在运放的反相输入端。由运放的特性可知,只有当REF端(同相端)的电压非常接近Uref()时,三极管中才会有一个稳定的非饱和电流通过,而且随着REF端电压的微小变化,通过三极管VT的电流将从1到100mA变化。当然,该图绝不是TL431的实际内部结构,所以不能简单地用这种组合来代替它。但如果在设计、分析应用TL431的电路时,这个模块图对开启思路,理解电路都是很有帮助的。 前面提到TL431的内部含有一个的基准电压,所以当在REF端引入输出反馈时,器件可以通过从阴极到阳极很宽范围的分流,控制输出电压。如图2所示的电路,当R1和R2的阻值确定时,两者对Vo的分压引入反馈,若Vo增大,反馈量增大,TL431的分流也就增加,从而又导致Vo下降。显见,这个深度的负反馈电路必然在Uref等于基准电压处稳定,此时Vo=(1+R1/R2)Vref。 图2 选择不同的R1和R2的值可以得到从到36V范围内的任意电压输出,特别地,当R1=R2时,Vo=5V。需要注意的是,在选择电阻时必须保证TL431工作的必要条件,就是通过阴极的电流要大于1mA。 了解了TL431和PC817的基本参数后,来看实际电路: 图3 反馈回路主要关注R6、R8、R13、R14、C8这几个器件的取值。 首先来看R13。R13、R14是TL431的分压电阻,首先应先确定R13的值,再根据Vo=(1+R14/R13)Vref公式来计算R14的值。 1.确定R13.、R14取值

开关电源反馈电路

电流型开关电源中电压反馈电路的设计 2007-11-29 09:35:15| 分类:电源| 标签:|字号大中小订阅 尚修香侯振义空军工程大学电讯工程学院 在传统的电压型控制中,只有一个环路,动态性能差。当输入电压有扰动时,通过电压环反馈引起占空比的改变速度比较慢。因此,在要求输出电压的瞬态误差较小的场合,电压型控制模式是不理想的。为了解决这个问题,可以采用电流型控制模式。电流型控制既保留了电压型控制的输出电压反馈,又增加了电感电流反馈,而且这个电流反馈就作为PWM控制变换器的斜坡函数,从而不再需要锯齿波发生器,使系统的性能具有明显的优越性。电流型控制方法的特点如下: 1、系统具有快速的输入、输出动态响应和高度的稳定性; 2、很高的输出电压精度; 3、具有内在对功率开关电流的控制能力; 4、良好的并联运行能力。 由于反馈电感电流的变化率直接跟随输入电压和输出电压的变化而变化。电压反馈回路中,误差放大器的输出作为电流给定信号,与反馈的电感电流比较,直接控制功率开关通断的占空比,所以电压反馈是电流型电源设计中很重要的问题。本文介绍使用电流型控制芯片uc3842时,电压反馈电路的设计。 一、uc3842简介 图1为UC3842PWM控制器的内部结构框图。其内部基准电路产生+5V基准电压作为UC3842内部电源,经衰减得2.5V电压作为误差放大器基准,并可作为电路输出5V/50mA的电源。振荡器产生方波振荡,振荡频率取决于外接定时元件,接在4脚与8脚之间的电阻R与接在4脚与地之间的电容C共同决定了振荡器的振荡频率,f=1.8/RC。反馈电压由2脚接误差放大器反相端。1脚外接RC网络以改变误差放大器的闭环增益和频率特性,6脚输出驱动开关管的方波为图腾柱输出。3脚为电流检测端,用于检测开关管的电流,当3脚电压≥1V时,UC3842就关闭输出脉冲,保护开关管不至于过流损坏。UC3842PWM 控制器设有欠压锁定电路,其开启阈值为16V,关闭阈值为10V。正因如此,可有效地防止电路在阈值电压附近工作时的振荡。 图1UC3842的内部结构框图如下: UC3842具有以下特点: 1、管脚数量少,外围电路简单,价格低廉; 2、电压调整率很好; 3、负载调整率明显改善; 4、频响特性好,稳定幅度大; 5、具有过流限制、过压保护和欠压锁定功能。 UC3842具有良好的线性调整率,因为输入电压Vi 的变化立即反应为电感电流的变化,它不经过任何误差放大器就能在比较器中改变输出脉冲宽度,再增加一级输出电压Vo至误差放大器的控制,能使线性调整率更好;可明显地改善负载调整率,因为误差放大器可专门用于控制由于负载变化造成的输出电压

史上最全的开关电源设计经验资料

三种基础拓扑(buck boost buck-boost )的电路基础: 1, 电感的电压公式dt dI L V ==T I L ??,推出ΔI =V ×ΔT/L 2, sw 闭合时,电感通电电压V ON ,闭合时间t ON sw 关断时,电感电压V OFF ,关断时间 t OFF 3, 功率变换器稳定工作的条件:ΔI ON =ΔI OFF 即,电感在导通和关断时,其电流变化相等。 那么由1,2的公式可知,V ON =L ×ΔI ON /Δt ON ,V OFF =L ×ΔI OFF /Δt OFF ,则稳定条件为伏秒定律:V ON ×t ON =V OFF ×t OFF 4, 周期T ,频率f ,T =1/f ,占空比D =t ON /T =t ON /(t ON +t OFF )→t ON =D/f =TD →t OFF =(1-D )/f 电流纹波率r P51 52 r =ΔI/ I L =2I AC /I DC 对应最大负载电流值和最恶劣输入电压值 ΔI =E t /L μH E t =V ×ΔT (时间为微秒)为伏微秒数,L μH 为微亨电感,单位便于计算 r =E t /( I L ×L μH )→I L ×L μH =E t /r →L μH =E t /(r* I L )都是由电感的电压公式推导出来 r 选值一般0.4比较合适,具体见 P53 电流纹波率r =ΔI/ I L =2I AC /I DC 在临界导通模式下,I AC =I DC ,此时r =2 见P51 r =ΔI/ I L =V ON ×D/Lf I L =V O FF×(1-D )/Lf I L →L =V ON ×D/rf I L 电感量公式:L =V O FF×(1-D )/rf I L =V ON ×D/rf I L 设置r 应注意几个方面: A,I PK =(1+r/2)×I L ≤开关管的最小电流,此时r 的值小于0.4,造成电感体积很大。 B,保证负载电流下降时,工作在连续导通方式P24-26, 最大负载电流时r ’=ΔI/ I LMAX ,当r =2时进入临界导通模式,此时r =ΔI/ I x =2→ 负载电流I x =(r ’ /2)I LMAX 时,进入临界导通模式,例如:最大负载电流3A ,r ’=0.4,则负载电流为(0.4/2)×3=0.6A 时,进入临界导通模式 避免进入临界导通模式的方法有1,减小负载电流2,减小电感(会减小ΔI ,则减小r )3,增加输入电压 P63 电感的能量处理能力1/2×L ×I 2 电感的能量处理能力用峰值电流计算1/2×L ×I 2PK ,避免磁饱和。 确定几个值:r 要考虑最小负载时的r 值 负载电流I L I PK 输入电压范围V IN 输出电压V O 最终确认L 的值 基本磁学原理:P71――以后花时间慢慢看《电磁场与电磁波》用于EMC 和变压器 H 场:也称磁场强度,场强,磁化力,叠加场等。单位A/m B 场:磁通密度或磁感应。单位是特斯拉(T )或韦伯每平方米Wb/m 2 恒定电流I 的导线,每一线元dl 在点p 所产生的磁通密度为dB =k ×I ×dl ×a R /R 2 dB 为磁通密度,dl 为电流方向的导线线元,a R 为由dl 指向点p 的单位矢量,距离矢量为R ,R 为从电流元dl 到点p 的距离,k 为比例常数。 在SI 单位制中k =μ0/4π,μ0=4π×10-7 H/m 为真空的磁导率。 则代入k 后,dB =μ0×I ×dl ×R/4πR 3 对其积分可得B = 3 40R C R Idl ?? π μ

最详细的开关电源反馈回路设计说课讲解

最详细的开关电源反馈回路设计

开关电源反馈回路设计 开关电源反馈回路主要由光耦(如PC817)、电压精密可调并联稳压器(如TL431)等器件组成。要研究如何设计反馈回路,首先先要了解这两个最主要元器件的基本参数。 1、光耦 PC817的基本参数如下表:

2、可调并联稳压器 由TL431的等效电路图可以看到,Uref是一个内部的2.5V 基准源,接在运放的反相输入端。由运放的特性可知,只有当REF 端(同相端)的电压非常

接近Uref(2.5V)时,三极管中才会有一个稳定的非饱和电流通过,而且随着REF 端电压的微小变化,通过三极管VT的电流将从1 到100mA 变化。当然,该图绝不是TL431 的实际内部结构,所以不能简单地用这种组合来代替它。但如果在设计、分析应用TL431 的电路时,这个模块图对开启思路,理解电路都是很有帮助的。 前面提到TL431 的内部含有一个2.5V 的基准电压,所以当在REF 端引入输出反馈时,器件可以通过从阴极到阳极很宽范围的分流,控制输出电压。如图2 所示的电路,当R1 和R2 的阻值确定时,两者对Vo 的分压引入反馈,若Vo 增大,反馈量增大,TL431 的分流也就增加,从而又导致Vo 下降。显见,这个深度的负反馈电路必然在Uref等于基准电压处稳定,此时 Vo=(1+R1/R2)Vref。 图2 选择不同的R1 和R2 的值可以得到从2.5V 到36V 范围内的任意电压输出,特别地,当R1=R2 时,Vo=5V。需要注意的是,在选择电阻时必须保证 TL431 工作的必要条件,就是通过阴极的电流要大于1 mA。

电源电路的设计经验

提高电源可靠性设计的七大建议 电子产品的质量是技术性和可靠性两方面的综合。电源作为一个电子系统中重要的部件,其可靠性决定了整个系统的可靠性,开关电源由于体积小,效率高而在各个领域得到广泛应用,如何提高它的可靠性是电力电子技术的一个重要方面。 1 开关电源电气可靠性工程设计技术 1.1 供电方式的选择 供电方式一般分为:集中式供电系统和分布式供电。现代电力电子系统一般采用采用分布式供电系统,以满足高可靠性设备的要求。 1.2 电路拓扑的选择 开关电源一般采用单端正激式、单端反激式、双管正激式、双单端正激式、双正激式、推挽式、半桥、全桥等八种拓扑。其中双管正激式、双正激式和半桥电路的开关管承压仅为输入电源电压,60%降额时选用600V的开关管比较容易,而且不会出现单向偏磁饱和的问题,这三种拓扑在高压输入电路中得到广泛的应用。 1.3 功率因数校正技术 开关电源的谐波电流污染电网,干扰了其它共网设备,还可能会使采用三相四线制的中线电流过大,引发事故,解决途径之一是采用具有功率因素校正技术的开关电源。 1.4 控制策略的选择 在中小功率的电源中,电流型PWM控制是大量采用的方法,在DC-DC变换器中输出纹波可以控制在10mV,优于电压型控制的常规电源。 硬开关技术因开关损耗的限制,开关频率一般在350kHz以下;软开关技术是使开关器件在零电压或零电流状态下开关,实现开关损耗为零,从而可将开关频率提高到兆赫级水平,此技术主要应用于大功率系统,小功率系统中较少见。 1.5 元器件的选用 因为元器件直接决定了电源的可靠性,所以元器件的选用是非常重要。元器件的失效主要集中在以下四点:制造质量问题、器件可靠性的问题、设计问题、损耗问题。在使用中应对此予以足够重视。 1.6 保护电路 为使电源能在各种恶劣环境下可靠地工作,应在设计时加入多种保护电路,如防浪涌冲击、过欠压、过载、短路、过热等保护电路。 2 电磁兼容性(EMC)设计技术 开关电源多采用脉冲宽度调制(PWM)技术,脉冲波形呈矩形,其上升沿与下降沿包含大量的谐波成分,另外输出整流管的反向恢复也会产生电磁干扰(EMI),这是影响可靠性的不利因素,这使得系统具有电磁兼容性成为重要问题。 产生电磁干扰有三个必要条件:干扰源、传输介质、敏感接收单元,EMC设计就是破坏这三个条件中的一个。

原边反馈开关电源设计

原边反馈电源方案的设计 原边反馈(PSR)的AC/DC控制技术是最近10年间发展起来的新型AC/DC控制技术,与传统的副边反馈的光耦加431的结构相比,其最大的优势在于省去了这两个芯片以及与之配合工作的一组元器件,这样就节省了系统板上的空间,降低了成本并且提高了系统的可靠性。在手机充电器等成本压力较大的市场,以及LED驱动等对体积要求很高的市场具有广阔的应用前景。 在省去了这些元器件之后,为了实现高精度的恒流/恒压(CC/CV)特性,必然要采用新的技术来监控负载、电源和温度的实时变化以及元器件的同批次容差,这就涉及到初级(原边)调节技术、变压器容差补偿、线缆补偿和EMI优化技术。 初级调节的原理是通过精确采样辅助绕组(NAUX)的电压变化来检测负载变化的信息。当控制器将MOS管打开时,变压器初级绕组电流ip从0线性上升到ipeak,公式为 。此时能量存储在初级绕组中,当控制器将MOS管关断后,能量通过变压器传递到次级绕组,并经过整流滤波送到输出端VO。在此期间,输出电压 VO 和二极管的正向电压 VF 被反射到辅助绕组 NAUX,辅助绕组 NAUX 上的电压在去磁开始时刻可由公式 表示,其中VF是输出整流二极管的正向导通压降,在去磁结束时刻 可由公式表示,由此可知,在去磁结束时间点,次级绕组输出电压与辅助绕组具有线性关系,只要采样此点的辅助绕组的电压,并形成由精确参考电压箝位的误差放大器的环路反馈,就可以稳定输出电压VO。这时的输出电流IO由公式表示,其中VCS是CS脚上的电压,其他参数意义如图1所示。这是恒压(CV)模式的工作原理。

图1 原边控制应用框图及主要节点波形图。 当负载电流超过电流极限时,负载电流会被箝位在极限电流值,此时系统就进入恒 流(CC)模式,这里对IO的公式需要加一个限定条件即,即去磁时间与开关周期的比例保持一个常数,这样在CC模式下的输出电流公式变成了 ,其中C1是一个小于0.5的常数,VCSLMT是CS引脚限压极限值。 在使得去磁时间与开关周期的比例保持一个常数后,输出的电压和电流就都与变压器的电感值无关了,因此在实用层面上降低了应用方案对同批次电感感值一致性的要求,从而降低了大规模生产加工的成本。 与此同时,原边反馈系统还会面临线缆压降的问题。因为系统不是直接采样输出端(次级绕组整流后)的电压,而是通过采样辅助绕组的去磁结束点的电压来控制环路反馈的,因此,当输出线较长或者线径较细时,在负载线上会存在较大的内阻(例如在充电器方案中)。在负载电流变化较大的情况下,输出线的末端电压也会有较大变化。在CV模式下,这种变化在某些场合是不能接受的,因此,原边反馈驱动芯片还应该提供对线缆压降补偿的功能,这个功能通常是通过在INV脚上拉一个小电流来实现的。通过预估补偿值来调节连接在INV 脚上的分压电阻的总阻值(分压比例不变),从而补偿不同负载线型和负载大小带来的线缆压降,以维持CV曲线的水平性(如图2 中的CV曲线)。 图2 原边反馈AC-DC控制器的工作模式示意图。

相关主题
文本预览
相关文档 最新文档