当前位置:文档之家› 第7章 飞行器的纵向平衡静稳定性

第7章 飞行器的纵向平衡静稳定性

91108-飞行力学-第10章:飞机的横航向动稳定性和操纵性

第10章 飞机的横航向动稳定性和动操纵性 作业: 10.1 10.2 10.4 10.5

内容10.1 飞机横航向动稳定性10.1.2 典型的横航向运动模态10.1.3 滚转模态 10.1.4 螺旋模态 10.1.5 滚转--螺旋模态 10.1.6 荷兰滚模态 10.2 飞机横航向动操纵性10.2.1 副翼的操纵反应 10.2.2 方向舵的操纵反应 小结

由组成的四阶方程,对于正常布局的飞机,它由一个负的大实根、一对实部为负的共轭复根和一个小的实根(可正可负)组成。 10.1.2 典型的横航向运动模态 ,,,p r βφ滚转模态 荷兰滚模态 螺旋模态负的大实根负的共轭复根 小的实根

对应于特征方程中的一个大的负实根; 其特征是衰减很快的非周期运动,其振幅衰减一半的时间仅为零点几秒; 受横侧扰动后,飞机绕机体轴的单自由度滚转,收敛过程很快。运动变量是滚转角速度和滚转角; 飞机具有较大的横向阻尼(来源机翼),运动衰减快,一般均能满足品质要求。 1.滚转模态 ,p φlp C

飞机横航向运动中最重要的模态; 对应特征方程中的一对共轭复根,滚转角、侧滑角和偏航角的量级相同; 偏航运动略超前滚转,即左偏航时右滚转。飞机重心沿直线轨迹前进,颇似荷兰人的滑冰动作而得名; 模态频率高,周期约为数秒至十几秒,介于纵向长、短周期之间。品质规范对其特性有严格要求。 ,,βφψ荷兰?

3.螺旋模态 对应特征方程中的一个小实根; 特征是衰减缓慢的非周期运动,运动变量为偏航角和滚转角; 允许其特征根为一小的正根,由于运动不 稳定时呈螺旋状而得名; 运动缓慢,半幅或倍幅时间长,约上百秒,易于纠正,对其模态特性要求不高。 ,ψφ

常微分方程平衡点及稳定性研究38112

摘要 本文给出了微分方程稳定性的概念,并举了一些例子来说明不同稳定性定义之间的区别和联系。这些例子都是通过求出方程解析解的方法来讨论零解是否稳定。在实际问题中提出的微分方程往往是很复杂的,无法求出其解析解,这就需要我们从方程本身来判断零解的稳定性。所以我们讨论了通过Liapunov稳定性定理来判断自治系统零解的稳定性,并用类似的方法讨论了非自治系统零解的稳定性。在此基础上,讨论了一阶和二阶微分方程的平衡点及其稳定性,这对其研究数学建模的稳定性模型起到很大的作用,并且利用相关的差分方程的全局吸引性研究了具时滞的单种群模型 ()()()() () .1 1N t N t r t N t cN t ττ -- = -- 的平衡点1 x=的全局吸引性,所获结果改进了文献中相关的结论。关键词:自治系统平衡点稳定性全局吸引性

Abstract In this paper,we gived the conceptions of differential equation stability. Simultaneously a number of examples to illustrate the difference between the definition of different stability and contact. These examples are obtained by analytical solution equation method to discuss the stability of zero solution. Practical issues raised in the often very complicated differential equations, analytical solution can not be obtained, which requires us to determine from the equation itself, the stability of zero solution. So we discussed the stability theorem to determine through the stability of zero solution of autonomous systems, and use similar methods to discuss the non-zero solution of autonomous system stability. On this basis,we discuss a step and the second-step and the stability, which plays the major role to its stability of the model, and the global attractivity of the positive equilibrium 1 x=of the following delay single population model ()()()() () .1 1N t N t r t N t cN t ττ -- = -- is investigated by using the corresponding result related to a difference equation.The obtained results improve some known results in the literature. Key Words:autonomous system;equilibrium point;stability;delay;globally asymptotic stability;global attractivity

飞机的稳定性和操纵性

第三章飞机的稳定性和操纵性 飞机的稳定性 在飞行中,飞机会经常受到各种各样的扰动,如气流的波动、发动机工作不稳定、飞行员偶然触动驾驶杆等。这些扰动会使飞机偏离原来的平衡状态,而在偏离以后,飞机能否自动恢复原状,这就是有关飞机的稳定或不稳定的问题。 飞机的稳定性是飞机本身的一种特性,与飞机的操纵性有密切的关系。例如,飞行员操纵杆、舵,需要用力的大小,飞机对杆、舵操纵的反应等,都与飞机的稳定性有关。因此,研究飞机的稳定性是研究飞机操纵性的基础。 所谓飞机的稳定性,就是在飞行中,当飞机受微小扰动而偏离原来的平衡状态,并在扰动消失以后,不经驾驶员操纵,飞机能自动恢复原来平衡状态的特性。 纵向稳定性 飞机的纵向稳定性是指飞机绕横轴的稳定性。 当飞机处于平衡飞行状态时,如果有一个小的外力干扰,使它的攻角变大或变小,飞机抬头或低头,绕横轴上下摇摆(也称为俯仰运动)。当外力消除后,驾驶员如果不操纵飞机,而靠飞机本身产生一个力矩,使它恢复到原来的平衡飞行状态,我们就说这架飞机是纵向稳定的。如果飞机不能靠自身恢复到原来的状态,就称为纵向不稳定的。如果它既不恢复,也不远离,总是上下摇摆,就称为纵向中立稳定的。飞机的纵向稳定性也称为俯仰稳定性。 飞机的纵向稳定性由飞机重心在焦点之前来保证。影响飞机纵向稳定性的主要因素有飞机的水平尾翼和飞机的重心位置。下面,我们首先来看一下水平尾翼是如何影响飞机的纵向稳定性的。

当飞机以一定的攻角作稳定的飞行时,如果一阵风从下吹向机头,使飞机机翼的攻角增大,飞机抬头。阵风消失后,由于惯性的作用,飞机仍要沿原来的方向向前冲一段路程。这时由于水平尾翼的攻角也跟着增大,从而产生了一个低头力矩。飞机在这个低头力矩作用下,使机头下沉。经过短时间的上下摇摆,飞机就可恢复到原来的飞行状态。 同样,如果阵风从上吹向机头,使机头下沉,飞机攻角减小,水平尾翼的攻角也跟着减小。这时水平尾翼上产生一个抬头力矩,使飞机抬头,经过短时间的上下摇摆,也可使飞机恢复到原来的飞行状态。 除水平尾翼外,飞机的重心位置对纵向稳定性也有较大的影响。重心靠后的飞机,其纵向稳定性要比重心靠前的差。其原因是:重心与焦点距离小攻角改变时产生的附加力矩减小。对于重心靠后的飞机,当飞机受扰动而增大攻角时,机翼产生的附加升力是使机头上仰,攻角进一步增大,形成不稳定力矩。这时主要靠水平尾翼的附加升力,使机头下俯,攻角减小,保证飞机的纵向稳定性。 方向稳定性 飞机的方向稳定性是指飞机绕立轴的稳定性。 飞机的方向稳定力矩是在侧滑中产生的。所谓侧滑是指飞机的对称面与相对气流方向不一致的飞行。它是一种既向前、又向侧方的运动。 飞机带有侧滑时,空气则从飞机侧方吹来。这时,相对气流方向与飞机对称面之间的夹角称为“侧滑角”,也称“偏航角”。 对飞机方向稳定性影响最大的是垂直尾翼。另外,飞机机身的侧面迎风面积也起相当大的作用。其它如机翼的后掠角、发动机短舱等也有一定的影响。 当飞机稳定飞行时,不存在偏航角,处于平衡状态。如果有一阵风突然吹来,使机头向右偏(此时,相对气流从左前方吹来,称为左侧滑),便有了偏航角。阵风消除后,由于惯性作用,飞机仍然保持原来的方向,向前冲一段路程。这时相对风吹到偏斜的垂

纵向控制增稳飞行控制律

纵向控制增稳飞行控制系统实验指导书 1. 实验目的 (1)理解并掌握飞行控制系统纵向控制增稳的工作原理、控制方法、主要控制参数设计等; (2)掌握机械操纵系统、增稳系统、控制增稳系统的相关飞控知识; (3)熟练使用Matlab 仿真软件、FlightGear 仿真环境、网络数据通讯等基本工具进行数值仿真。 2. 实验内容 (1)数值仿真模型搭建 (2)模型认知与参数设置 (3)纵向控制增稳控制仿真 3、实验原理 (1)控制增稳控制律构型的设计 控制增稳控制律构型采用法向过载与经由高通滤波的俯仰角速率综合而实现。控制律如下: ,,e c z z c q s k n n k q s b δ??=-+ ?+? ? (2)放宽静稳定性控制律设计 静稳定性补偿采用经低通滤波器输出的迎角反馈进行纵向静稳定性补偿,以保证系统静稳定性的同时,不影响动态响应性能。控制律如下: ,e c c k s c α δα=-+

(3)中性速度稳定性控制律设计 中性速度稳定性控制律通过在前向支路过载指令与反馈信号综合处的下游加入比例积分控制律来实现。 综上得到最终的纵向控制增稳飞行控制律如下: ,,1e c z z c q a s c k n n k q k s s b s c αδα??? ? =+-+- ???++??? ? (4)基于FlightGear 的飞行仿真环境搭建 本文借鉴飞行模拟器的结构框架,设计的基于FlightGear 的飞行仿真系统的 总体结构如图所示。该系统主要由操纵输入设备、飞行仿真及虚拟仪表系统、通信网络和视景显示系统四部分组成,其硬件均采用常规商业产品,具有成本低廉,结构简单,构建方便,移植性强等优点,最重要的是它突出了飞行控制研究最关心的高效的飞行仿真和逼真的视景显示。 视景 飞行视景 力学仿真 操纵设备 构建的基于FlightGear 的飞行仿真系统实物如图所示。其中,视景显示采用液晶显示器,根据需要可扩展为投影显示系统。

3第三章 飞机的稳定性和操纵性

第三章飞机的稳定性和操纵性 3.1 飞机的稳定性 在飞行中,飞机会经常受到各种各样的扰动,如气流的波动、发动机工作不稳定、飞行员偶然触动驾驶杆等。这些扰动会使飞机偏离原来的平衡状态,而在偏离以后,飞机能否自动恢复原状,这就是有关飞机的稳定或不稳定的问题。 飞机的稳定性是飞机本身的一种特性,与飞机的操纵性有密切的关系。例如,飞行员操纵杆、舵,需要用力的大小,飞机对杆、舵操纵的反应等,都与飞机的稳定性有关。因此,研究飞机的稳定性是研究飞机操纵性的基础。 所谓飞机的稳定性,就是在飞行中,当飞机受微小扰动而偏离原来的平衡状态,并在扰动消失以后,不经驾驶员操纵,飞机能自动恢复原来平衡状态的特性。 3.1.1 纵向稳定性 飞机的纵向稳定性是指飞机绕横轴的稳定性。 当飞机处于平衡飞行状态时,如果有一个小的外力干扰,使它的攻角变大或变小,飞机抬头或低头,绕横轴上下摇摆(也称为俯仰运动)。当外力消除后,驾驶员如果不操纵飞机,而靠飞机本身产生一个力矩,使它恢复到原来的平衡飞行状态,我们就说这架飞机是纵向稳定的。如果飞机不能靠自身恢复到原来的状态,就称为纵向不稳定的。如果它既不恢复,也不远离,总是上下摇摆,就称为纵向中立稳定的。飞机的纵向稳定性也称为俯仰稳定性。 飞机的纵向稳定性由飞机重心在焦点之前来保证。影响飞机纵向稳定性的主要因素有飞机的水平尾翼和飞机的重心位置。下面,我们首先来看一下水平尾翼是如何影响飞机的纵向稳定性的。 当飞机以一定的攻角作稳定的飞行时,如果一阵风从下吹向机头,使飞机机翼的攻角增大,飞机抬头。阵风消失后,由于惯性的作用,飞机仍要沿原来的方向向前冲一段路程。这时由于水平尾翼的攻角也跟着增大,从而产生了一个低头力矩。飞机在这个低头力矩作用下,使机头下沉。经过短时间的上下摇摆,飞机就可恢复到原来的飞行状态。 同样,如果阵风从上吹向机头,使机头下沉,飞机攻角减小,水平尾翼的攻角也跟着减小。这时水平尾翼上产生一个抬头力矩,使飞机抬头,经过短时间的上下摇摆,也可使飞机恢复到原来的飞行状态。 除水平尾翼外,飞机的重心位置对纵向稳定性也有较大的影响。重心靠后的飞机,其纵向稳定性要比重心靠前的差。其原因是:重心与焦点距离小攻角改变时产生的附加力矩减小。对于重心靠后的飞机,当飞机受扰动而增大攻角时,机翼产生的附加升力是使机头上仰,攻角进一步增大,形成不稳定力矩。这时主要靠水平尾翼的附加升力,使机头下俯,攻角减小,保证飞机的纵向稳定性。 1

关于浮体的平衡与稳定性

关于浮体的平衡与稳定性)1 谢建华 (西南交通大学牵引动力国家重点实验室) 摘要:本文讨论了浮体的平衡与稳定问题,介绍了定倾中心的定义,并结合一个具体的例子,给出了定倾高度的三种不同的计算方法,最后,根据能量方法说明了用定倾高度判定浮体稳定性的理论依据。 关键词:浮体;平衡;稳定性 浮体的平衡与稳定问题研究是一个非常有实际意义的课题,是船舶与海洋平台设计的理论基础,在其它工程中也有广泛的应用。在浮体稳定性研究中,定倾中心是一个重要的概念,但是,笔者认为有一些教科书或文献对此概念的定义是不够明确的,例如,有的认为,当船 体发生微小摇晃时浮力的作用线交对称轴线(浮轴)于一定点,此点即为定倾中心]2[],1[,也有的认为实验表明前述两直线交于一点]3[。另外,在用力系简化方法推导定倾高度的过程中也有含糊不清之处]1[,或在稳定性判定上发生错误]4[。笔者带着这些疑问查阅了若干 参考书,特别是[5]、[6]和[7]。根据这些材料,本文介绍了定倾中心的明确定义,并结合一个具体的例子,给出了定倾高度三种不同的计算方法,最后,根据能量方法说明了用定倾高度判定浮体稳定性的理论依据。 如果物体的比重比水小,物体在水中漂浮平衡时,有一部分将露出水面,这样的物体称为浮体。浮体要满足以下两个条件才能平衡:(i) 受水的浮力等于浮体的重量;(ii)浮心(浮力的作用点)与浮体重心的连线和水平面垂直,如图1(a)所示。浮体平衡位置还要满足稳定性条件才能具体实现。图1(b)表示一个长方形物块平躺和竖立平衡位置发生了微小的扰动,其中,左边的物块上作用的重力和浮力阻碍了物块进一步偏离其平衡位置,因此平衡是稳定,而右边的物块则相反,其上作用的重力和浮力加剧了偏离其平衡位置,平衡是不稳定。以下来分析浮体平衡和稳定的条件。 图1 浮体的平衡 假设浮体有一个对称面,平衡位置发生扰动时,浮体上各点的位移均平行于对称面,浮体作平面运动。容易说明浮体对铅直和水平扰动是稳定的,仅需考虑浮体对转动方向扰动的稳定性问题。平衡时,浮体与水平面的交面称浮面,记为S。先建立一个与浮体固连的坐标 )1国家自然科学基金资助项目(10772151)

工程流体力学_倪玲英_教学大纲

《流体力学》教学大纲 英文名称:Fluid Mechanics 课程编码:0222014 学分:4.0 参考学时:64 实验学时:8 适用专业:工程力学 大纲执笔人:孙宝江 系主任:周晓君 5※ 一、课程目标 流体力学是力学中的一个分支,是研究流体的运动和平衡规律以及流体和固体之间相互作用的一门科学。本课程的任务是通过 各种教学环节,使学生掌握流体力学的基本知识、原理和计算方 法,包括流体的基本性质,流体平衡及运动的基本规律,简单的 管路计算,能运用基本理论分析和解决实际问题,并掌握基本的 实验技能,为从事专业工作、科研和其他专业课的学习打下基础。 5※ 二、基本要求 本课程要求学生具备较好的数学、物理和力学基础。需先修课程应包括高等数学、大学物理学、理论力学等。后续课程包括渗 流力学、石油钻采工艺概论、石油钻采机械概论等。教学过程中 要求侧重于流体力学分析问题、解决问题的方法培养,同时还应 注意结合实验和工程实际问题进行讲解,全面培养学生解决实际 问题的能力。 5※ 三、教学内容与学时分配建议 (一)绪论 4学时 1.流体的概念 2.连续介质假设 3.流体的物理性质 4.作用在流体上的力 5.常用单位制简介 (二)流体静力学

10学时 1.流体静压强及其特性 2.流体平衡微分方程式 3.流体静力学基本方程及其应用 4.相对平衡 5.流体作用在平面上的总压力 6.流体作用在曲面上的总压力 7.浮体与潜体的稳定性 (三)流体运动与动力学基础14学时 1.研究流体运动的两种方法 2.流体运动的基本概念 3.连续性方程 4.欧拉运动微分方程 5.伯努利方程及其应用 6.拉格朗日方程及其意义 7.稳定流动量方程及应用 (四)液流阻力与水头损失12学时 1.液流阻力产生的原因及分类 2.流体的两种流动状态 3.相似原理和因次分析 4.圆管层流流动 5.圆管湍流流动 6.湍流沿程水头损失的分析及计算 7.局部水头损失分析及计算 (五)压力管路的水力计算10学时 1.简单长管的水力计算 2.复杂管路的水力计算 3.孔口与管嘴泄流 4.水击现象及水击压力的计算 5.习题课 (六)非牛顿流体运动基础6学时 1.非牛顿流体及其流变方程 2.非牛顿流体运动的研究方法 3.塑性流体的流动规律 4.幂律流体的流动规律 5.判别非牛顿流体流动的Z值方法 6.非牛顿流体的物理参数测定 (七)实验课 8学时 1.水静压强实验

数学建模平衡点稳定性

微分方程平衡点及其稳定性理论 这里简单介绍下面将要用到的有关内容: 一、 一阶方程的平衡点及稳定性 设有微分方程 ()dx f x dt = (1) 右端不显含自变量t ,代数方程 ()0f x = (2) 的实根0x x =称为方程(1)的平衡点(或奇点),它也是方程(1)的解(奇解) 如果从所有可能的初始条件出发,方程(1)的解()x t 都满足 0lim ()t x t x →∞ = (3) 则称平衡点0x 是稳定的(稳定性理论中称渐近稳定);否则,称0x 是不稳定的(不渐近稳定)。 判断平衡点0x 是否稳定通常有两种方法,利用定义即(3)式称间接法,不求方程(1)的解()x t ,因而不利用(3)式的方法称直接法,下面介绍直接法。 将()f x 在0x 做泰勒展开,只取一次项,则方程(1)近似为: 0'()()dx f x x x dt =- (4) (4)称为(1)的近似线性方程。0x 也是(4)的平衡点。关于平衡点0x 的稳定性有如下的结论: 若0'()0f x <,则0x 是方程(1)、(4)的稳定的平衡点。 若0'()0f x >,则0x 不是方程(1)、(4)的稳定的平衡点 0x 对于方程(4)的稳定性很容易由定义(3)证明,因为(4)的一般解是 0'()0()f x t x t ce x =+ (5) 其中C 是由初始条件决定的常数。

二、 微分方程组的平衡点和稳定性 方程的一般形式可用两个一阶方程表示为 112212()(,)()(,)dx t f x x dt dx t g x x dt ?=????=?? (6) 右端不显含t ,代数方程组 1212 (,)0(,)0f x x g x x =??=? (7) 的实根0012 (,)x x 称为方程(6)的平衡点。记为00012(,)P x x 如果从所有可能的初始条件出发,方程(6)的解12(),()x t x t 都满足 101lim ()t x t x →∞= 202lim ()t x t x →∞ = (8) 则称平衡点00012(,)P x x 是稳定的(渐近稳定);否则,称P 0是不稳定的(不渐 近稳定)。 为了用直接法讨论方法方程(6)的平衡点的稳定性,先看线性常系数方程 1111222122()()dx t a x b x dt dx t a x b x dt ?=+????=+?? (9) 系数矩阵记作 1122a b A a b ??=???? 并假定A 的行列式det 0A ≠ 于是原点0(0,0)P 是方程(9)的唯一平衡点,它的稳定性由的特征方程 det()0A I λ-= 的根λ(特征根)决定,上方程可以写成更加明确的形式: 2120()det p q p a b q A λλ?++=?=-+??=? (10) 将特征根记作12,λλ,则

§5车辆的的蛇行运动稳定性

§7车辆的的蛇行运动稳定性 稳定性包括:静态平衡稳定性和动态(运动)稳定性两大类 静态平衡稳定性:可从静力平衡条件来判定 车体在弹簧上的搞倾覆稳定性; 车辆抗倾覆稳定性; 轮对抗脱轨稳定性。 动态稳定性:必须从运动方程或者其解的特征来判定。 一、自由轮对的蛇行运动 (三个问题) ○1 基本假设 ○2 运动方程及其解 ○ 3 解答结果讨论 1.其本假设有四点: (1) 自由轮对沿着轨距不变、刚性路面上的平直钢轨作等速 运动; (2) 轮对为一刚体,其两个车轮连续不断与钢轨接触; (3) 轮对的运动属微幅振动。因此轮轨接触几何关系。蠕滑 率-力规律均为线性,且认为纵向蠕滑与横向蠕滑系数相等即f f f ==2211; (4) 自由轮对带有锥形踏面,在新轮与新轨接角时,踏面斜 率较小,因此不计重力刚度产生的力和重力角刚度产生的力矩。 以上各条中,假设轮对为刚体并不合适。

1. 运动方程及其解 y w ωλ y 受力分析 轮对受到蠕滑力的作用(由轮对横摆和摇头引起) 蠕滑力的计算 fv T -= V V v ?= 设轮对前进速度为V ,角速度为ω。 由轮对横摆引起的蠕滑率 左轮 轮对中心 右轮 纵向 滚动圆半径 y r r l λ-=0 r 0 y r r R λ+=0 理论速度 ω(y r λ-0) ωr 0 ω(y r λ+0)

滑动速度V -ω(y r λ-0) V -ω(y r λ+0) w y ωλ -w y ωλ 纵向蠕滑率)(w x y v r y w λ - r y w λ 横向蠕滑率)(w y y v V w y ? V w y ? 由轮对摇头引起的蠕滑率 纵向滑动速度: b w ψ -b w ψ 蠕滑率)(w x v ψ: V b ? ψ -V b ? ψ 横向 由于的存在,V 的横向分速度: -V w ψ -V w ψ 蠕滑率)(w y v ψ -w ψ -w ψ 合成蠕滑率 1v r y w λ+ V b ?ψ -0 r y w λ-V b ? ψ 2v V w y ? -w ψ V w y ? -w ψ 纵向蠕滑力: -f ( r y w λ+ V b ? ψ) f (0 r y w λ+V b ? ψ ) 横向蠕滑力: -f (V w y ? -w ψ) -f (V w y ? -w ψ) 轮对的左右车轮上作用着纵向蠕滑力大小相等、方向相反,形成一力偶,力偶矩为: M Z =2b f ( r y w λ+ V b ? ψ)=2f (w y r b λ+V b ? ψ2 ) 横向力大小相等方向相同,

常微分方程平衡点及稳定性研究

本文给出了微分方程稳定性的概念,并举了一些例子来说明不同稳定性定义之间的区别和联系。这些例子都是通过求出方程解析解的方法来讨论零解是否稳定。在实际问题中提出的微分方程往往是很复杂的,无法求出其解析解,这就需要我们从方程本身来判断零解的稳定性。所以我们讨论了通过Liapunov稳定性定理来判断自治系统零解的稳定性,并用类似的方法讨论了非自治系统零解的稳定性。在此基础上,讨论了一阶和二阶微分方程的平衡点及其稳定性,这对其研究数学建模的稳定性模型起到很大的作用,并且利用相关的差分方程的全局吸引性研究了具时滞的单种群模型 ()()()() () .1 1N t N t r t N t cN t ττ -- = -- 的平衡点1 x=的全局吸引性,所获结果改进了文献中相关的结论。 关键词:自治系统平衡点稳定性全局吸引性 Abstract In this paper,we gived the conceptions of differential equation stability. Simultaneously a number of examples to illustrate the difference between the definition of different stability and contact. These examples are obtained by analytical solution equation method to discuss the stability of zero solution. Practical issues raised in the often very complicated differential equations, analytical solution can not be obtained, which requires us to determine from the equation itself, the stability of zero solution. So we discussed the stability theorem to determine through the stability of zero solution of autonomous systems, and use similar methods to discuss the non-zero solution of autonomous system stability. On this basis,we discuss a step and the second-step and the stability, which plays the major role to its stability of the model, and the global attractivity of the positive equilibrium 1 x=of the following delay single population model ()()()() () .1 1N t N t r t N t cN t ττ -- = -- is investigated by using the corresponding result related to a difference equation.The obtained results improve some known results in the literature. Key Words:autonomous system;equilibrium point;stability;delay;globally asymptotic stability;global attractivity

最新常微分方程平衡点及稳定性研究

常微分方程平衡点及稳定性研究

摘要 本文给出了微分方程稳定性的概念,并举了一些例子来说明不同稳定性定义之间的区别和联系。这些例子都是通过求出方程解析解的方法来讨论零解是否稳定。在实际问题中提出的微分方程往往是很复杂的,无法求出其解析解,这就需要我们从方程本身来判断零解的稳定性。所以我们讨论了通过Liapunov稳定性定理来判断自治系统零解的稳定性,并用类似的方法讨论了非自治系统零解的稳定性。在此基础上,讨论了一阶和二阶微分方程的平衡点及其稳定性,这对其研究数学建模的稳定性模型起到很大的作用,并且利用相关的差分方程的全局吸引性研究了具时滞的单种群模型 ()()()() () .1 1N t N t r t N t cN t ττ -- = -- 的平衡点1 x=的全局吸引性,所获结果改进了文献中相关的结论。关键词:自治系统平衡点稳定性全局吸引性

Abstract In this paper,we gived the conceptions of differential equation stability. Simultaneously a number of examples to illustrate the difference between the definition of different stability and contact. These examples are obtained by analytical solution equation method to discuss the stability of zero solution. Practical issues raised in the often very complicated differential equations, analytical solution can not be obtained, which requires us to determine from the equation itself, the stability of zero solution. So we discussed the stability theorem to determine through the stability of zero solution of autonomous systems, and use similar methods to discuss the non-zero solution of autonomous system stability. On this basis,we discuss a step and the second-step and the stability, which plays the major role to its stability of the model, and the global attractivity of the positive equilibrium 1 x= of the following delay single population model ()()()() () .1 1N t N t r t N t cN t ττ -- = -- is investigated by using the corresponding result related to a difference equation.The obtained results improve some known results in the literature. Key Words:autonomous system;equilibrium point;stability;delay;globally asymptotic stability;global attractivity

平衡状态与稳定状态有何区别

1.平衡状态与稳定状态有何区别?热力学中为什幺要引入平衡态的概念? 答:平衡状态是在不受外界影响的条件下,系统的状态参数不随时间而变化的状态。而稳定状态则是不论有无外界影响,系统的状态参数不随时间而变化的状态。可见平衡必稳定,而稳定未必平衡。热力学中引入平衡态的概念,是为了能对系统的宏观性质用状态参数来进行描述。 2‘表压力或真空度能否作为状态参数进行热力计算?若:』:质的压力不变,问测设其压力的压力表或真空计的读数是否可能变化? 答:不能,因为表压力或真空度只是一个相对压力。荇:1:质的压力不变,测5:其压力的压力表或真空计的读数可能变化,因为测所处的环境压力可能发生变化。 3^当真空表指示数值愈大时,表明被测对象的实际压力愈大还是愈小? 答:真空表指示数值愈大时,表明被测对象的实际压力愈小。 4^准平衡过程与可逆过程有何区别? 答:无耗散的准平衡过程才是可逆过程,所以可逆过程一定是准平衡过程,而准平衡过程不一定是可逆过程。推平衡过程只注重

的是系统内部而可逆过程是内外兼顾! 5^不可逆过程是无法回复到初态的过程,这种说法是否正确? 答:不正确。不可逆过程是指不论用任何曲折复杂的方法都不能在外界不遗留任何变化的情况下使系统回复到初态,并不是不能回复到初态。引起其他变化时是可以回到初态的! 6~没有盛满水的热水瓶,其瓶塞有时被白动顶开,有时被0动吸紧,这是什幺原因? 答:水温较商时,水对热水瓶中的空气进行加热,空气压力升高,大于环境压力,瓶塞被9 动顶开。而水温较低时,热水瓶中的空气受冷,压力降低,小于环境压力,瓶塞被自动吸紧。人气卍力改变,热水能兌散失,导致内部乐力改变,乐力平衡打破1.用II形管压力表测定工质的压力时,压力表液柱直径的大小对读数有无影响? 答:严格说来,是有影响的,因为0型管越飢,就有越多的被测工质进入0型管中,这部 分工质越多,它对读数的准确性影响越大。

工程流体力学第三章思考题、练习题

工程流体力学第三章思考 题、练习题 标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DDQTY-KII

第三章 流体静力学 思考题 ? 1、液体静压力具有的两个基本特性是什么 ? 2、液体静压力分布规律的适用条件是什么 作业 ? ,,, ,, , 一、选择题 1、静止液体中存在A A 压应力; B 压应力和拉应力; C 压应力和切应力; D 压应力、切应力和拉应力。 2、相对压力的起量点是C A 绝对真空; B 1个标准大气压; C 当地大气压; D 液面压强。 3.金属压力表的读数是B A 绝对压力; B 相对压力; C 绝对压力加当地大气压力; D 相对压力加当地大气压力 4、绝对压力 、相对压力p 、真空值、当地大气压力之间的关系是C A abs v p p p =+; B abs a p p p =+ ; C v a abs p p p =- 5、静止流场中的压强分布规律D A 仅适用于不可压缩流体; B 仅适用于理想流体; C 仅适用于黏性流体; D 既适用于理想流体,也适用于黏性流体。 6.在密闭的容器上装有U 形水银压力计(如图3-1),其中1、2、3点位于同一水平面,其压强关系为C A 123p p p ==; B 、123p p p >> ; C 、123p p p << 图3-1 图3-2 图3-3

7用U 形水银差压计测量水管内A 、B 两点的压强差(如图3-2),水银面高差h p =10cm ,p a -p b 为B A ; B ;C 8、静水中斜置平面壁的形心淹深c h 与压力中心淹深D h 的关系为 c h _C__ D h 。 A 大于; B 等于; C 小于; D 无规律。 9如图3-3所示,垂直放置的矩形挡水平板,水深为3m ,静水总压力p 的作用点到水面的距离为C A ; B ; C ;D 10完全淹没在水中的一矩形平面,当绕其形心轴旋转到什么位置时,其压力中心与形心重合C A 倾斜; B 倾斜; C 水平; D 竖直。 11、完全淹没在水中的一矩形平面,当绕其形心轴旋转到什么位置时,其压力中心与形心 最远D A 倾斜; B 倾斜; C 水平; D 竖直。 12 在液体中潜体所受浮力的大小B A 与潜体的密度成正比; B 与液体的密度成正比; C 与潜体淹没的深度成正比。 13、浮力作用线通过C A 潜体的重心; B 浮体的体积形心; C 排开液体的体积形心; D 物体上面竖直方向液体的 体积形心 14、浮体稳定平衡,则B A 仅当重心G 在浮心C 之下; B 、重力和浮力相等,且重心低于定倾中心; 15、潜体的稳定性条件是A A 潜体的重心必须位于其浮心之下; B 潜体的重心必须位于其浮心之上; C 潜体的形心必须位于其浮心之下; D 潜体的重心必须位于其浮心之上。

4.3平衡的稳定性汇总

第四章物体的平衡 §4.2 平衡的稳定性 【学习目标】 1.知道稳定平衡、不稳定平衡和随遇平衡; 2.了解三类平衡从动力学角度来看有什么区别; 3.知道稳度,体会增加稳度在实际生活中的重要意义。 4.通过让学生举例,培养信息收集和处理能力,分析、解决问题能力和交流、 合作能力。 【问题导学】 在前面的学习中,我们学习了有关共点力的平衡问题,我们知道了共点力平衡的 条件是共点力的合力为零。那么是不是自然界中的所有的平衡现象都如共点力作 用一样呢?为什么比萨斜塔每年都在倾斜却总也不倒呢?为什么双层公交车比 正常的公交车车底看起来要低呢?通过这节课的学习,希望同学们能给我以合理 的解释,好,我们进入这节课的学习研究,平衡的稳定性。 【合作探究】 一、平衡的分类 1、平衡的定义 [讨论交流] 准备一段视频录像(走钢丝杂技表演),让学生结合录像和书上的讨论交流,观 察这几个平衡与以前有什么不同,这三个平衡之间有什么不同?(把问题写在黑 板) 问题1:这三种平衡状态下,物体所受的力是共点力吗?(不是,向下的重力与 向上的绳的作用力不相交,重力作用于重心,绳对人的作用力不止一个点,如人 的两只脚、车的两个轮) 问题2:他们是否可以看做质点?(不可以,人体的姿势、形态对人体受力的有 影响,也使重心位置变化) 学生总结:此时物体不能看做质点又处于平衡状态,与我们以前学过的平衡发生 了变化,概念要发生变化,平衡条件也要发生变化,所以我们要考虑它们的另一 特性:平衡的稳定性。 问题3:我们换一种研究问题的方法,先观察这三个平衡的特点:第一个人受到 微小扰动而偏离平衡位置时,不能回到原先的状态,我们称之为不稳定平衡;第

平衡稳定性判定1

1、如图2.2 -1所示,三个完全相同的半径为r的光滑小圆柱紧密接触叠放在光滑的大圆筒中,处于平衡 状态,试求大圆筒的最大半径R. 2、如图2.6-2所示,浮子是半径为R的球冠,质量为ml,质心到球冠底的距离 为h.另有一根长为ι,质量为m2的均匀细杆从浮子中心垂直插到底,细杆上 插一不计质量的小旗,试讨论该体系平衡的稳定性 3、半径R 0.5cm的空心球以角速度ω=5rad/s, 绕其竖直直径旋转,如图例2- 3a所示,在球内侧高度为R/2处有一小木块同球一起旋转, (g=10m/s2) (1)实现这一情况所需的最小摩擦系数是多 少? (2)求ω= 8rad·s-1时实现这一情况的条件 (3)就以下两种情况研究运动的稳定性. ( i)木块位置有微小变动 ( ii)球的角速度有微小变动. (第9届国际物理奥林匹克竞赛题) 4、一长方形均为薄板AB,可绕通过其重心、垂直于长度方向的 固定水平轴O (垂直纸面)自由转动,如图7练4所示。在板上轴 O左侧距O点为L处以轻绳悬挂一质量为m的物体。在轴O的 右侧板上放一质量也是m的立方体,立方体边长以及其左侧面到 轴O的距离均为ι。已知起始时板处于水平位置,挂物与地面相 接触,轻绳绷紧,整个系统处于平衡状态。现在立方体右侧面中

心处施一沿水平方向向右的力F 去拉它,若用符号μ表示立方体与板面间的静摩擦系数,当F 从零开始逐渐增大至某一数值时,整个系统的平衡状态将开始被破坏。试讨论:可能出现几种平衡状态被破坏的情况?每种情况出现的条件是什么?要求在以μ为纵坐标、x(= L 2-3)为横坐标的图中,画出可能发生这 几种情况出现的区域。不要求讨论这些区域交界线上的平衡状态被破坏的情况。 5、截面为正方形的木棒水平地浮在水面上,为使木棒对于水平轴的扭转扰动呈稳定平衡,木棒的比重应为多大? 6、半径为R 的圆环绕其铅垂直径轴以不变的角速度ω匀速转动。两质量 为m 的珠子用长为L=R 的轻杆相连,套在圆环上可以无摩擦地滑动,如 图7-练15所示。试求轻杆在圆环上的平衡位置,用环心O 与杆心C 的 连线与铅垂轴的夹角θ表示,并分析平衡的稳定性。 7、有一个熟鸡蛋的长轴为ι,其尖端B 的曲率半径为b ,圆端A 的曲率半径为 α,现已知圆端可以稳定地立在水平地面上,如果要其尖端能稳定地立在半径为 r 的碗里,对r 有什么要求? (所有接 触面都不会产生滑动) 8.曲杆DCE 中的CD 、CE 是相互垂直的两段均质杆,每段长为2l ,重量均为P 。将此曲杆搁在宽度为G 的光滑平台上(图)aL ,求平衡时的φ角

平衡的稳定性

西华师范大学物理与电子信息学院- 1 - - 《物体的平衡性》教案 【课题】对物体平衡性的探究 【教学时间】40分钟 【教学对象】高一(上) 【教材】教育科学出版社第四章第3节 【主讲人】 【教学内容分析】 1.教材的地位和作用:课程地位及目标 本节内容是新教材第四章第三节的内容,应其在课程要求中为选学内容,对学生的要求相对较低,教材地位一般,只是教师对学生实际情况进行相应补充,和对教学方法的适当尝试;学生通过自我探究就简单规则几何体的平衡有一定定性了解。 。 2.课程标准对本节的要求:通过实验探究,让学生知道什物体平衡的分类,物体达到平衡的条件及稳定的概念,培养其的物理思维。 3.教材内容安排:通过实验得出自由落体是初速度为零的匀加速运动,并分析自由落体运动及其加速度。 4.对教材的处理:培养学生观察能力和分析,使之会验证匀变速直线运动;通过分析、归纳出自由落体运动的速度、位移公式,培养分析、推理、综合的能力。 【学生情况分析】 1.学生的兴趣:具有强烈的好奇心。 2.学生的知识基础:学生已经学过共点力平衡等有关知识。 3.学生的认识特点:本节知识的内容,接触多但并未进行总结和相关学习,在探究时,对实验结果的外推的有一定难度。 【教学目标】

1.知识与技能 通过实验观察、定义并理解简单几何体的平衡态的分类和做自由落体运动的条件 2.过程与方法 通过引导学生对实验进行控制变量的设计,是学生掌握实验设计原理,及对于探究的结果合理外推,大胆假设,科学求证的能力 3.情感态度与价值观 通过教学,使学生明白生活中简单几何体的平衡原理,激发起对物理学科的学习热情,使他们从生活走向物理,从物理走向科学。 【教学重点】物体平衡状态的分类,影响物体稳定性的因素及稳度的理解 【教学难点】 学生对于生活中的稳定事例关注不多,对于实验的设计和结果的外推,有较大影响,探究质量把握难度大。 【教学策略设计】 1.教学组织形式 新课程提倡以自主、合作、探究的教学组织形式来进行课堂教学,本节采用教师引导,学生探究的教学组织形式,让学生在体验科学探究的过程中,获取物理知识。 2.教学方法 (1)实验探究法 物理是一门以实验为基础的科学。本节教学设计注重以问题为先导,把主要内容的教学过程变成一种解决问题和科学探究的过程。 在教师的启发、引导下,学生自己探究,动手做一些有趣的小实验,尝试自己观察并描述实验现象,分析现象产生的原因,从而获取知识。整个过程渗透物理学研究方法、科学思维方法和协作精神、探索精神等情感态度价值观教育。 (2)讲授法

相关主题
文本预览
相关文档 最新文档