当前位置:文档之家› 集成稳压器的分类及使用注意事项

集成稳压器的分类及使用注意事项

集成稳压器的分类及使用注意事项

集成稳压器的分类及使用注意事项

集成稳压器按出线端子多少和使用情况大致可分为三端固定式、二端可调式、多端可调式及单片开关式等几种。

多端可调式是早期集成稳压器产品,其输出功率小,引出端多,使用不太方便,但精度高,价格便宜。

二端固定式集成稳压器是将取样电阻、补偿电容、保护电路、大功率调整管等都集成在同一芯片上,使整个集成电路块只有输人、输出和公共3个引出端,使用非常方便,因此获得广泛应用。它的缺点是输出电压固定,所以必须生产各种输出电压、电流规格的系列产品,代表产晶是78xx和79xx。

三端可调式集成稳压器只需外接两只电阻即可获得各种输出电压。代表产品有lm317/lm337等。

开关式集成稳压电源是最近几年发展的一种稳压电源,其效率特别高。它的工作原理与上面3种类型稳压器不同,是由直流变交流(高频)再变直流的变换器。通常有脉冲宽度调制和脉冲频率调制两种,输出电压是可调的。以an5900,tlj494,ha17524等为代表,目前广泛应用在微机、电视机和测量仪器等设备中。

集成稳压器使用时应注意以下5点。

①集成稳压器电路品种很多,从调整方式上有线性的和开关式的;从输出方式上有固定和可调式的。因三端稳压器优点比较明显,使用操作都比较方便,选用时应优先考虑。

②在接人电路之前,一定要分清引脚及其作用,避免接错时损坏集成块。输出电压大于6v的三端集成稳压器的输人、输出端需接保护二极管,可防止输入电压突然降低时,输出电容迅速放电引起三端集成稳压器的损坏。

③为确保输出电压的稳定性,应保证最小输人输出电压差。如三端集成稳压器的最小压差约2v,一般使用时压差应保持在3v以上。同时又要注意最大输人输出电压差范围不超出规定范围。

④为了扩大输出电流,三端集成稳压器允许并联使用。

⑤使用时,要焊接牢固可靠。对要求加散热装置的,必须加装符合要求尺寸的散热装置。

三端集成稳压器

三端集成稳压器 电子初学者的重要训练课题之一就是用三端集成稳压器组装输出电压可调的稳压电源(见图 1 ),但初学电子的网友们很多都是第一次使用三端集成稳压器,希望能更多地了解它的应用知识,对此,笔者和初学者进行了讨论。 同学:我在电子元件商店见到三端稳压集成块的品种很多,外形和产品型号也各不相同,这种稳压器件可以分成哪几种主要类型呢? 老师:国产三端集成稳压器已经标准化、系列化了,按照它们的性能和不同用途,可以分成两大类,一类是固定输出正压(或负压)三端集成稳压器 W7800 ( W7900 )系列,另一类是可调输出正压(或负压)三端集成稳压器 W317 ( W337 )系列。前者的输出电压是固定不变的,后者可在外电路上对输出电压进行连续调节。今天大家装机使用的就是三端可调正压输出集成稳压器 W317 。 同学:怎样用固定电压输出三端集成稳压器组成稳压电源呢? 老师:这种电源电路很简单,我先画出电路图(图 2 )。三端稳压器的输入端接在整流滤波电路的后面,输出端直接接负载,公共端接地,电源就能正常工作,输出稳定的直流电压。但是,在实际应用中为了抑制高频干扰并防止产生自激振荡,在它的输入端并联了电容器 C1 ,输出端并联了电容器 C2 。 同学:国产固定输出三瑞稳压器产品有多少种输出电压可供选择?对它的输入电压 U i 有什么要求呢? 老师:固定输出正压(或负压)三端集成稳压器产品的输出电压(绝对值)有 5V 、 6V 、 9V 、12V 、 15V 、 18V 、 24V 共 7 种,可以根据实际需要选择使用。为了保证稳压器能够正常工作,要求输入电压 U i 与输出电压 U o 的差值应大于 3V 。压差太小,会使稳压器性能变差,甚至不起稳压作用;压差太大,又会增大稳压器自身消耗的功率,并使最大输出电流减小。厂家对每种型号的稳压器都规定了最大输入电压值。一般取 U i -U o 为 3 ~ 7V 。 同学:从型号上怎样体现三端稳压器输出电压的大小呢? 老师:我们以 W7800 系列的稳压器产品为例,一般都用“ 78 ”后面的数字表示输出电压的大小。例如, W7806 表示输出电压为 6V ; W7812 表示输出电压为 12V ,等等。 同学:三端稳压器的输出电流有多大呢? 老师:三端集成稳压器按最大输出电流不同又可分成三个系列: W7800 、 W317 系列的最大输出电流为 1.5A ; W78M00 、 W317M 系列的最大输出电流为 0.5A ; W78IDO 、 W317L 系列的最大输出电流为 0.1A 。 同学:我在商店里看到三端稳压集成块有好几种不同的外形。 老师:国产三端稳压器的封装形式有 F-2 型、 TO-92 型、 S - 1 型、 S-7 型等多种,我这里有几种样品(图 3 ),大家可以看一看。需要特别说明的是,三个引脚的排列和它们的功能,对不同型号的产品或不同厂家的产品可能并不相同,使用时一定要看说明书。

线性集成稳压器及应用

线性集成稳压器 3.4.1 三端固定集成稳压器 1.三端固定集成稳压器的特点 三端固定集成稳压器包含7800和7900两大系列,7800系列是三端固定正输出稳压器,7900系列是三端固定负输出稳压器。它们的最大特点是稳压性能良好,外围元件简单,安装调试方便,价格低廉,现已成为集成稳压器的主流产品。7800系列按输出电压分有5V、6V、9V、12V、15V、18V、24V等品种;按输出电流大小分有0.1A、0.5A、1.5A、3A、5A、10A等产品;具体型号及电流大小见表3-6。例如型号为7805的三端集成稳压器,表示输出电压为5V,输出电流可达1.5A。注意所标注的输出电流是要求稳压器在加入足够大的散热器条件下得到的。同理7900系列的三端稳压器也有-5V~-24V七种输出电压,输出电流有0.1A、0.5A、1.5A三种规格,具体型号见表3-7。 表3-6 CW7800系列稳压器规格 型号输出电流(A) 输出电压(V) 78L00 0.1 5、6、9、12、15、18、24 78M00 0.5 5、6、9、12、15、18、24 7800 1.5 5、6、9、12、15、18、24 78T00 3 5、12、18、24 78H00 5 5、12 78P00 10 5 表3-7 CW7900系列稳压器规格 型号输出电流(A) 输出电压(V) 79L00 0.1 -5、-6、-9、-12、-15、-18、-24 79M00 0.5 -5、-6、-9、-12、-15、-18、-24 7900 1.5 -5、-6、-9、-12、-15、-18、-24 7800系列属于正压输出,即输出端对公共端的电压为正。根据集成稳压器本身功耗的大小,其封装形式分为TO-220塑料封装和TO-3金属壳封装,二者的最大功耗分别为10W 和20W(加散热器)。管脚排列如图3.4.1(a)所示。U I为输入端,U O为输出端,GND是公共端(地)。三者的电位分布如下:U I>U O>U GND(0V)。最小输入—输出电压差为2V,为可靠起见,一般应选4~6V。最高输入电压为35V。 7900系列属于负电压输出,输出端对公共端呈负电压。7900与7800的外形相同,但管脚排列顺序不同,如图3.4.1(b)所示。7900的电位分布为:U GND(0V)>-U O>-U I。另外在使用7800与7900时要注意,采用TO-3封装的7800系列集成电路,其金属外壳为地端;而同样封装的7900系列的稳压器,金属外壳是负电压输入端。因此,在由二者构成多路稳压电源时若将7800的外壳接印刷电路板的公共地,7900的外壳及散热器就必须与印刷电路板

78系列三端集成稳压器的检测

78系列三端集成稳压器的检测 1.测量各引脚之间的电阻值 用万用表测量78系列集成稳压器各引脚之间的电阻值,可以根据测量的结果粗略判断出被测集成稳压器的好坏。 ●用万用表R×1k档 ●正测是指黑表笔接稳压器的接地端,红表笔去依次接触另外两引引脚;负测指红表笔接地端, 黑表笔依次接触另外两引引脚。电阻值是用万用表的R×1k档测得。 ? 由于集成稳压器的品牌及型号众多,其电参数具有一定的离散性。通过测量集成稳压器各 引脚之间的电阻值,也只能估测出集成稳压器是否损坏。若测得某两脚之间的正、反向电 阻值均很小或接近0Ω则可判断该集成稳压器内部已击穿损坏。若测得鞭两脚之间的正、 反向电阻值均为无穷大,则说明该集成稳压器已开路损坏。若测得集成稳压器的阻值不稳定,随温度的变化而改变,则说明该集成稳压器的热稳定性能不良。 ●2.测量稳压值即使测量集成稳压器的电阻值正常,也不能确定该稳压器就是完好的,还应进 一步测量其稳压值是否正常。测量时,可在被集成稳压器的电压输入端与接地端之间加上一个 直流电压(正极接输入端)。 ●此电压应比被测稳压器的标称输出电压高3V以上(例如,被测集成稳压器是7806,加的直流 电压就为+9V),但不能超过其最大输入电压。若测得集成稳压器输出端与接地端之间的电压值输出稳定,且在集成稳压器标称稳压值的±5%范围内,则说明该集成稳压器性能良好。 ●(二)79系列三端集成稳压器的检测 ●1.测量各引脚之间的电阻值与78系列集成稳压器的检测方法相似,用万用表R×1k档测量 79系列集成稳压器各引脚之间的电阻值,若测得结果与正常值相差较大,则说明该集成稳压器性能不良。表10-31是79××系列集成稳压器的电阻值。 ●2.测量稳压值测量79系列集成稳压器的稳压值,与测量78系列集成稳压器稳压值的方法相 同,也是在被测集成稳压器的电压输入端与接地端之间加上一个直流电压(负极接输入端) ●此电压应比被测集成稳压器的标称电压低3V以下(例如,被测集成稳压器是7905,加的直流 电压应为-8V),但不允许超过集成稳压器的最大输入电压。若测得集成稳压器输出端与接地端之间的电压值输出稳定,且在集成稳压器标称稳压值的±5%范围内,则说明该集成稳压器完 好。 ●(三)17/37/38系列三端集成稳压器的检测 ●1.测量各引脚之间的电阻值 ●系列集成稳压器的电阻值是用万用表R×1k档测得。若被测集成稳压器的电阻值与表中电阻值相 差较大,则说明该集成稳压器有问题。 ●2.测量稳压值测量17/38系列正电压型可调式集成稳压器时,可将其按照图10-61中所示的 电路连接好。测量37系列负电压型可调式集成稳压器时,应将其按照图10-62中所示的电路连

集成稳压器

实验十七 集成稳压器 实验目的: 电工2班 1.了解集成稳压器的特性和使用方法。 王婉婷 2.掌握直流稳压电源主要参数测试方法。 2009118050 实验仪器: 示波器 数字万用表 直流电源 实验原理: 采用集成工艺,将调整管、基准电压、取样电路、误差放大和保护电路等集成在一块芯片上,就够成了集成稳压电源。如图A 所示的外引角图(本实验中所用的芯片LM7805CT )。 1、三端固定输出集成稳压器 此类稳压器有三个引出端:输入端、输出端和公共端。根据其输出电压极性可分为固定正输出集成稳压器(W78系列)和固定负输出集成稳压器(W79系列)。根据输出电流的大小又可分为W78XX 型(表示输出电流为1.5A )、W78MXX 型(表示输出电流为0.5A )和CW78LXX 型(表示输出电流为0.1A )。后面两位数字XX 表示输出电压的数值,一般有5V 、6V 、9V 、12V 、15V 、18V 、24V ,固定负输出集成稳压器相应也有W79XX 、W79MXX 和W79LXX 型。利用固定输出集成稳压器可组成各种应用电路,W78XX 型集成稳压器的基本应用电路如图B 所示。对三端固定输出集成稳压器,其输入电压选取 原则为: min Im ()O I O I ax U U U U U +-<< 式中,O U ----------集成稳压器的固定输出电压值。 Im ax U -----------集成稳压器规定的最大允许输入电压值。 min ()I O U U ------------集成稳压器规定允许的最小输入电压差,一般为2V 。 如果只有固定输出稳压器,又希望输出电压扩大或可调,可采用图C 所示电路来完成。电路中的C1、C2为频率补偿电容,防止自激振荡。

集成稳压器

实验三直流稳压电源 ─集成稳压器 一、实验目的 1、研究集成稳压器的特点和性能指标的测试方法。 2、了解集成稳压器扩展性能的方法。 二、实验原理 电子设备一般都需要直流电源供电。这些直流电除了少数直接利用干电池和直流发电机外,大多数是采用把交流电(市电)转变为直流电的直流稳压电源。 图3-1 直流稳压电源框图 随着半导体工艺的发展,稳压电路也制成了集成器件。由于集成稳压器具有体积小,外接线路简单、使用方便、工作可靠和通用性等优点,因此在各种电子设备中应用十分普遍,基本上取代了由分立元件构成的稳压电路。集成稳压器的种类很多,应根据设备对直流电源的要求来进行选择。对于大多数电子仪器、设备和电子电路来说,通常是选用串联线性集成稳压器。而在这种类型的器件中,又以三端式稳压器应用最为广泛。 W7800、W7900系列三端式集成稳压器的输出电压是固定的,在使用中不能进行调整。W7800系列三端式稳压器输出正极性电压,一般有5V、6V、9V、12V、15V、18V 、24V 七个档次,输出电流最大可达1.5A(加散热片)。同类型78M系列稳压器的输出电流为0.5A,78L系列稳压器的输出电流为0.1A。若要求负极性输出电压,则可选用W7900 系列稳压器。图3-2 为 W7800系列的外形和接线图。 它有三个引出端

输入端(不稳定电压输入端)标以“1” 输出端(稳定电压输出端)标以“3” 公共端标以“2” 除固定输出三端稳压器外,尚有可调式三端稳压器,后者可通过外接元件对输出电压进行调整,以适应不同的需要。 本实验所用集成稳压器为三端固定正稳压器W7812,它的主要参数有:输出直 流电压 U 0=+12V,输出电流 L:0.1A,M:0.5A,电压调整率 10mV/V,输出电阻 R =0.15Ω,输入电压U I 的范围15~17V 。因为一般U I 要比 U 大3~5V ,才能保 证集成稳压器工作在线性区。 图3-2 W7800系列外形及接线图 图3-3 是用三端式稳压器W7812构成的单电源电压输出串联型稳压电源的实验电路图。其中整流部分采用了由四个二极管组成的桥式整流器成品(又称桥堆),型号为2W06(或KBP306),内部接线和外部管脚引线如图 3-4所示。 滤波电容C 1、C 2 一般选取几百~几千微法。当稳压器距离整流滤波电路比较远时, 在输入端必须接入电容器C 3 (数值为0.33μF ),以抵消线路的电感效应,防止产 生自激振荡。输出端电容C 4 (0.1μF)用以滤除输出端的高频信号,改善电路的暂态响应。 图3-3 由W7812构成的串联型稳压电源

简明集成稳压器应用手册

简明集成稳压器应用手册 集成稳压器的分类: 1.根据电路稳压稳压原理进行分类: ●串联调整式:串联调整式稳压器的调整元件串联在不稳定的输入电压端与稳定的输出电压端之间,通过等效电阻的变化来保持输出电压的不变。半导体集成稳压器大多属于串联调整式稳压器。 ●并联调整式:并联调整式稳压器的调整元件与负载并联,通过并联元件等效电阻的变化来保持输出电压不变。串联、并联调整式稳压器统称为线性集成稳压器。 ●开关调整式:开关调整式稳压器的调整元件工作在开关状态,一般串接在输入端与输出端之间,并通过改变自身的开启和关闭时间来保持输出电压的不变。 2.根据稳压器的外形结构进行分类: ●多端式:稳压器的外引出线数目超过三个的。 ●三端式: 3.根据输出电压能否调整进行分类: ●固定输出电压式:该类稳压器输出电压由制造厂商预先调整好(其输出电压数值往往为常用的标准值),使用时输出电压不能调节。●可调输出电压式:该类稳压器的输出电压可通过少数外接元件在较大范围内调整。根据使用要求调节外接元件值,便可获得所需的输出电压。

集成稳压器主要电参数 1.质量参数: ●电压调整率Sv:表征稳压器稳压性能优劣的主要指标,又称为稳 压系数或稳定度。它表征当输入电压Vi变化时稳压器输出电压V o 稳定的程度。通常以单位输出电压下的输入和输出电压相对变化的百分比表示[△Vi/(△Vo*Vo)×100%],也有以输出电压和输入电压相对变化的百分比表示的[△Vi/△Vo×100%](当稳压器的负载不变时),此外,也有以输出电压变化的绝对值表示的[△Vo]. ●电流变化率Si:是反映稳压器负载能力的一项主要指标,又称为电 流稳定系数,它表征当输入电压不变时,稳压器对由于负载电流(输出电流)的变化而引起的输出电压波动的抑制能力。在规定的负载电流变化值条件下,通常以单位输出电压下的输出电压变化率的百分比来表示稳压器的电流调整率[△V o/Vo×100%],或者以输出电压变化的绝对值表示|△Vo|,(在规定的负载电流变化范围内)。 ●纹波抑制比S R:反映了稳压器对输入端引入的市电纹波电压的抑 制能力。当稳压器的输入和输出条件保持不变时,稳压器的纹波抑制比常以纹波电压峰-峰值与输出纹波电压峰值之比来表示,一般用分贝表示,也有用百分数表示的。 ●输出电压温度系数ST:又称为输出电压温度变化率。它是指当输入 电压和输出电流(负载电流)保持不变时,稳压器输出电压随温度的变化而变化的大小。通常以由单位温度变化所引起的输出电

电子技术课程设计报告 三端集成稳压电路

河南机电高等专科学校电子技术课程设计报告设计课题:三端集成稳压电路

三端集成稳压电路 一、设计任务与要求 1. 掌握二极管的单向导电性及用途; 2.了解三端集成稳压器LM7805和LM317的用途及区别; 3.对桥式整流滤波电路进行了解; 4.对变压器知识进行回顾; 5.培养实践技能,提高分析和解决实际问题的能力; 6.要求安全用电,正确使用元件 二、方案设计与论证 可调直流稳压电源一般由电源变压器,整流滤波电路及稳压电路所组成。变压把家用照明电交流电压220V变为所需要的低压交流电。桥式整流器把交流电变为直流电。经滤波后,稳压器再把不稳定的直流电压变为稳定的直流电压输出。本设计主要采用直流稳压构成集成稳压电路,通过变压,整流,滤波,稳压过程将220V交流电,变为稳定的直流电,并实现电压可在1.25V-37V可调。 方案一、使用型号LM317三端稳压集成器。接入220V家用照明电源,通过降压变压器,使电压降到适合的值,然后使用IN4001型号二极管,电容等设计整流滤波电路,然后通过使用型号LM317三端稳压集成器,输出一个稳定直流电。 方案二、使用型号LM7805三端稳压集成器。接入220V家用照明电源,通过降压变压器,使电压降到适合的值,然后使用IN4007型号二极管,电容等设计整流滤波电路,然后通过使用型号LM7805三端稳压集成器,输出一个稳定直流电。 论证:由于设计要求通过变压,整流,滤波,稳压过程将220V交流电,变为稳定的直流电,并实现电压可在1.25V-37V可调。对于型号LM7805三端稳压集成器来说,输入电压为9V--20V,输出电压为固定值5,输出最大电流为1.5A;而型号LM317三端稳压集成器输入电压的要求范围比较大,输出电压为可调的,电压的范围1.25V-37V,输出电流的最大值与上面的相同,对于此设计来说LM317的选择性比较高,比较容易操作。 通过论证,最终确定选用方案一。

集成稳压电源实验报告

电子电工教学基地 实 验 报 告 实验课程:模拟电子技术实验 实验名称:集成直流稳压电源的设计 班级: 姓名 小组成员: 实验时间: 上课时间:

集成直流稳压电源实验报告 一.设计目的 1.掌握集成稳压电源的实验方法。 2.掌握用变压器、整流二极管、滤波电容和集成稳压器来设计直流稳压电源。 3.掌握直流稳压电源的主要性能参数及测试方法。 4.进一步培养工艺素质和提高基本技能。 二.设计要求 (1)设计一个双路直流稳压电源。 (2)输出电压Vo=±12V,+5V最大输出电流Iomax=1A (3)输出纹波电压ΔVop-p≤5mV, 稳压系数Sv≤5×10-3。 三.总电路框图及总原理图。 LM7912CT 四.设计思想及基本原理分析 直流电源是能量转换电路,将220V(或380V)50Hz的交流电转换为直流电。 直流稳压电源一般有电源变压器T r、整流、滤波电路及稳压电路所组成,基本框图如图:

各部分作用如下: (1)电源变压器 电源变压器T r的作用是将电网220V的交流电压变换为整流滤波电路所需要的交流电压U i,变压器的副边与原边的功率比为P2/P1=η,η为变压器的效率。 (2)整流电路 整流电路将交流电压U i变换成脉动的直流电压。 常用的整流电路有全波整流电路,桥式整流电路、倍压整流电路等。 本实验我们采用的是桥式整流电路: 二极管选择: 考虑到电网波动范围为±10%,二极管 的极限参数应满足: (3)滤波电路 滤波电路将脉动直流电压的纹波减小或滤除,输出直流电压U1。 常用的滤波电路有电容滤波电路,电感滤波电路、复式滤波电路等。 2 max R 2U U= L 2 L(AV) D(AV) 45 .0 2R U I I≈ = ? ? ? ? ? > ? > 2 R L 2 F 2 1.1 45 .0 1.1 U U R U I

三端集成稳压器的工作原理

三端集成稳压器的工作原理

————————————————————————————————作者:————————————————————————————————日期:

三端集成稳压器的工作原理 现以具有正电压输出的78L××系列为例介绍它的工作原理。 电路如图1所示,三端式稳压器由启动电路、基准电压电路、取样比较放大电路、调整电路和保护电路等部分组成。下面对各部分电路作简单介绍。

(1)启动电路 在集成稳压器中,常常采用许多恒流源,当输入电压VI接通后,这些恒流源难以自行导通,以致输出电压较难建立。因此,必须用启动电路给恒流源的BJT T4、T5提供基极电流。启动电路由T1、T2、DZ1组成。当输入电压VI高于稳压管DZ1的稳定电压时,有电流通过T1、T2,使T3基极电位上升而导通,同时恒流源T4、T5也工作。T4的集电极电流通过DZ2以建立起正常工作电压,当DZ2达到和DZ1相等的稳压值,整个电路进入正常工作状态,电路启动完毕。与此同时,T2因发射结电压为零而截止,切断了启动电路与放大电路的联系,

从而保证T2左边出现的纹波与噪声不致影响基准电压源。 (2)基准电压电路 基准电压电路由T4、DZ2、T3、R1、R3及D1、D2组成,电路中的基准电压为 式中VZ2为DZ2的稳定电压,VBE为T3、D1、D2发射结(D1、D2为由发射结构成的二极管)的正向电压值。在电路设计和工艺上使具有正温度系数的R1、R2、DZ2与具有负温度系数的T3、D1、D2发射结互相补偿,可使基准电压VREF基本上不随温度变化。同时,对稳压管DZ2采用恒流源供电,从而保证基准电压不受输入电压波动的影响。 (3)取样比较放大电路和调整电路 这部分电路由T4~T11组成,其中T10、T11组成复合调整管;R12、R13组成取样电路;T7、T8和T6组成带恒流源的差分式放大电路;T4、T5组成的电流源作为它的有源负载。

线性稳压器原理

随着便携式设备(电池供电)在过去十年间的快速增长,象原来的业界标准LM340 和 LM317 这样的稳压器件已经无法满足新的需要。这些稳压器使用NPN 达林顿管,在本文中称其为NPN 稳压器(NPN regulators)。预期更高性能的稳压器件已经由新型的低压差(Low-dropout)稳压器(LDO)和准LDO稳压器(quasi-LDO)实现了。 NPN 稳压器(NPN regulators) 在NPN稳压器(图1:NPN稳压器内部结构框图)的内部使用一个PNP管来驱动NPN 达林顿管(NPN Darlington pass transistor),输入输出之间存在至少1.5V~2.5V 的压差(dropout voltage)。这个压差为: Vdrop =2Vbe +Vsat(NPN 稳压器) (1) LDO 稳压器(LDO regulators) 在LDO(Low Dropout)稳压器(图2:LDO稳压器内部结构框图)中,导通管是一个PNP管。LDO的最大优势就是PNP管只会带来很小的导通压降,满载(Full-load)的跌落电压的典型值小于500mV,轻载(Light loads)时的压降仅有10~20mV。LDO的压差为: Vdrop =Vsat (LDO 稳压器) (2)

准LDO 稳压器(Quasi-LDO regulators) 准LDO(Quasi-LDO)稳压器(图3:准LDO 稳压器内部结构框图)已经广泛应用于某些场合,例如:5V到3.3V 转换器。准LDO介于NPN 稳压器和LDO 稳压器之间而得名,导通管是由单个PNP 管来驱动单个NPN 管。因此,它的跌落压降介于NPN稳压器和LDO之间: Vdrop =Vbe +Vsat (3) 稳压器的工作原理(Regulator Operation) 所有的稳压器,都利用了相同的技术实现输出电压的稳定(图4:稳压器工作原理图)。输出电压通过连接到误差放大器(Error Amplifier)反相输入端(Inverting Input)的分压电阻(Resistive Divider)采样(Sampled),误差放大器的同相输入端(Non-inverting Input)连接到一个参考电压Vref。参考电压由IC内部的带隙参考源(Bandgap Reference)产生。误差放大器总是试图迫使其两端输入相等。为此,它提供负载电流以保证输出电压稳定: Vout = Vref(1 + R1 / R2)

三端可调式集成稳压器

三端可调式集成稳压器 三端可调式集成稳压器输出电压可调,稳压精度高,输出纹波小,只需外接两只不同的电阻,即可获得各种输出电压。 1.分类 它分为三端可调正电压集成稳压器和三端可调负电压集成稳压器。 三端可调式集成稳压器产品分类见表7.3.3。 表7.3.3 三端可调式集成稳压器分类 类型产品系列或型号最大输出电流I OM/A输出电压U O/V 正电压输出 LM117L/217L/317L0.1 1.2∽37 LM117M/217M/317M0.5 1.2∽37 LM117/217/317 1.5 1.2∽37 LM150/250/3503 1.2∽33 LM138/238/3385 1.2∽32 LM196/39610 1.25∽15负电压输出LM137L/237L/337L0.1-1.2∽-37

LM137M/237M/337M0.5-1.2∽-37 LM137/237/337 1.5-1.2∽-37 2.引脚排列 三端可调式集成稳压器引脚排列图如图7.3.6所示。除输入、输出端外,另一端称为调整端。 图7.3.6 三端可调式集成稳压器引脚排列图 a)TO-220 封装 b)TO-3封装 3. 三端可调式集成稳压器基本应用电路 1).基本应用电路及输出电压估算 电路如图7.3.7所示。U O=1.2~37V连续可调。I OM=1.5A,I Omin≥5mA. CW317的U REF固定在1.2V,I ADJ=50 A,忽略不计。 U O=1.2(1+R2/R1)V 。

图7.3.7 三端可调式集成稳压电路 2).外接元器件选取 为保证负载开路时I Omin ≥5mA ,R 1max =U REF /5mA=240Ω。U Omax =37V ,R 2为调节电阻,代入U O 表达式求得R 2为7.16k Ω左右,取6.8k Ω。 C 2是为了减小R 2两端纹波电压而设置的,一般取10μF 。C 3是为了防止输出端负载呈感性时可能出现的 阻尼振荡,取1μF 。C 1为输入端滤波电容,可抵消电路的电感效应和滤除输入线窜入干扰脉冲,取0.33μF 。VD 1、VD 2是保护二极管,可选整流二极管2CZ52。 3). I U 选取 I U =28∽40V ,O I U U -≥3V 。当V U V U U I O O 40,37max ===。

线性稳压器和开关模式电源的基本概念

线性稳压器和开关模式电源的基本概念 关键字:线性稳压器开关模式电源SMPS 摘要 本文阐述了线性稳压器和开关模式电源(SMPS)的基本概念。目的是针对那些对电源设计和选择可能不很熟悉的系统工程师。文章说明了线性稳压器和SMPS的基本工作原理,并讨论了每种解决方案的优势和劣势。以降压型转换器为例进一步解释了开关稳压器的设计考虑因素。 引言 如今的设计要求在电子系统中有越来越多的电源轨和电源解决方案,且负载范围从几mA(用于待机电源)到100A以上(用于ASIC电压调节器)。重要的是必需选择针对目标应用的合适解决方案并满足规定的性能要求,例如:高效率、紧凑的印刷电路板(PCB)空间、准确的输出调节、快速瞬态响应、低解决方案成本等。对于系统设计师来说,电源管理设计正成为一项日益频繁和棘手的工作,而他们当中许多人可能并没有很强的电源技术背景。 电源转换器利用一个给定的输入电源来产生用于负载的输出电压和电流。其必需在稳态和瞬态情况下满足负载电压或电流调节要求。另外,它还必须在组件发生故障时对负载和系统提供保护。视具体应用的不同,设计师可以选择线性稳压器(LR)或开关模式电源(SMPS)解决方案。为了选择最合适的解决方案,设计师应熟知每种方法的优点、不足和设计关注点,这是十分重要。 本文将着重讨论非隔离式电源应用,并针对其工作原理和设计的基本知识作相关介绍。 线性稳压器 线性稳压器的工作原理 我们从一个简单的例子开始。在嵌入式系统中,可从前端电源提供一个12V总线电压轨。在系统板上,需要一个3.3V电压为一个运算放大器(运放)供电。产生3.3V电压最简单的方法是使用一个从12V总线引出的电阻分压器,如图1所示。这种做法效果好吗?回答常常是―否‖。在不同的工作条件下,运放的V CC引脚电流可能会发生变化。假如采用一个固定的电阻分压器,则IC V CC电压将随负载而改变。此外,12V总线输入还有可能未得到良好的调节。在同一个系统中,也许有很多其他的负载共享12V电压轨。由于总线阻抗的原因,12V总线电压会随着总线负载情况的变化而改变。因此,电阻分压器不能为运放提供一个用于确保其正确操作的3.3V稳定电压。于是,需要一个专用的电压调节环路。如图2所示,反馈环路必需调整顶端电阻器R1的阻值以动态地调节V CC上的3.3V。

集成稳压器的稳压电源电路设计

绪论 电源技术是一门实践性很强的技术,服务于各行各业之中。当今电源技术融合了电器、电子、系统集成、控制理论、材料等诸多科学领域。随着计算机和通信技术发展而带来现代信息技术革命,给电力电子技术提供了广阔的发展前景,同时也给电源技术提出了更高的要求! 电源可分为交流电源和直流电源。前者在此不做介绍。而直流电源又可分为两类:一类是能直接提供给直流电流或电压的,如电池、太阳能电池、硅光电池等。另一类就是将交流电变换成所需的稳定的直流电流或电压的。这就是我们本次实习所需要的设计。当今的大多数电子设备中,几乎都必须用到直流稳压电源来使其正常工作。而最常用的就是能将交流电网电压转换为稳定直流电压的直流电源,可见集成直流稳压电源在电子设备中起到的重要作用。集成稳压器在近十多年发展很快,目前国内外已发展到几百个品种。按电路的工作方式分,有线性集成稳压器和开关式集成稳压器。按电路的结构形式分,有单片式集成稳压器和组合式集成稳压器。按管脚的连接方式分,有三端式集成稳压器和多端式集成稳压器。按制造工艺分,有半导体集成稳压器、薄膜混合集成稳压器和厚膜混合集成稳压器。 集成稳压器的稳压电源电路一般由四部分组成,他们分别是电源变压器、整流电路、滤波电路、稳压电路。

总体设计 一、设计目的 认识要求 1)认识变压器、二极管、电阻、电容等基本元件; 2)理解桥式整流,滤波,稳压的作用; 3)明确桥式稳压电源的设计方法,能根据稳压电源的输出要求,选择适当的电源变压器,二极管。 功能要求 1)设计:集成稳压器的稳压电源电路 2)功能:能将输入的交流电压运用本身稳压功能输出+5V直流电压 二、性能指标 1、使用集成稳压器的直流稳压电源电路指标要求: (1)输入电压为:220V,频率50Hz (2)输出电压为:+5V (3)稳压部分:采用三端集成稳压器 (4)电路采用全波桥式整流滤波电路 (5)负载:一个1K电阻。

集成稳压器

姓名: 学号: 班级: 集成稳压器 实验目的: 1.了解集成稳压器的特性和使用方法。 2.掌握直流稳压电源主要参数测试方法。 实验仪器: 示波器 数字万用表 直流电源 实验原理: 采用集成工艺,将调整管、基准电压、取样电路、误差放大和保护电路等集成在一块芯片上,就够成了集成稳压电源。如图A 所示的外引角图(本实验中所用的芯片LM7805CT )。 三段固定输出集成稳压器 此类稳压器有三个引出端:输入端、输出端和公共端。根据其输出电压极性可分为固定正输出集成稳压器(W78系列)和固定负输出集成稳压器(W79系列)。根据输出电流的大小又可分为W78XX 型(表示输出电流为1.5A )、W78MXX 型(表示输出电流为0.5A )和CW78LXX 型(表示输出电流为0.1A )。后面两位数字XX 表示输出电压的数值,一般有5V 、6V 、9V 、12V 、15V 、18V 、24V ,固定负输出集成稳压器相应也有W79XX 、W79MXX 和W79LXX 型。利用固定输出集成稳压器可组成各种应用电路,W78XX 型集成稳压器的基本应用电路如图B 所示。对三端固定输出集成稳压器,其输入电压选取 原则为: m i n I m ()O I O I ax U U U U U +-<< 式中,O U ----------集成稳压器的固定输出电压值。

Im ax U -----------集成稳压器规定的最大允许输入电压值。 min ()I O U U -----------集成稳压器规定允许的最小输入电压差,一般为2V 。 如果只有固定输出稳压器,又希望输出电压扩大或可调,可采用图C 所示电路来完成。电路中的C1、C2为频率补偿电容,防止自激振荡。 C61uF 1、三端可调输出集成稳压器 三端可调输出集成稳压器分为正可调输出集成稳压器(如W117)与负可调输出集成稳压器(如CW137),正可调输出集成稳压器的输出电压范围为1.2~37V ,输出电流可调范围0.1~1.5A 。他同样有三个端子,即输入端、输出端和调整端,在输入端与调整端之间为Uref=1.25V 的基准电压,从调整端流出的电流d I =50uA 。常用基本稳压电路如图D 所示。 U450%

线性稳压器的基础

线性稳压器又称为三引脚稳压器或降压器等,由于电路简单而容易使用,是许多设计者以前早就耳熟能详的电源。过去由分立器件所构成,IC化普及后变得既简便又小型,被使用在各种不同电源的应用中。近年电子设备要求必须具有高效率,需要大输出功率的设备逐渐以开关电源为主流,不过简单又省空间且低噪声的线性稳压器则是哪里都用得到的电源。 本项从线性稳压器的工作原理开始,说明其主要规格与热计算。 线性稳压器基本上由输入、输出、GND引脚所构成,可变输出则在此增加反馈输出电压的反馈(feed back)引脚(参考图1)。 线性稳压器内部电路概述如图2所示。基本上由误差放大器(误差检测用运算放大器)、基准电压源、输出晶体管所构成。输出晶体管虽用Pch MOSFET,但也可使用Nch的MOSFET、双极的PNP、NPN晶体管。 图2:内部电路概述 工作是完全模拟,是使用了运算放大器基本控制电路之一,即反馈(feed back)环路。输入或负载变动后,即使输出电压开始变动,误差放大器也会连续比较来自稳压器输出电压的反馈电压和基准电压,调整功率晶体管使差分为零,将VO维持恒定。这是反馈环路控制稳定化(调节)。具体上如前所述,误差放大器非反转引脚的电压由于经常与VREF相同,故流向R2的电流将会恒定。流向R1和R2的电流通过REF÷R2可以求得,故Vo将为此电流×(R1+R2)。这就是欧姆定律,公式如下: 关键要点: ?使用误差放大器的反馈环路控制让线性稳压器的输出稳定。 线性稳压器的电路构成虽然基本上为图5的反馈环路电路,不过压差电压会因输出晶体管种类而异。

标准型和LDO型有极大不同,而LDO型中更可分为3种。使用双极NPN晶体管的LDO虽然品种不太多,但可以处理大电流。甚至可达10A之高,但压差电压则为1V~2V以下,在LDO 中为高压类。双极PNP晶体管的LDO目前是双极系LDO主流。起初很难克服启动时的浪涌电流或电流容量问题,不过已逐渐改善。输出晶体管使用MOSFET的产品可支持更低输出电压、以支持电池驱动应用产品的低功耗需求。 图5:基本电路和输出晶体管 图6:输出晶体管和压差电压 关键要点: ?压差电压视因使用的输出段(控制)晶体管种类而异,故根据使用条件分开使用。 系列稳压器、三引脚稳压器、降压器、LDO。这些想必有听过的名称全都是指线性稳压器。除了这些名称,根据其功能或方式可以分成几类。

LDO低压差线性稳压器 知识总结

LDO 一.LDO的基本介绍 LDO是low dropout regulator,意为低压差线性稳压器,是相对于传统的线性稳压器来说的。传统的线性稳压器,如78xx系列的芯片都要求输入电压要比输出电压高出2v~3V以上,否则就不能正常工作。但是在一些情况下,这样的条件显然是太苛刻了,如5v转3.3v,输入与输出的压差只有1.7v,显然是不满足条件的。针对这种情况,才有了LDO类的电源转换芯片。 LDO是一种线性稳压器。线性稳压器使用在其线性区域内运行的晶体管或FET,从应用的输入电压中减去超额的电压,产生经过调节的输出电压。所谓压降电压,是指稳压器将输出电压维持在其额定值上下100mV之内所需的输入电压与输出电压差额的最小值。正输出电压的LDO(低压降)稳压器通常使用功率晶体管(也称为传递设备)作为PNP。这种晶体管允许饱和,所以稳压器可以有一个非常低的压降电压,通常为200mV左右;与之相比,使用NPN复合电源晶体管的传统线性稳压器的压降为2V左右。负输出LDO使用NPN作为它的传递设备,其运行模式与正输出LDO的PNP设备类似。 更新的发展使用MOS 功率晶体管,它能够提供最低的压降电压。使用功率MOS,通过稳压器的唯一电压压降是电源设备负载电流的ON 电阻造成的。如果负载较小,这种方式产生的压降只有几十毫伏。 DC-DC的意思是直流变(到)直流(不同直流电源值的转换),只要符合这个定义都可以叫DCDC转换器,包括LDO。但是一般的说法是把直流变(到)直流由开关方式实现的器件叫DCDC。 LDO是低压降的意思,这有一段说明:低压降(LDO)线性稳压器的成本低,噪音低,静态电流小,这些是它的突出优点。它需要的外接元件也很少,通常只需要一两个旁路电容。新的LDO线性稳压器可达到以下指标:输出噪声30μV,PSRR为60dB,静态电流6μA(TI的TPS78001达到Iq=0.5uA),电压降只有100mV(TI量产了号称0.1mV的LDO)。 LDO线性稳压器的性能之所以能够达到这个水平,主要原因在于其中的调整管是用P沟道MOSFET,而普通的线性稳压器是使用PNP晶体管。P沟道MOSFET是电压驱动的,不需要电流,所以大大降低了器件本身消耗的电流;另一方面,采用PNP晶体管的电路中,为了防止PNP晶体管进入饱和状态而降低输出能力,输入和输出之间的电压降不可以太低;而P沟道MOSFET上的电压降大致等于输出电流与导通电阻的乘积。由于MOSFET的导通电阻很小,因而它上面的电压降非常低。 如果输入电压和输出电压很接近,最好是选用LDO稳压器,可达到很高的效率。所以,在把锂离子电池电压转换为3V输出电压的应用中大多选用LDO稳压器。虽说电池的能量最後有百分之十是没有使用,LDO稳压器仍然能够保证电池的工作时间较长,同时噪音较低。 如果输入电压和输出电压不是很接近,就要考虑用开关型的DCDC了,因为从上面的原理可以知道,LDO的输入电流基本上是等于输出电流的,如果压降太大,耗在LDO上能量太大,效率不高。

集成稳压器的参数(精)

集成稳压器的参数 1.电压调整率Sv它是表示当输出电流(负载)和环境温度保持不变时,由于输人电压的变化所引起的输出电压的相对变化量。电压调整率有时也用在某一输人电压变化范围内的输出电压变化量表示。该参数表征了稳压器在输人电压变化时稳定输出电压的能力。2.电流调整率SI它是指当输人电压和环境温度保持不变时,由于输出电流的变化所引起的输出电压的相对变化量。电流调整率有时也用负载电流变化时输出电压变化量表示。该参数也表示稳压器 1.电压调整率Sv 它是表示当输出电流(负载)和环境温度保持不变时,由于输人电压的变化所引起的输出电压的相对变化量。电压调整率有时也用在某一输人电压变化范围内的输出电压变化量表示。该参数表征了稳压器在输人电压变化时稳定输出电压的能力。 2.电流调整率SI 它是指当输人电压和环境温度保持不变时,由于输出电流的变化所引起的输出电压的相对变化量。电流调整率有时也用负载电流变化时输出电压变化量表示。该参数也表示稳压器的负载调整能力。 3.输出阻抗ZO 它是在规定的输入电压Ui和输出电流几的条件下,在输出端上所测得的交流电压U与交流电流I之比,即Zo=U/I 。 4.输出电压长期稳定性ST 它是当输入电压、输出电流及环境温度保持不变时,在规定的时问内稳压器输出电压的最大相对变化量。 5.输出电压温漂SP 它是在规定温度范围内,当输人电压和输出电流保持不变时,由温度的变化所引起的每单位的变化率。该参数表示稳压器输出电压的温度稳定性。 6.纹波抑制比SRR 它是当输入和输出条件保持不变时,输人的纹波电压峰-峰值与输出的纹波电压峰~峰值之比。该参数表示稳压器对输人端所引人的纹波电压的抑制能力。 7.最大输入电压UImax

集成线性稳压电路

集成线性稳压电路 1.三端固定式集成稳压器 如果将前述的串联型稳压电源电路全部集成在一块硅片上,加以封装后引出三端引脚,就成了三端集成稳压电源了。 正电压输出的78××系列,负电压输出的79××系列。其中××表示固定电压输出的数值。如:7805、7806、7809、7812、7815、7818、7824等,指输出电压是+5V、+6V、+9V、+12V、+15V、+18V、+24V。79××系列也与之对应,只不过是负电压输出。这类稳压器的最大输出电流为1.5A,塑料封装(TO-220)最大功耗为10W(加散热器);金属壳封装(TO-3)外形,最大功耗为20W(加散热器)。 2. 78系列三端集成稳压器内部电路框图 3. 三端集成稳压器的典型应用 ⑴固定输出连接 在使用时必须注意:(VI)和(Vo)之间的关系,以W7805为例,该三端稳压器的固定输出电压是5V,而输入电压至少大于8V,这样输入/输出之间有3V的压差。使调整管保证工作在放大区。但压差取得大时,又会增加集成块的功耗,所以,两者应兼顾,即既保证在最大负载电流时调整管不进入饱和,又不致于功耗偏大。

⑵固定双组输出连接 ⑶扩大输出电流连接 二极管D以低消T管VBE压降而设置,扩大的输出电流为:,原输出电流是Io,现可以近似扩大β倍。 ⑷扩大输出电压范围 ,所以: ⑸连接成恒流源电路

⑹三端可调式集成稳压电路 其型号有正输出三端可调式、负输出三端可调式两种。如LM317型是正电压输出型,LM337是负电压输出可调式。其输出电压可在1.25~40V之间调节。 其中,VREF=1.25V,而Iadj很小,通常略去,所以,由公式可得,只要调节R2就能在一定范围调节输出电压的大小。 具有正负输出的实际应用电路如下图所示。

直流稳压电源__集成稳压器

实验八直流稳压电源 ─集成稳压器─ 一、实验目的 1、研究集成稳压器的特点和性能指标的测试方法。 2、了解集成稳压器扩展性能的方法。 二、实验原理 W7800、W7900系列三端式集成稳压器的输出电压是固定的,在使用中不能进行调整。W7800系列三端式稳压器输出正极性电压,一般有5V、6V、9V、12V、15V、18V 、24V 七个档次,输出电流最大可达1.5A(加散热片)。同类型78M 系列稳压器的输出电流为0.5A,78L系列稳压器的输出电流为0.1A。若要求负极性输出电压,则可选用W7900 系列稳压器。 除固定输出三端稳压器外,尚有可调式三端稳压器,后者可通过外接元件对输出电压进行调整,以适应不同的需要。 本实验所用集成稳压器为三端固定正稳压器W7812,它的主要参数有:输出直流电压 U0=+12V,输出电流 L:0.1A,M:0.5A,电压调整率 10mV/V,输出电阻 R0=0.15Ω,输入电压U I的范围15~17V 。因为一般U I要比 U0大3~5V ,才能保证集成稳压器工作在线性区。 图8-1 W7800系列外形及接线图 图8-2 是用三端式稳压器W7812构成的单电源电压输出串联型稳压电源的实验电路图。其中整流部分采用了由四个二极管组成的桥式整流器成品

(又称桥堆),型号为2W06(或KBP306),内部接线和外部管脚引线如图8-3所示。滤波电容C1、C2一般选取几百~几千微法。当稳压器距离整流滤波电路比较远时,在输入端必须接入电容器C3(数值为0.33μF ),以抵消线路的电感效应,防止产生自激振荡。输出端电容C4(0.1μF)用以滤除输出端的高频信号,改善电路的暂态响应。 图8-2 由W7815构成的串联型稳压电源 附:(1) 图8-7为W7900系列(输出负电压)外形及接线图 图8-7 W7900系列外形及接线图 (2) 图8-8为可调输出正三端稳压器W317外形及接线图。

相关主题
文本预览
相关文档 最新文档