当前位置:文档之家› 1.1.1 测量与测量方法

1.1.1 测量与测量方法

平面度常识及测量方法

平面度误差测量数据处理。 在大中专学校机械类各专业中,《互换性与测量技术基础》是一门重要的技术基础课,该课程内容十分丰富,而教学课时相对较少,许多重点和难点内容难以作详细讲解。其中形位公差与技术测量的内容学生理解掌握更为困难,在四项形位公差中,直线度与平面度误差的测量是一般机械制造行业主要的检测项目,故要求学生重点学习和掌握。直线度误差的测量相对较为简单,而平面度误差的测量及数据处理比较复杂,且理解困难。本文仅对平面度误差的测量和数据处理作较为详细的介绍,希冀初学者能尽快掌握这一重点和难点内容。 一、平面度误差的测量 平面度误差是指被测实际表面对其理想平面的变动量。 平面度误差是将被测实际表面与理想平面进行比较,两者之间的线值距离即为平面度误差值;或通过测量实际表面上若干点的相对高度差,再换算以线值表示的平面度误差值。 平面度误差测量的常用方法有如下几种: 1、平晶干涉法:用光学平晶的工作面体现理想平面,直接以干涉条纹的弯曲程度确定被测表面的平面度误差值。主要用于测量小平面,如量规的工作面和千分尺测头测量面的平面度误差。 2、打表测量法:打表测量法是将被测零件和测微计放在标准平板上,以标准平板作为测量基准面,用测微计沿实际表面逐点或沿几条直线方向进行测量。打表测量法按评定基准面分为三点法和对角线法:三点法是用被测实际表面上相距最远的三点所决定的理想平面作为评定基准面,实测时先将被测实际表面上相距最远的三点调整到与标准平板等高;对角线法实测时先将实际表面上的四个角点按对角线调整到两两等高。然后用测微计进行测量,测微计在整个实际表面上测得的最大变动量即为该实际表面的平面度误差。 3、液平面法:液平面法是用液平面作为测量基准面,液平面由“连通罐”内的液面构成,然后用传感器进行测量。此法主要用于测量大平面的平面度误差。

测量方法和量具分类

测量方法和量具分类 机械制造中,用来测量工件几何量(长度、角度、形位误差、表面粗糙度等)的各种器具和为计量器具。它主要是指量具量仪。 量具量仪在保证产品质量中起着十分重要的作用。狭义的产品质量,是指品对规定的质量标准和技术条件的符合程度。它是以检验其是否符合技术条件,符合图样、符合质量标准以及符合的程度。它是以检验其是否符合技术条件、符合图样、符合质量标准以及符合的程度为基础来进行评价的。为了保证产品质量,企业对产品的原材料、毛坯、半成品、成品以外购件、外协件等应进行全面的检验。对外购的工具、夹具、量具、刃具、模具、仪器及设备等必须作入厂验收检验。由于检验工作离不开量具量仪,故合理地选择或正确地设计计量器具是保证产品质量的重要环节。 本书重点讲述工件加工过程中测量检验用的量具量仪。 一般来说,测量方法是指测量方式、测量条件和计量器具的综合。在实际工作中,往往仅指获得测量值的方式。 按获得测量结果的方法不同,测量方法可分为直接测量和间接测量。 1.直接测量。直接由计量器具上得到被测量的测量值,如用游标卡尺测量轴径。 2.间接测量。通过直接测量与被测尺寸有已知关系的其他尺寸,再通过计算而行到被测尺 寸的测量方法,常用于直接测量不易测准,或由于被测件结构限制而无法进行直接测量的场合。 按计量器具示值(或读数)所反映被测尺寸的不同方法,测量方法可分为绝对测量和相对测量。 1.绝对测量(又称全值法)。由计量器具的读数装置可以直接得到被测量的整个量值。 2.相对测量(又称比较测量)。由计量器具的读数装置只能得到被测尺寸相对标准量的偏 差值的测量。如在测微仪上用量块对霍后,测量零件尺寸相对量块尺寸的偏差。 被测量时加工过程的作用不同,测量方法可分为被动测量和主动测量。 1.被动测量(又称消极测量)。是对加工后的零件进行的测量,并按测量结果挑出废品。 2.主动测量(又称积极测量)。是在加工过程中测量零件参数变化,并利用这种变化控制 调整机床和刀具,以使用加工的参数(如尺寸)合格,防止废品产品。 测量方法还可按同时测量的参数多少,分为单项测量和综合测量;按测量时是否有机械测量力,分为接触测量和非接触测量;按被测工件在测量过程所处的状态,分为静态测量和动态测量;按实施测量的主体,分为自动测量和非自动测量,等等。

自定义眼高测量

力科示波器自定义眼高测量方法 美国力科公司深圳代表处 曹刘 前言 示波器的五大基本功能之一就是测量,通过示波器的测量功能可以直观地体现波形的基本特征,如波形的上升下降时间,幅值,周期,频率等等。测量的方法包括使用光标,使用示波器自带的测量参数,必要时需使用其他特别的测量方法。 对于目前GHz 以上的信号,最常表征信号特征的方式就是使用眼图,通过观察,测量以及分析眼图就可以非常直观地了解信号质量,如比如幅度(包括噪声,过冲等)和时序(上升下降时间,抖动等)特征。下面我们以眼高测量为例来介绍一台高端示波器在测量上的特点。 眼高参数定义 与眼图相关的最重要的测量参数包括眼高,眼宽,1电平,0电平等等。这些参数的定义,如下图所示,1电平与0电平表示选取眼图中间部分20%的UI 向垂直轴做直方图,其中出现概率最大点的高低电平分别定义为1点平和0电平,眼幅度即为“1”电平与“0”电平差值。眼幅度减去高低电平标准偏差值的3倍即为眼高。 光标光标测量方法测量方法 对于眼高的测量,示波器提供不同的方法,若用户对测试的准确度要求不高可以使用光标直接测量。光标测量是从模拟示波器沿用过来的,特点时容易设置,直观,但是测试精度有限但是测试精度有限但是测试精度有限,,它无法利用示波器的处理精度与处理速度它无法利用示波器的处理精度与处理速度,,不同的使用者测量出来的结果的使用者测量出来的结果可能会差别很大可能会差别很大可能会差别很大。。我们可以说这种方法并不能真正反映真实的眼高,但在客户要求测量精度不高的情况下可以使用,非常直观。 One(Eye) Zero(Eye)

自定义眼高测量 有经验的工程师可能遇到过这种情况,就是眼图质量很差的情况下,比如眼图即将闭合时,眼高的测试有时候无法进行,或者说无法准确的测量出来,这个时候需要用户使用其他的方法来测试,下面我就给大家介绍一下自定义眼高测量,或称为手动测试方法。 1)如下图所示,示波器生成眼图之后,我们对眼图做垂直直方图,F8=Phistogram(Eye); Step1:设置F8为eye的垂直直方图 Step2:设为

检测平面度的方法介绍

检测平面度的方法介绍

一、平面度的定义 平面度是指基片具有的宏观凹凸高度相对理想平面的偏差。 平面的平面度公差符号、基本表示方法,如图1所示。 图1 二、平面度误差的检测方法 平面度误差是指被测实际表面相对其理想表面的变动量,理想平面的位置应符合最小条件,平面度误差属于形位误差中的形状误差。 平面度误差的测量方法: 直接测量法 间接测量法 利用太友科技数据采集仪连接百分表法 1、直接测量法 通过测量可直接获得平面上各点坐标值或能直接评定平面度误差值的方法。具体如下: 平晶干涉法 测微表测量法 光轴法、液面法等。 1)平晶干涉法 干涉法测量平面度误差,是把平晶放在它所能覆盖的整个被测平面上,用平晶工作面体现理想平面,根据测量时出现的干涉条纹形状和数目,由计算所得的结果作为平面度误差值,如图所示。

该方法只适合测量精研小平面及小光学元件。 2)测微表测量法 用3个可调支承将被测件支撑在标准平板上,用测微仪指示。调整可调支承,用三点法或四点法(对角线法)进行测量。然后用测微仪读出被测表上各点的最大与最小读数差作为平面度误差值的测量结果。该测量方法适用于车间较低精度、中等尺寸的工件。 3)光轴法 光轴法测量平面度误差是利用准直类仪器2、以它的光轴经转向棱镜3扫描的平面作为测量基准,将瞄准靶1放置在实际被测平面4上,按选定的布点,测出各测点相对于该测量基准的偏离量,再经数据处理评定平面误差值。

2、间接测量法 特点:测量精度高,但数据处理麻烦。因被测平面需测若干个截面,而各截面内的偏差值在测量时不是由同一基准产生,故须经复杂的数据后,才能获得各测量截面相对统一基准的坐标值。 适用于中大平面的测量。 测量方法:水平仪法、自准仪法、互检法 1)水平仪法 原理:以自然水平面作为测量基础。测量时,先把被测表面调到基本水平,然后把水平仪放在桥板上,再把桥板置于被测表面上,按照一定的布线逐渐测量,同时记录各测点的读数,根据测得的读数通过数据处理,即可得平面度误差值。 分类:依布线方法不同又分为水平面法和对角线法。 2)水平面法 采用网格布点,基准平面为过被测表面上的某给定点且与水平面平行的几何平面:测量时应采用同一桥板,各测点的同一坐标值用累积法求得,计算比较简单。测量时选择不同的起始点和不同的测量线,其数据处理的方法、结果不同。存在一个最佳结果。 3)对角线法 采用对角线布点。 过渡基准平面是:过被测表面的一条对角线,且平行于被测表面的另一条对角线的平面。测量时常须用三块长度不同的板桥。数据处理较麻烦。 4)自准仪法

第二章 技术测量的基本知识及常用计量器具

第二章技术测量的基本知识及常用计算器具 一、填空题 1、测量实质上是将被测几何量与作为计量单位的标准量进行,从而确定被测几何量是的倍数或分数的过程。 2、一个完整的测量过程应包括、、和等四个方面。 3、检验是确定被测几何量是否在规定的之内,从而判断被测对象是否合格,而无须得出。 4、测量对象主要是指几何量,包括、、、和等。 5、我国的法定计量单位是以确定的。 6、测量方法是指测量时采用的和的综合。 7、测量结果有效值的准确性是由确定的。 8、计量器具按结构特点可以分为、、和等四类。 9、量仪与量具在结构上最主要的区别是:前者一般具有,系统,而后者没有此系统。 10、按原始信号转换原理的不同,量仪可分为:、、 和等几种。其中量仪使用最为广泛。 11、间接测量是指通过测量与被测尺寸有一定的其它尺寸,然后通过 获得被测尺寸量值的方法。 12、间接测量法存在误差,故仅用在不能或不宜采用的场合。 13、相对测量是指将被测量与同它只有微小差别的已知同种量(一般为标准量) ,通过测量这两个量值间的以确定被测量值的方法。 14、综合测量能得到工件上几个有关几何量的,以判断工件是否,因而实质上综合测量一般属于。 15、接触测量时,计量器具的测量元件与工件表面,并有机械作用的 ,会使被测表面和计量器具的有关部分产生而影响测量精度。 16、根据在加工过程中,测量可分为主动测量与被动测量。主动测量的目的是;被动测量的目的是; 17、对于静态测量,被测量的量值是的;对于动态测量,被测量的量值是 的。 18、动态测量可测出工件某些参数情况,经常用于测量工件的 参数。 19、刻度间距是指标尺或刻度盘上两相邻刻线的;刻度值是指标尺或刻度盘上每一刻度间距所代表的。刻度间距太小,影响测量的;刻度值越小,计量器具的。 20、示值范围是指计量器具标尺或刻度盘所指示的值到值 的范围。 21、测量范围是指计量器具能够测出的被测尺寸的值到值的范围。

常用量具的使用方法

常用量具的使用方法 一、游标卡尺: 普通游标卡尺 数显卡尺 游标卡尺游标卡尺是工业上常用的测量长度的仪器,它由尺身及能在尺身上滑动的游标组成,如图2.3-1所示。若从背面看,游标是一个整体。游标与尺身之间有一弹簧片(图中未能画出),利用弹簧片的弹力使游标与尺身靠紧。游标上部有一紧固螺钉,可将游标固定在尺身上的任意位置。尺身和游标都有量爪,利用内测量爪可以测量槽的宽度和管的内径,利用外测量爪可以测量零件的厚度和管的外径。深度尺与游标尺连在一起,可以测槽和筒的深度。

尺身和游标尺上面都有刻度。以准确到0.1毫米的游标卡尺为例,尺身上的最小分度是1毫米,游标尺上有10个小的等分刻度,总长9毫米,每一分度为0.9毫米,比主尺上的最小分度相差0.1毫米。量爪并拢时尺身和游标的零刻度线对齐,它们的第一条刻度线相差0.1毫米,第二条刻度线相差0.2毫米,……,第10条刻度线相差1毫米,即游标的第10条刻度线恰好与主尺的9毫米刻度线对齐,如图2.3-2。 当量爪间所量物体的线度为0.1毫米时,游标尺向右应移动0.1毫米。这时它的第一条刻度线恰好与尺身的1毫米刻度线对齐。同样当游标的第五条刻度线跟尺身的5毫米刻度线对齐时,说明两量爪之间有0.5毫米的宽度,……,依此类推。 在测量大于1毫米的长度时,整的毫米数要从游标“0”线与尺身相对的刻度线读出。 游标卡尺的使用 用软布将量爪擦干净,使其并拢,查看游标和主尺身的零刻度线是否对齐。如果对齐就可以进行测量:如没有对齐则要记取零误差:游标的零刻度线在尺身零刻度线右侧的叫正零误差,在尺身零刻度线左侧的叫负零误差(这件规定方法与数轴的规定一致,原点以右为正,原点以左为负)。 测量时,右手拿住尺身,大拇指移动游标,左手拿待测外径(或内径)的物体,使待测物位于外测量爪之间,当与量爪紧紧相贴时,即可读数,如图2.3-3所示。

自定义眼图模板

自定义眼图模板 美国力科公司万力劢 一、眼图模板的电气特性意义 眼图模板测试是评估高速信号质量的重要方法。力科示波器串行数据分析功能已经内置了业界主流高速信号的模板,多达50种以上。但是以下几种情况可能无法直接套用示波器已经内置的标准模板:被测信号是新出标准定义的,或者芯片的电气特性没有严格符合标准,或者实际测试点和标准要求的测试点不一致。这时需要示波器用户自定义模板。一个典型模板的形状如下图深色图形: 模板水平方向一般占一个UI的宽度。上有“天花板”,下有“地板”,中间一般为六边形或菱形。通常用X1~X4,Y1~Y4几个坐标刻度定义“天花板”、“地板”以及中间图形的位置和形状。对信号的眼图套用模板,可以快速评估信号的电气特性是否满足要求。 1)垂直方向Y1~Y4四个刻度用于限定信号幅度上的特性,对于差分信号,限定的是差分电 压的摆幅范围。 Y1:信号允许的最小电压(或光功率,以下同理)。 Y4:信号允许的最大电压。 ——对于差分信号,Y1和Y4为允许的最大差分摆幅,Y1为负值,Y4为正值。 Y2:信号低电平允许的最大电压,如果信号幅度超过此电压,信号可能不会被器件当作低电平。电气特性规格很多以Vol(max)、Vil(max)表示此参数。 Y3:信号高电平允许的最小电压,如果信号幅度小于此电压,信号可能不会被器件当作高电平。电气特性规格很多以Voh(min)、Vih(min)表示此参数 ——对于差分信号,Y2和Y3为允许的最小差分摆幅,Y2为负值,Y3为正值。 也就说,信号的高电平必须在Y3和Y4之间,低电平必须在Y1和Y2之间

2)水平方向X1~X4四个刻度用于限定信号时域上的特性。 实际信号的眼图,两侧跳变沿的余辉可能较粗,这是抖动的直观反映。抖动越大、跳变沿余辉就越粗、眼宽也越小。如下图,眼图两侧跳变沿交叉处余辉的宽度反映了信号的总体抖动Tj (准确的总体抖动值需要一定算法来测量和统计,直接在眼图上测量余辉宽度不准确,它只是直观的反映)。X1和X4两个刻度用来限定两侧抖动的范围。抖动范围往内不超过X1,X4,说明抖动大小满足相关电气特性要求。 X2,X3两个刻度用来限定信号上升/下降时间,用以验证信号的最大上升/下降时间是否满足要求。 二、根据芯片电气特性规格定义模板

常用的测绘量具以及测量零件尺寸的方法

常用的测绘量具以及测量零件尺寸的方法

1. 测量零件尺寸时常用的测量工具 测量尺寸常用量具有:钢板尺、外卡钳和内卡钳。测量较精确的尺寸,则用游标卡尺,如图1-3所示。 2. 常用的测量方法 (1) 测量长度尺寸的方法 一般可用钢板尺或游标卡尺直接测量,如图 1-4所示。 (2) 测量回转面直径尺寸的方法 用内卡钳测量内径,外卡钳测量外径。测量时,要把内、外卡钳上下、前后移动,测得最大值为其直径尺寸,测量值要在钢板尺上读出。遇到精确的表面,可用游标卡尺测量,方法与用内外卡钳相同,如图 1-5 a、b、c、d 所示。 (3) 测量壁厚尺寸 一般可用钢板尺直接测量,若不能直接测出,可用外卡钳与钢板尺组合,间接测出壁厚,如图1-6所示。 (4) 测量中心高 利用钢板尺和内卡钳可测出孔的中心高,如图 1-7 所示。也可用游标卡尺测量中心高。 (5) 测量孔中心距 可用内卡钳、外卡钳或游标卡尺测量,如图 1-8 所示。

(6) 测量圆角 一般可用圆角规测量,如图 1-9 是一组圆角规,每组圆角规有很多片,一半测量外圆角,一半侧量内圆角,每一片标着圆角半径的数值。测量时,只要在圆角规中找到与零件被测部分的形状完全吻合的一片,就可以从片上得知圆角半径的大小。 (7) 测量螺纹 测量螺纹需要测出螺纹的直径和螺距。螺纹的旋向和线数可直接观察。对于外螺纹,可测量外径和螺距,对于内螺纹可测量内径和螺距。测螺距可用螺纹规测量,螺纹规是由一组带牙的钢片组成,如图 1-10所示,每片的螺距都标有数值,只要在螺纹规上找到一片与被测螺纹的牙型完全吻合,从该片上就得知被测螺纹的螺距大小。然后把测得的螺距和内、外径的数值与螺纹标准核对,选取与其相近的标准值。 《画法几何及机械制图》零件测绘实验教程 一、课程所属类型及服务专业 课程属于技术基础课,服务机械类各专业。 二、实验的目的和要求 1实验目的: 通过对轴、盘盖、箱体三类零件的测绘以及对减速箱拆卸,了解零件测绘的一般步骤,掌握其测绘的常用方法,熟悉量具的选用和使用。进一步巩固零件的视图选择和表达方法,以及查表计算等有关知识。 2实验要求: 对不同形状的轴、盘盖、箱体三类零件进行测绘,在方格纸上绘制草图,根据其的大小和复杂程度选择合适的图幅,绘制零件图,并填写实验报告。 三、学时分配及实验项目表

各种量具的原理及使用方法

1.游标卡尺的原理及使用方法 游标卡尺是一种测量精度较高、使用方便、应用广泛的量具,可直接测量工件的外径,内径、宽度、长度、深度尺寸等(图7-7),其读数准确度有0.1mm、0.05mm 和0.02mm三种。下面以0.02mm(即1/50)游标卡尺为例,说明其刻线原理、读数方法、测量方法及注意事项。 刻线原理如图7-8 a)所示,当主尺和副尺的卡脚始合时,主尺上的零线对准副尺上的零线对准副尺上的每一小格为1mm,取主尺49mm长度在刻尺上等 分为50个格。即:副尺每格长度=主、副尺每格之差=1mm -0.98mm=0.02mm

读数方法如图7-8 b)所示,游标卡尺的读数可分为三步: 第一步:根据副尺零线以左的主尺上的最近刻度读出整数; 第二步:根据副尺零线以右与主尺某一刻线对准刻线数乘以0.02读出小数;第三步:将上面的整数和小数两部份相加,即得总尺寸。如图7-8b)中的读数为:23+12×0.02=23.4(mm) 测量方法游标卡尺的测量方法如图7-9所示。其中图a)为测量工件外径的方法,图b)为测量工件内径的方法,图c)为测量工件宽度的方法,图d)为测量工件深度的方法。 注意事项使用游标卡尺时应注意以下事项: 使用前先擦尽卡脚,然后合拢两卡脚使之贴合,检查主、副尺零线是否对齐。若未对齐,应在测量后根据原始误差修正读数。 测量时,方法要正确,读数时要垂直于尺面,否则测量不正确。 当卡脚与被测工件接触后,用力不能过大,以免卡脚变形或磨损,降低测量的准确度。 不得用卡尺测量毛坯表面。使用完毕后须擦拭干净,放入盒内。 游标卡尺的种类很多,除了上述普通游标卡尺外,还有专门用于测量深度和高度的深度游标卡尺和高度游标卡尺。高度游标卡尺还可以用于钳工精密划线。 2如何使用百分尺,百分尺(厘尺)的使用方法

ddr2信号和协议测试分析方案_图文

DDR2/3信号和协议测试分析方案 -BJLK 目前在计算机主板和各种嵌入式的应用中,DDR3已经逐渐要取代DDR2成为市场的主流。DDR3相对于DDR2的主要优势再有更高的数据速率和更低的功耗,例如DDR2的数据速率最高到800MT/s,DDR3的最高数据速率可以到 1600MT/s,而在有些嵌入式的应用中还有可能使用更高速率,因此对于设计和测试都提出了更高的要求。 DDR2/3信号测试分析方案 为了进行可靠的探测,对于示波器器和探头的要求也非常高。对于DDR3的信号,由于JEDEC 没有给出信号上升/下降时间的参数,因此用户只有根据使用芯片的实际最快上升/下降时间来估算需要的示波器带宽,对于DDR3的信号,20 - 80%的上升时间大约在80~120ps左右。对于传统的高斯频响的示波器,为了保证测量精度,通常需要示波器带宽是被测信号带宽的3~5倍,而对于Agilent 的90000系列示波器,由于其优异的类似砖墙的频响特性,可以保证带内比较好的平坦度,因此可以使用以下公式: Scope bandwidth required = 1.4x maximum signal frequency for 3% accuracy measurements Scope bandwidth required = 1.2x maximum signal frequency for 5% accuracy measurements Scope bandwidth required = 1.0x maximum signal frequency for 10% accuracy measurements 根据这个公式计算出来的示波器带宽通常都在4~8GHz,因此对于DDR3信号的测试,通常推荐的示波器和探头的带宽在8GHz 。 对于DDR2和DDR3信号的测试,除了我们所熟知的双边沿采样以外,最主要的挑战在于2个方面,第一是如何进行读写信号的分离,第二是JEDEC 规定了很多DDR3的参数,如何进行方便可靠的测量。下面分别进行介绍: 1、读写信号分离

测量技术基础

测量技术基础 机械加工车间工作的机械加工工人必须掌握的多种测量技术,量具、量仪以游标卡尺、千分尺、和百分表为主。 对于某一测量对象,一般有多种测量技术可供选择,而某一种测量技术又往往可用于不同的测量对象。用于同一测量对象,不同测量技术的效果可能大致相同,也可能大不相同。 按照测量的进行方式,测量技术可分为以下两种。 ①直接比较测量技术:在测量中,将被测量与已和其值的同一种量相比较。其测量不确定度主要取决于标准量值的不确定度和比较器的灵敏度和分辨力,它可克服由于测量装置的动态范围不够和频率响应不好所引入的非线性误差。替代法、换位法等属于这一类。 ②非直接比较测量技术:不是将被测量的全值与标准量值相比较的比较测量。微差法、符合法、补偿法、谐振法、衡消法等属于这一类。 在建立计量标准的测量中,经常采用基本测量技术,即绝对测量技术。这是通过对有关的基本量的测量来确定被测量值。其测量不确定度一般是通过实验、分析和计算得出,精度高,但所需装置复杂。 第一讲概述 课题:1. 测量技术的概念 2. 长度基准与尺寸传递 3.量块的基本知识4.形位公差值及有关规定 课堂类型:讲授 教学目的:1.了解测量技术的基本概念及尺寸传递 2.重点掌握量块的使用方法。 教学重点:量块的使用方法。 教具:量块 教学方法:例举习题讲解量块的使用,使学生掌握其主要内容 教学过程: 一、引入新课题 由提问学生长度单位的意义引入新课. 二、教学内容 4.1 概述 4.1.1测量技术的概念 1.测量 是指为确定被测量值而进行的一组操作过程。其实质是将被测的量L与具有计量单位的标准量E进行比较,从而确定比值q的过程,即q= L/E 测量过程包括以下四个要素:

眼图测量方法B

三、眼图测量方法 之前谈到,眼图测量方法有两种:2002年以前的传统眼图测量方法和2002年之后力科发明的现代眼图测量方法。传统眼图测量方法可以用两个英文关键词来表示:“Triggered Eye”和“Single‐Bit Eye”。现代眼图测量方法用另外两个英文关键词来表示:“Continuous‐Bit Eye”和“Single‐Shot Eye”。传统眼图测量方法用中文来理解是八个字:“同步触发+叠加显示”,现代眼图测量方法用中文来理解也是八个字:“同步切割+叠加显示”。两种方法的差别就四个字:传统的是用触发的方法,现代的是用切割的方法。“同步”是准确测量眼图的关键,传统方法和现代方法同步的方法是不一样的。“叠加显示”就是用模拟余辉的方法不断累积显示。 传统的眼图方法就是同步触发一次,然后叠加一次。每触发一次,眼图上增加了一个UI,每个UI的数据是相对于触发点排列的,因此是“Single‐Bit Eye”,每触发一次眼图上只增加了一个比特位。图一形象表示了这种方法形成眼图的过程。 图一传统眼图测量方法的原理 传统方法的第一个缺点就是效率太低。对于现在的高速信号如PCI‐Express Gen2,PCI‐SIG 要求测量1百万个UI的眼图,用传统方法就需要触发1百万次,这可能需要几个小时才能测量完。第二个缺点是,由于每次触发只能叠加一个UI,形成1百万个UI的眼图就需要触发1百万次,这样不断触发的过程中必然将示波器本身的触发抖动也引入到了眼图上。对于2.5GBbps以上的高速信号,这种触发抖动是不可忽略的。 如何同步触发,也就是说如何使每个UI的数据相对于触发点排列?也有两种方法,一种方法是在被测电路板上找到和串行数据同步的时钟,将此时钟引到示波器作为触发源,时钟的边沿作为触发的条件。另外一种方法是将被测的串行信号同时输入到示波器的输入通道和硬件时钟恢复电路(CDR)通道,硬件CDR恢复出串行数据里内嵌的时钟作为触发源。这种同

通信原理实验报告眼图

部分响应系统 一、实验目的 1.通过实验掌握第一类部分响应系统的原理及实现方法; 2.掌握基带信号眼图的概念及绘制方法。 二、实验原理 1.部分响应系统 为了提高系统的频带利用率,减小定时误差带来的码间干扰,升余弦传输特性在这两者的选择是有矛盾的。理想低通传输特性可以有最高的频带利用率 2=s η,但拖尾的波动比较大,衰减也比较慢。若能改善这种情况,并保留系统 的带宽等于奈奎斯特带宽,就能在保证一定的传输质量前提下显著地提高传输速率。这是有实际意义的,特别是在高速大容量传输系统中。部分响应传输系统就具有这样的特点。 部分响应传输系统是通过对理想低通滤波器冲激响应的线性加权组合,来控制整个传输系统冲激响应拖尾的波动幅度和衰减。当然,这样做会引入很强的码间干扰,但这种码间干扰是可控制的,是已知的,因此很容易从接收信号的抽样值中减去。由于这种组合并不影响系统的传输带宽,因此频带利用率高。 第一类部分响应系统是在相邻的两个码元间引入码间干扰。由于理想低通系统的传递函数为 其冲激响应为s s T t T t t h //sin )(ππ= ,如果用)(t h 以及)(t h 的时延s T 的波形作为系统的 冲激响应,那么它的系统带宽肯定限制在??? ? ? ?-s s T T 21,21,也就是说,系统的频带利用率为2bit/Hz 。 接着来看系统的冲激响应函数)(t g : s s s s s s s T t T t T t T T t c T t c T t h t h t g /11 sin )(sin sin )()()(-= ?? ????-+=-+=ππππ s T f 21 ||< 其他 ???=0 )(s T f H

平面度的测量

平面度测量 工作单位:广东技术师范学院机电学院机械精度检测实验室作者:刘涵章关键词:平面度平面度误差三远点法三角形准则对角线准则对角线法 目录 一、什么是平面度 二、平面度误差值的各种评定方法 三、误差值评定的步骤: 四、实验教学中的实验仪器和实验步骤: 五、平面度误差值的各种评定方法应用举例 六、总结

一、什么是平面度 首先谈一谈什么是平面度,平面度就是实际平面相对理想平面的变动量。换句话说,就是被测平面具有的宏观凹凸高度相对理想平面的偏差。也可以说成是平整程度。 平面度公差是实际表面对平面所允许的最大变动量。也就是用以限制实际表面加工误差所允许的变动范围。这个变动范围可以在图样上给出。(可以插入一个图) 二、平面度误差值的各种评定方法 1. 最小区域判别准则: 由两个平行平面包容实际被测平面S时,S上至少有四个极点分别与这两个平行平面接触,且满足下列条件之一:(1)至少有三个高(低)极点与一个平面接触,有一个低(高)极点与另一个平面接触,并且这一个极点的投影落在上述三个极点连成的三角形内(三角形准则);(2)至少有两个高极点和两个低级点分别与这两个平行平面接触,并且高极点连线和低极点连线在空间呈交叉状态(交叉准则);这两个平行平面之间的区域即为最小区域,该区域的宽度即为符合定义的平面度误差值。就是最高点与最低点的差值。如下图所示: 2.三远点平面法和对角线平面法: 平面度误差值还可以用对角线平面法和三远点法评定。对角线平面法是指以通过实际被测平面一条对角线(两个角点的连线)且平行另一条对角线(其余两个角点的连线)的平面作为评定基准,取各测点相对于它的偏离值中最大偏离值(正值或零)与最小偏离值(零或负值)之差作为平面误差值。 三远点平面法是指以通过被测平面上相距最远的三个点构成的平面作为评定基准,取各测点相对于它的偏离值中最大偏离值(正值或零)与最小偏离值(零或负值)之值差作为平面度误差值。应当指出,由于从实际被测平面上选取相距最远的三个点有多种可能,因此按三远点平面法评定的平面度误差值不是唯一的,有时候差别颇大。 评定过程就是根据上述判别准则去寻找符合最小条件的理想平面位置的过程。可有多种数据处理方法,其中旋转法为最基本的方法。此法适用于前述各种测量方法获得的统一坐标值的数据处理。 三、误差值评定的步骤:

钳工常用量具及测量方法

钳工常用量具及测量方法 教学目标:1、掌握游标类量具的使用方法; 2、熟练、准确的进行读数; 量具根据用途不同可以分为三种类型:万能量具、专用量具、标准量具。其中万能量具中包括:游标卡尺、千分尺、百分表等。今天我们重点介绍一下游标卡尺、千分尺和百分表。 一、游标量具 游标量具是一种常用量具,具有结构简单、使用方便、测量范 围大等特点。常用的长度游标量具有:游标卡尺、游标高度尺 和游标深度尺等。它们的读数原理相同,只是在外形结构上有 所差异。我们以游标卡尺为例进行讲解。 1、游标卡尺的结构和用途 游标卡尺的主体是一个刻有刻度的尺身,其上有固定量爪。 沿着尺身可移动的部分称为尺框,尺框上有活动量爪,并装 有带刻度的游标和坚固螺钉。有的游标卡尺为了调节方便还 装有微调装置。在尺身上滑动尺框,可使两量爪的距离改变, 以完成不同尺寸的测量工作。 游标卡尺通常用来测量零件的长度、厚度、内外径、槽宽及 深度等。 2、游标卡尺的刻线原理和读数方法 游标卡尺的读数部分由尺身与游标组成。其原理是利用尺身 刻线间距和游标刻线间距之差来进行小数读数。

游标刻线部分长度49mm,均分50格;主尺每格1mm。 游标刻线部分长度39mm,均分20格;主尺两格2mm。 1)根据游标零线所处位置读出主尺在游标零线前的整数部分的读数值; 2)判断游标上第几根线与主尺上的刻线对齐,然后乘以该游标量具的分度值即可得到小数部分的读数; 3)最后将整数部分的读数值与小数部分的读数值相加即为测量结果; 3、使用游标卡尺的注意事项: 1)测量前,将卡尺的测量面用软布擦干净后使两个量爪合拢进行检查。滑动是否灵活自如、漏光检查和示值误差检查。 2)测量时量爪位置要摆正,不能歪斜;并保持合适的测量力。 3)读数时先注意尺框上的分度值标记,以免读错小数值产生误差。并且视线应与尺身表面垂直,避免产生视觉误差。 二、测微螺旋量具 测微螺旋量具是利用螺旋副的运动原理进行测量和读数的一 种测微工具。按用途可分为:外径千分尺、内径千分尺和深度 千分尺及专门测量螺纹中径的螺纹千分尺和测量齿轮公法线 长度的公法线千分尺等。我们以外径千分尺为例进行讲解。 1、外径千分尺的结构和用途 尺架上装有砧座和锁紧装置,固定套管与尺架结合成一体, 测微螺杆与微分筒装置结合在一起。当旋转测力装置时,就

PLL带宽对高速串行数据眼图测试结果的影响

日益普及的串行数据传输有两个主要特点:1.广泛采用差分信号进行数据传输;2.没有专门的时钟传输线路,时钟嵌入在数据里。因此,在系统接收端内部需要时钟恢复电路。接收端时钟恢复方法最常用的是锁相环(PLL)和相位内插(PI)两种方法。相对而言,PLL方法应用更为广泛。图2是一种典型的基于PLL的时钟恢复电路框图。 CDR与PLL简介 PLL的作用简单的来说是产生一个内部信号,去锁住输入信号的相位。讨论两个信号相位的前提是该两个信号的频率一致,这样才有意义,因此锁相环也是锁频回路。假定一固定频率信号: 输入PLL,PLL的输出信号为: 由上述结论得到: 但相位是否相等呢?答案是否定的。实际上,两个信号的相位差是一个定值,其值和起始频率差有关。所以有了第二个重要概念:“锁相不是指相位相同,而是相位差为定值”。PLL的组成如图3所示。 鉴相器(PD)将输入信号与VCO(压控振荡器)输出信号进行对比。环路滤波器对差异进行过滤波,然后用来调整VCO。由于LPF是低通滤波器,只能将相位差的低频部分传输到VCO。因此,PLL仅跟踪低频变化。也就是说,由串行数据的CDR电路恢复得到的Recover Clock 只包含低频抖动,这个低频抖动在数据中同时存在,因此这些低频抖动成分对于接收端SerDes电路在以Recover Clock作为参考边沿判决数据0或1时不会产生影响(前提条件是低频抖动分量不得超过系统的抖动容限)。而数据中还包含传输系统中的高频抖动分量,由于CDR电路中的低通滤波器的缘故,这部分恢复出的Clock是不包含的。因此接收端SerDes电路在以Recover Clock作为参考边沿判决数据0或1时可能会由于这些高频的抖动分量导致采样点偏移而出现误码。因此只有在PLL截止频率或带宽以下的低频抖动是接收端可以跟随的抖动。相对而言,经过PLL传递出的抖动都为高频抖动,是不能被系统跟

平面度常识及测量方法

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 平面度误差测量数据处理。 在大中专学校机械类各专业中,《互换性与测量技术基础》是一门重要的技术基础课,该课程内容十分丰富,而教学课时相对较少,许多重点和难点内容难以作详细讲解。其中形位公差与技术测量的内容学生理解掌握更为困难,在四项形位公差中,直线度与平面度误差的测量是一般机械制造行业主要的检测项目,故要求学生重点学习和掌握。直线度误差的测量相对较为简单,而平面度误差的测量及数据处理比较复杂,且理解困难。本文仅对平面度误差的测量和数据处理作较为详细的介绍,希冀初学者能尽快掌握这一重点和难点内容。 一、平面度误差的测量 平面度误差是指被测实际表面对其理想平面的变动量。 平面度误差是将被测实际表面与理想平面进行比较,两者之间的线值距离即为平面度误差值;或通过测量实际表面上若干点的相对高度差,再换算以线值表示的平面度误差值。 平面度误差测量的常用方法有如下几种: 1、平晶干涉法:用光学平晶的工作面体现理想平面,直接以干涉条纹的弯曲程度确定被测表面的平面度误差值。主要用于测量小平面,如量规的工作面和千分尺测头测量面的平面度误差。

2、打表测量法:打表测量法是将被测零件和测微计放在标准平板上,以标准平板作为测量基准面,用测微计沿实际表面逐点或沿几条直线方向进行测量。打表测量法按评定基准面分为三点法和对角线法:三点法是用被测实际表面上相距最远的三点所决定的理想平面作为评定基准面,实测时先将被测实际表面上相距最远的三点调整到与标准平板等高;对角线法实测时先将实际表面上的四个角点按对角线调整到两两等高。然后用测微计进行测量,测微计在整个实际表面上测得的最大变动量即为该实际表面的平面度误差。 3、液平面法:液平面法是用液平面作为测量基准面,液平面由“连通罐”内的液面构成,然后用传感器进行测量。此法主要用于测量大平面的平面度误差。 4、光束平面法:光束平面法是采用准值望远镜和瞄准靶镜进行测量,选择实际表面上相距最远的三个点形成的光束平面作为平面度误差的测量基准面。 除上述方法可测量平面度误差外,还有采用平面干涉仪、水平仪、自准直仪等用于测量大型平面的平面度误差。 二、平面度误差的评定方法 平面度误差的评定方法有:三远点法、对角线法、最小二乘法和最小区域法等四种。 1、三远点法:是以通过实际被测表面上相距最远的三点所组成的平面作为评定基准面,以平行于此基准面,且具有最小距离的两包容平面间的距离作为平面度误差值。 2、对角线法:是以通过实际被测表面上的一条对角线,且平行于另一条对角线所作的评定基准面,以平行于此基准面且具有最小距离的两包容平面间的距离作为平面度误差值。 3、最小二乘法:是以实际被测表面的最小二乘平面作为评定基准面,以平行于最小

各种检测量具使用方法

游标卡尺的原理及使用方法 游标卡尺是一种测量精度较高、使用方便、应用广泛的量具,可直接测量工件的外径,内径、宽度、长度、深度尺寸等(图7-7),其读数准确度有0.1mm、0.05mm和0.02mm三种。下面以0.02mm(即1/50)游标卡尺为例,说明其刻线原理、读数方法、测量方法及注意事项。

刻线原理如图7-8 a)所示,当主尺和副尺的卡脚始合时,主尺上的零线对准副尺上的零线对准副尺上的每一小格为1mm,取主尺49mm长度在刻尺上等分为50个格。即: 副尺每格长度= 主、副尺每格之差=1mm-0.98mm=0.02mm 读数方法如图7-8 b)所示,游标卡尺的读数可分为三步: 第一步:根据副尺零线以左的主尺上的最近刻度读出整数; 第二步:根据副尺零线以右与主尺某一刻线对准刻线数乘以0.02读出小数; 第三步:将上面的整数和小数两部份相加,即得总尺寸。如图7-8b)中的读数为: 23+12×0.02=23.4(mm) 测量方法游标卡尺的测量方法如图7-9所示。其中图a)为测量工件外径的方法,图b)为测量工件内径的方法,图c)为测量工件宽度的方法,图d)为测量工件深度的方法。 注意事项使用游标卡尺时应注意以下事项: 使用前先擦尽卡脚,然后合拢两卡脚使之贴合,检查主、副尺零线是否对齐。若未对齐,应在测量后根据原始误差修正读数。

测量时,方法要正确,读数时要垂直于尺面,否则测量不正确。 当卡脚与被测工件接触后,用力不能过大,以免卡脚变形或磨损,降低测量的准确度。 不得用卡尺测量毛坯表面。使用完毕后须擦拭干净,放入盒内。 游标卡尺的种类很多,除了上述普通游标卡尺外,还有专门用于测量深度和高度的深度游标卡尺和高度游标卡尺。高度游标卡尺还可以用于钳工精密划线。 双曲面 如何使用百分尺,百分尺(厘尺)的使用方法

位置度平面度的定义标注及测量

位置度平面度的定义标注及测量 笔者在数年建筑工程施工图审查工作中,通过多项建筑工程的施工图审查,发现了建筑设计中总平面图设计、建筑说明、建筑平面、立面、剖面、建筑构件有关深度设计及强制性条文等内容设计中较为常见的问题,现分别总结如下:一、总平面布置图送审的施工图文件中,总平面布置图基本上都有,但表达深度差别较大,大部分工程只做到平面定位图,不符合《建筑工程设计文件编制深度规定》的有关要求。主要问题有:1.总平面图要有一定的范围。只有用地范围不够,要有场地四邻原有规划的道路、建筑物、构筑物,多数施工图只有用地范围内的布置图。2.保留原地形和地物。场地测量坐标网及测量标高,包括场地四邻的测量坐标或定位尺寸,有些工程的总图设计往往无保留。3.竖向设计。往往只有标注建筑物的±0.000 设计标高的相对场地的测量标高数值,有的只有标注室内外高差数而已。结果是:1竖向设计标高不符合规划部门的控制标高。2场地内与场地外围的城市道路标高不衔接,不合理。3场地及其道路的标高不利于排水。4场地内道路无设计标高,特别是交接处、建筑物的入口处,也无标注道路坡长、坡向、坡度以及地面的关键性标高,也无路面的设计断面。4.没土方工程平衡设计。盲目的竖向设计,往往会带来不必要的挖方或填方,增加造价,造成经济损失。5.总图设计没有必要的详图设计。比如道路横断面、路面结构,反映管线上下、左右尺寸关系的剖面图,以及挡土墙、护坡排水沟、广场、活动场地、停车场、花坛绿地等详图,场地的排水、场地内道路与城市道路的关系,给施工带来困难,也无法保证总图的合理性。 6.消防车道宽度不满足消防要求。消防车道距离高层建筑外墙小于5 米,不满足消防登高面要求。二、建筑设计说明部分1.装饰做法光是文字说明表达不完整。最好是有各种材料做法一览表各部位装修材料一览表方能完整地表达清楚,少数能做到,多数工程还只是文字说明。总说明中占地面积一般都缺标注。2.门窗表。一般都有,但关键对一些组合窗,非标准窗表示不清楚,对组合窗及非标窗,应画出立面图,并应把拼接件选择、固定件、窗扇的大小、开启方式等内容标注清楚,如组合窗面积过大,请注明要经有资质的门窗生产厂家设计方可,还有就是对门窗性能,如防火、隔声、抗风压、保温、空气渗透、雨水渗透等技术要求应加以说明。比如建筑物1-6 层和七层及七层以上对门窗气密性要求不一样1-6 层为3 级,七层及以上为 4 级。3.防火设计说明普遍存在问题。按《建筑工程设计文件编制深度规定》要求每层建筑平面中要注明防火分区面积和分区分隔位置示意图,宜单独成图,如为一个防火分区,可不注防火分区面积。4.有关夏热冬冷地区节能设计的说明,也普遍存在问题居住建筑的节能设计:1外窗,特别东西窗缺保温隔热措施。2导热系数的主体部位值与平均值概念不清,把建筑主体部位的K 值作为平均K 值说明。3缺节能设计计算书及节能设计审查文件,造成节能设计不经济。5.幕墙工程。包括玻璃幕墙、金属幕墙、石材幕墙等及特殊的屋面工程,与其它特殊构造,对其设计、制作、安装等技术要求未加说明。6.缺电梯自动扶梯,选择及性能说明包括功能、载重量、速度、停站数、提升高度等等。 7.墙体预留孔及楼板预留孔,管道井楼层的封堵方式等未说明。 8.屋面防水等级未说明,或屋面具体做法不符合相应的防水等级要求。常见问题为:把屋面砼结构层作为一道防水设防,或卷材厚度不符合相应防水等级要求

简化USB设计

简化USB设计的调试和验证 应用文章 介绍 USB2.0的历史 通用串行总线已经成为了连接个人电脑和外部设备的事实上的工业标准。USB2.0最初是在2000年左右进入市场,提供了比USB1.1快40倍数传速度。USB2.0彻底开启了大数据量高速传输应用的大门。USB1.0低速(1.5Mbps) 和USB1.1全速 (12Mbps) 满足对于像键盘、鼠标这类的外设的连接;高速USB2.0 (480Mbps) 主要支持多媒体、数据存储和传输以及高速I/O接口等应用。

应用文章 图2:TDSUSB2测试报告图1:TDSUSB2高速一致性测试软件 USB2.0构架、测试方法和方案 USB2.0是4线的串行系统:VBus, D-, D+和地线。D-和D+是数据传输线。有三大类USB2.0的设备:主机(Host)、设备 (Device) 和集线器 (Hub)。USB2.0的设备 (Device) 还分为总线供电 (从主机抽取电流) 和自供电 (有自己的供电模块) 两种方式。 USB应用者论坛 (USB-IF) 为了确保产品能够通过鲁棒性和互操作性的验证,指定了一系列的规定的一致性测试。如果产品能够满足USB-IF一致性流程所要求的最低性能,那么该产品会被USB-IF添加到集成供应商列表中。这本电子书主要阐述了如何进行物理电气层性能测试以及提供调试和解决问题的指导。图1描述了在Tektronix DPO7254数字荧光示波器上使用USB一致性测试软件包所进行的操作。这个测试包完全实现了信号质量的自动化测试,让产品设计人员最直接、简单的得到测试的数据。在测试之前,设计人员要选择要被测设备的速度 (低速、全速还是高速),然后示波器按照USB2.0规范自动进行示波器设置、波形选择、波形采集和分析以及测试结果与标准的对比,最大程度上减少手动干预。测试结果将自动的显示在报表中,如图2所示。 2 https://www.doczj.com/doc/aa15328406.html,

相关主题
文本预览
相关文档 最新文档