当前位置:文档之家› 贝叶斯过滤垃圾邮件算法的基本步骤

贝叶斯过滤垃圾邮件算法的基本步骤

贝叶斯过滤垃圾邮件算法的基本步骤
贝叶斯过滤垃圾邮件算法的基本步骤

一、贝叶斯过滤算法的基本步骤

1)、收集大量的垃圾邮件和非垃圾邮件,建立垃圾邮件集和非垃圾邮件集;

2)、提取邮件主题和邮件体中的独立字串例如 ABC32,¥234等作为TOKEN串并统计提取出的TOKEN串出现的次数即字频。按照上述的方法分别处理垃圾邮件集和非垃圾邮件集中的所有邮件;

3)、每一个邮件集对应一个哈希表,Hashtable_Good对应非垃圾邮件集而Hashtable_Bad对应垃圾邮件集。表中存储TOKEN串到字频的映射关系;

4)、计算每个哈希表中TOKEN串出现的概率P=(某TOKEN串的字频)/(对应哈希表的长度);

5)、综合考虑hashtable_good和hashtable_bad,推断出当新来的邮件中出现某个TOKEN串时,该新邮件为垃圾邮件的概率。数学表达式为:

A事件——邮件为垃圾邮件;

t1,t2 ,...,tn代表TOKEN串

则P(A|ti)表示在邮件中出现TOKEN串ti时,该邮件为垃圾邮件的概率。设

P1(ti)=(ti在hashtable_good中的值)

P2(ti)=(ti在hashtable_ bad中的值)

则 P(A|ti)= P1(ti)/[(P1(ti)+ P2(ti)];

6)、建立新的哈希表 hashtable_probability存储TOKEN串ti到P(A|ti)的映射;

7)、至此,垃圾邮件集和非垃圾邮件集的学习过程结束。根据建立的哈希表Hashtable_Probability可以估计一封新到的邮件为垃圾邮件的可能性。

当新到一封邮件时,按照步骤2)生成TOKEN串。查询hashtable_probability 得到该TOKEN 串的键值。

假设由该邮件共得到N个TOKEN串,t1,t2…….tn, hashtable_probability 中对应的值为P1,P2,。。。。。。PN,P(A|t1 ,t2, t3……tn)表示在邮件中同时出现多个TOKEN串t1,t2…….tn时,该邮件为垃圾邮件的概率。

由复合概率公式可得

P(A|t1 ,t2, t3……tn)=(P1*P2*。。。。PN)/[P1*P2*。。。。。PN+(1-P1)*(1-P2)*。。。(1-PN)]

当P(A|t1 ,t2, t3……tn)超过预定阈值时,就可以判断邮件为垃圾邮件。二、贝叶斯过滤算法举例

例如:一封含有“法轮功”字样的垃圾邮件 A和一封含有“法律”字样的非垃圾邮件B

根据邮件A生成hashtable_ bad,该哈希表中的记录为

法:1次

轮:1次

功:1次

计算得在本表中:

法出现的概率为0.3

轮出现的概率为0.3

功出现的概率为0.3

根据邮件B生成hashtable_good,该哈希表中的记录为:

法:1

律:1

计算得在本表中:

法出现的概率为0.5

律出现的概率为0.5

综合考虑两个哈希表,共有四个TOKEN串:法轮功律

当邮件中出现“法”时,该邮件为垃圾邮件的概率为:

P=0.3/(0.3+0.5)= 0.375

出现“轮”时:

P=0.3/(0.3+0)= 1

出现“功“时:

P=0.3/(0.3+0)= 1

出现“律”时

P=0/(0+0.5)= 0;

由此可得第三个哈希表:hashtable_probability 其数据为:

法:0.375

轮:1

功:1

律:0

当新到一封含有“功律”的邮件时,我们可得到两个TOKEN串,功律查询哈希表hashtable_probability可得

P(垃圾邮件| 功)= 1

P (垃圾邮件|律)= 0

此时该邮件为垃圾邮件的可能性为:

P=(0 * 1)/[ 0 * 1 +(1-0)*(1-1)] = 0

由此可推出该邮件为非垃圾邮件

基于朴素贝叶斯分类器的文本分类算法(上)

本文缘起于最近在读的一本书-- Tom M.Mitchell的《机器学习》,书中第6章详细讲解了贝叶斯学习的理论知识,为了将其应用到实际中来,参考了网上许多资料,从而得此文。文章将分为两个部分,第一部分将介绍贝叶斯学习的相关理论(如果你对理论不感兴趣,请直接跳至第二部分<<基于朴素贝叶斯分类器的文本分类算法(下)>>)。第二部分讲如何将贝叶斯分类器应用到中文文本分类,随文附上示例代码。

Introduction

我们在《概率论和数理统计》这门课的第一章都学过贝叶斯公式和全概率公式,先来简单复习下:

条件概率

定义设A, B是两个事件,且P(A)>0 称P(B∣A)=P(AB)/P(A)为在条件A 下发生的条件事件B发生的条件概率。

乘法公式设P(A)>0 则有P(AB)=P(B∣A)P(A)

全概率公式和贝叶斯公式

定义设S为试验E的样本空间,B1, B2, …Bn为E的一组事件,若BiBj=Ф, i≠j, i, j=1, 2, …,n; B1∪B2∪…∪Bn=S则称B1, B2, …, Bn为样本空间的一个划分。

定理设试验E的样本空间为,A为E的事件,B1, B2, …,Bn为的一个划分,且P(Bi)>0 (i=1, 2, …n),则P(A)=P(A∣B1)P(B1)+P(A∣B2)+ …+P(A∣Bn)P (Bn)称为全概率公式。

定理设试验俄E的样本空间为S,A为E的事件,B1, B2, …,Bn为的一个划分,则

P(Bi∣A)=P(A∣Bi)P(Bi)/∑P(B|Aj)P(Aj)=P(B|Ai)P(Ai)/P(B)

称为贝叶斯公式。说明:i,j均为下标,求和均是1到n

下面我再举个简单的例子来说明下。

示例1

考虑一个医疗诊断问题,有两种可能的假设:(1)病人有癌症。(2)病人无癌症。样本数据来自某化验测试,它也有两种可能的结果:阳性和阴性。假设我们已经有先验知识:在所有人口中只有0.008的人患病。此外,化验测试对有病的患者有98%的可能返回阳性结果,对无病患者有97%的可能返回阴性结果。

上面的数据可以用以下概率式子表示:

P(cancer)=0.008,P(无cancer)=0.992

P(阳性|cancer)=0.98,P(阴性|cancer)=0.02

P(阳性|无cancer)=0.03,P(阴性|无cancer)=0.97

假设现在有一个新病人,化验测试返回阳性,是否将病人断定为有癌症呢?我们可以来计算极大后验假设:

P(阳性|cancer)p(cancer)=0.98*0.008 = 0.0078

P(阳性|无cancer)*p(无cancer)=0.03*0.992 = 0.0298

因此,应该判断为无癌症。

贝叶斯学习理论

贝叶斯是一种基于概率的学习算法,能够用来计算显式的假设概率,它基于假设的先验概率,给定假设下观察到不同数据的概率以及观察到的数据本身(后面我们可以看到,其实就这么三点东西,呵呵)。

我们用P(h)表示没有训练样本数据前假设h拥有的初始概率,也就称为h 的先验概率,它反映了我们所拥有的关于h是一个正确假设的机会的背景知识。当然如果没有这个先验知识的话,在实际处理中,我们可以简单地将每一种假设都赋给一个相同的概率。类似,P(D)代表将要观察的训练样本数据D的先验概率(也就是说,在没有确定某一个假设成立时D的概率)。然后是P(D/h),它表示假设h成立时观察到数据D的概率。在机器学习中,我们感兴趣的是P(h/D),也就是给定了一个训练样本数据D,判断假设h成立的概率,这也称之为后验概率,它反映了在看到训练样本数据D后假设h成立的置信度。(注:后验概率

p(h/D)反映了训练数据D的影响,而先验概率p(h)是独立于D的)。

P(h|D) = P(D|h)P(h)/p(D),从贝叶斯公式可以看出,后验概率p(h/D)取决于P(D|h)P(h)这个乘积,呵呵,这就是贝叶斯分类算法的核心思想。我们要做的就是要考虑候选假设集合H,并在其中寻找当给定训练数据D时可能性最大的假设h(h属于H)。

简单点说,就是给定了一个训练样本数据(样本数据已经人工分类好了),我们应该如何从这个样本数据集去学习,从而当我们碰到新的数据时,可以将新数据分类到某一个类别中去。那可以看到,上面的贝叶斯理论和这个任务是吻合的。

朴素贝叶斯分类

也许你觉得这理论还不是很懂,那我再举个简单的例子,让大家对这个算法的原理有个快速的认识。(注:这个示例摘抄自《机器学习》这本书的第三章的表3-2.)

假设给定了如下训练样本数据,我们学习的目标是根据给定的天气状况判断你对PlayTennis这个请求的回答是Yes还是No。

可以看到这里样本数据集提供了14个训练样本,我们将使用此表的数据,并结合朴素贝叶斯分类器来分类下面的新实例:

(Outlook = sunny,Temprature = cool,Humidity = high,Wind = strong) 我们的任务就是对此新实例预测目标概念PlayTennis的目标值(yes或no).

由上面的公式可以得到:

可以得到:

P(PlayTennis =yes) = 9/14 = 0.64,P(PlayTennis=no)=5/14 = 0.36

P(Wind=Stong| PlayTennis =yes)=3/9=0.33,p(Wind=Stong| PlayTennis =no)=3/5 = 0.6

其他数据类似可得,代入后得到:

P(yes)P(Sunny|yes)P(Cool|yes)P(high|yes)P(Strong|yes) = 0.0053

P(no)P(Sunny|no)P(Cool|no)P(high|no)P(Strong|no)=0.0206

因此应该分类到no这一类中。

贝叶斯文本分类算法

好了,现在开始进入本文的主旨部分:如何将贝叶斯分类器应用到中文文本的分类上来?

根据联合概率公式(全概率公式)

M——训练文本集合中经过踢出无用词去除文本预处理之后关键字的数量。

基于朴素贝叶斯分类器的文本分类算法(下)

文本的分类和聚类是一个比较有意思的话题,我以前也写过一篇blog《基于K-Means的文本聚类算法》,加上最近读了几本数据挖掘和机器学习的书籍,因此很想写点东西来记录下学习的所得。

在本文的上半部分《基于朴素贝叶斯分类器的文本分类算法(上)》一文中简单介绍了贝叶斯学习的基本理论,这一篇将展示如何将该理论运用到中文文本分类中来,具体的文本分类原理就不再介绍了,在上半部分有,也可以参见代码的注释。

文本特征向量

文本特征向量可以描述为文本中的字/词构成的属性。例如给出文本:

Good good study,Day day up.

可以获得该文本的特征向量集:{ Good, good, study, Day, day , up.}

朴素贝叶斯模型是文本分类模型中的一种简单但性能优越的的分类模型。为了简化计算过程,假定各待分类文本特征变量是相互独立的,即“朴素贝叶斯模型的假设”。相互独立表明了所有特征变量之间的表述是没有关联的。如上例中,[good]和[study]这两个特征变量就是没有任何关联的。

在上例中,文本是英文,但由于中文本身是没有自然分割符(如空格之类符号),所以要获得中文文本的特征变量向量首先需要对文本进行中文分词

中文分词

这里采用极易中文分词组件,这个中文分词组件可以免费使用,提供Lucene接口,跨平台,性能可靠。

package com.vista;

import java.io.IOException;

import jeasy.analysis.MMAnalyzer;

/**

* 中文分词器

*/

public class ChineseSpliter

{

/**

* 对给定的文本进行中文分词

* @param text 给定的文本

* @param splitToken 用于分割的标记,如"|"

* @return 分词完毕的文本

*/

public static String split(String text,String splitToken)

{

String result = null;

MMAnalyzer analyzer = new MMAnalyzer();

try

{

result = analyzer.segment(text, splitToken);

}

catch (IOException e)

{

e.printStackTrace();

}

return result;

}

}

停用词处理

去掉文档中无意思的词语也是必须的一项工作,这里简单的定义了一些常见的停用词,并根据这些常用停用词在分词时进行判断。

package com.vista;

/**

* 停用词处理器

* @author phinecos

*

*/

public class StopWordsHandler

{

private static String stopWordsList[] ={"的", "我们","要","自己","之","将","“","”",",","(",")","后","应","到","某","后","个","是","位","新","一","两","在","中","或","有","更","好",""};//常用停用词

public static boolean IsStopWord(String word)

{

for(int i=0;i

{

if(word.equalsIgnoreCase(stopWordsList[i]))

return true;

}

return false;

}

}

训练集管理器

我们的系统首先需要从训练样本集中得到假设的先验概率和给定假设下观察到不同数据的概率。

package com.vista;

import java.io.BufferedReader;

import java.io.File;

import java.io.FileInputStream;

import java.io.FileNotFoundException;

import java.io.IOException;

import java.io.InputStreamReader;

import java.util.Properties;

import java.util.logging.Level;

import java.util.logging.Logger;

/**

* 训练集管理器

*/

public class TrainingDataManager

{

private String[] traningFileClassifications;//训练语料分类集合

private File traningTextDir;//训练语料存放目录

private static String defaultPath = "D:\\TrainningSet";

public TrainingDataManager()

{

traningTextDir = new File(defaultPath);

if (!traningTextDir.isDirectory())

{

throw new IllegalArgumentException("训练语料库搜索失败! [" + defaultPath + "]");

}

this.traningFileClassifications = traningTextDir.list();

}

/**

* 返回训练文本类别,这个类别就是目录名

* @return训练文本类别

*/

public String[] getTraningClassifications()

{

return this.traningFileClassifications;

}

/**

* 根据训练文本类别返回这个类别下的所有训练文本路径(full path)

* @param classification 给定的分类

* @return给定分类下所有文件的路径(full path)

*/

public String[] getFilesPath(String classification)

{

File classDir = new File(traningTextDir.getPath() +File.separ ator +classification);

String[] ret = classDir.list();

for (int i = 0; i < ret.length; i++)

{

ret[i] = traningTextDir.getPath() +File.separator +classi fication +File.separator +ret[i];

}

return ret;

}

/**

* 返回给定路径的文本文件内容

* @param filePath 给定的文本文件路径

* @return文本内容

* @throws java.io.FileNotFoundException

* @throws java.io.IOException

*/

public static String getText(String filePath) throws FileNotFound Exception,IOException

{

InputStreamReader isReader =new InputStreamReader(new FileInp utStream(filePath),"GBK");

BufferedReader reader = new BufferedReader(isReader);

String aline;

StringBuilder sb = new StringBuilder();

while ((aline = reader.readLine()) != null)

{

sb.append(aline + " ");

}

isReader.close();

reader.close();

return sb.toString();

}

/**

* 返回训练文本集中所有的文本数目

* @return训练文本集中所有的文本数目

*/

public int getTrainingFileCount()

{

int ret = 0;

for (int i = 0; i < traningFileClassifications.length; i++) {

ret +=getTrainingFileCountOfClassification(traningFileCla ssifications[i]);

}

return ret;

}

/**

* 返回训练文本集中在给定分类下的训练文本数目

* @param classification 给定的分类

* @return训练文本集中在给定分类下的训练文本数目

*/

public int getTrainingFileCountOfClassification(String classifica tion)

{

File classDir = new File(traningTextDir.getPath() +File.separ ator +classification);

return classDir.list().length;

}

/**

* 返回给定分类中包含关键字/词的训练文本的数目

* @param classification 给定的分类

* @param key 给定的关键字/词

* @return给定分类中包含关键字/词的训练文本的数目

*/

public int getCountContainKeyOfClassification(String classificati on,String key)

{

int ret = 0;

try

{

String[] filePath = getFilesPath(classification);

for (int j = 0; j < filePath.length; j++)

{

String text = getText(filePath[j]);

if (text.contains(key))

{

ret++;

}

}

}

catch (FileNotFoundException ex)

{

Logger.getLogger(TrainingDataManager.class.getName()).log(Lev

el.SEVERE, null,ex);

}

catch (IOException ex)

{

Logger.getLogger(TrainingDataManager.class.getName()).log (Level.SEVERE, null,ex);

}

return ret;

}

}

先验概率

先验概率是我们需要计算的两大概率值之一

package com.vista;

/**

* 先验概率计算

*

先验概率计算

* P(cj)=N(C=cj)/N

* 其中,N(C=cj)表示类别cj中的训练文本数量;

* N表示训练文本集总数量。

*/

public class PriorProbability

{

private static TrainingDataManager tdm =new TrainingDataManager();

/**

* 先验概率

* @param c 给定的分类

* @return给定条件下的先验概率

*/

public static float calculatePc(String c)

{

float ret = 0F;

float Nc = tdm.getTrainingFileCountOfClassification(c);

float N = tdm.getTrainingFileCount();

ret = Nc / N;

return ret;

}

}

分类条件概率

这是另一个影响因子,和先验概率一起来决定最终结果

package com.vista;

/**

* 条件概率计算

*

*

类条件概率

* P(xj|cj)=( N(X=xi, C=cj

* )+1 ) / ( N(C=cj)+M+V )

* 其中,N(X=xi, C=cj)表示类别cj中包含属性x

* i的训练文本数量;N(C=cj)表示类别cj中的训练文本数量;M值用于避免

* N(X=xi, C=cj)过小所引发的问题;V表示类别的总数。*

*

条件概率

* 定义 设A, B是两个事件,且P(A)>0 称

* P(B∣A)=P(AB)/P(A)

* 为在条件A下发生的条件事件B发生的条件概率。

如何使用贝叶斯网络工具箱

如何使用贝叶斯网络工具箱 2004-1-7版 翻译:By 斑斑(QQ:23920620) 联系方式:banban23920620@https://www.doczj.com/doc/aa5461225.html, 安装 安装Matlab源码 安装C源码 有用的Matlab提示 创建你的第一个贝叶斯网络 手工创建一个模型 从一个文件加载一个模型 使用GUI创建一个模型 推断 处理边缘分布 处理联合分布 虚拟证据 最或然率解释 条件概率分布 列表(多项式)节点 Noisy-or节点 其它(噪音)确定性节点 Softmax(多项式 分对数)节点 神经网络节点 根节点 高斯节点 广义线性模型节点 分类 / 回归树节点 其它连续分布 CPD类型摘要 模型举例 高斯混合模型 PCA、ICA等 专家系统的混合 专家系统的分等级混合 QMR 条件高斯模型 其它混合模型

参数学习 从一个文件里加载数据 从完整的数据中进行最大似然参数估计 先验参数 从完整的数据中(连续)更新贝叶斯参数 数据缺失情况下的最大似然参数估计(EM算法) 参数类型 结构学习 穷举搜索 K2算法 爬山算法 MCMC 主动学习 结构上的EM算法 肉眼观察学习好的图形结构 基于约束的方法 推断函数 联合树 消元法 全局推断方法 快速打分 置信传播 采样(蒙特卡洛法) 推断函数摘要 影响图 / 制定决策 DBNs、HMMs、Kalman滤波器等等

安装 安装Matlab代码 1.下载FullBNT.zip文件。 2.解压文件。 3.编辑"FullBNT/BNT/add_BNT_to_path.m"让它包含正确的工作路径。 4.BNT_HOME = 'FullBNT的工作路径'; 5.打开Matlab。 6.运行BNT需要Matlab版本在V5.2以上。 7.转到BNT的文件夹例如在windows下,键入 8.>> cd C:\kpmurphy\matlab\FullBNT\BNT 9.键入"add_BNT_to_path",执行这个命令。添加路径。添加所有的文件夹在Matlab的路 径下。 10.键入"test_BNT",看看运行是否正常,这时可能产生一些数字和一些警告信息。(你可 以忽视它)但是没有错误信息。 11.仍有问题?你是否编辑了文件?仔细检查上面的步骤。

基于朴素贝叶斯的短文本分类研究

基于朴素贝叶斯的短文本分类研究 自然语言处理是目前智能科学领域中的一个非常热门的方向,文本的分类同样也是自然语言处理中的一项关键的技术。随着深度学习发展,朴素贝叶斯算法也已经在文本的分类中取得到了良好的分类效果。本文针对短文本的分类问题,首先对短文本数据进行了预处理操作,其中包括中文分词、去除停用词以及特征的提取,随后阐明了朴素贝叶斯算法构建分类器的过程,最后将朴素贝叶斯算法与逻辑回归和支持向量机分类算法的分类效果进行了对比分析,得出朴素贝叶斯算法在训练所需的效率上及准确率上有较为优异的表现。 标签:自然语言处理文本分类机器学习朴素贝叶斯 引言 文本分类问题是自然语言处理中的一个非常经典的问题。文本分类是计算机通过按照一定的分类标准进行自动分类标记的有监督学习过程。在文本特征工程中,和两种方法应用最为广泛[1] 。在分類器中,使用普遍的有朴素贝叶斯,逻辑回归,支持向量机等算法。其中朴素贝叶斯是基于贝叶斯定理与特征条件独立假设的分类方法,有着坚实的数学基础,以及稳定的分类效率。基于此,本文采用基于的特征提取的朴素贝叶斯算法进行文本分类,探求朴素贝叶斯算法在短文本分类中的适用性。 1数据预处理 1.1中文分词 中文分词是指将一个汉字序列切分成一个个单独的词。中文分词是中文文本处理的一个基础步骤,也是对中文处理较为重要的部分,更是人机自然语言交流交互的基础模块。在进行中文自然语言处理时,通常需要先进行中文分词处理[2] 。 1.2停用词处理 去除停用词能够节省存储空间和计算时间,降低对系统精度的影响。对于停用词的处理,要先对语料库进行分词、词形以及词性的类化,为区分需求表述和信息内容词语提供基础。去停用词后可以更好地分析文本的情感极性,本文采用广泛使用的哈工大停用词表进行去停用词处理。 1.3特征提取 文本数据属于非结构化数据,一般要转换成结构化的数据,一般是将文本转换成“文档-词频矩阵”,矩阵中的元素使用词频或者。它的计算为,

贝叶斯过滤垃圾邮件算法的基本步骤

一、贝叶斯过滤算法的基本步骤 1)、收集大量的垃圾邮件和非垃圾邮件,建立垃圾邮件集和非垃圾邮件集; 2)、提取邮件主题和邮件体中的独立字串例如 ABC32,¥234等作为TOKEN串并统计提取出的TOKEN串出现的次数即字频。按照上述的方法分别处理垃圾邮件集和非垃圾邮件集中的所有邮件; 3)、每一个邮件集对应一个哈希表,Hashtable_Good对应非垃圾邮件集而Hashtable_Bad对应垃圾邮件集。表中存储TOKEN串到字频的映射关系; 4)、计算每个哈希表中TOKEN串出现的概率P=(某TOKEN串的字频)/(对应哈希表的长度); 5)、综合考虑hashtable_good和hashtable_bad,推断出当新来的邮件中出现某个TOKEN串时,该新邮件为垃圾邮件的概率。数学表达式为: A事件——邮件为垃圾邮件; t1,t2 ,...,tn代表TOKEN串 则P(A|ti)表示在邮件中出现TOKEN串ti时,该邮件为垃圾邮件的概率。设 P1(ti)=(ti在hashtable_good中的值) P2(ti)=(ti在hashtable_ bad中的值) 则 P(A|ti)= P1(ti)/[(P1(ti)+ P2(ti)]; 6)、建立新的哈希表 hashtable_probability存储TOKEN串ti到P(A|ti)的映射; 7)、至此,垃圾邮件集和非垃圾邮件集的学习过程结束。根据建立的哈希表Hashtable_Probability可以估计一封新到的邮件为垃圾邮件的可能性。 当新到一封邮件时,按照步骤2)生成TOKEN串。查询hashtable_probability 得到该TOKEN 串的键值。 假设由该邮件共得到N个TOKEN串,t1,t2…….tn, hashtable_probability 中对应的值为P1,P2,。。。。。。PN,P(A|t1 ,t2, t3……tn)表示在邮件中同时出现多个TOKEN串t1,t2…….tn时,该邮件为垃圾邮件的概率。

朴素贝叶斯分类算法及其MapReduce实现

最近发现很多公司招聘数据挖掘的职位都提到贝叶斯分类,其实我不太清楚他们是要求理解贝叶斯分类算法,还是要求只需要通过工具(SPSS,SAS,Mahout)使用贝叶斯分类算法进行分类。 反正不管是需求什么都最好是了解其原理,才能知其然,还知其所以然。我尽量简单的描述贝叶斯定义和分类算法,复杂而有全面的描述参考“数据挖掘:概念与技术”。贝叶斯是一个人,叫(Thomas Bayes),下面这哥们就是。 本文介绍了贝叶斯定理,朴素贝叶斯分类算法及其使用MapReduce实现。 贝叶斯定理 首先了解下贝叶斯定理 P X H P(H) P H X= 是不是有感觉都是符号看起来真复杂,我们根据下图理解贝叶斯定理。 这里D是所有顾客(全集),H是购买H商品的顾客,X是购买X商品的顾客。自然X∩H是即购买X又购买H的顾客。 P(X) 指先验概率,指所有顾客中购买X的概率。同理P(H)指的是所有顾客中购买H 的概率,见下式。

X P X= H P H= P(H|X) 指后验概率,在购买X商品的顾客,购买H的概率。同理P(X|H)指的是购买H商品的顾客购买X的概率,见下式。 X∩H P H|X= X∩H P X|H= 将这些公式带入上面贝叶斯定理自然就成立了。 朴素贝叶斯分类 分类算法有很多,基本上决策树,贝叶斯分类和神经网络是齐名的。朴素贝叶斯分类假定一个属性值对给定分类的影响独立于其他属性值。 描述: 这里有个例子假定我们有一个顾客X(age = middle,income=high,sex =man):?年龄(age)取值可以是:小(young),中(middle),大(old) ?收入(income)取值可以是:低(low),中(average),高(high) ?性别(sex)取值可以是:男(man),女(woman) 其选择电脑颜色的分类标号H:白色(white),蓝色(blue),粉色(pink) 问题: 用朴素贝叶斯分类法预测顾客X,选择哪个颜色的分类标号,也就是预测X属于具有最高后验概率的分类。 解答: Step 1 也就是说我们要分别计算X选择分类标号为白色(white),蓝色(blue),粉色(pink)的后验概率,然后进行比较取其中最大值。 根据贝叶斯定理

贝叶斯优化以及高斯过程

贝叶斯优化算法 贝叶斯优化算法( BOA) 就是由美国UIUC 大学的Pelikan 等在2000 年前后提出的,在贝叶斯优化算法中,根据均匀分布随机产生初始种群,然后采用进化算法的各种选择方法,比如二进制锦标赛选择、比例选择、截断选择等,从当前种群中选择候选解,再根据选择后的种群建立贝叶斯网络概率模型,从模型的采样中获取新的候选解,最后,将采样得到的解重新加入到原来的种群中,可以用新的解代替原来的种群; 重复这个过程,直到满足终止条件。在已经找到的最优解,或者就是种群已经失去了多样性,或者就是已经不太可能找到更优的解等情况下可以中止程序。贝叶斯优化算法的流程如下: ( 1) 设t: = 0,随机产生初始种群P( 0) ; ( 2) 从P( t) 中选择候选解S( t) ; ( 3) 在一定的选择规则与限制条件下构建符合要求的贝叶斯网络B; ( 4) 根据贝叶斯网络B 的联合分布函数产生新的解O( t) ; ( 5) 用O( t) 取代P( t) 中的部分解,形成新的种群P( t + 1) ; ( 6) 如果不满足终止条件,转向( 2) 。 在贝叶斯优化算法中,建立贝叶斯网络就是算法的核心与关键。贝叶斯网络就是联合概率分布的图形表示形式。一个贝叶斯网络由两部分组成:结构B 与参数θ。结构B 就是一个有向无环图,其节点表示各个变量,节点之间的有向边表示变量之间的条件依赖关系。参数由变量间的条件概率来决定,一般贝叶斯网络包含如下的联合概率分布: 贝叶斯网络就是用来描述所选择的优秀解的特征与分布,以此来指导新解的生成。Bayes 网络的学习就是一个NP 难题,对它的研究已经非常深入,对网络结构

贝叶斯网络构建算法

3.1 贝叶斯网络构建算法 算法3.1:构建完全连接图算法 输入:样本数据D ;一组n 个变量V={V l ,V 2,…,V n }变量。 输出:一个完全连接图S 算法: 1、 连接任意两个节点,即连接边 L ij=1,i ≠j 。 2、 为任一节点V i 邻接点集合赋值,B i= V\{V i }。 算法3.2:构建最小无向图算法 输入:样本数据D ;一组n 个变量V={V l ,V 2,…,V n }变量。及算法3.1中得到的邻接点集B i ,连接边集 L ij 先验知识:节点V i ,V j 间连接边是否存在 变量说明:L 为连接边,|L|=n(n –1)/2为连接边的数量,B i 表示变量V i 的直接邻近集,|B i |表示与变量B i 相邻的变量数。(V i ⊥V j |Z)表示V i 和V j 在Z 条件下条件独立,设∧(X ,Y)表示变量X 和Y 的最小d-分离集。 输出:最小无向图S 1、根据先验知识,如果V i 和V j 不相连接,则L ij =0 . 2、对任一相连接边,即L ij ≠0,根据式(3-12)计算互信息I (V i ,V j ) ),(Y X I =))()(|),((y p x P y x p D =????? ?)()(),(log ),(Y p X p Y X p E y x P (3-12) if I (V i ,V j )ε≤ then { L ij =0 //V i 和V j 不相连接 B i= V\{V j }, B j= V\{V i } //调整V i 和V j 邻接集 } else I ij = I (V i ,V j ) //节点V i 和V j 互信息值 3、对所有连接边,并按I ij 升序排序 4、如果连接边集L ij 不为空,那么按序选取连接边L ij ,否则 goto 10 if |B i |≥ |B j |,令Z= B i else Z= B j //为后面叙述方便,这里先假设|B i |≥ |B j | 5、逐一计算L ij 的一阶条件互信息I(V i ,V j |Z 1),Z 1={Y k }, Y k ∈Z, if I(V i ,V j |Z 1)ε≤ then { L ij =0 //V i 和V j 关于Z 1条件独立 B i= V\{V j }, B j= V\{V i } //调整V i 和V j 邻接集 d ij = Z 1 //L ij 最小d 分离集为Z 1 goto 4

朴素贝叶斯算法

朴素贝叶斯算法 1.算法简介 朴素贝叶斯分类是一种十分简单的分类算法,叫它朴素贝叶斯分类是因为这种方法的思想真的很朴素,朴素贝叶斯的思想基础是:对于给出的待分类项,求解在此项出现的条件下各个类别出现的概率,哪个最大,就认为此待分类项属于哪个类别。 2.算法定义 朴素贝叶斯分类的正式定义如下: 1)设为一个待分类项,而每个a为x的一个特征属性; 2)有类别集合; 3)计算。 4)如果,则。 其中关键是如何计算步骤3)中的各个条件概率。计算过程如下: (1)找到一个已知分类的待分类项集合,该集合称为训练样本集。 (2)统计得到在各类别下各个特征属性的条件概率估计。即 (3)如果各个特征属性是条件独立的,则根据贝叶斯定理有如下推导: 因为分母对于所有类别为常数,因此只要将分子最大化皆可。又因为各特征属性是条件独立的,所以有: 可以看到,整个朴素贝叶斯分类分为三个阶段: 第一阶段——准备工作阶段,这个阶段的任务是为朴素贝叶斯分类做必要的准备,主要工作是根据具体情况确定特征属性,并对每个特征属性进行适当划分,然后由人工对一部分待分类项进行分类,形成训练样本集合。这一阶段的输入是所有待分类数据,输出是特征属性和训练样本。这一阶段是整个朴素贝叶斯分类中唯一需要人工完成的阶段,其质量对整个过程将有重要影响,分类器的质量很大程度上由特征属性、特征属性划分及训练样本质量决定。 第二阶段——分类器训练阶段,这个阶段的任务就是生成分类器,主要工作是计算每个类别在训练样本中的出现频率及每个特征属性划分对每个类别的条

件概率估计,并将结果记录。其输入是特征属性和训练样本,输出是分类器。这一阶段是机械性阶段,根据前面讨论的公式可以由程序自动计算完成。 第三阶段——应用阶段。这个阶段的任务是使用分类器对待分类项进行分类,其输入是分类器和待分类项,输出是待分类项与类别的映射关系。这一阶段也是机械性阶段,由程序完成。 3.估计类别下特征属性划分的条件概率及Laplace校准 ?估计类别下特征属性划分的条件概率 计算各个划分的条件概率P(a|y)是朴素贝叶斯分类的关键性步骤,当特征属性为离散值时,只要很方便的统计训练样本中各个划分在每个类别中出现的频率即可用来估计P(a|y),下面重点讨论特征属性是连续值的情况。 当特征属性为连续值时,通常假定其值服从高斯分布(也称正态分布)。即: 而 因此只要计算出训练样本中各个类别中此特征项划分的各均值和标准差,代入上述公式即可得到需要的估计值。 ?Laplace校准 当某个类别下某个特征项划分没有出现时,会产生P(a|y)=0的现象,这会令分类器质量大大降低。为了解决这个问题,引入Laplace校准,就是对每个类别下所有划分的计数加1,这样如果训练样本集数量充分大时,并不会对结果产生影响,并且解决了上述频率为0的尴尬局面。 ●Laplace校准详解 假设离散型随机变量z有{1,2,…,k}共k个值,用 j (),{1,2,,} p z j j k Φ=== 来表示每个值的概率。假设在m个训练样本中,z的观察值是其中每一个观察值对应k个值中的一个。那么z=j出现的概率为: Laplace校准将每个特征值出现次数事先都加1,通俗讲就是假设它们都出现过一次。那么修改后的表达式为:

基于改进贝叶斯优化算法的图像分割方法

第37卷第12期应 用 科 技 Vol.37,?.12 2010年12月 Applied Science and Technology Dec.2010 doi :10.3969/j.issn.1009-671X.2010.12.005 基于改进贝叶斯优化算法的图像分割方法 毕晓君,彭 伟 (哈尔滨工程大学信息与通信工程学院,黑龙江哈尔滨150001) 摘 要:图像分割是图像处理和计算机视觉的重要研究领域.在此将基于免疫机理的改进贝叶斯优化算法应用 于图像分割, 利用其较好的寻优能力搜索到图像的最佳阈值,达到较好的图像分割效果,并拓展了算法的应用领域.仿真结果表明,改进贝叶斯优化算法可以获得更好的图像分割效果及更低的计算量.关键词:图像分割;贝叶斯优化算法;免疫机理;计算量中图分类号:TP391 文献标志码:A 文章编号:1009-671X (2010)12-0019-04 Image segmentation based on improved Bayesian optimization algorithm BI Xiao-jun ,PENG Wei (College of Information and Communication Engineering ,Harbin Engineering University ,Harbin 150001,China ) Abstract :Image segmentation is one of the most important research fields of image process and computer vision.In this paper ,improved Bayesian optimization algorithm based on immune mechanism is introduced into image seg-mentation to seek optimal threshold by using the algorithm's optimizing ability ,and to extend this algorithm's appli-cation field.Simulation results show that the proposed algorithm has a better image segmentation result and lower computational complexity. Keywords :image segmentation ;Bayesian optimization algorithm ;immune mechanism ;computational complexity 收稿日期:2010-01-14.作者简介:毕晓君(1964-),女,教授,博士生导师,主要研究方向:智能信号处理, E-mail :bixiaojun@hrbeu.edu.cn.图像分割是图像处理、模式识别等研究领域中的重要课题,受应用目的、目标背景特性和成像条件等因素影响, 图像分割并没有通用的算法[1-3] .目前图像分割归纳起来主要有4种分割方法:阈值法、区域分割法、边缘检测法、聚类法.其中最常用的方法是阈值分割法, 其关键在于寻找最优的阈值,因此近年来有人成功地将一些优化算法应用到阈值确定上,如利用遗传算法较好的寻优能力,得到图像的最佳分割阈值;但是遗传算法易于陷入局部最优,不能保证每次图像分割都是最佳效果,所以如何有效的获取最佳阈值仍是目前研究的重点. 贝叶斯优化算法(Bayesian optimization algo-rithm ,简称BOA 算法)是近年逐渐兴起的一种基于概率分布的优化算法,它将贝叶斯网络模型引入到 进化算法中,通过选择策略选择出适应度值较高的解,并从这些解中提取信息,构造贝叶斯网络,然后再对贝叶斯网络进行采样从而产生新解 [4-5] ,这样 产生的解不但有贝叶斯网络这个数学工具作为理论基础,还不会破坏基因块的连锁依赖关系,从而避免了遗传算法易于陷入局部最优的问题 [6] . 文中将基于免疫机理的贝叶斯优化改进算法应用到图像分割当中,该算法通过免疫机理的指导作用,减少贝叶斯优化算法的计算量,并能得到最优的分割阈值, 达到最佳的分割效果.1图像的阈值分割方法 阈值法是图像分割最常用的方法之一,其中最 常用的方法是最大类间方差法.

机器学习实验之朴素贝叶斯(垃圾邮件判断)

机器学习实训实验报告(四) 专业班级学号姓名实验项目名称:利用朴素贝叶斯过滤垃圾邮件 实验内容: 1、了解概率分类器的意义,理解条件概率的计算方法 2、了解朴素贝叶斯的理论知识,了解基于以上理论知识构建分类器的方法 3、根据朴素贝叶斯的一般步骤进行过滤垃圾邮件的任务 实验过程: 算法分析: 简介: 朴素贝叶斯算法的分类模型是基于Bayes定理的,下面就简单介绍一下Bayes定理.设X为一个类别未知的数据样本,H为某个假设,C表示类别集合,若数据样本X属于一个特定的类别c,那么分类问题就是决定P(H/X),即在获得数据样本X时,H假设成立的概率.由于P(H),P(X), P(X/H)的概率值可以从(供学习使用的)数据集合中得到,Bayes 定理描述了如何根据P(H), P(X),P(X/H)计算获得的P(H/X),有关的具体公式定义描述如下 算法过程: 我们假设训练集为m个样本n个维度,如下: (x(1)1,x(1)2,...x(1)n,y1),(x(2)1,x(2 )2,...x(2)n,y2),...(x(m)1,x(m)2,...x( m)n,ym)(x1(1),x2(1),...xn(1),y1),( x1(2),x2(2),...xn(2),y2),...(x1(m),x 2(m),...xn(m),ym) 共有K个特征输出类别,分别为C1,C2,...,CKC1,C2,...,CK,每个特征输出类别的样本个数为 m1,m2,...,mKm1,m2,...,mK,在第k 个类别中,如果是离散特征,则特征XjXj各个类别取值为mjlmjl。其中l取值为源程序代码: from numpy import * import re def loadDataSet(): #文档集合 postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'], ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'], ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'], ['stop', 'posting', 'stupid', 'worthless', 'garbage'], ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'], ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']] classV ec = [0,1,0,1,0,1] #类别:1代表侮辱性文字,0代表正常 return postingList,classVec #函数说明:将切分的词条整理成不重复的词条列表 def createV ocabList(dataSet): vocabSet = set([]) ##创建一个空的不重复列表 for document in dataSet: vocabSet = vocabSet | set(document) #取并集 return list(vocabSet) #函数说明:根据vocabList,将inputSet向量化,每个元素为1或0 def setOfWords2Vec(vocabList, inputSet): returnVec = [0]*len(vocabList) #创建一个其中所含元素都为0的向量 for word in inputSet: #遍历每个词条 if word in vocabList: #如果词条存在于词汇表中,则置1 returnVec[vocabList.index(word)] = 1 else: print ("the word: %s is not in my Vocabulary!" % word) return returnVec #函数说明:朴素贝叶斯分类器训练函数 def trainNB0(trainMatrix,trainCategory): numTrainDocs = len(trainMatrix) #计算训练的文档数目 numWords = len(trainMatrix[0]) #计算每篇文档的词条数

大数据挖掘(8):朴素贝叶斯分类算法原理与实践

数据挖掘(8):朴素贝叶斯分类算法原理与实践 隔了很久没有写数据挖掘系列的文章了,今天介绍一下朴素贝叶斯分类算法,讲一下基本原理,再以文本分类实践。 一个简单的例子 朴素贝叶斯算法是一个典型的统计学习方法,主要理论基础就是一个贝叶斯公式,贝叶斯公式的基本定义如下: 这个公式虽然看上去简单,但它却能总结历史,预知未来。公式的右边是总结历史,公式的左边是预知未来,如果把Y看出类别,X看出特征,P(Yk|X)就是在已知特征X的情况下求Yk类别的概率,而对P(Yk|X)的计算又全部转化到类别Yk的特征分布上来。举个例子,大学的时候,某男生经常去图书室晚自习,发现他喜欢的那个女生也常去那个自习室,心中窃喜,于是每天买点好吃点在那个自习室蹲点等她来,可是人家女生不一定每天都来,眼看天气渐渐炎热,图书馆又不开空调,如果那个女生没有去自修室,该男生也就不去,每次男生鼓足勇气说:“嘿,你明天还来不?”,“啊,不知道,看情况”。然后该男生每天就把她去自习室与否以及一些其他情况做一下记录,用Y表示该女生是否去自习室,即Y={去,不去},X是跟去自修室有关联的一系列条件,比如当天上了哪门主课,蹲点统计了一段时间后,该男生打算今天不再蹲点,而是先预测一下她会不会去,现在已经知道了今天上了常微分方法这么主课,于是计算P(Y=去|常微分方

程)与P(Y=不去|常微分方程),看哪个概率大,如果P(Y=去|常微分方程) >P(Y=不去|常微分方程),那这个男生不管多热都屁颠屁颠去自习室了,否则不就去自习室受罪了。P(Y=去|常微分方程)的计算可以转为计算以前她去的情况下,那天主课是常微分的概率P(常微分方程|Y=去),注意公式右边的分母对每个类别(去/不去)都是一样的,所以计算的时候忽略掉分母,这样虽然得到的概率值已经不再是0~1之间,但是其大小还是能选择类别。 后来他发现还有一些其他条件可以挖,比如当天星期几、当天的天气,以及上一次与她在自修室的气氛,统计了一段时间后,该男子一计算,发现不好算了,因为总结历史的公式: 这里n=3,x(1)表示主课,x(2)表示天气,x(3)表示星期几,x(4)表示气氛,Y仍然是{去,不去},现在主课有8门,天气有晴、雨、阴三种、气氛有A+,A,B+,B,C五种,那么总共需要估计的参数有8*3*7*5*2=1680个,每天只能收集到一条数据,那么等凑齐1 680条数据大学都毕业了,男生打呼不妙,于是做了一个独立性假设,假设这些影响她去自习室的原因是独立互不相关的,于是 有了这个独立假设后,需要估计的参数就变为,(8+3+7+5)*2 = 46个了,而且每天收集的一条数据,可以提供4个参数,这样该男生就预测越来越准了。

贝叶斯优化算法全面解析-图文

Bayesian Optimization CSC2541 - Topics in Machine Learning Scalable and Flexible Models of Uncertainty University of Toronto - Fall 2017

Overview 1.Bayesian Optimization of Machine Learning Algorithms 2.Gaussian Process Optimization in the Bandit Setting 3.Exploiting Structure for Bayesian Optimization

Bayesian Optimization of Machine Learning Algorithms J. Snoek, A. Krause, H. Larochelle, and R.P. Adams (2012) Practical Bayesian Optimization of Machine Learning Algorithms J. Snoek et al. (2015) Scalable Bayesian Optimization Using Deep Neural Nets Presentation by: Franco Lin, Tahmid Mehdi, Jason Li

Motivation Performance of Machine Learning algorithms are usually dependent on the choice of hyperparameters Picking the optimal hyperparameter values are hard -Ex. grid search, random search, etc. -Instead could we use a model to select which hyperparameters will be good next?

JAVA贝叶斯网络算法

贝叶斯网络 提纲: 最近工作: B-COURSE工具学习 BNT研究与学习 BNT相关实验及结果 手动建立贝叶斯网及简单推理 参数学习 结构学习 下一步工作安排 最近工作: 1. B-COURSE 工具学习 B-COURSE是一个供教育者和研究者免费使用的web贝叶斯网络工具。主要分为依赖关系建模和分类器模型设计。输入自己的研究数据,就可以利用该工具在线建立模型,并依据建立好的模型进行简单推理。 B-COURSE要求数据格式是ASCII txt格式的离散数据,其中第一行是各种数据属性变量,其余各行则是采集的样本,属性变量值可以是字符串也可以是数据,属性变量之间用制表符分割,缺失属性变量值用空格代替。读入数据后,在进行结构学习前,可以手动的选择需

要考虑的数据属性!生成过程中,可以手动确定模型,确定好模型后,可以选择JAVA playgroud,看到一个java applet程序,可以手动输入相应证据,从而进行简单推理。 B-COURSE的详细使用介绍,可详见 [url]http://b-course.cs.helsinki.fi/obc/[/url]。 B-COURSE工具隐藏了数据处理,算法实现等技术难点,所以对初学者来说,容易上手。但是却不能够针对不同的应用进行自主编程,缺乏灵活性。 2.贝叶斯网工具箱BNT的研究与学习 基于matlab的贝叶斯网络工具箱BNT是kevin p.murphy基于matlab语言开发的关于贝叶斯网络学习的开源软件包,提供了许多贝叶斯网络学习的底层基础函数库,支持多种类型的节点(概率分布)、精确推理和近似推理、参数学习及结构学习、静态模型和动态模型。 贝叶斯网络表示:BNT中使用矩阵方式表示贝叶斯网络,即若节点i到j有一条弧,则对应矩阵中(i,j)值为1,否则为0。 结构学习算法函数:BNT中提供了较为丰富的结构学习函数,都有: 1. 学习树扩展贝叶斯网络结构的TANC算法learn_struct_tan(). 2. 数据完整条件下学习一般贝叶斯网络结构的K2算法 learn_struct_k2()、贪婪搜索GS(greedy search)算法

朴素贝叶斯python代码实现

朴素贝叶斯 优点:在数据较少的情况下仍然有效,可以处理多类别问题 缺点:对于输入数据的准备方式较为敏感 适用数据类型:标称型数据 贝叶斯准则: 使用朴素贝叶斯进行文档分类 朴素贝叶斯的一般过程 (1)收集数据:可以使用任何方法。本文使用RSS源 (2)准备数据:需要数值型或者布尔型数据 (3)分析数据:有大量特征时,绘制特征作用不大,此时使用直方图效果更好 (4)训练算法:计算不同的独立特征的条件概率 (5)测试算法:计算错误率 (6)使用算法:一个常见的朴素贝叶斯应用是文档分类。可以在任意的分类场景中使用朴素贝叶斯分类器,不一定非要是文本。 准备数据:从文本中构建词向量 摘自机器学习实战。 [['my','dog','has','flea','problems','help','please'], 0 ['maybe','not','take','him','to','dog','park','stupid'], 1 ['my','dalmation','is','so','cute','I','love','him'], 0

['stop','posting','stupid','worthless','garbage'], 1 ['mr','licks','ate','my','steak','how','to','stop','him'], 0 ['quit','buying','worthless','dog','food','stupid']] 1 以上是六句话,标记是0句子的表示正常句,标记是1句子的表示为粗口。我们通过分析每个句子中的每个词,在粗口句或是正常句出现的概率,可以找出那些词是粗口。 在bayes.py文件中添加如下代码: [python]view plaincopy 1.# coding=utf-8 2. 3.def loadDataSet(): 4. postingList = [['my', 'dog', 'has', 'flea', 'problems', 'help', 'please' ], 5. ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'], 6. ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'], 7. ['stop', 'posting', 'stupid', 'worthless', 'garbage'], 8. ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'], 9. ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']] 10. classVec = [0, 1, 0, 1, 0, 1] # 1代表侮辱性文字,0代表正常言论 11.return postingList, classVec 12. 13.def createVocabList(dataSet): 14. vocabSet = set([]) 15.for document in dataSet: 16. vocabSet = vocabSet | set(document) 17.return list(vocabSet) 18. 19.def setOfWords2Vec(vocabList, inputSet): 20. returnVec = [0] * len(vocabList) 21.for word in inputSet: 22.if word in vocabList: 23. returnVec[vocabList.index(word)] = 1 24.else: 25.print"the word: %s is not in my Vocabulary!" % word 26.return returnVec

朴素贝叶斯分类器

朴素贝叶斯分类器 Naive Bayesian Classifier C语言实现 信息电气工程学院 计算本1102班 20112212465 马振磊

1.贝叶斯公式 通过贝叶斯公式,我们可以的知在属性F1-Fn成立的情况下,该样本属于分类C的概率。 而概率越大,说明样本属于分类C的可能性越大。 若某样本可以分为2种分类A,B。 要比较P(A | F1,F2......) 与P(B | F1,F2......)的大小只需比较,P(A)P(F1,F2......| A) ,与P(B)P(F1,F2......| B) 。因为两式分母一致。 而P(A)P(F1,F2......| A)可以采用缩放为P(A)P(F1|A)P(F2|A).......(Fn|A) 因此,在分类时,只需比较每个属性在分类下的概率累乘,再乘该分类的概率即可。 分类属性outlook 属性temperature 属性humidity 属性wind no sunny hot high weak no sunny hot high strong yes overcast hot high weak yes rain mild high weak yes rain cool normal weak no rain cool normal strong yes overcast cool normal strong no sunny mild high weak yes sunny cool normal weak yes rain mild normal weak yes sunny mild normal strong yes overcast mild high strong yes overcast hot normal weak no rain mild high strong 以上是根据天气的4种属性,某人外出活动的记录。 若要根据以上信息判断 (Outlook = sunny,Temprature = cool,Humidity = high,Wind = strong) 所属分类。 P(yes| sunny ,cool ,high ,strong )=P(yes)P(sunny|yes)P(cool |yes)P(high|yes)P(strong|yes)/K P(no| sunny ,cool ,high ,strong )=P(no)P(sunny|no)P(cool |no)P(high|no)P(strong|no)/K K为缩放因子,我们只需要知道两个概率哪个大,所以可以忽略K。 P(yes)=9/14 P(no)=5/14 P(sunny|yes)=2/9 P(cool|yes)=1/3 P(high|yes)=1/3 P(strong|yes)=1/3 P(sunny|no)=3/5 P(cool|no)=1/5 P(high|no)=4/5 P(strong|no)=3/5 P(yes| sunny ,cool ,high ,strong)=9/14*2/9*1/3*1/3*1/3=0.00529 P(no| sunny ,cool ,high ,strong )=5/14*3/5*1/5*4/5*3/5=0.20571 No的概率大,所以该样本实例属于no分类。

基于贝叶斯算法的JavaMail垃圾邮件过滤实现

基于贝叶斯算法的JavaMail垃圾邮件过滤实现 刘岚,贾跃伟 武汉理工大学信息工程学院,武汉(430070) E-mail: simon_jia_2005@https://www.doczj.com/doc/aa5461225.html, 摘要:JavaMail 在中小型企业的邮件系统中有着广泛的应用,谨以贝叶斯算法为基础,提出并实现一套简单,高效的自适应垃圾邮件的过滤方案。它采用基于词熵的特征提取方法,在过滤的过程中不断的进行自学习,具有较强的自适应能力,最终通过阈值来判别邮件是否为垃圾邮件。 关键词:JavaMail;贝叶斯算法;垃圾邮件;自学习 1.引言 JavaMail是Sun发布的处理电子邮件的应用程序接口,预置了常用的邮件传送协议(如SMTP、POP、IMAP、NNTP)的实现方法,与JSP和QMAIL 结合开发出稳定可靠的企业级web mail系统,可以满足中小型企业的日常办公需求。 但目前这种办公邮箱最大的困扰是来自internet的大量以广告为目的垃圾邮件,尤其是在网站上对外公布的邮箱,其垃圾邮件的比例甚至达到了90%以上,日平均有20封以上的垃圾邮件,对邮箱使用造成了很大的不便,这是邮箱系统的开发和维护首要解决的问题。 2.反垃圾邮件过滤技术 2.1 基于黑白名单的过滤技术 此技术使用最早也最为常用,即是对于地址在白名单的服务器的邮件全部接收,对地址在黑名单的服务器的邮件全部拒收,国际和国内的一些反垃圾邮件组织会实时更新和提供一种实时的黑名单(Real Time Black List)的邮件服务器IP数据库,简称RBL,任何邮件服务器都可以订阅RBL以达到过滤垃圾邮件的目的[1]。 但这种方法缺点很也很明显:处理陌生邮件无能为力;需要不断更新和维护;效率不高容易误判。 2.2 基于加密信息的过滤技术 加密信息过滤技术主要是采用类似于公钥密码的一类方法,主要目的是对邮件发送者进行验证,防止目前泛滥的伪造域名和木马发送,域名密钥体制利用公钥技术和DNS构建一个域名层次的电子邮件来源和内容认证框架,简单的讲,即为发送邮件时候同时产生密钥和公钥,密钥跟随邮件,收件服务器从密钥中获取签名和域名,然后通过网络公钥验证通过后完成邮件的发送。 此种方法的缺点也显而易见,即使得邮件的网络传递负担加重,同时缺乏大规模的认证标准,使得目前阶段难以大范围的推广。 2.3 基于规则和统计的过滤技术 规则是指预设垃圾邮件关键词进行的邮件过滤,而其最大的缺点是实效性较差,不易维护,垃圾邮件往往通过关键词中增加特殊符号来躲避规则,同时也会使过滤缺乏弹性。 而贝叶斯过滤算法是一种典型的基于统计的垃圾邮件过滤技术,这种理论的基础是通过对大量垃圾邮件的常见关键词进行分析后得出其分布的统计模型,并由此推算目标是垃圾邮

朴素贝叶斯算法详细总结

朴素贝叶斯算法详细总结 朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法,是经典的机器学习算法之一,处理很多问题时直接又高效,因此在很多领域有着广泛的应用,如垃圾邮件过滤、文本分类等。也是学习研究自然语言处理问题的一个很好的切入口。朴素贝叶斯原理简单,却有着坚实的数学理论基础,对于刚开始学习算法或者数学基础差的同学们来说,还是会遇到一些困难,花费一定的时间。比如小编刚准备学习的时候,看到贝叶斯公式还是有点小害怕的,也不知道自己能不能搞定。至此,人工智能头条特别为大家寻找并推荐一些文章,希望大家在看过学习后,不仅能消除心里的小恐惧,还能高效、容易理解的get到这个方法,从中获得启发没准还能追到一个女朋友,脱单我们是有技术的。贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。而朴素朴素贝叶斯分类是贝叶斯分类中最简单,也是常见的一种分类方法。这篇文章我尽可能用直白的话语总结一下我们学习会上讲到的朴素贝叶斯分类算法,希望有利于他人理解。 ▌分类问题综述 对于分类问题,其实谁都不会陌生,日常生活中我们每天都进行着分类过程。例如,当你看到一个人,你的脑子下意识判断他是学生还是社会上的人;你可能经常会走在路上对身旁的朋友说“这个人一看就很有钱、”之类的话,其实这就是一种分类操作。 既然是贝叶斯分类算法,那么分类的数学描述又是什么呢? 从数学角度来说,分类问题可做如下定义: 已知集合C=y1,y2,……,yn 和I=x1,x2,……,xn确定映射规则y=f(),使得任意xi∈I有且仅有一个yi∈C,使得yi∈f(xi)成立。 其中C叫做类别集合,其中每一个元素是一个类别,而I叫做项集合(特征集合),其中每一个元素是一个待分类项,f叫做分类器。分类算法的任务就是构造分类器f。 分类算法的内容是要求给定特征,让我们得出类别,这也是所有分类问题的关键。那么如何由指定特征,得到我们最终的类别,也是我们下面要讲的,每一个不同的分类算法,对

相关主题
文本预览
相关文档 最新文档