当前位置:文档之家› PBC设计中电磁兼容性分析

PBC设计中电磁兼容性分析

PBC设计中电磁兼容性分析

电磁兼容性(EMC)仿真

设计早期对电磁兼容性(EMC)问题的考虑 随着产品复杂性和密集度的提高以及设计周期的不断缩短,在设计周期的后期解决电磁兼容性(EMC)问题变得越来越不切合实际。在较高的频率下,你通常用来计算EMC的经验法则不再适用,而且你还可能容易误用这些经验法则。结果,70%~90%的新设计都没有通过第一次EMC测试,从而使后期重设计成本很高,如果制造商延误产品发货日期,损失的销售费用就更大。为了以低得多的成本确定并解决问题,设计师应该考虑在设计过程中及早采用协作式的、基于概念分析的EMC仿真。 较高的时钟速率会加大满足电磁兼容性需求的难度。在千兆赫兹领域,机壳谐振次数增加会增强电磁辐射,使得孔径和缝隙都成了问题;专用集成电路(ASIC)散热片也会加大电磁辐射。此外,管理机构正在制定规章来保证越来越高的频率下的顺应性。再则,当工程师打算把辐射器设计到系统中时,对集成无线功能(如Wi-Fi、蓝牙、WiMax、UWB)这一趋势提出了进一步的挑战。 传统的电磁兼容设计方法 正常情况下,电气硬件设计人员和机械设计人员在考虑电磁兼容问题时各自为政,彼此之间根本不沟通或很少沟通。他们在设计期间经常使用经验法则,希望这些法则足以满足其设计的器件要求。在设计达到较高频率从而在测试中导致失败时,这些电磁兼容设计规则有不少变得陈旧过时。 在设计阶段之后,设计师制造原型并对其进行电磁兼容性测试。当设计中考虑电磁兼容性太晚时,这一过程往往会出现种种EMC问题。

对设计进行昂贵的修复通常是唯一可行的选择。当设计从系统概念设计转入具体设计再到验证阶段时,设计修改常常会增加一个数量级以上。所以,对设计作出一次修改,在概念设计阶段只耗费100美元,到了测试阶段可能要耗费几十万美元以上,更不用提对面市时间的负面影响了。 电磁兼容仿真的挑战 为了在实验室中一次通过电磁兼容性测试并保证在预算内按时交货,把电磁兼容设计作为产品生产周期不可分割的一部分是非常必要的。设计师可借助麦克斯韦(Maxwell)方程的3D解法就能达到这一目的。麦克斯韦方程是对电磁相互作用的简明数学表达。但是,电磁兼容仿真是计算电磁学的其它领域中并不常见的难题。 典型的EMC问题与机壳有关,而机壳对EMC影响要比对EMC性能十分重要的插槽、孔和缆线等要大。精确建模要求模型包含大大小小的细节。这一要求导致很大的纵横比(最大特征尺寸与最小特征尺寸之比),从而又要求用精细栅格来解析最精细的细节。压缩模型技术可使您在仿真中包含大大小小的结构,而无需过多的仿真次数。 另一个难题是你必须在一个很宽的频率范围内完成EMC的特性化。在每一采样频率下计算电磁场所需的时间可能是令人望而却步的。诸如传输线方法(TLM)等的时域方法可在时域内采用宽带激励来计算电磁场,从而能在一个仿真过程中得出整个频段的数据。空间被划分为在正交传输线交点处建模的单元。电压脉冲是在每一单元被发射和散射。你可以每隔一定的时间,根据传输线上的电压和电流计算出电场和磁场。

芯片级电磁兼容性的设计

芯片级电磁兼容性的设计 日期:2005年10月29日人气:0 查看:[大字体中字体小字体] 芯片级电磁兼容性的设计 殷和国,杨银堂,付俊兴,李雯 (西安电子科技大学微电子研究所陕西西安710071) 摘要:介绍了电磁兼容性的基本概念、原理及其在集成电路设计中的重要性,对电磁兼容性设计的基本方法作了介绍,其中着重论述了芯片级电磁兼容性的设计方法。最后给出了芯片级电磁兼容性研究中存在的问题及未来的研究重点。 关键词:集成电路;电磁兼容;设计方法;芯片 随着现代科学技术的发展,电子、电气设备及系统获得了越来越广泛的应用。然而运行中的电子、电气设备大多伴随着电磁能量的转换,对通信系统、控制系统和计算机系统为主干的电子系统(尤其在集成电路方面)产生了巨大的副面影响。这主要是因为集成电路极易受射频影响并可能会以有害的方式影响检波信号,通常会导致原设计的功能失效,并且可能会危及安全。另外,在集成电路设计中要求具有低的电磁能量辐射及高的敏感度。因此,提高集成电路的电磁兼容性已成为当今的研究重点之一。 本文介绍了一些电磁兼容性设计的基本方法,重点分析了芯片级电磁兼容性的设计方法及其应用,并讨论了芯片级电磁兼容性研究中存在的问题及未来的研究重点。 1 分析和解决电磁兼容性的一般方法 随着科学技术的发展,系统越来越复杂,使用的频谱越来越宽,根据电磁兼容性学科中多年的研究可知,分析和解决设备、子系统或系统间的电磁兼容性问题一般有3种方法,他们分别为问题解决法(ProblemSolving Approach)[1]、规范法(SpecificationApproach)[1]和系统法(Systems Approach)[1]。 1.1 问题解决法 问题解决法主要指在建立系统前并不专门考虑电磁兼容性问题,待系统建成后再设法解决

PCB电磁兼容性设计报告样本

PCB电磁兼容性设计报告 学科专业: 测控技术与仪器 本科生: 张亚新 学号: 1002445 班号: 232121 指导教师: 宋恒力

中国地质大学( 武汉) 自动化学院 10月24号

PCB电磁兼容性设计 摘要: 随着信息化社会的发展, 电子设备已被广泛应用于各个领域。各种电了产品趋向于小型化、智能化, 电子元器件也趋向于体积更小、速度更高、集成度更大, 这也导致了她们在其周围空间产生的电磁场点评的不断增加。由此带来的电磁兼容问题也日益严重。因此, 电磁兼容问题也就成为一个电工系统能否正常工作的关键。同样, 随着电子技术的飞速发展, 印刷电路板( PCB) 的密度越来越高, 其设计的好坏对电路的干扰及抗干扰能力影响很大。因此, 对PCB进行电磁兼容性(EMC)设计是非常重要的, 保证PCB的电磁兼容性是整个系统设计的关键。本文就EMC的历史发展及其在未来电子信息时代中的应用进行分析, 介绍电磁干扰的产生机理和 原因, 并提出了相应抗干扰设计的措施。 关键词: 信息化; 电磁兼容( EMC) ; 电磁兼容性; PCB;

一: 引言 .......................................................................... 错误!未定义书签。二: 电磁干扰与电磁兼容概述. (4) 1、早期历史概述 (5) 2、EMC 技术是随着干扰问题的日趋严重而发展的 (6) 3、电磁干扰对电子计算机等系统设施的危害 (6) 4、EMC在军事领域的发展状况 (7) 三: 电磁兼容学科的发展历史 (5) 四: 中国EMC技术的发展状况 (8) 五: 抗干扰措施与电磁兼容性研究 (8) 1、电路板设计的一般规则 (9) 2、电路板及电路抗干扰措施 (9) 六: 电磁兼容学科发展趋势 (10) 七: 小结 (12) 参考文献 (13) 一、引言 电磁干扰是现代电路工业面正确一个主要问题, 为了克服干扰, 电路设计者不得不赶走干扰源, 或者是设法保护电路不受到干扰源的干扰, 其目的都是为了让电路按照预期的目标开工作——

电磁兼容性分析

电磁兼容性(EMC,即Electromagnetic Compatibility)是指设备或系统在其电磁环境中符 合要求运行并不对其环境中的任何设备产生无法忍受的电磁骚扰的能力。因此,EMC包括两个方面的要求:一方面是指设备在正常运行过程中对所在环境产生的电磁骚扰(Electromagnetic Disturbance)不能超过一定的限值;另一方面是指设备对所在环境中存在的电磁骚扰具有一定程度的抗扰度,即电磁敏感性(Electromagnetic Susceptibility,即EMS)。 自从电子系统降噪技术在70年代中期出现以来,主要由于美国联邦通讯委员会在1990年和欧盟在1992提出了对商业数码产品的有关规章,这些规章要求各个公司确保它们的产品符合严格的磁化系数和发射准则。符合这些规章的产品称为具有电磁兼容性EMC(Electromagnetic Compatibility)。 电磁兼容性electromagnetic compatibility(EMC) 设备或系统在其电磁环境中能正常工作且不对该环境中的任何事物构成不能承受的电磁骚扰的能力。(GB/T 4365-1995中1.7节) 干扰的形成 1、折叠干扰源与受干扰源 无论何种情况下电磁相容的问题出现总是存在两个互补的方面: 一个是干扰发射源和一个为此干扰敏感的受干扰设备。 如果一个干扰源与受干扰设备都处在同一设备中称为系统内部的EMC 情况。 不同设备间所产生的干扰状况称为系统间的EMC 情况。 大多数的设备中都有类似天线的特性的零件如电缆线、PCB 布线、内部配线、机械结构等这些零件透过电路相耦合的电场、磁场或电磁场而将能量转移。 实际情况下设备间和设备内部的耦合受到了屏蔽与绝缘材料的限制而绝缘材料的吸收与导体相比的影响是微不足道的。 电缆线对电缆线的耦合既可以是电容性也可以是电感性并且取决于方位、长度及接近程度的影响。 2、折叠公共阻抗的耦合 公共阻抗耦合线路是干扰源与受干扰设备共用电路阻抗所引起的。 公共导线也因两个电流环之间的互感而引起或因两个电压节点之间的互容耦合而引起。 对于传导性的公共阻抗耦合的解决是将连接线分离使系统各自独立避免形成公共阻抗。 折叠发射 来自PCB 的发射:在大多数设备中主要的电流源是流入PCB 板上的电路中这些能量借由PCB 板所模拟成的天线而将干扰辐射出去。 来自电缆线的辐射:干扰电流以共模形式产生于在PCB 和设备内部其他位置形成的对地噪声并沿着导体或者屏蔽电缆的屏蔽层流动。 传导发射:干扰也可能从其他电缆以感性或容性方式偶合到电缆线上。 产生的干扰可能以差模(在火线与中线或在信号线之间)或共模(在火线/中线/信号线与接地

电磁兼容性原理与设计

第一章电磁兼容性原理与设计 1.电磁兼容性的基本概念 电磁兼容性是一个新概念,它是抗干扰概念的扩展和延伸。从最初的设法防止射频频段内的电磁噪声、电磁干扰,发展到防止和对抗各种电磁干扰。进一步在认识上产生了质的飞跃,把主动采取措施抑制电磁干扰贯穿于设备或系统的设计、生产和使用的整个过程中。这样才能保证电子、电气设备和系统实现电磁兼容性。 1. 1电磁兼容性的概念 A、电磁噪声与电磁干扰 电磁噪声是指不带任何信息,即与任何信号都无关的一种电磁现象。 在射频频段内的电磁噪声,称为无线电噪声。 由机电或其他人为装置产生的电磁现象,称为人为噪声。 来源于自然现象的电磁噪声,称为自然噪声。 电磁干扰则是指任何能中断、阻碍,降低或限制通信电子设备有效性能的电磁能量。 由大气无线电噪声引起的,称为天线干扰。 由银河系的电磁辐射引起的,称为宇宙干扰。 由输电线、电网以及各种电子和电气设备工作时引起的,称为工业干扰。 B、电磁兼容 电磁兼容性是指电子、电气设备或系统在预期的电磁环境中,按设计要求正常工作的能力。它是电子、电气设备或系统的一种重要的技术性能。其包括两方面的含义: ①设备或系统应具有抵抗给定电磁干扰的能力,并且有一定的安全余量。 ②设备或系统不产生超过规定限度的电磁干扰。 从电磁兼容性的观点出发,电子设备或系统可分为兼容、不兼容和临界状态三种状态:IM=Pi-Ps(dB) 式中:IM -------电磁干扰余量 Pi-------干扰电平 Ps-------敏感度门限电平 当Pi>Ps即干扰电平高于敏感度门限电平时,IM>0, 表示有潜在干扰,设备或系统处于不兼容状态 当Pi

通信电源电磁兼容性分析与测试

通信电源电磁兼容性分析与测试 1 引言 为保证通信设备稳定可靠工作,电源在现代通信系统中的作用愈来愈重要。为此,国内外通信电源研发和制造者作出了积极努力,各种通信电源不断涌现,且趋向智能化,小型化、低功耗、高效率、长寿命,以满足通信和信息产业发展的需要。近年来,国内开始对通信电源的电磁兼容性提出一定要求,而欧美等工业发达国家已于90年代初期开始强制对电子产品及电气设备进行电磁兼容性能检测和改进,以减少电磁环境污染,保证电子设备正常可靠运转,保护人类良好生态环境。我国于80年代中期开始建立军用电磁兼容的测试手段,制定了相应标准。随着民用电子工业、信息产业的迅猛发展,为适应国际市场要求,90年代我国民用电磁兼容检测机构应运而生。到目前已基本建立了能适应国内外需求,满足不同行业技术标准要求的检测手段,为提高我国电子产品电磁兼容性能奠定了良好基础。通信电源作为通信电子产品的重要分支,其电磁兼容性能已引起国内外同行广泛关注,我国也制定了相应的技术标准。通信电源广泛用于通信网络,为保证通信设备、广播电视等系统可靠运行,提高通信电源的电磁兼容性能势在必行。 2 通信电源电磁兼容标准及限值 我国通信电源执行的电磁兼容标准基本参照了IEC61000系列、EN55022、 EN50091-2:1996等国际和欧洲标准。 我国对通信电源电磁兼容执行的标准有: GB9254-1998“信息技术设备的无线电骚扰限值和测量方法” YD/T983-1998“通信电源设备电磁兼容性限值及测量方法” GB/T14745-93“信息技术设备不间断电源通用技术条件” 说明:国内外标准对高频开关电源、电磁兼容性的抗扰度及传导和辐射骚扰均给出了明确的技术要求和限制。对UPS不间断电源,目前我国的国标仅对小型UPS提出传导和辐射骚扰电压限值,抗扰度等级和判定准则尚未明确规定。

PCB的电磁兼容性设计

PCB的电磁兼容性设计 印制电路板(PCB)是电子产品中电路元件和器件的支撑件.它提供电路元件和器件之间的电气连接。随着电于技术的飞速发展,PGB的密度越来越高。PCB设计的好坏对抗干扰能力影响很大.因此,在进行PCB设计时.必须遵守PCB设计的一般原则,并应符合抗干扰设计的要求。要使电子电路获得最佳性能,元器件的布且及导线的布设是很重要的。为了设计质量好、造价低的PCB.应遵循以下一般原则: 布局 首先,要考虑PCB尺寸大小。PCB尺寸过大时,印制线条长,阻抗增加,抗噪声能力下降,成本也增加;过小,则散热不好,且邻近线条易受干扰。在确定PCB尺寸后.再确定特殊元件的位置。最后,根据电路的功能单元,对电路的全部元器件进行布局。尽可能缩短高频元器件之间的连线,设法减少它们的分布参数和相互间的电磁干扰。易受干扰的元器件不能相互挨得太近,输入和输出元件应尽量远离。某些元器件或导线之间可能有较高的电位差,应加大它们之间的距离,以免放电引出意外短路。带高电压的元器件应尽量布置在调试时手不易触及的地方。重量超过15g的元器件、应当用支架加以固定,然后焊接。那些又大又重、发热量多的元器件,不宜装在印制板上,而应装在整机的机箱底板上,且应考虑散热问题。热敏元件应远离发热元件。 对于电位器、可调电感线圈、可变电容器、微动开关等可调元件的布局应考虑整机的结构要求。若是机内调节,应放在印制板上方便于调节的地方;若是机外调节,其位置要与调节旋钮在机箱面板上的位置相适应。应留出印制板定位孔及固定支架所占用的位置。根据电路的功能单元.对电路的全部元器件进行布局时,要符合以下原则: 按照电路的流程安排各个功能电路单元的位置,使布局便于信号流通,并使信号尽可能保持一致的方向。 以每个功能电路的核心元件为中心,围绕它来进行布局。元器件应均匀、整齐、紧凑地排列在PCB上.尽量减少和缩短各元器件之间的引线和连接。在高频下工作的电路,要考虑元器件之间的分布参数。一般电路应尽可能使元器件平行排列。这样,不但美观.而且装焊容易.易于批量生产。位于电路板边缘的元器件,离电路板边缘一般不小于2mm。电路板的最佳形状为矩形。长宽比为3:2成4:3。电路板面尺寸大于200x150mm时.应考虑电路板所受的机械强度。 布线 布线的原则如下: 输入输出端用的导线应尽量避免相邻平行。最好加线间地线,以免发生反馈藕合。印制摄导线的最小宽度主要由导线与绝缘基扳间的粘附强度和流过它们的电流值决定。当铜箔厚度为 0.05mm、宽度为1 ~ 15mm 时.通过2A的电流,温度不会高于3℃,因此.导线宽度为 1.5mm可满足要求。对于集成电路,尤其是数字电路,通常选0.02~0.3mm导线宽度。当然,只要允许,还是尽可能用宽线.尤其是电源线和地线。导线的最小间距主要由最坏情况下的线间绝缘电阻和击穿电压决定。对于集成电路,尤其是数字电路,只要工艺允许,可使间距小至5~8mm。印制导线拐弯处一般取圆弧形,而直角或夹角在高频电路中会影响电气性能。此外,尽量避免使用大面积铜箔,否则.长时间受热时,易发生胀和脱落现?。必须用大面积铜箔时,最好用栅格状.这样有利于排除铜箔与基板间粘合剂受热产生的挥发性气体。印刷线路板的布线要注意以下问题:专用零伏线,电源线的走线宽度≥1mm;电源线和地线尽可能靠近,整块印刷板上的电源与地要呈“井”字形分布,以便使分布线电流达到均衡;要为模拟电路专门提供一根零伏线;为减少线间串扰,必要时可增加印刷线条间距离,在意;

通信电源电磁兼容性分析与测试

通信电源电磁兼容性分析与测试[转帖] 摘要:针对近年来通信和广播电视等行业使用的高频开关电源,不间断电源电磁兼容性能所出现的一些带有普遍性的问题作了研究分析,重点讲座了引起传导骚扰电压和辐射骚扰场强超出限值的几种因素。建议电源生产厂家在产品的研发阶段对电磁兼容性予以足够的重视,并采取相应的技术措施,使产品定型生产后尽可能不出现电磁兼容性问题,避免重新设计整改所造成的损失。同时,简要介绍了与高频开关电源和不间断电源相关的国内外电磁兼容标准,对其中的一些重要内容以表格的形式逐项列出,并给出部分通信电源骚扰电压和辐射骚扰场强的测试结果。 关键词:电磁兼容传导骚扰电压辐射骚扰场强抗扰性静电放电电快速瞬变脉冲群浪涌(冲击) 1引言 为保证通信设备稳定可靠工作,电源在现代通信系统中的作用愈来愈重要。为此,国内外通信电源研发和制造者作出了积极努力,各种通信电源不断涌现,且趋向智能化,小型化、低功耗、高效率、长寿命,以满足通信和信息产业发展的需要。近年来,国内开始对通信电源的电磁兼容性提出一定要求,而欧美等工业发达国家已于90 年代初期开始强制对电子产品及电气设备进行电磁兼容性能检测和改进,以减少电磁环境污染,保证电子设备正常可靠运转,保护人类良好生态环境。我国于80年代中期开始建立军用电磁兼容的测试手段,制定了相应标准。随着民用电子工业、信息产业的迅猛发展,为适应国际市场要求,90 年代我国民用电磁兼容检测机构应运而生。到目前已基本建立了能适应国内外需求,满足不同行业技术标准要求的检测手段,为提高我国电子产品电磁兼容性能奠定了良好基础。通信电源作为通信电子产品的重要分支,其电磁兼容性能已引起国内外同行广泛关注,我国也制定了相应的技术标准。通信电源广泛用于通 信网络,为保证通信设备、广播电视等系统可靠运行,提高通信电源的电磁兼容性能势在必行。 2通信电源电磁兼容标准及限值 我国通信电源执行的电磁兼容标准基本参照了IEC61000 系列、EN55022 、EN50091-2 :1996 等国际和 欧洲标准。 我国对通信电源电磁兼容执行的标准有: GB9254-1998信息技术设备的无线电骚扰限值和测量方法” YD/T983- 1998通信电源设备电磁兼容性限值及测量方法” GB/T14745- 93信息技术设备不间断电源通用技术条件” 标准主要技术要求及限值见表1、表2、表3、表4。 说明:国内外标准对高频开关电源、电磁兼容性的抗扰度及传导和辐射骚扰均给出了明确的技术要求 和限制。对UPS不间断电源,目前我国的国标仅对小型UPS提出传导和辐射骚扰电压限值,抗扰度等级 和判定准则尚未明确规定。

华为电磁兼容性结构设计规范_第三版

华为技术有限公司企业技术规范 DKBA0.400.0022 REV.3.0 电磁兼容性结构设计规范 2003-11-30发布2003-11-30实施 华为技术有限公司

内部公开 前言 本规范于1999年12月25日首次发布。 本规范于2001年7月30日第一次修订。 本规范于2003年10月30日第二次修订。 本规范起草单位:华为技术有限公司结构造型设计部 本规范授予解释单位:华为技术有限公司结构造型设计部本 华为机密,未经许可不得扩散 第1页,共1页

内部公开 目录 1 范围 ... ....................................................................................................................................................... ..4 2 引用标准 ... . (4) 3 术语 ... ....................................................................................................................................................... ..4 4 电磁兼容基本概念... (5) 4.1 电磁兼容定义 ... .............................................................................................................................. ..5 4.2 电磁兼容三要素 ... ........................................................................................................................... .5 4.3 通讯产品电磁兼容一般要求 ... ..................................................................................................... ..6 5 电磁屏蔽基本理论... (7) 5.1 屏蔽效能 ... ....................................................................................................................................... .7 5.2 屏蔽体的缺陷 ... .............................................................................................................................. ..7 5.2.1缝隙屏蔽 ... (7) 5.2.2开孔屏蔽 ... (8) 5.2.3电缆穿透 ... . (10) 6 屏蔽设计 ... .. (12) 6.1 结构屏蔽效能 ... .......................................................................................................................... (12) 6.2 屏蔽方案与成本 ... ....................................................................................................................... ..12 6.3 缝隙屏蔽设计 ... .......................................................................................................................... (13) 6.3.1紧固点连接缝隙 ... . (13) A. 减小缝隙的最大尺寸 ... ........................................................................................................................... .. 13 B. 增加缝隙深度 ... ........................................................................................................................................ .. 14 C. 紧固点间距 ... ........................................................................................................................................... (15) 6.3.2安装屏蔽材料 ... ....................................................................................................................... ..17 6.3.3屏蔽材料的选用 ... . (18) A. 常用屏蔽材料................................................................... .. 18 B. 常用屏蔽材料性能参数 ... ........................................................................................................................ . 24 6.4 开孔屏蔽设计 ... .......................................................................................................................... (25) 6.4.1通风孔屏蔽 ... .......................................................................................................................... (25) 6.4.2局部开孔屏蔽 ... ....................................................................................................................... ..26 6.5 塑胶件屏蔽 ... . (27) 6.6 单板局部屏蔽 ... .......................................................................................................................... (28) 6.6.1盒体式屏蔽盒 ... ....................................................................................................................... ..28

抗干扰滤波器在电磁兼容设计中的作用要点

抗干扰滤波器在电磁兼容设计中的作用 干扰滤波在电磁兼容设计中的作用大多数电子产品设计师对干扰滤波器的认识一般局限在:“电子产品要通过电源线传导发射试验和电源线抗扰度试验,必须在电源线上使用干扰滤波器”。而对于干扰滤波器的其它作用了解很少,这就导致了产品设计完毕后,往往不能通过其它试验项目,例如辐射发射、辐射抗扰度、信号线上的传导敏感度等试验。实际上,电磁干扰滤波器对于顺利大部分电磁兼容试验以及保证产品的功能都是十分重要一类器件。当出现下面这些干扰问题时,往往是由于滤波措施不完善。 1.设备的机箱或机柜屏蔽十分完善,但是仍然产生超标的辐射发射; 2.独立的设备没有任何电磁干扰的问题(辐射发射和抗扰度完全合格),但是当连接上必要的外接电缆时,出现干扰问题; 3.在信号电缆线上注入电快速脉冲时,出现故障; 4.不能通过辐射抗扰度试验 5.不能通过电缆束上的传导敏感度试验 6.不能通过静电放电试验; 7.电缆中的导线之间或电缆之间相互干扰,导致设备不能实现预定功能。下面就如何用滤波器解决上述问题的方案作简单介绍。 1)虽然机箱或机柜屏蔽很好,但是辐射发射超标,或者不能通过辐射抗扰度试验 这是由于机箱或机柜上的外拖电缆起着天线的作用。天线的一个特性是互易性,也就是说:一个天线如果具有很高的辐射效率,那么它的接收效率也很高。因此,设备的外拖电缆既能产生很强的辐射,也能有效的将空间电磁波接收下来,传进设备,对电路形成干扰。由于某种原因,在外拖电缆上形成了干扰电流,这些电流从机箱内传导出来,并以电缆作为辐射天线辐射电磁波。解决这种问题的方法就是在电缆的端口处安装一只滤波器,将干扰电流滤除掉。 2)独立的设备没有任何电磁干扰的问题(辐射发射和抗扰度完全合格),但是当连接上必要的外接电缆时,出现干扰问题; 这个问题与第一类问题的本质相同,就是外拖电缆相当于天线。当没有电缆时,相当于没有辐射天线和接收天线,因此容易通过辐射发射和抗扰度试验,但是当拖上电缆后,这些电缆作为辐射天线和接收天线,导致设备的辐射增强、对外界空间干扰的敏感度提高。解决方法就是在电缆的端口处安装滤波器,将这些导体从空间接收到的电磁能量在它们到达电子线路之前滤除掉,另一方面,阻止电子线路中的干扰能量进入这些导体后借助导体辐射。 3)在信号电缆线上注入电快速脉冲时,出现故障; 我们知道电快速脉冲的频率是很高的,这些干扰通过电容耦合钳耦合进电缆,在电缆上形成干扰电流,这些电流一方面直接流进电路,对电路形成干扰,另一方面产生辐射,对电路形成干扰。解决方法就是采用屏蔽电缆和加装滤波器。 4)不能通过电缆束上的传导敏感度试验 电快速瞬变脉冲群抗扰度试验,目的是验证由闪电、接地故障或切换电感性负载而引起的瞬时扰动的抗干扰能力。这种试验是一种耦合到电源线路、控制线路、信号线路上的由许多快速瞬变脉冲组成的脉冲群试验,自然也可以通过在电缆端口处滤波的方式来解决。 5)不能通过静电放电试验; 静电放电对设备电路的影响很大程度上是由于静电放电电流周围的高频电磁场,这些电磁场由于频率很高,因此很容易被导线所接收,对电路形成干扰净,某设备在做静电放电试验时,发现当在活动面板上进行放电时,电路出现故障。经检查,发现面板后面是一束电缆,面板上的静电放电电流产生的电磁场在电缆束上感应出了噪声电流,形成干扰。在电缆的端口处安装滤波器后,问题解决。 随着开关电源的普遍应用,在电源线入口处安装滤波器已经是项必要的措施。因为开关电源工作在大功率脉冲状态,它会产生很强的电磁辐射,这些辐射感应到线路上形成传导发射。如果不使用滤波器,就没有可能通过满足电磁兼容试验。

ANSYS电磁兼容仿真软件解析

ANSYS 电磁兼容仿真设计软件 用途:用于电子系统电磁兼容分析,包括PCB信号完整性、电源完整性和电磁辐射协同仿真,数模混合电路的噪声分析和抑制,以及 机箱系统屏蔽效能和电磁泄漏仿真,确保系统的电磁干扰和电磁兼容性能满足要求。 一、购置理由 1 现代电子系统设计面临越来越恶劣的电磁工作环境,一方面电子系统包括了电源模块、信号处理、计算机控制、传感与机电控制、光电系统及天线与微波电路等部分,系统内部相互不发生干扰,正常工作,本身就非常困难;另一方面,在隐身、电子对抗、静放电,雷击和 电磁脉冲干扰等恶劣电磁环境下,设备还需要有足够的抗干扰能力,为电路正常工作留有足够的设计裕量。为了确保xx 系统的工作可靠性,设备必须通过相关的电磁兼容标准,如国军标 GJB151A,GJB152A。 长期以来,设备的电磁兼容设计和仿真一直缺乏必要的仿真设计 手段,只能依赖于设备后期试验测试,不仅测量成本高昂,而且,如 果EMI 测量超标,后续的查找问题和修正问题基本上依赖于经验和猜测。而解决电磁兼容问题,也只能靠经验进行猜想和诊断,采取的 措施也只能通过不断的试验进行验证,这已经成为制约我们产品进度的重要原因。 2 目前我所数字电路设计的经验和手段已经有很大改善,我们在复杂PCB布线、高速仿真方面取得了很多的成果和经验,并且已经

开始高速通道设计的预研。在相关PCB 布线工具的帮助下,将复杂 的多电源系统PCB布通,确保集成电路之间的正确连接已经基本上 没有问题。但是随着应用深入,也存在一些困难,特别在模拟数字转换、高速计算与传输PCB和系统的设计中,我们不仅要保证电路板 的正常工作,还要提高关键性的技术指标,例如数模转换电路的有效 位数、信号传输系统的速率和误码率等,此外,还要满足整个卫星电子系统的电磁兼容/电磁干扰要求,为此,我们迫切需要建立的仿真功能包括: ● 高速通道中,连接器,电缆等三维全波精确和建模仿真,这 些结构的寄生效应对于信号的传输性能有至关重要的影响; ● 有效的PCB电源完整性分析工具,对PCB 上的电源、地等 直流网络的信号质量进行仿真 ●为提高仿真精度,需要SPICE 模型,IBIS模型和S 参数模 型的混合仿真 ●需要同时进行时域和频域仿真和设计,观察时域的眼图、 误码率,调整预加重和均衡电路的频域参数,使得信号通道 的物理特性与集成电路和收/发预加重、均衡等相配合,达到 系统性能的最优 ● 有效的PCB的辐射控制与仿真手段,确保系统EMI性能 达标。 现在EDA 市场上已经有一些SI/PI 和EMI/EMC 仿真设计工具,但存在多方面的局限性。我们的PCB 布线工具虽然能解决一定的问

emc结构设计

[导读]电磁屏蔽是利用金属板、网、盖、罩、盒等屏蔽体阻止或减小电磁能量传播所采取的一种结构措施 期刊文章分类查询,尽在期刊图书馆 李永梅(东南大学成贤学院江苏南京210088)【摘要】EMC设计是电子设备设计中的重要环节。本文依据EMC的基本原理,综合考虑了屏蔽材料、屏蔽方式、缝隙和孔的处理等诸多因素,结合机械加工的手段和工艺,对机箱EMC的结构设计方法进行分析和探讨。【关键词】机箱;电磁屏蔽;结构设计1.引言随着科学技术的迅速发展,现代各种电子、电气、信息设备的数量和种类越来越多,性能越来越先进,其使用场合和数量密度也越来越高。这就使得电子设备工作时常受到各种电磁干扰,包括自身干扰和来自其它设备的干扰,同时也对其它设备产生干扰[1]。在这种情况下,要保证设备在各种复杂的电磁环境中正常工作,则在结构设计阶段就必须认真考虑电磁兼容性设计。如果忽视了这一问题,到新产品使用时,干扰问题就会暴露出来。因此及早地解决电磁干扰问题是电子设备机箱结构设计时必须考虑的重要环节。 2.理论基础电子设备结构中常见的电磁干扰方式主要有传导干扰和辐射干扰两种,因此电磁兼容(EMC)设计的主要方法有屏蔽、滤波、接地等。 2.1屏蔽电磁屏蔽是利用金属板、网、盖、罩、盒等屏蔽体阻止或减小电磁能量传播所采取的一种结构措施。常用的方法有静电屏蔽,磁屏蔽和电磁屏蔽。电子设备结构设计人员在着手电磁兼容性设计时,必须根据产品所提出的抗

干扰要求进行有针对性的电磁屏蔽设计。屏蔽通常有静电屏蔽、磁屏蔽和电磁屏蔽三种。 2.2滤波电路中的干扰信号常常通过电源线、信号线、控制线等进入电路造成干扰,所以对公用电源线及通过干扰环境的导线一般均要设置滤波电路。 2.3接地接地问题在电磁兼容性设计中也是一个极其重要的问题,正确的接地方法可以减少或避免电路间的互相干扰。根据不同的电路可用不同的接地方法。通常组合单元电路接地有串联一点接地、并联一点接地和多点接地三种方式。整机接地方式也是保障产品电磁兼容性的主要措施之一。由于其功能不同,故电路差别甚大,接地状况也不大相同。一般常用的方法是:将模拟电路、数字电路、机壳分开,各自独立接地,避免相互间的干扰,最后三地合一接入大地,这种方式较好地抑制了电磁噪声,减少了数字信号和模拟信号之间的干扰。 3.机箱EMC 的结构设计一电子设备中的机箱,机箱有电源线、信号线、控制线等的穿入及穿出以及散热用的通风孔、调节用的调节孔、显示窗等,同时机箱也是由多个零件组合而成,各部分的连接处难免有泄漏。如何抑制电磁能从上述因素中泄漏,就成了电磁兼容性的关键。在这里仅介绍几种结构设计中比较简单可行的方法: 3.1缝隙的屏蔽 缝隙指的是连接后要拆卸的,如机箱上下盖、前后面板和箱体的连接缝,这类连接通常用螺钉来紧固。这类情形增加屏蔽效能的途径有如下:(1)增加缝隙深度,也就是增加箱体及盖板的配合宽度。(2)在结合处加入导电衬垫或者提高结合面的加工精度,即减少缝隙长度。一般比较经济的办法是在接合面安装导电衬垫。这样既可以

IC芯片的电磁兼容性设计方案

IC芯片的电磁兼容性设计方案 2011-12-19 22:48:43| 分类:EMC/EMI | 标签:|字号大中小订阅 IC芯片的电磁兼容性设计方案 论述了芯片级电磁兼容性的设计方法。最后给出了芯片级电磁兼容性研究中存在的问题及未来的研究重点 1、分析和解决电磁兼容性的一般方法 随着科学技术的发展,系统越来越复杂,使用的频谱越来越宽,根据电磁兼容性学科中多年的研究可知,分析和解决设备、子系统或系统间的电磁兼容性问题一般有3种方法,他们分别为问题解决法(ProlemSolvingApproach)、规范法(SpecificationApproach)和系统法(SystemsApproach)。 1.1问题解决法 问题解决法主要指在建立系统前并不专门考虑电磁兼容性问题,待系统建成后再设法解决在调试过程中出现的电磁兼容性问题的方法。系统内或系统间存在的干扰问题有三要素,即干扰源、接受器和干扰的传播路径。因此用问题解决法解决系统内或系统间的电磁兼容性问题时,首先必须正确地确定干扰源。为了做到这一点,从事电磁兼容性方面工作的工程师要比较全面地熟悉各种干扰源的特性。在确定干扰源后再确定干扰的耦合路径是辐射耦合模式还是传导耦合模式,最终决定消除干扰的方法。 1.2规范法 为了满足电磁兼容性的要求,各国政府和工业部门尤其是军方都制订了很多强制执行的标准和规范,例如美国军用标准MIL-STD-461.所谓规范法是指在采购系统的设备和设计建立子系统时必须满足已制订的规范。规范法预期达到的效果就是:如果组成系统的每个部件都满足规范要求,则系统的电磁兼容性就能保证。 1.3系统法 系统法集中了电磁兼容性方面的研究成果,从系统的设计阶段的最初就用分析程序来预测在系统中将要遇到的那些电磁干扰问题,以便在系统设计过程中作为基本问题来解决。目前有下列几种已广泛使用的大规模电磁干扰分析程序: 系统和电磁兼容性分析程序(SEMCAP);系统和电磁兼容性分析程序; 干扰预测程序IPP-1; 系统内部分析程序IAP; 共场地分析模型程序COSAM等。 对于EMC系统设计的3种方法而言,问题解决法即先建立系统,在系统出现EMC问题时,利用EMI抑制技术解决EMC问题,这种方法很冒险,有可能会出现大量的返工。规范法则是要求每个分系

无人机电气系统的电磁兼容性研究

无人机电气系统的电磁兼容性研究 专业: 电力电子与电力传动 关键词: 电磁兼容电磁干扰飞机电气工程 分类号: V279 形态: 共76 页约49,780 个字约 2.381 M内容 阅读: 内容摘要-全文目录-相似论文-下载全文 内容摘要 该文对电气系统的电磁环境效应进行了分析,根据干扰源和干扰传输特点确定电气系统中以分析低频信号干扰为主,在此基础上制订了研究的主要内容和方向。 论文分别从飞机电源系统、大电流电源线、电磁继电器和接触器、感性负载、雷击电流和屏蔽体设计等五个方面进行研究。 每个方面都包括了干扰产生的原因分析、仿真或实验验证、干扰抑制措施等。 在飞机电源系统中讨论了不同类型电源的干扰产生机理,相应给出了不同的滤波电路形式;大电流电源线问题的研究主要集中于对信号线的影响,根据计算和实验验证,提出在布线中的最小距离确定;电磁继电器和接触器作为开关元件,会产生火花和电弧干扰。 计算得出主控制盒中接触器对其他元件的干扰,并提出抑制方法;电气系统中感性负载较多,尖峰电压是最常见的干扰形式,通过仿真研究,确定了抑制措施;对于雷击电流进行了分析,依据屏蔽效能的计算与对比,确定屏蔽体的选择…… 全文目录 文摘 英文文摘 第一章绪论 1.1电磁兼容性研究的发展历程 1.2电磁兼容性研究的现状 1.2.1研究的主要内容 1.2.2研究的重要性和特点 1.3课题背景及意义 1.3.1课题来源 1.3.2电气系统简介 1.4课题的主要研究内容 第二章电磁兼容环境效应分析 2.1飞机的电磁环境效应分析

2.1.1系统内部干扰 2.1.2系统外部干扰 2.2电气系统的电磁环境效应分析 2.2.1概述 2.2.2电磁干扰源分析 2.2.3电磁干扰的传输方式 2.3电气系统电磁兼容性分析 第三章飞机电源系统的电磁兼容分析 3.1主电源的电磁兼容分析 3.1.1电源中存在的电磁干扰 3.1.2电源开关过程的影响 3.1.3电源的内阻对系统的影响 3.1.4主电源的滤波器设计 3.2交流电源的电磁兼容分析 3.3开关电源的电磁兼容性分析 3.3.1电磁干扰分析 3.3.2开关电源电磁兼容设计 3.4汇流条的滤波措施 3.5在实际系统设计中的应用 第四章大电流电源线的电磁兼容分析 4.1导线对导线感应耦合的一般原理 4.2大电流电源线的电磁兼容计算与设计 4.2.1低频大电流电源线的分析与计算 4.2.2高频大电流电源线的分析与计算 4.3实验验证 4.3.1实验数据及分析 4.3.2实验波形分析 4.4在实际系统设计中的应用 第五章电磁继电器和接触器的电磁兼容分析 5.1电磁干扰产生的原因 5.2大电流接触器的电磁干扰分析与计算 5.2.1接触器稳态工作时对微型继电器的影响 5.2.2接触器通断时对计算机信号线的影响 5.2.3接触器在通断时大电流的变化对微型继电器的影响5.3电磁接触器和继电器开关触头的保护 5.4在实际系统设计中的应用 第六章感性负载的瞬态干扰 6.1电磁干扰产生原因 6.2电磁干扰抑制的方法及其仿真研究 6.2.1并联电阻通路 6.2.2并联双向稳压管通路 6.2.3并联R-C网络 6.2.4并联二极管—电阻通路 6.2.5并联二极管通路

相关主题
文本预览
相关文档 最新文档