当前位置:文档之家› 实验一 电路模拟基础

实验一 电路模拟基础

实验一 电路模拟基础
实验一 电路模拟基础

实验一、电路模拟基础

概要

该实验包括用户基础界面,ADS文件的创建过程包括建立原理图、仿真控件、仿真、和数据显示等部分的内容。该实验还包括调谐与谐波平衡法仿真的一个简单例子。

目标

●建立一个新的项目和原理图设计

●设置并执行S参数模拟

●显示模拟数据和储存

●在模拟过程中调整电路参数

●使用例子文件和节点名称

●执行一个谐波平衡模拟

●在数据显示区写一个等式

步骤

1.运行ADS

随后,很快出现ADS主菜单。

图三、ADS主菜单

如果,你是第一次打开ADS,在打开主菜单之前还会出现下面的对话框。询问使用者希望做什么。

图四、询问询问使用者希望做什么的对话框

其中有创建新项目(Create a new project);打开一个已经存在的项目(Open a existing project);打开最近创建的项目(Open a recently used project)和打开例子项目(Open an example project)四个选项。你可以根据需要打开始当的选项。同样,在主菜单中也有相同功能的选项。如果,你在下次打开主菜单之前不出现该对话框,你可以在“Don’t display this dialog box again”选项前面的方框内打勾。

2.建立新项目

a.在主窗口,通过点击下拉菜单“File→New Project…”创建新项目。

图五、创建新项目对话框

其中,项目的名称的安装目录为ADS项目缺省目录对应的文件夹。(一般安装时缺省目录是C:\user\default,你可以修改,但是注意不能用中文名称或放到中文名称的目录中,因为那样在模拟时会引起错误)。在项目名称栏输入项目名称“lab1”。

对话框下面的项目技术文件主要用于设定单位。在微带线布局时有用,我们选择mil。

b.点击OK,此时出现电路原理图向导。

图六、创建子电路和仿真向导界面

这里有三个选项,一个是创建子电路向导、一个是仿真向导、另外一个是不使用向导。如果,使用向导创建子电路或仿真,你需要按要求给定端口或其它数据。最后点击“Finish”。如果你选择不使用向导。点击“Finish”,就会出现原理图设计窗口。

图七、原理图设计窗口

使用该窗口就可以进行原理图设计或仿真。但需注意此时该原理图设计还没有命名。它使用默认的设计名“untitled1”作为该设计的名字。

3.检查你的新项目内的文件

a.在ADS主窗口查看左边的文件浏览窗口。目前显示你在lab1项目内。

b.在主窗口,双击networks目录,目前里面没有原理图文件。

图八、ADS主窗口

4.建立一个低通滤波器设计

a.在主窗口,点击New Schematic Window图标,也可以使用刚才自动

打开的原理图窗口。

b.在原理图设计窗口点击图标,储存原理图。取名LPF1。此时在ADS

主窗口network目录中会出现LPF1.dsn文件。

c.在元件模型列表窗口中选择Lumped-Components(集总参数元件)项。

示意图如下

图九、元件库示意图

d.从该选项左边面板中选择电容图标。然后,在电路图设计窗口放置

电容并用键把电容旋转成竖直状态(见图十)。

e.然后用类似的方法在电路图设计窗口放入电感,利用快捷键,把电容

器的一端接地。利用快捷键,用线把他们连起来。

图十、放置电容图十一、放置电感并把元件连接起来

f.在元件库列表窗口选择Simulation-S_Param项,在该项面板中选择S-parameter模拟控制器(象个齿轮)和端口Term放到图上。

图十二、放置仿真控件和终端

用ESC结束放置元件和仿真控件命令。并使用图标调整这些元件的参数如下图所示:

图十三、调整后的电路参数

5.设置S参数模拟

a.双击齿轮状S参数控件标记,打开S参数控件配置窗口,把Step-size改成0.5GHz,选择ok。

图十四、修改仿真控件的步长

b.在上面的窗口点击display标签,会显示所有可以显示在原理图中所有的

仿真控件控制量。

图十五、显示仿真控件控制量

6.开始模拟并显示数据

a.点击原理图窗口上方的Simulate图标,开始模拟。

b.然后就会弹出状态窗口,显示仿真状态的相关信息

图十六、仿真计算状态窗口

c.仿真完成以后,如果没有错误,就会自动出现数据显示窗口(见下图),可以看到数据显示窗口左上方的名称为LPF1。

图十七、数据显示窗口

如果,LPF1右上角有“*”代表该数据还没有储存。

在这个窗口中可以把计算结果以表格、圆图或等式的形式显示仿真结果的数据。

d.点击Rectangular Plot图标,把一个方框放到数据显示窗口中去,会自动弹出对话框,选择要显示的S(2,1)参数,点击Add按钮,选择dB为单位,点击Ok。

图十八、选择显示图形的窗口

e.然后就会显示一个合理的低通滤波器响应。(实验报告)

f.点击Marker>New,可以把一个三角标志放在图上,可以用键盘和鼠标控制它的位置。(实验报告)

7.储存数据窗口

a.储存的缺省名称为LPF1,扩展名为.dds,该文件会储存在项目文件夹的根目录中,而数据文件,即所有的.ds文件和数据设定,会储存在data子目录中。

图二十、储存数据

b.保存数据并关闭上述窗口后,再通过点击原理图窗口的Data Display 图标再次打开这个名为LPF1.dds的数据文件。

图二十一、打开文件“LPF1”

8.调整滤波器电路

a.点击原理图窗口中的View All图标,原理图窗口会自动调整原理

图的显示使其与当前窗口的大小相适应。

b.在LPF1原理图窗口点击Tune图标,出现调谐控制对话框。

图二十二、调谐控制对话框

c.现在,在LPF1原理图窗口,用光标选择C1和L1。

图二十三、在LPF1原理图窗口选中C1和L1

此时,调谐参数窗口变成下面的样子。

图二十四、新的调谐控制对话框

在控制对话框中调节L1和C1的结果会即时显示在数据显示窗口中线上的三角标志会自动调整到最新的曲线上。(实验报告)

d.改变调节的范围:在调节控制对话框中,可以直接修改最大、最小、调

节步长和变化比例等参数。

图二十五、在调谐控制对话框修改参数

e.调节过程中,点击Update Schematic按钮,可以更新原理图中相应元

件的参数值。也可以在原理图中用光标,增加更多的元件参加调整参数。

f.调整满意以后,点击Closel按钮。此时,出现下面的对话框询问是否

更新相应元件的参数值。点击“Yes”。保存该结果。

图二十六、保存更新

g.使用Save图标保存原理图和显示数据(右图所示,两窗口中均有),

然后把这两个窗口都关闭了(右上角的X按钮),只留下ADS主窗口。

9.使用上面的技巧和经验,用行为模型(滤波器、放大器、混频器)建立一个RF接收器的系统项目,RF=1900MHz,IF=100MHz

使用一个RF源,带相位噪声的本振LO和一个噪声控制器

测试系统:S参数,频谱,噪声等等

步骤

1.建立一个新的系统项目和原理图

使用上一章学到的方法,建立一个新的项目取名rf_sys (可自己随意取)

2. 建立一个由行为模型构成的RF接收系统

a.Butterworth滤波器:在元件模型列表窗口中找到带通滤波器项目Filters-Bandpass。插入一个Butterworth滤波器。设定为:中心频率Fcenter=

1.9GHz。通带带宽BWpass=200MHz,截止为BWstop=1GHz。

b.放大器:在元件模型列表窗口中找到System-Amps&Mixers项目,插入放大器Amplifier。设定S21=dbpolar(10,180)。

c.Term:在port1插入一个端口。端口Terms在元件模型列表窗口的Simulation-S_Param中找。

关于Butterworth滤波器请注意-Butterworth滤波器的行为模型是理想情况的,所以在通带内没有波纹。换成滤波器和放大器的电路模型以后,会产生波纹。对于带波纹的系统滤波器,可以采用椭圆滤波器的行为模型。

接下来要往系统中添加混频器和本振LO的行为模型。

d.在元件模型列表窗口中找到System-Amps&Mixers项目,在功放amp输出口

插入一个混频器Mixer的行为模型,注意是插入Mixer而不是Mixer2。Mixer2是用于非线性分析的。

e.设定混频器Mixer ConvGain=dbpolar(3,0)。这里dbpolar是极坐标表示,代表3dB。设定Mixer SideBand=LOWER,设定取混频器两个输出的低端。f.可以按F5键,再点击原理图上的组件图形,移动组件的文字。

g.在元件模型列表窗口中找到Sources-Freq Domain项目,插入V_1Tone源和上图中标出的50ohm电阻和地,这样可以提供100MHz的中频输出。

h.如图所示,在混频器的输出口加一个低通Bessel滤波器(在元件模型列表窗口中的Filters-Lowpass项目中),设置Fpass=200MHz。

i.在port2放一个端口Term。最终的系统电路如下所示:

3.设置一个带频率转换的S参数模拟

a.插入控制齿轮,设定模拟参数为:1GHz到3GHz,step步长为100MHz。

b.编辑模拟控制器,在Parameters标签内选上Enable AC frequency conversion。

c.在Display标签内选择FreqConversion和FreqConversionPort两项,让它们在原理图中显示出来。

此时,仿真控件变为,

d.点击Simulate>Simulation Setup。当对话框出现,把缺省的dataset名称改为rf_sys_10dB,代表该系统有10dB的放大器增益。

e.点击Apply和Simulate开始模拟。

4 画出S21数据

a.在数据显示窗口中插入一个网格显示的S21图形。(实验报告)

b.把一个三角标记放到1900MHz的线上。增益为混频器的转换增益减去因为失配造成的一些损耗。(实验报告)

5.提高增益,再模拟,绘制出另一条曲线

a.回到原理图,改变放大器增益S21到20dB。

b.点击Simulate>Simulation Setup,改dataset名称为rf_sys_20dB。点击Apply,开始模拟。

c.当模拟结束以后,你会被提醒是否改变缺省dataset,回答No。

d.双击编辑已经有的10dB线。当对话框出现,点击下拉框查看可用的datasets 和等式,选择rf_sys_20dB dataset。

e.选择显示S21数据,单位选dB,让S21在数据显示窗口显示,注意整个dataset 的路径会显示出来,因为它不是缺省dataset。

f.把新的三角标志放到新的线上,选择所有的标志,点击命令Marker>Delta Mode On,看看两个模拟之间10dB的差值。保存。

6. 设置一个RF源和一个带相位噪声的本振LO

接下来演示如何使用谐波平衡模拟器模拟振荡器的行为模型带来的相位噪声。

a.用新名称rf_sys_phnoise保存当前的原理图。

b.在已经保存的原理图中,删除S_param simulation controller就是那个齿轮,V_1Tone 本振源LO source,50ohm电阻和地。

c.用P_1Tone源更换port1Term,设定功率和频率如下:Freq=1.9GHz,P

=polar(dbmtow(-40),0)。注意polar与dbpolar单位不同,把源的名称改

为RF_source,Num=1;

d.利用快捷键在输出端插入一个线标记V out(节点),完成后的原理图

如下:

e.在元件模型列表窗口中找到Sources-Freq Domain项目,插入OSCwPhNoise,连接到混频器mixer上。设定Freq=1.8GHz,修改PhaseNoise list如下图所示。OSCwPhNoise已经自带了50ohm电阻注意这和『2』节中的V_1Tone加50ohm的电阻的功能类似,就是多了相位噪声。

7.设置一个谐波噪声控制器

a.在元件模型列表窗口中找到Simulation-HB项目,在原理图上插入噪声控制器NoiseCon。

注意:NoiseCon组件和HB谐波模拟一齐使用。它便于你把模拟控制和噪声测量分开。你也可以在仅仅使用一个HB控制器的情况下,为不同的噪声测量设定和使用多个噪声控制。

b.Freq tab频率标签-编辑Noise Con-设定Sweep Type为log,范围从10Hz到

10KHz,步长5。

c.在Nodes tab标签中点击Pos Node下拉框,选择V out节点,点击Add按钮。

噪声控制器同其它的ADS组件一样,能够在原理图中修改节点的名称。

d.在PhaseNoise标签中选择相位噪声类型Phose Noise Type为Phase Noise spectrum,设定载频carrier Frequency为100MHz。这是带由LO引入的相位噪声的中频频率。

e.在显示标签Display tab中把如下图示出的项目显示在原理图上,并作出相应的修改。

最后显示的噪声控制器设置如下图所示。

8.设置谐波模拟

a.在元件模型列表窗口中找到Simulation-HB项目,在原理图中插入HB模拟

控制器。

b.编辑HB控制器(双击)。把缺省的频率值改为1.8GHz,点击Apply。然后增加RF频率1.9GHz,点击Apply。

c.在Display标签中,让MaxOrder显示出来,点击Apply。

注意:你只需要在控制器中指定本振LO的频率(1.8GHz)和RF频率(1.9GHz)。不需要指定其它的频率,因为Order(谐波)和Maximum order(混

频产物)的缺省值将计算电路中其它的tones,包括100MHz的中频IF。

模拟电子电路仿真和实测实验方案的设计实验报告111-副本

课程专题实验报告 (1) 课程名称:模拟电子技术基础 小组成员:涛,敏 学号:0,0 学院:信息工程学院 班级:电子12-1班 指导教师:房建东 成绩: 2014年5月25日

工业大学信息工程学院课程专题设计任务书(1)课程名称:模拟电子技术专业班级:电子12-1 指导教师(签名): 学生/学号:涛 0敏0

实验观察R B 、R C 等参数变化对晶体管共射放大电路放大倍数的影响 一、实验目的 1. 学会放大器静态工作点的调式方法和测量方法。 2.掌握放大器电压放大倍数的测试方法及R B 、R C 等参数对放大倍数的影响。 3. 熟悉常用电子仪器及模拟电路实验设备的使用。 二、实验原理 图1为电阻分压式工作点稳定单管放大器实验电路图。偏置电阻R B1、R B2组成分压电路,并在发射极中接有电阻R E ,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号后,在放大器的输出端便可得到一个与输入信号相位相反、幅值被放大了的输出信号,从而实现了电压放大。 三、实验设备 1、 信号发生器 2、 双踪示波器 SS —7802 3、 交流毫伏表 V76 4、 模拟电路实验箱 TPE —A4 5、 万用表 VC9205 四、实验容 1.测量静态工作点 实验电路如图1所示,它的静态工作点估算方法为: U B ≈ 2 11B B CC B R R U R +? I E =E BE B R U U -≈Ic U CE = U CC -I C (R C +R E )

图1 晶体管放大电路实验电路图 实验中测量放大器的静态工作点,应在输入信号为零的情况下进行。 根据实验结果可用:I C ≈I E = E E R U 或I C = C C CC R U U U BE =U B -U E U CE =U C -U E 计算出放大器的静态工作点。 五.晶体管共射放大电路Multisim仿真 在Multisim中构建单管共射放大电路如图1(a)所示,电路中晶体管采用FMMT5179 (1)测量静态工作点 可在仿真电路中接入虚拟数字万用表,分别设置为直流电流表或直流电压 表,以便测量I BQ 、I CQ 和U CEQ ,如图所示。

实验一、电路模拟基础

实验一、电路模拟基础 概要 该实验包括用户基础界面,ADS文件的创建过程包括建立原理图、仿真控件、仿真、和数据显示等部分的内容。该实验还包括调谐与谐波平衡法仿真的一个简单例子。 目标 ●建立一个新的项目和原理图设计 ●设置并执行S参数模拟 ●显示模拟数据和储存 ●在模拟过程中调整电路参数 ●使用例子文件和节点名称 ●执行一个谐波平衡模拟 ●在数据显示区写一个等式 目录 1.运行ADS (2) 2.建立新项目 (3) 3.检查你的新项目内的文件 (5) 4.建立一个低通滤波器设计 (5) 5.设置S参数模拟 (6) 6.开始模拟并显示数据 (7) 7.储存数据窗口 (9) 8.调整滤波器电路 (10) 9.模拟一个RFIC的谐波平衡 (12) 10.增加一个线标签(节点名称),模拟,显示数据 (16)

步骤 1.运行ADS 在开始菜单中选择“Advanced Design System2005A → Advanced Design System”(见图一)。 图一、开始菜单中ADS 2005A的选项 用鼠标点击后出现初始化界面。 图二、ADS 2005初始化界面 随后,很快出现ADS主菜单。 图三、ADS主菜单

如果,你是第一次打开ADS,在打开主菜单之前还会出现下面的对话框。询问使用者希望做什么。 图四、询问询问使用者希望做什么的对话框 其中有创建新项目(Create a new project);打开一个已经存在的项目(Open a existing project);打开最近创建的项目(Open a recently used project)和打开例子项目(Open an example project)四个选项。你可以根据需要打开始当的选项。同样,在主菜单中也有相同功能的选项。如果,你在下次打开主菜单之前不出现该对话框,你可以在“Don’t display this dialog box again”选项前面的方框内打勾。 2.建立新项目 a.在主窗口,通过点击下拉菜单“File→New Project…”创建新项目。 图五、创建新项目对话框 其中,项目的名称的安装目录为ADS项目缺省目录对应的文件夹。(一般安装时缺省目录是C:\user\default,你可以修改,但是注意不能用中文名称或放到中文名称的目录中,因为那样在模拟时会引起错误)。在项目名称栏输入项目名称“lab1”。 对话框下面的项目技术文件主要用于设定单位。在微带线布局时有用,我们选择mil。

电子科技大学集成电路原理实验CMOS模拟集成电路设计与仿真王向展

实验报告 课程名称:集成电路原理 实验名称: CMOS模拟集成电路设计与仿真 小组成员: 实验地点:科技实验大楼606 实验时间: 2017年6月12日 2017年6月12日 微电子与固体电子学院

一、实验名称:CMOS模拟集成电路设计与仿真 二、实验学时:4 三、实验原理 1、转换速率(SR):也称压摆率,单位是V/μs。运放接成闭环条件下,将一个阶跃信号输入到运放的输入端,从运放的输出端测得运放的输出上升速率。 2、开环增益:当放大器中没有加入负反馈电路时的放大增益称为开环增益。 3、增益带宽积:放大器带宽和带宽增益的乘积,即运放增益下降为1时所对应的频率。 4、相位裕度:使得增益降为1时对应的频率点的相位与-180相位的差值。 5、输入共模范围:在差分放大电路中,二个输入端所加的是大小相等,极性相同的输入信号叫共模信号,此信号的范围叫共模输入信号范围。 6、输出电压摆幅:一般指输出电压最大值和最小值的差。 图 1两级共源CMOS运放电路图 实验所用原理图如图1所示。图中有多个电流镜结构,M1、M2构成源耦合对,做差分输入;M3、M4构成电流镜做M1、M2的有源负载;M5、M8构成电流镜提供恒流源;M8、M9为偏置电路提供偏置。M6、M7为二级放大电路,Cc为引入的米勒补偿电容。 其中主要技术指标与电路的电气参数及几何尺寸的关系:

转换速率:SR=I5 I I 第一级增益:I I1=?I I2 I II2+I II4=?2I I1 I5(I2+I3) 第二级增益:I I2=?I I6 I II6+I II7=?2I I6 I6(I6+I7) 单位增益带宽:GB=I I2 I I 输出级极点:I2=?I I6 I I 零点:I1=I I6 I I 正CMR:I II,III=I II?√5 I3 ?|I II3|(III)+I II1,III 负CMR:I II,III=√I5 I1+I II5,饱和 +I II1,III+I II 饱和电压:I II,饱和=√2I II I 功耗:I IIII=(I8+I5+I7)(I II+I II) 四、实验目的 本实验是基于微电子技术应用背景和《集成电路原理与设计》课程设置及其特点而设置,为IC设计性实验。其目的在于: 根据实验任务要求,综合运用课程所学知识自主完成相应的模拟集成电路设计,掌握基本的IC设计技巧。 学习并掌握国际流行的EDA仿真软件Cadence的使用方法,并进行电路的模拟仿真。 五、实验内容 1、根据设计指标要求,针对CMOS两级共源运放结构,分析计算各器件尺寸。 2、电路的仿真与分析,重点进行直流工作点、交流AC和瞬态Trans分析,能熟练掌握各种分析的参数设置方法与仿真结果的查看方法。 3、电路性能的优化与器件参数调试,要求达到预定的技术指标。

模拟电路_Multisim软件仿真教程

第13章Multisim模拟电路仿真本章Multisim10电路仿真软件, 本章节讲解使用Multisim进行模拟电路仿真的基本方法。 目录 1. Multisim软件入门 2. 二极管电路 3. 基本放大电路 4. 差分放大电路 5. 负反馈放大电路 6. 集成运放信号运算和处理电路 7. 互补对称(OCL)功率放大电路 8. 信号产生和转换电路 9. 可调式三端集成直流稳压电源电路 13.1 Multisim用户界面及基本操作 13.1.1 Multisim用户界面 在众多的EDA仿真软件中,Multisim软件界面友好、功能强大、易学易用,受到电类设计开发人员的青睐。Multisim用软件方法虚拟电子元器件及仪器仪表,将元器件和仪器集合为一体,是原理图设计、电路测试的虚拟仿真软件。 Multisim来源于加拿大图像交互技术公司(Interactive Image Technologies,简称IIT公司)推出的以Windows为基础的仿真工具,原名EWB。 IIT公司于1988年推出一个用于电子电路仿真和设计的EDA工具软件Electronics Work Bench(电子工作台,简称EWB),以界面形象直观、操作方便、分析功能强大、易学易用而得到迅速推广使用。 1996年IIT推出了EWB5.0版本,在EWB5.x版本之后,从EWB6.0版本开始,IIT对EWB进行了较大变动,名称改为Multisim(多功能仿真软件)。 IIT后被美国国家仪器(NI,National Instruments)公司收购,软件更名为NI Multisim,Multisim经历了多个版本的升级,已经有Multisim2001、Multisim7、Multisim8、Multisim9 、Multisim10等版本,9版本之后增加了单片机和LabVIEW虚拟仪器的仿真和应用。 下面以Multisim10为例介绍其基本操作。图13.1-1是Multisim10的用户界面,包括菜单栏、标准工具栏、主工具栏、虚拟仪器工具栏、元器件工具栏、仿真按钮、状态栏、电路图编辑区等组成部分。

(一和二)章模拟电子技术基础测试题一(可编辑修改word版)

《模拟电子技术基础》测试题一 姓名:学号:成绩: 一、填空题(40 分) 1、PN 结具有特性,即当电源接P 区,接N 区时,称为PN 结加正向电压或正向偏置;当电源正极接N 区,负极接P 区时,称为PN 结加或。 2、三极管的输出特性曲线可分为三个区域,即区、区和区。当三极管工作在区时,关系式IC=βIB才成立;当三极管工作在区时,IC=0;当三极管工作在区时,UCE≈0。 3、NPN 型三极管处于放大状态时,三个电极中电位最高的是,极电位最低。 4、晶体三极管有两个PN 结,即和,在放大电路中必须正偏,反偏。 5、晶体三极管反向饱和电流ICBO 随温度升高而,穿透电流ICEO 随温度升高而,β值随温度升高而。 6、硅三极管发射结的死区电压约为V,锗三极管发射结的死区电压约为 V,晶体三极管处在正常放大状态时,硅三极管发射结的导通电压约为 V,锗三极管发射结的导通电压约为V。 7、输入电压为20mV,输出电压为2V,放大电路的电压增益为。 8、二极管的主要特性是具有。二极管外加正向电压超过死区电压以 后,正向电流会,这时二极管处于状态。 9、整流电路将交流电变为直流电,滤波电路将脉动的直流电 变为的直流电。 10、整流电路按整流相数,可分为与两种;按被整流后输出电压(或电流)的波形分,又可分为与两种。

1

11、把脉动直流电变成比较平滑直流电的过程称为。 12、半导体中存在着两种载流子,其中带正电的载流子叫做,带负电 的载流子叫做;N 型半导体中多数载流子是,P 型半导体中的多数载流子是。(39 个空) 13、多级放大电路的级数愈多则上限频率fH 越。 二、选择题(20 分) 1、如果二极管的正、反向电阻都很小,则该二极管() A、正常 B、两引脚短路 C、已被击穿 D、内部断路 2、三极管工作在饱和区状态时,它的两个PN 结必须是() A、发射结和集电结同时正偏 B、发射结和集电结同时反偏 C、发射极和集电极同时正偏 D、发射极和集电极同时反偏 3、稳压管的稳压区是使其工作在() A、正向导通 B、反向截止 C、反向击穿 4、在三极管的输出特性曲线中,每一条曲线与()对应 A、输入电压 B、基极电压 C、基极电流 5、三极管是一种()控制器件,场效应管是一种()控制器件 A、电流,电压 B、电流,电流 C、电压,电流 D、电压,电压 6、稳压管稳压电路如图 1—2 所示,其中 U Z1=7V、U Z2 =3V,该电路输出电压为 () A、0.7V B、1.4V C、3V D、7V R 12V V Z1 V Z2 Uo

Multisim模拟电路仿真实验

实验19 Multisim 数字电路仿真实验 1.实验目的 用Multisim 的仿真软件对数字电路进行仿真研究。 2.实验内容 实验19.1 交通灯报警电路仿真 交通灯故障报警电路工作要求如下:红、黄、绿三种颜色的指示灯在下 列情况下属正常工作,即单独的红灯指示、黄灯指示、绿灯指示及黄、绿灯 同时指示,而其他情况下均属于故障状态。出故障时报警灯亮。 设字母R 、Y 、G 分别表示红、黄、绿三个交通灯,高电平表示灯亮, 低电平表示灯灭。字母Z 表示报警灯,高电平表示报警。则真值表如表 19.1所示。 逻辑表达式为:RY RG G Y R Z ++= 若用与非门实现,则表达式可化为:RY RG G Y R Z ??= Multisim 仿真设计图如图19.1所示: 图19.1的电路图中分别用开关A 、B 、C 模拟控制红、黄、绿灯的亮暗,开关接向高电平时表示灯亮,接向低电平时表示灯灭。用发光二极管LED1的亮暗模拟报警灯的亮暗。另外用了一个5V 直流电源、一个7400四2输入与非门、一个7404六反相器、一个7420双4输入与非门、一个500 表19.1 LED_red LED1 图19.1

欧姆电阻。 在模拟实验中可以看出,当开关A、B、C中只有一个拨向高电平,以及B、C同时拨向高电平而A拨向低电平时报警灯不亮,其余情况下报警灯均亮。 实验19.2数字频率计电路仿真 数字频率计电路(实验13.3)的工作要求如下:能测出某一未知数字信号的频率,并用数码管显示测量结果。如果用2位数码管,则测量的最大频率是99Hz。 数字频率计电路Multisim仿真设计图如图19.2所示。其电路结构是: 用二片74LS90(U1和U2)组成BCD码100进制计数器,二个数码管U3和U4分别显示十位数和个位数。四D触发器74LS175(U5)与三输入与非门7410(U6B)组成可自启动的环形计数器,产生闸门控制信号和计数器清0信号。信号发生器XFG1产生频率为1Hz、占空比为50%的连续脉冲信号,信号发生器XFG2产生频率为1-99Hz(人为设置)、占空比为50%的连续脉冲信号作为被测脉冲。三输入与非门7410(U6A)为控制闸门。 运行后该频率计进行如下自动循环测量: 计数1秒→显示3秒→清零1秒→…… 改变被测脉冲频率,重新运行。

怎样利用电路仿真软件进行模拟电路课程的学习

怎样利用电路仿真软件进行模拟电路课程的学习电路分析实验报告 实验二 学习用multisim软件对电路进行仿真 一.实验要求与目的 1.进一步熟悉multisim软件的各种功能。 2.巩固学习用multisim软件画电路图。 3.学会使用multisim里面的各种仪器分析模拟电路。 4.用multisim软件对电路进行仿真。 二、实验仪器 电脑一台及其仿真软件。 三.实验内容及步骤

(1)在电子仿真软件Multisim 基本界面的电子平台上组建如图所示的仿真电路。双击电位器图标,将弹出的对话框的“Valve”选项卡的“Increment”栏改成“1”,将“Label”选项卡的“RefDes”栏改成“RP。 ” 2)调节RP大约在35%左右时,利用直流工作点分析方法分析直 流工作点的值。直流工作点分析(DC Operating Point Analysis)是用来分析和计算电路静态工作点的,进行分析时,Multisim 自动将电路分析条件设为电感、交流电压源短路,电容断开。 单击Multisim 菜单“Simulate/Analyses/DC operating Point…”,在弹出的对话框中选择待分析的电路节点,如2图所示。单击Simulate 按钮进行直流工作点分析。分析结果如图3所示。列出了

单级阻容耦合放大电路各节点对地电压数据,根据各节点对地电压数据,可容易计算出直流工作点的值,依据分析结果,将测试结果填入表1中,比较理论估算与仿真分析结果。 表1 静态工作点数据 电压放大倍数测试 (1)关闭仿真开关,从电子仿真软件Multisim 10基本界面虚拟仪器工具条中,调出虚拟函数信号发生器和虚拟双踪示波器,将虚拟函数信号发生器接到电路输入端,将虚拟示波器两个通道分别接到电路的输入端和输出端,如图4所示。 (2)开启仿真开关,双击虚拟函数信号发生器图标“XFG1”,将打开虚拟函数信号发生器放大面板,首确认“Waveforms”栏下选取的是正弦信号,然后再确认频率为1kHZ”;再确认幅度为 10mVp,如图5所示。 四.仿真分析 动态测量仿真电路

Matlab第五章 Simulink模拟电路仿真

第五章Simulink模拟电路仿真 武汉大学物理科学与技术学院微电子系常胜

§5.1 电路仿真概要 5.1.1 MATLAB仿真V.S. Simulink仿真 利用MATLAB编写M文件和利用Simulink搭建仿真模型均可实现对电路的仿真,在实现电路仿真的过程中和仿真结果输出中,它们分别具有各自的优缺点。 武汉大学物理科学与技术学院微电子系常胜

ex5_1.m clear; V=40;R=5;Ra=25;Rb=100;Rc=125;Rd=40;Re=37.5; R1=(Rb*Rc)/(Ra+Rb+Rc); R2=(Rc*Ra)/(Ra+Rb+Rc); R3=(Ra*Rb)/(Ra+Rb+Rc); Req=R+R1+1/(1/(R2+Re)+1/(R3+Rd)); I=V/Req 武汉大学物理科学与技术学院微电子系常胜

ex5_1 武汉大学物理科学与技术学院微电子系常胜

武汉大学物理科学与技术学院微电子系常胜

注意Simulink仿真中imeasurement模块 /vmeasurement模块和Display模块/Scope模块的联合使用 Series RLC Branch模块中R、C、L的确定方式 R:Resistance设置为真实值Capacitance设置为inf(无穷大)Inductance设置为0 C:Resistance设置为0 Capacitance设置为真实值Inductance设置为0 L:Resistance设置为0Capacitance设置为inf Inductance设置为真实值 武汉大学物理科学与技术学院微电子系常胜

电子科技大学模拟电路考试题及答案

………密………封………线………以………内………答………题………无………效…… 电子科技大学 二零零七至二零零八学年第一学期期末考试 模拟电路基础课程考试题A 卷(120 分钟)考试形式:开卷课程成绩构成:平时10 分,期中30 分,实验0 分,期末60 分 一(20分)、问答题 1.(4分)一般地,基本的BJT共射放大器、共基放大器和共集放大器的带宽哪个最大?哪个最小? 2.(4分)在集成运算放大器中,为什么输出级常用射极跟随器?为什么常用射极跟随器做缓冲级? 3.(4分)电流源的最重要的两个参数是什么?其中哪个参数决定了电流源在集成电路中常用做有源负载?在集成电路中采用有源负载有什么好处? 4.(4分)集成运算放大器为什么常采用差动放大器作为输入级? 5.(4分)在线性运算电路中,集成运算放大器为什么常连接成负反馈的形式?

………密………封………线………以………内………答………题………无………效…… 二(10分)、电路如图1所示。已知电阻R S=0,r be=1kΩ,R1∥R2>>r be。 1.若要使下转折频率为10Hz,求电容C的值。 2.若R S≠0,仍保持下转折频率不变,电容C的值应该增加还是减小? 图1 三(10分)、电路如图2所示。已知差模电压增益为10。A点电压V A=-4V,硅三极管Q1和Q2的集电极电压V C1=V C2=6V,R C=10 kΩ。求电阻R E和R G。 图2

………密………封………线………以………内………答………题………无………效…… 四(10分)、电路如图3所示。已知三极管的β=50,r be=1.1kΩ,R1=150kΩ,R2=47kΩ,R3=10kΩ,R4=47kΩ,R5=33kΩ,R6=4.7kΩ,R7=4.7kΩ,R8=100Ω。 1.判断反馈类型; 2.画出A电路和B电路; 3.求反馈系数B; 4.若A电路的电压增益A v=835,计算A vf,R of和R if。 图3

模拟电路仿真实验

模拟电路仿真实验 实验报告 班级: 学号: 姓名:

多级负反馈放大器的研究 一、实验目的 (1)掌握用仿真软件研究多级负反馈放大电路。 (2)学习集成运算放大器的应用,掌握多级集成运放电路的工作特点。 (3)研究负反馈对放大器性能的影响,掌握负反馈放大器性能指标的测试方法。 1.测试开环和闭环的电压放大倍数、输入电阻、反馈网络的电压反馈系数的通频带; 2.比较电压放大倍数、输入电阻、输出电阻和通频带在开环和闭环时的差别; 3.观察负反馈对非线性失真的改善。 二、实验原理及电路 (1)基本概念: 1.在电子电路中,将输出量(输出电压或输出电流)的一部分或全部通过一定的电路形式作用到输入回路,用来影响其输入量(放大电路的输入电压或输入电流)的措施称为反馈。 若反馈的结果使净输入量减小,则称之为负反馈;反之,称之为正反馈。若反馈存在于直流通路,则称为直流反馈;若反馈存在于交流通路,则称为交流反馈。 2.交流负反馈有四种组态:电压串联负反馈;电压并联负反馈;电流串联负反馈;电流并联负反馈。若反馈量取自输出电压,则称之为电压反馈;若反馈量取自输出电流,则称之为电流反馈。输入量、反馈量和净输入量以电压形式相叠加,称为串联反馈;以电流形式相叠加,称为并联反馈。 3.在分析反馈放大电路时,“有无反馈”决定于输出回路和输入回路是否存在反馈支路。“直流反馈或交流反馈”决定于反馈支路存在于直流通路还是交流通路;“正负反馈”的判断可采用瞬时极性法,反馈的结果使净输入量减小的为负反馈,使净输入量增大的为正反馈;“电压反馈或电流反馈”的判断可以看反馈支路与输出支路是否有直接接点,如果反馈支路与输出支路有直接接点则为电压反馈,否则为电流反馈;“串联反馈或并联反馈”的判断可以看反馈支路与输入支路是否有直接接点,如果反馈支路与输入支路有直接接点则为并联反馈,否则为串联反馈。 4.引入交流负反馈后,可以改善放大电路多方面的性能:提高放大倍数的稳定性、改变输入电阻和输出电阻、展宽通频带、减小非线性失真等。实验电路如图所示。该放大电路由两级运放构成的反相比例器组成,在末级的输出端引入了反馈网路C f 、R f2和R f1,构成了交流电压串联负反馈电路。 R110kΩ R2100kΩ R3 10kΩ R43.9kΩ R53.9kΩ R63.9kΩ R7200kΩ R81kΩ R94.7kΩR10300kΩ U1A LM324N 3 2 11 41 U1C LM324N 10 9 11 4 8 C110uF C210uF C3 10uF J1 Key = Space J2 Key = A VCC 10V VEE -10V 1 4 10 8 11 12 13 7 3 6 5VEE VCC 2 9

实验一 典型环节的电路模拟与数字仿真实验

实验一典型环节的电路模拟与数字仿真实验 一实验目的 通过实验熟悉各种典型环节传递函数及其特性,掌握电路模拟和数字仿真研究方法。 二实验内容 1.设计各种典型环节的模拟电路。 2.编制获得各种典型环节阶跃特性的数字仿真程序。 3.完成各种典型环节模拟电路的阶跃特性测试,并研究参数变化对典型环节阶跃特性的影响。 4.运行所编制的程序,完成典型环节阶跃特性的数字仿真研究,并与电路模拟研究的结果作比较。 三实验步骤 1.熟悉实验设备,设计并连接各种典型环节的模拟电路; 2.利用实验设备完成各典型环节模拟电路的阶跃特性测试,并研究参数变化对典型环节阶跃特性的影响; 3.用MATLAB编写计算各典型环节阶跃特性的数字仿真研究,并与电路模拟测试结果作比较。分析实验结果,完成实验报告。 四实验结果 1.积分环节模拟电路、阶跃响应

仿真结果: 2.比例积分环节模拟电路、阶跃响应 仿真结果:

3.比例微分环节模拟电路、阶跃响应 仿真结果: 4.惯性环节模拟电路、阶跃响应

仿真结果: 5.实验结果分析: 积分环节的传递函数为G=1/Ts(T为积分时间常数),惯性环节的传递函数为G=1/(Ts+1)(T为惯性环节时间常数)。 当时间常数T趋近于无穷小,惯性环节可视为比例环节, 当时间常数T趋近于无穷大,惯性环节可视为积分环节。

实验二典型系统动态性能和稳定性分析的电路模拟与数 字仿真研究 一实验目的 1.学习和掌握动态性能指标的测试方法。 2.研究典型系统参数对系统动态性能和稳定性的影响。 二实验内容 1.观测二阶系统的阶跃响应,测出其超调量和调节时间,并研究其参数变化对动态性能和稳定性的影响。 三实验步骤 1.熟悉实验设备,设计并连接由一个积分环节和一个惯性环节组成的二阶闭环系统的模拟电路; 2.利用实验设备观测该二阶系统模拟电路的阶跃特性,并测出其超调量和调节时间; 3.二阶系统模拟电路的参数观测参数对系统的动态性能的影响; 4.分析结果,完成实验报告。 四实验结果 典型二阶系统 仿真结果:1)过阻尼

模拟电路实验课件

目录 实验一常用电子仪器使用 实验二比例求和运算电路 实验三微分积分电路 实验四电压比较器 实验五差动放大电路 实验六单级共射放大电路 实验七射级跟随电路 实验八集成电路RC正弦波振荡器

实验一常用电子仪器的使用 一、实验目的 1、学习电子电路实验中常用的电子仪器——示波器、函数信号发生器、直流稳压电源、交流毫伏表、频率计等的主要技术指标、性能及正确使用方法。 2、初步掌握用双踪示波器观察正弦信号波形和读取波形参数的方法。 二、预习要求 1、阅读实验附录中有关示波器部分内容。 2、已知C=0.01μf、R=10K,计算图1-2 RC移相网络的阻抗角θ。 三、实验原理 在模拟电子电路实验中,经常使用的电子仪器有示波器、函数信号发生器、直流稳压电源、交流毫伏表及频率计等。它们和万用电表一起,可以完成对模拟电子电路的静态和动态工作情况的测试。 实验中要对各种电子仪器进行综合使用,可按照信号流向,以连线简捷,调节顺手,观察与读数方便等原则进行合理布局,各仪器与被测实验装置之间的布局与连接如图1-1所示。接线时应注意,为防止外界干扰,各仪器的共公接地端应连接在一起,称共地。信号源和交流毫伏表的引线通常用屏蔽线或专用电缆线,示波器接线使用专用电缆线,直流电源的接线用普通导线。 图1-1 模拟电子电路中常用电子仪器布局图 1、示波器 示波器是一种用途很广的电子测量仪器,它既能直接显示电信号的波形,又能对电信号进行各种参数的测量。现着重指出下列几点:

1)、寻找扫描光迹 将示波器Y轴显示方式置“Y1”或“Y2”,输入耦合方式置“GND”,开机预热后,若在显示屏上不出现光点和扫描基线,可按下列操作去找到扫描线:①适当调节亮度旋钮。②触发方式开关置“自动”。③适当调节垂直()、水平()“位移”旋钮,使扫描光迹位于屏幕中央。(若示波器设有“寻迹”按键,可按下“寻迹”按键,判断光迹偏移基线的方向。) 2)、双踪示波器一般有五种显示方式,即“Y1”、“Y2”、“Y1+Y2”三种单 踪显示方式和“交替”“断续”二种双踪显示方式。“交替”显示一般适宜于输入信号频率较高时使用。“断续”显示一般适宜于输入信号频率较底时使用。 3)、为了显示稳定的被测信号波形,“触发源选择”开关一般选为“内”触发,使扫描触发信号取自示波器内部的Y通道。 4)、触发方式开关通常先置于“自动”调出波形后,若被显示的波形不稳定,可置触发方式开关于“常态”,通过调节“触发电平”旋钮找到合适的触发电压,使被测试的波形稳定地显示在示波器屏幕上。 有时,由于选择了较慢的扫描速率,显示屏上将会出现闪烁的光迹,但被 测信号的波形不在X轴方向左右移动,这样的现象仍属于稳定显示。 5)、适当调节“扫描速率”开关及“Y轴灵敏度”开关使屏幕上显示 一~二个周期的被测信号波形。在测量幅值时,应注意将“Y轴灵敏度微调”旋钮置于“校准”位置,即顺时针旋到底,且听到关的声音。在测量周期时,应注意将“X轴扫速微调”旋钮置于“校准”位置,即顺时针旋到底,且听到关的声音。还要注意“扩展”旋钮的位置。 根据被测波形在屏幕坐标刻度上垂直方向所占的格数(div或cm)与“Y轴灵敏度”开关指示值(v/div)的乘积,即可算得信号幅值的实测值。 根据被测信号波形一个周期在屏幕坐标刻度水平方向所占的格数(div或 cm)与“扫速”开关指示值(t/div)的乘积,即可算得信号频率的实测值。 2、函数信号发生器 函数信号发生器按需要输出正弦波、方波、三角波三种信号波形。输出电压最大可。通过输出衰减开关和输出幅度调节旋钮,可使输出电压在毫伏级到伏级范围达20V P-P 内连续调节。函数信号发生器的输出信号频率可以通过频率分档开关进行调节。 函数信号发生器作为信号源,它的输出端不允许短路。

模拟电子技术课程设计(Multisim仿真)

《电子技术Ⅱ课程设计》 报告 姓名 xxx 学号 院系自动控制与机械工程学院 班级 指导教师 2014 年 6 月18日

目录 1、目的和意义 (3) 2、任务和要求 (3) 3、基础性电路的Multisim仿真 (4) 3.1 半导体器件的Multisim仿真 (4) 3.11仿真 (4) 3.12结果分析 (4) 3.2单管共射放大电路的Multisim仿真 (5) 3.21理论计算 (7) 3.21仿真 (7) 3.23结果分析 (8) 3.3差分放大电路的Multisim仿真 (8) 3.31理论计算 (9) 3.32仿真 (9) 3.33结果分析 (9) 3.4两级反馈放大电路的Multisim仿真 (9) 3.41理论分析 (11) 3.42仿真 (12) 3.5集成运算放大电路的Multisim仿真(积分电路) (12) 3.51理论分析 (13) 3.52仿真 (14) 3.6波形发生电路的Multisim仿真(三角波与方波发生器) (14) 3.61理论分析 (14) 3.62仿真 (14) 4.无源滤波器的设计 (14) 5.总结 (18) 6.参考文献 (19)

一、目的和意义 该课程设计是在完成《电子技术2》的理论教学之后安排的一个实践教学环节.课程设计的目的是让学生掌握电子电路计算机辅助分析与设计的基本知识和基本方法,培养学生的综合知识应用能力和实践能力,为今后从事本专业相关工程技术工作打下基础。这一环节有利于培养学生分析问题,解决问题的能力,提高学生全局考虑问题、应用课程知识的能力,对培养和造就应用型工程技术人才将能起到较大的促进作用。 二、任务和要求 本次课程设计的任务是在教师的指导下,学习Multisim仿真软件的使用方法,分析和设计完成电路的设计和仿真。完成该次课程设计后,学生应该达到以下要求: 1、巩固和加深对《电子技术2》课程知识的理解; 2、会根据课题需要选学参考书籍、查阅手册和文献资料; 3、掌握仿真软件Multisim的使用方法; 4、掌握简单模拟电路的设计、仿真方法; 5、按课程设计任务书的要求撰写课程设计报告,课程设计报告能正确反映设计和仿真结果。

模拟电子技术测试试题及答案

《模拟电子技术》模拟试题一 一、填空题:(每空1分共40分) 1、PN结正偏时导通,反偏时截止,所以PN结具有单向导电性。 2、漂移电流是温度电流,它由少数载流子形成,其大小与温度有关,而与外加电压无关。 3、所谓理想二极管,就是当其正偏时,结电阻为0,等效成一条直线;当其反偏时,结电阻为 无穷,等效成断开; 4、三极管是电流控制元件,场效应管是电压控制元件。 5、三极管具有放大作用外部电压条件是发射结正偏,集电结反偏。 6、当温度升高时,晶体三极管集电极电流Ic变小,发射结压降不变。 7、三极管放大电路共有三种组态分别是共基、共射、共集放大电路。 8、为了稳定三极管放大电路的静态工作点,采用电压并联负反馈,为了稳定交流输出电流采用 串联负反馈。 9、负反馈放大电路和放大倍数AF=1/(1/A+F),对于深度负反馈放大电路的放大倍数AF=1/ F。 10、带有负反馈放大电路的频带宽度BWF=(1+AF)BW,其中BW=fH –fL, 1+AF称为反馈深度。 11、差分放大电路输入端加上大小相等、极性相同的两个信号,称为共模信号,而加上大小相等、 极性相反的两个信号,称为差模信号。 12、为了消除乙类互补功率放大器输出波形的交越失真,而采用甲乙类互补功率放大器。 13、OCL电路是双电源互补功率放大电路; OTL电路是单电源互补功率放大电路。 14、共集电极放大电路具有电压放大倍数小于近似等于1,输入电阻大,输出电阻小等特点,所 以常用在输入级,输出级或缓冲级。 15、差分放大电路能够抑制零点漂移,也称温度漂移,所以它广泛应用于集成电路中。 16、用待传输的低频信号去改变高频信号的幅度称为调幅,未被调制的高频信号是运载信息的工 具,称为载波信号。 17、模拟乘法器输出与输入的关系式是U0=KUxUy,电路符号是。 二、选择题(每空2分共30分) 1、稳压二极管是一个可逆击穿二极管,稳压时工作在( B )状态,但其两端电压必须( C ), 它的稳压值Uz才有导通电流,否则处于( F )状态。 A、正偏 B、反偏 C、大于 D、小于 E、导通 F、截止 2、用直流电压表测得放大电路中某三极管各极电位分别是2V、6V、2.7V,则三个电极分别是 ( C ),该管是( D )型。 A、( B、 C、E) B、(C、B、E) C、(E、C、B) D、(NPN) E、(PNP) 3、对功率放大器的要求主要是( B )、( C )、( E )。 A、U0高 B、P0大 C、功率大 D、Ri大 E、波形不失真 4、共射极放大电路的交流输出波形上半周失真时为( B ),此时应该( E )偏置电阻。 A、饱和失真 B、截止失真 C、交越失真 D、增大 E、减小 5、差分放大电路是为了( C )而设置的。 A、稳定Au B、放大信号 C、抑制零点漂移 6、共集电极放大电路的负反馈组态是( A )。 A、压串负 B、流串负 C、压并负 7、差分放大电路RE上的直流电流IEQ近似等于单管集电极电流ICQ( B )倍。 A、1 B、2 C、3 8、为了使放大器带负载能力强,一般引入( A )负反馈。 A、电压 B、电流 C、串联 9、分析运放的两个依据是( A )、( B )。 A、U-≈U+ B、I-≈I+≈0 C、U0=Ui D、Au=1

模拟电路实验仿真

模拟电子电路仿真 1.1 晶体管基本放大电路 共射极,共集电极和共基极三种组态的基本放大电路是模拟电子技术的基础,通过EWB 对其进行仿真分析,进一步熟悉三种电路在静态工作点,电压放大倍数,频率特性以及输入,输出电阻等方面各自的不同特点。 1.1.1 共射极基本放大电路 按图7.1-1搭建共射极基本放大电路,选择电路菜单电路图选项(Circuit/Schematic Option )中的显示/隐藏(Show/Hide)按钮,设置并显示元件的标号与数值等 。 1.静态工作点分析 选择分析菜单中的直流工作点分析选项(Analysis/DC Operating Point)(当然,也可以使用仪器库中的数字多用表直接测量)分析结果表明晶体管Q1工作在放大状态。 2.动态分析 用仪器库的函数发生器为电路提供正弦输入信号Vi(幅值为5mV,频率为10kH),用示波器观察到输入,输出波形。由波形图可观察到电路的输入,输出电压信号反相位关系。再一种直接测量电压放大倍数的简便方法是用仪器库中的数字多用表直接测得。 3.参数扫描分析 在图7.1-1所示的共射极基本放大电路中,偏置电阻R1的阻值大小直接决定了静态电流IC的大小,保持输入信号不变,改变R1的阻值,可以观察到输出电压波形的失真情况。选择分析菜单中的参数扫描选项(Analysis/Parameter Sweep Analysis),在参数扫描设置对话框中将扫描元件设为R1,参数为电阻,扫描起始值为100K,终值为900K,扫描方式为线性,步长增量为400K,输出节点5,扫描用于暂态分析。 4.频率响应分析 选择分析菜单中的交流频率分析项(Analysis/AC Frequency Analysis)在交流频率分析参数设置对话框中设定:扫描起始频率为1Hz,终止频率为1GHz,扫描形式为十进制,纵向刻度为线性,节点5做输出节点。 由图分析可得:当共射极基本放大电路输入信号电压VI为幅值5mV的变频电压时,

模拟电路技术基础实验讲义

模拟电路技术基础实验讲义 一、 实验目的 1、熟悉电子元器件,练习检测三极管的方法。 2、掌握放大器静态工作点的测试方法和其对放大器性能的影响。 3、学习测量放大电路Q 点及交流参数Av ,Ri ,R 。的方法。 4、学习放大器的动态性能,观察信号输出波形的变化。 二、 实验仪器 1、双宗示波器 2、信号发生器 3、数字万用表 三、 预习要求 1、能正确使用示波器、信号发生器及数字万用表。 2、熟练三极管特性测试及单管放大电路工作原理。 3、比较三种组态的基本性能的相同点和不同点。 四、 实验内容 1、 实验电路 (a) Vcc(+12v) V。

(c) (1)用万用表判断三极管V的极性及好坏,估测三极管的β值。 (2)分别先后按图(a)接好电路,调Rb到最大位置。 (3)仔细检查后,送出,观察有无异常现象。 2、静态调整 调整Rp使Ve=2.2V计算并测量填表 表一 3、动态研究 (1)将信号调到f=1KHz 幅值为3mV 接Vi观察Vi和V。端波形,并比较相位,测出相位差。 (2)信号源频率不变,逐渐加大幅度,观察V。不失真时的最大

值并填表。 表二 放大倍数测量计算数据表 (3)保持Vi=5mv 不变,放大器接负载RL ,改变RL 数值的情况下测量,并将计算值填表 (4)保持Vi=5mv 不变,增大和减小Rp 。观察V 。波形变化。测量并填入表4 。 注意:若失真观察不明显,可以调节Vi 幅值重新观察。 4。放大器输入、输出电阻 (3) 输入电阻测量 在输入端串接一个5.1K 电阻。如图 测量Vs 与Vi 。计算ri (4) 输出电阻测量 在输出端接入可调电阻作为负载。如图

模拟电子线路multisim仿真实验报告

MULTISIM 仿真实验报告

实验一单级放大电路 一、实验目的 1、熟悉multisim软件的使用方法 2、掌握放大器的静态工作点的仿真方法,及对放大器性能的影响。 3、学习放大器静态工作点、电压放大倍数,输入电阻、输出电阻的仿真方法,了解共 射级电路的特性。 二、虚拟实验仪器及器材 双踪示波器信号发生器交流毫伏表数字万用表 三、实验步骤 1.仿真电路图 V1 10mVrms 1kHz 0° R1 100kΩ Key=A 10 % R2 51kΩ R3 20kΩ R4 5.1kΩ Q1 2N2222A R5 100Ω R6 1.8kΩ C1 10μF C2 10μF C3 47μF 3 7 V2 12 V 4 5 2 1 R7 5.1kΩ 9 XMM1 6 E级对地电压25.静态数据仿真

仿真数据(对地数据)单位;V计算数据单位;V 基级集电极发射级Vbe Vce RP 2.834 6.126 2.2040.63 3.92210k 26.动态仿真一 1.单击仪表工具栏的第四个,放置如图,并连接电路。 V1 10mVrms 1kHz 0° R1 100kΩ Key=A 10 % R2 51kΩ R3 20kΩ R4 5.1kΩ Q1 2N2222A R5 100Ω R6 1.8kΩ C1 10μF C2 10μF C3 47μF 3 7 V2 12 V 4 5 2 R7 5.1kΩ XSC1 A B Ext Trig + + _ _+_ 6 1 9

2.双击示波器,得到如下波形 5.他们的相位相差180度。 27.动态仿真二 1.删除负载电阻R6 V1 10mVrms 1kHz 0° R1 100kΩ Key=A 10 % R2 51kΩ R3 20kΩ R4 5.1kΩ Q1 2N2222A R5 100Ω R6 1.8kΩ C1 10μF C2 10μF C3 47μF 3 7 V2 12 V 4 5 2 XSC1 A B Ext Trig + + _ _+_ 6 1 9 2.重启仿真。

基于Multisim的模拟电路仿真技术

本科毕业设计(论文) 题目基于Multisim的 模拟电路仿真技术 部系地方生部 专业电子信息工程 学员郑怿 指导教员梁发麦 中国人民解放军海军航空工程学院 2007 年7 月

基于Multisim的模拟电路仿真技术 摘要:介绍了Multisim 软件的功能和特点,提出运用Multisim 实现模拟电路的仿真方法。通过几个电子原理性电路的仿真实例阐述了模拟电路建立、元器件的选用和仿真参数的设置方法等关健问题,同时得到了正确的仿真结果。 关键词:模拟电路;Multisim ;仿真技术;EDA 从20 世纪80 年代以来,电子系统日趋数字化、复杂化和大规模集成化。同时深亚微米半导体工艺、B 表面安装技术的发展又支持了产品集成化程度的进步,使电子产品进入了片上系统(SOC )时代。另外电子产品厂商不懈追求缩短产品设计周期,从而获取高收益。在这些因素的影响下,EDA 技术应运而生。EDA ( Electronic Design Automation ,电子设计自动化)技术是一门综合了现代电子与计算机技术,以计算机为平台对电子电路、系统或芯片进行设计、仿真和开发的计算机辅助设计技术。利用EDA 技术对电力电子电路进行仿真一直是研究电力电子技术的工程技术人员所期望实现的目标。Multisim 就为此提供了一个良好的平台。在这个平台上可以容易地实现了基本的电力电子电路的仿真,包括不控整流电路、可控整流电路、逆变电路等电路的仿真分析。仿真得到的结果与理论分析的结果基本一致,这对电子电路的设计具有重大的意义。本文主要介绍利用Multisim 10平台对基本电子电路进行仿真的方法,得出与理论相符合的结果,有利于实际的工程设计。 1 Multisim 的功能和特点 加拿大Interactive Image Technologie 公司在1958 年推出了一个专门用于电子电路仿真和设计的EDA 工具软件EWB ( Electronics Workbench )。由于EWB 具有许多突出的优点,引起了电子电路设计工作者的关注,迅速得到了推广使用。但是随着电子技术的飞速发展,EWB 5 . x 版本的仿真设计功能已远远不能满足复杂的电子电路的仿真设计要求。因此IIT 公司将用于电路级仿真设计的模块升级为Multi sim ,并于2001 年推出了Multisim 的最新版本Multisim 2001 。 Multisim 2001 继承了 EWB 界面形象直观、操作方便、仿真分析功能强大、分析仪器齐全、易学易用等诸多优点,并在功能和操作上进行了较大改进。主要表现为:增加了射频电路的仿真功能;极大扩充了元器件库;新增了元件编辑器;扩充了电路的测试功能;增加了瓦特表、失真仪、网络分析仪等虚拟仪器,并允许仪器仪表多台同时使用;改进了元件之间的连接方式,允许任意走向;支持VHDL 和Verilo g 语言的电路仿真与设计;允许把子电路作为一个元器件使用,允许用户自定义元器件的属性等。 工程师们可以使用Multisim交互式地搭建电路原理图,并对电路进行仿真。Multisim提炼了SPICE仿真的复杂内容,这样工程师无需懂得深入的SPICE技术就可以很快地进行捕获、仿真和分析新的设计,这也使其更适合电子学教育。通过Multisim和虚拟仪器技术,PCB设计工程师和电子学教育工作者可以完成从理论到原理图捕获与仿真再到原型设计和测试这样一个完整的综合设计流程。 (一)模拟电路举例: 1.1 晶体管基本放大电路 共射极,共集电极和共基极三种组态的基本放大电路是模拟电子技术的基础,通过EWB对其进行仿真分析,进一步熟悉三种电路在静态工作点,电压放大倍数,频率特性以及输入,输出电阻等方面各自的不同特点。

相关主题
文本预览
相关文档 最新文档