当前位置:文档之家› 外文翻译--人工智能

外文翻译--人工智能

外文翻译--人工智能
外文翻译--人工智能

英文原文

Artificial Intelligence

Advanced Idea ,Anticipating Incomparability on Artificial Intelligence.

Artificial intelligence(AI) is the field of engineering that builds systems ,primarily computer systems ,to perform tasks requiring intelligence .This field of research has often set itself ambitious goals, seeking to build machines that can outlook humans in particular domains of skill and knowledge ,and has achieved some success in this.The key aspects of intelligence around which AI research is usually focused include expert system ,industrial robotics,systems and languages language understanding ,learning ,and game playing,etc.

Expert System

An expert system is a set of programs that manipulate encoded knowledge to solve problems in a specialized domain that normally requires human expertise . Typically,the user interacts with an expert system in a consultation dialogue,just as he would interact with a human who had some type of expertise,explaining his problem,performing suggested tests,and asking questions about proposed solutions. Current experimental systems have achieved high levels of performance in consultation tasks like chemical and geological data analysis,computer system configuration,structural engineering,and even medical diagnosis.Expert systems can be viewed as intermediaries between human experts,who interact with the systems in knowledge acquisition mode ,and human users who interact with the systems in consultation mode. Furthermore ,much research in this area of AI has focused on endowing these systems with the ability to explain their reasoning,both to make the consultation more acceptable to the user and to help the human expert find errors in the system′s reasoning when they occur.Here are the features of expert systems:

①Expert systems use knowledge rather than data to control the solution process.

②The know is encoded and maintained as an entity separated from

the control program.Furthermore,it is possible in some cases to use different

knowledge bases with the same control programs to produce

different types of expert system.Such system are known as expert system

shells.

③Expert systems are capable of explaining how a particular concl-

usion is reached,and why requested information is needed during a consultation.

④Expert systems use symbolic representations for knowledge and

perform their inference through symbolic computations.

⑤Expert systems often reason with metaknowledge.

Industrial Robotics

An industrial robot is a general-purpose computer-controlled manipulator consisting of several rigid links connected in series by revolute or prismatic joints.Research in this field has looked at everything from the optimal movement of robot arms to methods of planning a sequence of actions to achieve a robot′s goals.Although more complex systems have been built,the thousands of robots that are being used today in industrial applications are simple devices that have been programmed to some repetitive task.Robots,when compared to humans,yield more consistent quality,more predictable output,and are more reliable.Robots has been used in industry since 1965.They are usually characterized by the design of the mechanical system.There are six recognizable robot configurations:

①Cartesian Robots:A robot whose main frame consist of three Linear axes.

②Gantry Robots:A Gantry robot is a type of artesian robot whose structure resembles a gantry.This structure is used to minimize deflection along each axis.

③Cylindrical Robots:A cylindrical robot has two linear axes and one rotary axis.

④Spherical Robots:A spherical robot has one linear axis and two rotary axes.Spherical Robots are used in a variety of industrial tasks such as welding and material handling.

⑤Articulated Robots:An articulated robot has three rotational axes connecting three rigid links and a base.

⑥Scara Robots:One style of robot that has recently become quite popular is a combination of the articulated arm and the cylindrical robot.The robot has more than three axes and is widely used in electronic assembly.

Systems and Languages

Computer-systems ideas like time-sharing,list processing,and interactive debugging were developed in the AI research environment.Specialized programming languages and systems,with features designed to facilitate deduction,robot manipulation,cognitive modeling,and so on, have often been rich sources of new ideas.Most recently,reveral knowledge-representation languages,computer languages for encoding knowledge and reasoning methods as data structure and procedures,which have been developed in the last few years to explore a variety of ideas about how to build reasoning programs.

Problem Solving

The first big success in AI was programs that could solve puzzles and play games like chess.Techniques like looking ahead several moves and dividing difficult problems into easier sub-problems evolved into the fundamental AI techniques of search and problem reduction.Today′s programs play championship-level checkers and backgammon,as well as very

good chess.Another problem-solving program that integrates mathematical formulates symbolically has attained very high levels of performance and is being used by scientists and engineers.Some programs can even improve their performance with experience.

As discussed above,the open questions in this area involve capabilities that human players have but cannot articulate,like the chess master′s ability to see the board configuration in terms of meaningful patterns.Another basic open question involves the original conceptualization of a problem,called in AI the choice of problem representation.Humans often solve a problem by finding a way of thinking about it that makes the solution easy-AI problems,so far,must be told how to think about the problems they solve.

Logical Reasoning

Closely related to problem and puzzle solving was early work on logical deduction.Programs were developed that could prove assertions by manipulating a database of facts,each represented by discrete data structures just as they are represented by discrete formulas in mathematical logic.These methods,unlike many other AI techniques,could be shown

to be complete and consistent.That is,so long as the original facts were correct,the programs could prove all theorems that followed from the facts,and only those theorems.

Logical reasoning has been one of the most persistently investigated subareas of AI research.Of particular interest are the problems of finding ways of focusing on only the relevant facts of a large database and of keeping track of the justifications for beliefs and updating them when new information arrives.

Language Understanding

The domain of language understanding was also investigated by early AI researchers and has consistently attracted interest.Programs have been written that answer questions posed in English from an internal database,that translate sentences from one language to another,that follow instruction given in English,and that acquire knowledge by reading textual material and building an internal database.Some programs have even achieved limited success in interpreting instructions spoken into a microphone instead of typed into the computer.Although these language systems are not nearly as good as people are at any of these tasks,they are adequate for some applications.Early successes with programs that answered simple queries and followed simple directions,and early failures at machine translation,have resulted in a sweeping change in the whole AI approach to language.The principal themes of current language-understanding research are the importance of vase amounts of general,commonsense world knowledge and the role of expectations,based on the subject matter and the conversational situation,in interpreting sentences.

Learning

Learning has remained a challenging area for AI.Certainly one of the most salient and significant aspects of human intelligence is the ability to learn.This is a good example of cognitive behavior that is so poorly understood that vary little progress has been made in achieving it in AI system.There have been several interesting attempts,including programs learn from examples,form their own performance,and from being told.An expert system may perform extensive and costly computations to solve a problem.Most expert systems are hindered by the inflexibility of their problem-solving strategies and the difficulty of modifying large amounts of code.The obvious solution to these problems is for programs to learn on their own,either from experience,analogy,and examples or by being told what to do.

Game Playing

Much of the early research in state space search was done using common board games such as checkers,chess,and the 15-puzzle.In addition to their inherent intellectual appeal,board games have certain properties that make them ideal subjects for this early work.Most games are played using a well-defined set of rules,this makes it easy to generate the search space and frees the researcher from many of the ambiguities and complexities inherent in less structured problems.The board configurations used in playing these games are easily represented on a computer,requiring none of the complex formalisms.

Conclusion

We have attempted to define artificial intelligence through discussion of its major areas of research and application.In spite of the variety of problems addressed in artificial intelligence research,a number of important features emerge that seem common to all divisions of the field,these include:

①The use of computers to do reasoning,learning,or some other form of intelligence.

②A focus on problems that do not respond to algorithmic solutions.This underlies the reliance on heuristic search as an AI problem-solving technique.

③Reasoning about the significant qualitative features of a situation.

④An attempt to deal with issues of semantic meaning as well as syntactic form.

⑤The use of large amounts of domain-specific knowledge in solving problems.This is the basis of expert systems.

Abstract

Artificial intelligence(AI) is the field of engineering that builds systems,primarily computer systems,to perform tasks requiring intelligence .This field of research has often set itself ambitious goals,seeking to build machines that can outlook humans in particular domains of skill and knowledge,and has achieved some success in this.The key aspects of intelligence around which AI research is usually focused include expert systems,industrial robotics,systems and languages,language understanding,learning,and game playing,machine translation,etc.

中文译文

人工智能

先进的想法不断注入到人工智能的发展过程中,使其最新理念无与伦比。

人工智能是一个构建系统的工程领域,主要用来构筑计算机系统,从而完成那些智能化工作。这个研究领域常常树立野心勃勃的目标,以寻觅来制造出一些拥有人类特定技能和知识的机器,并且已经获得了一些成功的案例。人工智能研究常常聚焦于专家系统,工业机器人,系统与语言,语言理解,自学习,智能游戏等等。

专家系统

专家系统是这样一组程序,它们操纵那些表示为代码的知识来解决一些需要人类专长的某些特定领域的问题。典型地,用户在向专家系统请教时,就像是在请教一个有某方面专长的人,这个专家能够解释问题,对建议进行检测,并对解决方案进行质疑。在化学和地址学的数据分析,计算机系统结构,结构工程,甚至在医疗诊断方面,当前实验性的专家系统都达到了高水平。专家系统可以看作一些专家们的仲裁者,以知识获取模式工作,而用户是以请教模式同系统进行交互。并且,在人工智能领域的研究已经聚焦于展现系统进行推理的过程,从而让用户心悦诚服接受建议,或者帮助用户专家发现系统推理时的错误。以下是专家系统的特性。

①专家系统是利用知识而并非数据来控制解决进程。

②知识转化成了代码,并被作为一个区别于控制程序的实体。而且,在一些情况下将不同的知识运用于同一个控制程序会产生不同类型的专家系统。这些系统被誉为专家系统外壳。

③专家系统有能力解释一些特定的结论是如何形成的,并且在推理过程中需要哪些信息。

④专家系统利用符号代表知识,并利用符号计算来进行推理论证。

⑤专家系统经常利用元知识进行推理。

工业机器人

工业机器人是广泛使用的由计算机控制的通过外卷的,或棱镜似的连接结合

起来的操作员。为了达到一个工业机器人的目标,这个领域的研究集中于设计一系列的运动来达到最佳的行动方案。虽然工业机器人需要更复杂的系统,成千上万的机器人已经应用于工业领域,它们都是一些简单的经过编程的装置,主要从事一些重复性工作。机器人和人类相比,工作质量好,稳定性强,可靠性高。机器人从1965年进入工业领域,它们具有机械系统的设计特征。以下是6种公认的工业机器人结构:

①笛卡儿式机器人:一种主框架由三根直线轴组成的机器人。

②桶架式机器人:桶架式机器人是一种喷水井机器人,它的结构组成了一个桶架。这个结构用来减少每个轴的倾斜度。

③柱面机器人:柱面坐标式机器人有两根直线轴和一个旋转轴。

④球式机器人:球式机器人有一根直线轴和两个旋转轴。球式机器人被应用于定位焊接和材料搬运之类的工业应用上。

⑤挂接式机器人:挂接式机器人有三根直线轴连着三个节点和一个基座。

⑥斯凯瑞机器人:一种最近变的非常流行的机器人,它是由有关节的手臂组成的圆柱体机器人。这种机器人有多于三根的直线轴,并被广泛应用于电子组装行业。

系统与语言

人工智能发展了计算机系统方面的一些理念,如:时间分配,编目处理,交互式调试,等等。专用于编程的系统与语言已经成为丰富思想的源泉,因为其包含了优化演绎,机器人操作,认知模型等等的新特性。特别是最近以来,一些具备知识表示能力的计算机语言已经得到进一步的发展,它们能够将知识转化为代码,将推理方法表示为数据结构。这些计算机语言的发展已经促进了关于如何构建推理机的新思想的萌发。

问题求解

人工智能所取得的首次成功是解决了迷宫和棋类游戏的问题。能提前预料几步的前瞻技术和将复杂问题划分为容易解决的子问题的技术已经卷入并促进了人工智能中最基本的搜索与问题优化技术的发展。当今的智能程序已经能够在西洋双陆棋等一些很好的棋类游戏中发挥世界冠军级的水平。另外一个整合

数学理论的问题求解领域也已经达到了很高的水准,并被科学家和工程师广泛使

用。其中有些程序甚至能够通过经验积累来不断提高水平。

像上面所讨论的那样,在此领域都涉及到了人类的本领,但是却不能进行关联,比如有些老练的棋手有根据丰富的前景模式通观全局的本领。另外一个开放式的问题涉及到将一个待求解的问题概念化,在人工智能领域被称为问题表现的选择。人类经常利用求解问题中简单的方法来处理问题,因此,人工智能程序,到目前为止,应该被告知怎样去思考它们所要解决的问题。

逻辑推理

与问题求解密切相关的是逻辑推断的早期工作。智能程序不断的发展,能够通过对一个事实数据库的操作来产生断言,这些断言由一些不连续的数据结构表示,就像在数学逻辑中它们被不连续的规则表示一样。这些方法,不像许多其它的人工智能技术,能够展示出是正确的。也就是说,只要原始的事实是正确的,智能程序就能从中证明出所有的定理,同时也只能证明这些定理。

逻辑推理已经成为众多持续发展的人工智能子领域之一。其中最令人感兴趣的是那些解决问题的方法,它们仅仅聚焦于相关的事实数据库,并在新的信息发生时,能够不断地检验和更新那些信条规则。

语言理解

人工智能研究者很早就调查过语言理解领域,并且此领域极大地激发了人们的研究兴趣。程序可用来解答由内部数据库中的英语所提出的问题,可用来将一种语言翻译为另一种语言,可用来执行英语所描述的指令,可用来从文本材料中和所搭建的内部数据库中获取知识。一些智能程序甚至能够通过语音输入麦克风的方式来代替键盘输入,尽管成功率不是很高。尽管这些语言系统的工作不如从事这些行业的人们,但是在某些应用方面已经足够了。智能程序早期的成功在于能够回答简单的询问和顺从简单的命令,但是早期的机器翻译是失败的,这种情况在人工智能对待语言的方式上引发了彻底的变化。当前语言理解方面的研究最基本的主题在于大量基本的、如同常识的世界知识,某些学科发展的期待,和在解释句子时交流的情况,这些都将对语言理解产生重要的影响。

自学习

自学习对人工智能而言仍然是一个具有挑战性的领域。学习的本领是人类智能中最显著和突出的一个方面。这是一种典型的认知行为,但人们却不太了解它,以至于人工智能在这方面还没有什么发展。自学习有一些令人感兴趣的研究方向,其中包括了从事例中学习的智能程序,从自身表现中学习的智能程序,从指导中学习的智能程序。一个专家系统能够完成精密复杂的计算来解决一个问题。往往大多数专家系统都是隐蔽的,它们蕴涵在其解决问题时所采用的固定不变的策略后面,或在修改大量代码的难度后面。这些问题最明显的解决办法是让程序能够自学习,或者从经验和分析中学习,或者以被告知怎样做的方式去学习。

智能游戏

一些流传广泛的智力游戏,比如国际象棋,西洋双陆棋,还有走迷宫等等,促进了在状态空间探寻的早期研究。这些智力游戏除了与生俱来的智力性的吸引,它们还具备了一些特定的属性,使其在状态空间探寻的早期研究方面成为理想的课题。其中,大多数游戏在玩的时候都具有一套明确定义的规则,这个特点使得在游戏时很容易就产生了探寻空间,这样研究者就从大量含糊的、复杂的问题中得到解脱。在计算机上进行这些游戏时这些广阔的状态空间是很容易被表示的,一点都不需要复杂的形式来帮忙。

结论

通过对人工智能主要的研究和应用领域的讨论,我们尝试去定义人工智能的概念。尽管人工智能研究中出现了各种各样的问题,但是在这些各个不同的领域里,都普遍存在大量的重要的特性,其中包括:

①计算机进行推理,自学习和其它形式的推论。

②问题不能反映解决方法,从而成为了焦点。这就构成了作为人工智能问题解决技术的启发式搜索的信任度的基础。

③针对每种情形的显著特性进行推理。

④一个要解决语义和语法形式之间争端的意图。

⑤在解决问题时采用了大量的专业领域的知识,这就是专家系统的基础。

人工智能专业外文翻译-机器人

译文资料: 机器人 首先我介绍一下机器人产生的背景,机器人技术的发展,它应该说是一个科学技术发展共同的一个综合性的结果,同时,为社会经济发展产生了一个重大影响的一门科学技术,它的发展归功于在第二次世界大战中各国加强了经济的投入,就加强了本国的经济的发展。另一方面它也是生产力发展的需求的必然结果,也是人类自身发展的必然结果,那么随着人类的发展,人们在不断探讨自然过程中,在认识和改造自然过程中,需要能够解放人的一种奴隶。那么这种奴隶就是代替人们去能够从事复杂和繁重的体力劳动,实现人们对不可达世界的认识和改造,这也是人们在科技发展过程中的一个客观需要。 机器人有三个发展阶段,那么也就是说,我们习惯于把机器人分成三类,一种是第一代机器人,那么也叫示教再现型机器人,它是通过一个计算机,来控制一个多自由度的一个机械,通过示教存储程序和信息,工作时把信息读取出来,然后发出指令,这样的话机器人可以重复的根据人当时示教的结果,再现出这种动作,比方说汽车的点焊机器人,它只要把这个点焊的过程示教完以后,它总是重复这样一种工作,它对于外界的环境没有感知,这个力操作力的大小,这个工件存在不存在,焊的好与坏,它并不知道,那么实际上这种从第一代机器人,也就存在它这种缺陷,因此,在20世纪70年代后期,人们开始研究第二代机器人,叫带感觉的机器人,这种带感觉的机器人是类似人在某种功能的感觉,比如说力觉、触觉、滑觉、视觉、听觉和人进行相类比,有了各种各样的感觉,比方说在机器人抓一个物体的时候,它实际上力的大小能感觉出来,它能够通过视觉,能够去感受和识别它的形状、大小、颜色。抓一个鸡蛋,它能通过一个触觉,知道它的力的大小和滑动的情况。第三代机器人,也是我们机器人学中一个理想的所追求的最高级的阶段,叫智能机器人,那么只要告诉它做什么,不用告诉它怎么去做,它就能完成运动,感知思维和人机通讯的这种功能和机能,那么这个目前的发展还是相对的只是在局部有这种智能的概念和含义,但真正完整意义的这种智能机器人实际上并没有存在,而只是随着我们不断的科学技术的发展,智能的概念越来越丰富,它内涵越来越宽。 下面我简单介绍一下我国机器人发展的基本概况。由于我们国家存在很多其

关于现代工业机械手外文文献翻译@中英文翻译@外文翻译

附录 About Modenr Industrial Manipulayor Robot is a type of mechantronics equipment which synthesizes the last research achievement of engine and precision engine, micro-electronics and computer, automation control and drive, sensor and message dispose and artificial intelligence and so on. With the development of economic and the demand for automation control, robot technology is developed quickly and all types of the robots products are come into being. The practicality use of robot not only solves the problems which are difficult to operate for human being, but also advances the industrial automation program. Modern industrial robots are true marvels of engineering. A robot the size of a person can easily carry a load over one hundred pounds and move it very quickly with a repeatability of 0.006inches. Furthermore these robots can do that 24hours a day for years on end with no failures whatsoever. Though they are reprogrammable, in many applications they are programmed once and then repeat that exact same task for years. At present, the research and development of robot involves several kinds of technology and the robot system configuration is so complex that the cost at large is high which to a certain extent limit the robot abroad use. To development economic practicality and high reliability robot system will be value to robot social application and economy development. With he rapid progress with the control economy and expanding of the modern cities, the let of sewage is increasing quickly; with the development of modern technology and the enhancement of consciousness about environment reserve, more and more people realized

人工智能的研究方向和应用领域

人工智能的研究方向和应用领域 人工智能(Artificial Intelligence) ,英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式作出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。广义的人工智能包括人工智能、人工情感与人工意志三个方面。 一、研究方向 1.问题求解 人工智能的第一个大成就是发展了能够求解难题的下棋(如国际象棋)程序。在下棋程序中应用的某些技术,如向前看几步,并把困难的问题分成一些比较容易的子问题,发展成为搜索和问题归约这样的人工智能基本技术。今天的计算机程序能够下锦标赛水平的各种方盘棋、十五子棋和国际象棋。另一种问题求解程序把各种数学公式符号汇编在一起,其性能达到很高的水平,并正在为许多科学家和工程师所应用。有些程序甚至还能够用经验来改善其性能。 2.逻辑推理与定理证明 逻辑推理是人工智能研究中最持久的子领域之一。其中特别重要的是要找到一些方法,只把注意力集中在一个大型数据库中的有关事实上,留意可信的证明,并在出现新信息时适时修正这些证明。对数学中臆测的定理寻找一个证明或反证,确实称得上是一项智能任务。为此不仅需要有根据假设进行演绎的能力,而且需要某些直觉技巧。 1976年7月,美国的阿佩尔(K.Appel)等人合作解决了长达124年之久的难题--四色定理。他们用三台大型计算机,花去1200小时CPU时间,并对中间结果进行人为反复修改500多处。四色定理的成功证明曾轰动计算机界。 3.自然语言理解 NLP(Natural Language Processing)自然语言处理也是人工智能的早期研究领域之一,已经编写出能够从内部数据库回答用英语提出的问题的程序,这些程序通过阅读文本材料和建立内部数据库,能够把句子从一种语言翻译为另一种语言,执行用英语给出的指令和获取知识等。有些程序甚至能够在一定程度上翻译从话筒输入的口头指令(而不是从键盘打入计算机的指令)。目前语言处理研究的主要课题是:在翻译句子时,以主题和对话情况为基础,注意大量的一般常识--世界知识和期望作用的重要性。

浅谈人工智能

中国西部科技
2009年10月(下旬)第08卷第30期 总第191期
浅谈人工智能
李轶博
(吉林石化信息网络公司软信公司,吉林 132021) 摘 要: 人工智能作为计算机学科的一个分支,有其自身的特点,现已在社会生活各个领域都有应用,并将有更为广阔 的发展前景。 关键词: 人工智能;AI;模拟
关于人工智能的定义众说不一,美国斯坦福大学人工 智能研究中心尼尔逊教授下过这样的一个定义:“人工智 能是关于知识的学科——怎样表示知识以及怎么样获得知 识并使用知识的科学。”而麻省理工学院的温斯顿教授认 为:人工智能就是如何使用计算机去做过去只有人才能做的 工作。”人们普遍认为人工智能,它是研究、开发用于模 拟、延伸和扩展人的智能的理念、方法技术以及应用系统 的一门新的技术科学。它是从计算机应用系统的角度出 发,研究如何制造出人造的智能机器或智能系统,来模拟 人类智能活动能力,以延伸人们智能的科学。 人工智能就其本质而言,是对人的思维的信息过程的 模拟,人工智能不是人的智能,更不会超过人的智能,对 于人的思维模拟可是结构模拟,仿照人脑的结构机制,暂 时撇开人脑的内部结构,而从其功能过程进行模拟。 人工智能可以分为强人工智能和弱人工智能。强人工 智能观点认为有可能制造出真正能推理和解决问题的智能 机器,并且,这样的奇迹将被认为是有知觉的,有自我意 识的。弱人工智能观点认为不可能制造出能真正的地推理 和解决问题的智能机器,这些机器只不过看起来像是智能 的,但并不真正拥有智能,也不会有自主意识。 1 人工智能研究的历史与现状 人工智能的研究经历了以下几个阶段: 第一阶段:20世纪50年代人工智能的兴起和冷落。人工
此计划最终失败,但它的开展形成了一股研究人工智能的 热潮。 第四阶段:20世 纪 80年代末,精神网络飞速发展。 1987年,美国召开第一次精神网络国际会议,宣告了这一 新学科的诞生。此后,各国在精神网络方面的投资逐渐增 大,精神网络迅速发展起来。 第五阶段:20世纪90年代,人工智能出现新的研究高 潮。由于网络技术特别是国际互联网的技术发展,人工智 能开始由单个智能主体研究转向基于网络环境下的分布式 人工智能研究。不仅研究基于同一目标的分布式问题求 解,而且研究多个智能主体的多目标问题求解,将人工智 能面向实用。 人工智能研究范畴有自然语言处理、知识表现、智能 搜索、推理、知识获得、组合调度问题,感知问题,模式 识别,逻辑程序设计,软计算,不精确和不确定的管理, 人工生命,精神网络,复杂系统等。 2 人工智能是与具体领域相结合 目前,人工智能是与具体领域相结合进行研究的,有 如下领域:①专家系统。依靠人类已有的知识建立起来的 知识系统,目前专家系统是人工智能研究中开展最早、最 活跃、成就最多的领域。②机器学习。主要在三个方面进 行:首先是研究人类学习的机理、人脑思维的过程。其次 是机器学习的方法。最后是建立针对具体任务的学习系 统。③模式识别。研究如何使机器具有感知能力,主要研 究听觉模式和视觉模式的识别。④理解自然语言,计算机 如能“听懂”人的语言,便可以直接用口语操作计算机, 这将给人们带来极大的便利。⑤机器人学。机器人是一种 模拟人的行为的机械,对它的研究历经三代发展过程:第 一代机器人只能按程序完成工作。第二代机器人配备了像 样的感觉传感器,能取得作业环境、操作对象等简单的信 息,并由机器人体内的计算机进行分析处理,控制机器人 的动作。第三代机器人具有类似人的智能,它装备了高灵 敏度传感器,因而具有超过人的视觉、听觉、嗅觉、触觉 的能力,能对感知的信息进行分析,控制自己的行为,处 理环境发生的变化,完成各种复杂的任务。而且有自我学 习、归纳、总结、提高已掌握知识的能力。⑥智能决策支 (下转第41页)
智能概念首次提出后,出现了一批显著的成果,如机器定理 证明、跳棋程序、LISP表处理语言等。但由于揭发推理能力 有限,以及其翻译失败等,使人工智能走入低谷。这一阶段 的特点是:重视问题求解的方法,忽视知识重要性。 第二阶段:20世纪60年代末到70年代,专家系统出现使 人工智能研究出现新高潮,DENDAL化 学 质 谱 分 析 系 统 、 MTCIN疾 病 诊 断 和 治 疗 系 统 、 PROSPECTIOR探 矿 系 统 , Hearsay-II语言理解系统等专家系统的研究和开发,将人工 智能引向了实用化。1969年成立了国际人工智能联合会。 第三阶段:20世纪 80年代,随着第五代计算机的研 制,人工智能得到了很大发展。日本1982年开始了“第五 代计算机研制计划”,即“知识信息处理计算机系统 LIPS”,其目的是使逻辑推理达到数值运算那么快。虽然
收稿日期: 2009-09-06 修回日期:2009-10-16
作者简介: 李轶博(1982-),男,吉林籍,本科,助理工程师,主要研究方向为信息技术应用和管理。
58

文献综述_人工智能

人工智能的形成及其发展现状分析 冯海东 (长江大学管理学院荆州434023) 摘要:人工智能的历史并不久远,故将从人工智能的出现、形成、发展现 状及前景几个方面对其进行分析,总结其发展过程中所出现的问题,以及发展现状中的不足之处,分析其今后的发展方向。 关键词:人工智能,发展过程,现状分析,前景。 一.引言 人工智能最早是在1936年被英国的科学家图灵提出,并不为多数人所认知。 当时,他编写了一个下象棋的程序,这就是最早期的人工智能的应用。也有著名的“图灵测试”,这也是最初判断是否是人工智能的方案,因此,图灵被尊称为“人工智能之父”。人工智能从产生到发展经历了一个起伏跌宕的过程,直到目前为止,人工智能的应用技术也不是很成熟,而且存在相当的缺陷。 通过搜集的资料,将详细的介绍人工智能这个领域的具体情况,剖析其面临的挑战和未来的前景。 二.人工智能的发展历程 1. 1956年前的孕育期 (1) 从公元前伟大的哲学家亚里斯多德(Aristotle)到16世纪英国哲学家培根(F. Bacon),他们提出的形式逻辑的三段论、归纳法以及“知识就是力量”的警句,都对人类思维过程的研究产生了重要影响。 (2)17世纪德国数学家莱布尼兹(G..Leibniz)提出了万能符号和推理计算思想,为数理逻辑的产生和发展奠定了基础,播下了现代机器思维设计思想的种子。而19世纪的英国逻辑学家布尔(G. Boole)创立的布尔代数,实现了用符号语言描述人类思维活动的基本推理法则。 (3) 20世纪30年代迅速发展的数学逻辑和关于计算的新思想,使人们在计算机出现之前,就建立了计算与智能关系的概念。被誉为人工智能之父的英国天才的数学家图灵(A. Tur-ing)在1936年提出了一种理想计算机的数学模型,即图灵机之后,1946年就由美国数学家莫克利(J. Mauchly)和埃柯特(J. Echert)研制出了世界上第一台数字计算机,它为人工智能的研究奠定了不可缺少的物质基础。1950年图灵又发表了“计算机与智能”的论文,提出了著名的“图灵测试”,形象地指出什么是人工智能以及机器具有智能的标准,对人工智能的发展产生了极其深远的影响。 (4) 1934年美国神经生理学家麦克洛奇(W. McCulloch) 和匹兹(W. Pitts )建立了第一个神经网络模型,为以后的人工神经网络研究奠定了基础。 2. 1956年至1969年的诞生发育期 (1)1956年夏季,麻省理工学院(MIT)的麦卡锡(J.McCarthy)、明斯基(M. Minshy)、塞尔夫里奇(O. Selfridge)与索罗门夫(R. Solomonff)、 IBM的洛

论文《人工智能》---文献检索结课作业

人工智能 【摘要】:人工智能是一门极富挑战性的科学,但也是一门边沿学科。它属于自然科学和社会科学的交叉。涉及的学科主要有哲学、认知科学、数学、神经生理学、心理学、计算机科学、信息论、控制论、不定性论、仿生学等。人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等1。 【关键词】:人工智能;应用领域;发展方向;人工检索。 1.人工智能描述 人工智能(Artificial Intelligence) ,英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学2。人工智能是计 算机科学的一个分支,它企图了解智 能的实质,并生产出一种新的能以人 类智能相似的方式作出反应的智能 机器,该领域的研究包括机器人、语 言识别、图像识别、自然语言处理和 专家系统等。“人工智能”一词最初 是在1956 年Dartmouth学会上提出 的。从那以后,研究者们发展了众多 理论和原理,人工智能的概念也随之扩展。人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。但不同的时代、不同的人对这种“复杂工作”的理解是不同的。例如繁重的科学和工程计算本来是要人脑来承担的,现在计算机不但能完成这种计算, 而且能够比人脑做得更快、更准确,因之当代人已不再把这种计算看作是“需要人类智能才能完成的复 1.蔡自兴,徐光祐.人工智能及其应用.北京:清华大学出版社,2010 2元慧·议当人工智能的应用领域与发展状态〖J〗.2008

探索大数据和人工智能最全试题

探索大数据和人工智能最全试题 1、2012年7月,为挖掘大数据的价值,阿里巴巴集团在管理层设立()一职,负责全面推进“数据分享平台”战略,并推出大型的数据分享平台。 A首席数据官 B.首席科学家 C.首席执行官 D.首席架构师 2、整个MapReduce的过程大致分为Map、Shuffle、Combine、()? A. Reduce B.Hash C. Clean D. Loading 3、在Spak的软件栈中,用于交互式查询的是 A. SparkSQL B.Mllib C.GraphX D. Spark Streaming 4、在数据量一定的情况下, MapReduce是一个线性可扩展模型,请问服务器数量与处( )理时间是什么关系? A数量越多处理时间越长 B.数量越多处理时间越短 C.数量越小处理时间越短 D.没什么关系

5、下列选项中,不是kafka适合的应用场景是? A.日志收集 B.消息系统 C.业务系统 D.流式处理 6、大数据的多样性使得数据被分为三种数据结构,那么以下不是三种数据结构之一的是 A.结构化数据 B.非结构化数据 C.半结构化数据 D.全结构化数据 7、下列选项中,不是人工智能的算法中的学习方法的是? A.重复学习 B.深度学习 C.迁移学习 D.对抗学习 8、自然语言处理难点目前有四大类,下列选项中不是其中之一的是 A.机器性能 B.语言歧义性 C.知识依赖 D.语境 9、传统的机器学习方法包括监督学习、无监督学习和半监督学习,其中监督学习是学习给定标签的数据集。请问标签为离散的类型,称为分类,标签为连续的类型,称为什么?

A.给定标签 B.离散 C.分类 D.回归 10、中国移动自主研发、发布的首个人工智能平台叫做() A.九天 B. OneNET C.移娃 D.大云 11、HDFS中Namenodef的Metadata的作用是? A.描述数据的存储位置等属性 B.存储数据 C.调度数据 D. 12、电信行业的客户关系管理中,客服中心优化可以实现严重问题及时预警,请问是用的什么技术实现的? A大数据技术 B.互联网技术 C.游戏技术 D.影像技术 13、随着闭源软件在数据分析领域的地盘不断缩小,老牌IT厂商正在改变商业模式,向着什么靠拢? A.闭源

人工智能专家系统_外文翻译原文

附件 毕业生毕业论文(设计)翻译原文 论文题目远程农作物病虫害诊断专家系统的设计与实现系别_____ ______ _ 年级______ _ _ _ _ _ 专业_____ ___ ___ 学生姓名______ _____ 学号 ___ __ _ 指导教师______ ___ _ __ _ 职称______ __ ___ 系主任 _________________ _ _ ___ 2012年 04月22 日

EXPERT SYSTEMS AND ARTIFICIAL INTELLIGENCE Expert Systems are computer programs that are derived from a branch of computer science research called Artificial Intelligence (AI). AI's scientific goal is to understand intelligence by building computer programs that exhibit intelligent behavior. It is concerned with the concepts and methods of symbolic inference, or reasoning, by a computer, and how the knowledge used to make those inferences will be represented inside the machine. Of course, the term intelligence covers many cognitive skills, including the ability to solve problems, learn, and understand language; AI addresses all of those. But most progress to date in AI has been made in the area of problem solving -- concepts and methods for building programs that reason about problems rather than calculate a solution. AI programs that achieve expert-level competence in solving problems in task areas by bringing to bear a body of knowledge about specific tasks are called knowledge-based or expert systems. Often, the term expert systems is reserved for programs whose knowledge base contains the knowledge used by human experts, in contrast to knowledge gathered from textbooks or non-experts. More often than not, the two terms, expert systems (ES) and knowledge-based systems (KBS), are used synonymously. Taken together, they represent the most widespread type of AI application. The area of human intellectual endeavor to be captured in an expert system is called the task domain. Task refers to some goal-oriented, problem-solving activity. Domain refers to the area within which the task is being performed. Typical tasks are diagnosis, planning, scheduling, configuration and design. An example of a task domain is aircraft crew scheduling, discussed in Chapter 2. Building an expert system is known as knowledge engineering and its practitioners are called knowledge engineers. The knowledge engineer must make sure that the computer has all the knowledge needed to solve a problem. The knowledge engineer must choose one or more forms in which to represent the required knowledge as symbol patterns in the memory of the computer -- that is, he (or she) must choose a knowledge representation. He must also ensure that the computer can use the knowledge efficiently by selecting from a handful of reasoning methods. The practice of knowledge engineering is described later. We first describe the components of expert systems. The Building Blocks of Expert Systems Every expert system consists of two principal parts: the knowledge base; and the reasoning, or inference, engine.

智能机器人外文翻译

Robot Robot is a type of mechantronics equipment which synthesizes the last research achievement of engine and precision engine, micro-electronics and computer, automation control and drive, sensor and message dispose and artificial intelligence and so on. With the development of economic and the demand for automation control, robot technology is developed quickly and all types of the robots products are come into being. The practicality use of robot products not only solves the problems which are difficult to operate for human being, but also advances the industrial automation program. At present, the research and development of robot involves several kinds of technology and the robot system configuration is so complex that the cost at large is high which to a certain extent limit the robot abroad use. To development economic practicality and high reliability robot system will be value to robot social application and economy development. With the rapid progress with the control economy and expanding of the modern cities, the let of sewage is increasing quickly: With the development of modern technology and the enhancement of consciousness about environment reserve, more and more people realized the importance and urgent of sewage disposal. Active bacteria method is an effective technique for sewage disposal,The lacunaris plastic is an effective basement for active bacteria adhesion for sewage disposal. The abundance requirement for lacunaris plastic makes it is a consequent for the plastic producing with automation and high productivity. Therefore, it is very necessary to design a manipulator that can automatically fulfill the plastic holding. With the analysis of the problems in the design of the plastic holding manipulator and synthesizing the robot research and development condition in recent years, a economic scheme is concluded on the basis of the analysis of mechanical configuration, transform system, drive device and control system and guided by the idea of the characteristic and complex of mechanical configuration, electronic, software and hardware. In this article, the mechanical configuration combines the character of direction coordinate and the arthrosis coordinate which can improve the stability and operation flexibility of the system. The main function of the transmission mechanism is to transmit power to implement department and complete the necessary movement. In this transmission structure, the screw transmission mechanism transmits the rotary motion into linear motion. Worm gear can give vary transmission

人工智能数据库系统优化的捷径

人工智能数据库系统优化的捷径 摘要:SQL语句的优化是将性能低下的SQL语句转换成目的相同的性能优异的SQL语句。文中主要介绍了利用人工智能自动SQL优化技术来优化数据库系统,并且简要介绍了几种常见的数据库系统优化方法。人工智能自动SQL优化就是使用人工智能技术,自动对SQL语句进行重写,从而找到性能最好的等效SQL语句。 一数据库性能的优化 一个数据库系统的生命周期可以分成:设计、开发和成品三个阶段。在设计阶段进行数据库性能优化的成本最低,收益最大。在成品阶段进行数据库性能优化的成本最高,收益最小。 数据库的优化通常可以通过对网络、硬件、操作系统、数据库参数和应用程序的优化来进行。最常见的优化手段就是对硬件的升级。根据统计,对网络、硬件、操作系统、数据库参数进行优化所获得的性能提升,全部加起来只占数据库系统性能提升的40%左右,其余的60%系统性能提升来自对应用程序的优化。许多优化专家认为,对应用程序的优化可以得到80%的系统性能的提升。 二应用程序的优化 应用程序的优化通常可分为两个方面:源代码和SQL语句。由于

涉及到对程序逻辑的改变,源代码的优化在时间成本和风险上代价很高,而对数据库系统性能的提升收效有限。 三为什么要优化SQL语句 SQL语句是对数据库进行操作的惟一途径,对数据库系统的性能起着决定性的作用。 SQL语句消耗了70%至90%的数据库资源。 SQL语句独立于程序设计逻辑,对SQL语句进行优化不会影响程序逻辑。 SQL语句有不同的写法,在性能上的差异非常大。 SQL语句易学,但难精通。 优化SQL语句的传统方法是通过手工重写来对SQL语句进行优化。DBA或资深程序员通过对SQL语句执行计划的分析,依靠经验,尝试重写SQL语句,然后对结果和性能进行比较,以试图找到性能较佳的SQL语句。这种传统上的作法无法找出SQL语句的所有可能写法,且依赖于人的经验,非常耗费时间。 四SQL优化技术的发展历程 第一代SQL优化工具是执行计划分析工具。这类工具针对输入的SQL语句,从数据库提取执行计划,并解释执行计划中关键字的含义。 第二代SQL优化工具只能提供增加索引的建议,它通过对输入的SQL语句的执行计划的分析,来产生是否要增加索引的建议。 第三代SQL优化工具不仅分析输入SQL语句的执行计划,还对输入的SQL语句本身进行语法分析,经过分析产生写法上的改进建议。

浅谈人工智能的现状与未来

浅谈人工智能的现状与未来 摘要:作为二十世纪七十年代以来被称为世界三大尖端技术之一(空间技术、能源技术、人工智能),同时也被认为是二十一世纪三大尖端技术之一(基因工程、纳米科学、人工智能)。人工智能在很多科学领域都获得了广泛应用,并取得了丰硕的成果,本文将对人工智能的发展历程,现状以及发展趋势作一个初步的解读,人工智能应用于工程是是目前工程技术研究的热点之一,本文也将就人工智能中的专家系统、模拟逻辑、神经网络控制在机电一体化中的应用进行了探讨。 关键词:人工智能;机电一体化;专家系统;模糊控制;神经网络控制;AI发展前景; 什么是人工智能 人工智能(Artificial Intelligence) ,英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。 人工智能与机电一体化系统的统一 近几十年来,人工智能得到了长足的发展,譬如,IBM 公司制造的深蓝计算机运用人工智能于1997年5月,战胜了国际象棋冠军卡斯帕洛夫。人工智能用于机电一体化是机电一体化发展的方向之一。这种智能主要通过控制技术加以设计和实现,即由机电一体化系统中的控制系统来具体实现。 专家系统、模糊逻辑、神经网络控制、学习控制和分层递阶是目前人工智能研究主要的几个领域,它们各自发展,又相互渗透,走向结合。其中,前三个领域是目前机电一体系统实现智能化的较成熟的领域。 一,自从第一个专家系统于1968年问世以来,经过30多年的发展,专家系统已经成为人工智能应用最活跃的领域。已经从最初的应用于医疗、科技等领域,向财政、金融、保险、商业和法律方向扩展,下面就与机电一体化有关的应用予以探讨。 (1)在装配制造业的应用:产品的生产,总是用零件来构造的,将不同的零件一起装配成一种新产品,叫做配里任务。专家系统应用于装配制造方面可以取得 可观的经济效益。比如, DEC公司的专家系统XCON,是应用于计算机配置的 第一个专家系统,现在每年为DEC公司盈利1。5亿美元 (2)在设备故障诊断中的应用:专家系统用于设备故障诊断,特别是针对大型的结构、复杂的故障诊断,可以尽快找到故障,大大缩短检修时间,有很多成功 的例子,比如美国西屋电气公司研制的GEN一AID专家系统,已经成功地应 用于诊断汽轮发动机的故障。IBM公司也曾经为其IBMATPC机配备了一个专家 系统,用来精确定位系统故障。 (3)在控制方面的应用:专家系统可以在机电一体化设备控制方面发挥作用,在伺服控制、数控机床、加工中心以及其它控制领域,已取得了进展。在这方面成 功的例子如AT&T公司为控制机械手,研制出在单个芯片上实现的专家系统。 最早的芯片包括16条规则的ROM,控制器以及处理数据与规则的推理机。采 用2。5um线宽的CMOS工作,最初只使用了芯片面积的四分之一,改用1。 5um线宽后可容纳256条规则,建立规则时采用模糊逻辑,执行速度可达到 80000LISP,比常规专家系统快1000倍。尽管大型专家系统的造价是很昂贵的,

人工智能研究方法的文献综述

人工智能研究方法的文献综述 1、前言 本文综述了人工智能的主要研究方法,并对各方法进行分析和总结,并阐述了目前人工智能研究方法日趋多样化的研究现状。 2、主题 研究方法,对一个问题的研究方法从根本上说分为两种:其一,对要解决的问题扩展到他所隶属的领域,对该领域做一广泛了解,研究该领域从而实现对该领域的研究,讲究广度,从对该领域的广泛研究收缩到问题本身;其二,把研究的问题特殊化,提炼出要研究问题的典型子问题或实例,从一个更具体的问题出发,做深刻的分析,研究透彻该问题,再一般化扩展到要解决的问题,讲究研究深度,从更具体的问题入手研究扩展到问题本身。 人工智能的研究方法主要可以分为三类:一、结构模拟,神经计算,就是根据人脑的生理结构和工作机理,实现计算机的智能,即人工智能。结构模拟法也就是基于人脑的生理模型,采用数值计算的方法,从微观上来模拟人脑,实现机器智能。采用结构模拟,运用神经网络和神经计算的方法研究人工智能者,被称为生理学派、连接主义。二、功能模拟,符号推演,就是在当前数字计算机上,对人脑从功能上进行模拟,实现人工智能。功能模拟法就是以人脑的心理模型,将问题或知识表示成某种逻辑网络,采用符号推演的方法,实现搜索、推理、学习等功能,从宏观上来模拟人脑的思维,实现机器智能。以功能模拟和符号推演研究人工智能者,被称为心理学派、逻辑学派、符号主义。三、行为模拟,控制进化,就是模拟人在控制过程中的智能活动和行为特性。以行为模拟方法研究人工智能者,被称为行为主义、进化主义、控制论学派。 人工智能的研究方法,已从“一枝独秀”的符号主义发展到多学派的“百花争艳”,除了上面提到的三种方法,又提出了“群体模拟,仿生计算”“博采广鉴,自然计算”“原理分析,数学建模”等方法。人工智能的目标是理解包括人在内的自然智能系统及行为,而这样的系统在实在世界中是以分层进化的方式形成了一个谱系,而智能作为系统的整体属性,其表现形式又具有多样性,人工智能的谱系及其多样性的行为注定了研究的具体目标和对象的多样性。人工智能与前沿技术的结合,使人工智能的研究日趋多样化。 3、总结 人工智能的研究方法会随着技术的进步而不断丰富,很多新名词还会被提出,但研究的目的基本不变,日趋多样化的研究方法追根溯源也就是研究问题的两种方法的演变。对人工智能中尚未解决的众多问题,运用基本的研究问题的方法,结合先进的技术,不断实现智能化。人工智能与前沿技术密切联系,人工智能的研究方法必然日趋多样化。 4、参考文献 (1)人工智能技术导论廉师友西安电子科技大学出版社2007.8 (2)人工智能研究方法及途径熊才权2005年第三期 (3)人工智能学派及其在理论、方法上的观点蔡自兴1995.5 (4)人工智能研究的主要学派及特点黄伟聂东陈英俊2001第三期 (5)人工智能研究对思维学的方法论启示尹鑫苏国辉2002.10第四期

英文翻译人工智能

【PT】[J]. 【AU:】shambour,Qusai Xu, Yisi Lin, Qing Zhang, Guangquan 【AB】The web provides excellent opportunities to businesses in various aspects of development such as finding a business partner online. However, with the rapid growth of web information, business users struggle with information overload and increasingly find it difficult to locate the right information at the right time. Meanwhile, small and medium businesses (SMBs), in particular, are seeking one-to-one e-services from government in current highly competitive markets. How can business users be provided with information and services specific to their needs, rather than an undifferentiated mass of information? An effective solution proposed in this study is the development of personalized e-services. Recommender systems is an effective approach for the implementation of Personalized E-Service which has gained wide exposure in e-commerce in recent years. Accordingly, this paper first presents a hybrid fuzzy semantic recommendation (HFSR) approach which combines item-based fuzzy semantic similarity and item-based fuzzy collaborative filtering (CF) similarity techniques. This paper then presents the implementation of the proposed approach into an intelligent recommendation system prototype called Smart BizSeeker, which can recommend relevant business partners to individual business users,particularly for SMBs. Experimental results show that the HFSR approach can help overcome the semantic limitations of classical CF-based recommendation approaches, namely sparsity and new cold start item problems. 【题目】:基于Web的个性化推荐系统使用的业务合作伙伴---模糊语义技术 【刊登杂志】: 计算智能 【摘要】网站为企业在各方面的发展提供了极好的机会,例如找到一个在线的业务合作 伙伴。然而,随着网络信息的快速增长,商业用户正在和信息过载做斗争,并且在正确的时间找到正确的信息的难度在不断增加。同时,特别是中小型企业(中小企业),在当前竞争激烈的市场中从政府寻求的是一对一的电子服务。怎么为企业用户提供他们需要的的信息和服务,而不是一种未分化的海量信息?本文中就为个性化服务发展提出了一个有效的解决方法。推荐系统是实施个性化的全方位服务的一种有效的方法,近年来在电子商务中得到了广泛的提及。相应的,本文首先提出了一种混合模糊语义推荐(HFSR)的方法,这种方法结合了基于项目的模糊语义相似度和基于项目的模糊协同过滤(CF)相似的技术。本文就介绍了在一个智能推荐系统原型中该方法的实现,这个实现方法称为智能bizseeker,它可推荐相关个人商务用户的业务合作伙伴,特别是对中小企业。实验结果表明,HFSR方法可以帮助克服基于推荐的经典CF语义的限制方法,即稀疏性和冷开始新项目问题。

相关主题
文本预览
相关文档 最新文档